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 A B S T R A C T

Remote physiological measurement (RPM) is an essential tool for healthcare monitoring as it enables the 
measurement of physiological signs, e.g., heart rate, in a remote setting, via physical wearables. Recent 
advancements in facial video-based RPMs have leveraged video analysis to detect photoplethysmographic 
(PPG) changes by learning pixel variations across frames. Transformer architectures, known for their success in 
natural video understanding, have also been applied to facial video-based RPM. However, existing transformer-
based RPM methods often rely on RPM-specific modules, such as temporal difference convolutions and 
handcrafted feature maps, to capture subtle physiological signals and enhance temporal feature extraction. 
While these customized modules can improve performance, they lack robustness across datasets and cannot 
be generalized to different transformer architectures due to their high degree of customization. In this study, 
we demonstrate that general video transformers (GVTs) can achieve state-of-the-art performance for RPM 
without the need of RPM-specific modules. This approach simplifies the design process and facilitates the rapid 
deployment of various GVT architectures for RPM tasks. We conducted an empirical investigation into how 
training designs, including data preprocessing and network configurations, influence the performance of GVTs 
in facial video-based RPM. Furthermore, we propose practical guidelines to adapt GVTs to RPM (GVT2RPM) 
without the need for RPM-specific modules. Our experiments, conducted on five datasets using both intra-
dataset (training and testing on the same dataset) and cross-dataset (training and testing on different datasets) 
settings, demonstrate that the proposed GVT2RPM guidelines outperform existing RPM-specific counterparts 
in most of cases. In intra-dataset experiments, it reduced mean absolute error by 5.0% (UBFC-rPPG), 35.6% 
(MMPD-simple), and 38.2% (MMPD). In cross-dataset experiments, it achieved reductions of 4.3% (UBFC-
Phys), 13.2% (MMPD-simple), 9.5% (MMPD), and 13.4% (RLAP). The results demonstrate that our guidelines 
can be applied across various GVT architectures and are robust to diverse datasets, making them a promising 
solution for advancing RPM methodologies.
1. Introduction

Telemedicine has seen rapid growth in recent years due to the 
necessity and convenience offered by remote patient care [1]. One 
of the key telemedicine services is remote physiological measurement 
(RPM) that are necessary to cater for chronic and long-term patients at 
the convenience of their home environment [2]. Traditional approaches 
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for physiological measurement relied on physical contact wearables, 
e.g., cuff-based heart rate or blood pressure monitors, which, although 
practical, are limited by their dependency on continuous physical 
attachment and can be cumbersome for long-term monitoring. To 
overcome these limitations, contactless RPM methods via remote pho-
toplethysmography (rPPG) have garnered increased interest [3]. A key 
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Fig. 1. Overall performance evaluations of our GVT2RPM. A general video transformer (exemplified with MViTv2) was adapted for remote physiological 
measurement (GVT2RPM-MViT), compared to five other state-of-the-art methods. The left graph shows the Mean Absolute Errors (MAEs) obtained in intra-dataset 
experiments where the training and testing sets were from the same dataset. A shorter bar means a better result. The right graph shows the ranking (based on 
their MAEs) of the methods in cross-dataset experiments where the training and testing sets were from different datasets. Box labels represent the name of training 
and testing datasets (separated by underscore).
advantage of rPPG is that it only requires a simple video camera, e.g., a 
smartphone camera [4]. From the acquired video, rPPG signals are 
derived from light changes reflected from the skin caused by the Blood 
Volume Pulse (BVP) [5] that are evident within the video frames, which 
can then be used to extract physiological parameters, such as Blood 
Pressure (BP) [6], Atrial Fibrillation (AF) [7], and Heart Rate (HR) [8].

In early studies, video-based RPM relied on conventional machine 
learning techniques to detect and process rPPG signals. For example, 
researchers applied blind-source signal separation techniques, e.g., in-
dependent component analysis (ICA) [9] and principal component 
analysis (PCA) [10], to reduce noises and recover the underlying rPPG 
waveforms from video frames. Furthermore, Wang et al. [11] proposed 
to define a plane orthogonal to the color space of the skin, which 
eliminated specular reflections and improved the robustness of signal 
processing for rPPG recovery. More recently, deep learning approaches 
such as Convolutional Neural Networks (CNNs) have shown promis-
ing performance in image representation learning [12–14] and video 
understanding [15–17]. Researchers have leveraged advanced CNN 
architectures to improve the efficacy of video-based RPM algorithms. 
For instance, Qiu et al. [18] proposed to use spatial and temporal 
filtering to capture facial color changes combined with CNNs to extract 
underlying HR information. Špetlík et al. [19] designed a two-stage 
CNN, where an ‘‘extractor’’ module was applied to learn video features. 
Then, a ‘‘predictor’’ module was used to analyze learned features for 
prediction. Other researchers learned video frame relationships by 
incorporating both spatial and temporal information, i.e., Yu et al. [20] 
proposed to model the spatiotemporal relationships in videos using 3D 
CNN or 2D CNN combined with Recurrent Neural Network (RNN).

Transformer [21], an architecture proposed in Natural Language 
Processing (NLP), has become a common model architecture in com-
puter vision, especially after the proposal of the Vision Transformer 
(ViT) [22]. Compared to CNNs, the transformer has a larger receptive 
field than CNNs and thus provides a better long-range dependency. 
When applied to videos, the transformer can process long time-series 
data and can model temporal relationships between the video frames, 
which has contributed towards understanding actions and scenes in 
videos [23–25]. These advantages of the transformer architecture have 
also been applied to video-based RPM. For instance, Liu et al. [26] 
2 
adopted the Swin Transformer, a transformer variant incorporating 
CNN multi-scale hierarchy, and converted 3D inputs to 2D feature maps 
for signal extraction. Similarly, Zhang et al. [27] applied the Trans-
former encoder to enable multi-scale and long-distance physiological 
feature learning.

Traditionally, transformer-based RPM methods have involved care-
ful modifications of the original transformer architecture, such as re-
placing standard modules with RPM-specific ones like customized con-
volution kernels for calculating self-attention weights [28]. These ap-
proaches relied on the assumption that semantic differences between 
general video recognition tasks and the RPM task required specialized 
handling. While video transformers excel at modeling large varia-
tions in human anatomy for general tasks, RPM specifically focuses 
on capturing subtle color fluctuations from human skin [29] using a 
fixed camera viewpoint (resulting in consistent anatomy). These RPM-
specific customizations, however, have drawbacks. They cannot be 
generalized to different transformer architectures and are not robust to 
various datasets. This limited flexibility restricts the adoption of state-
of-the-art video transformers in RPM applications, preventing RPM 
methods from leveraging performance gains offered by advancements 
in general video transformers. Additionally, over-customization makes 
models more prone to overfitting, especially when training on smaller 
or less diverse datasets, leading to performance degradation in new 
clinical settings (supported by the inferior performance of PhysFormer 
in Fig.  1). Interestingly, recent evidence challenges the necessity of such 
specialized modifications. Studies such as Khan et al. [30] demonstrate 
that original video transformer architectures possess general capabil-
ities that can be effectively adapted for different domains, such as 
audio signal feature extraction, despite semantic differences between 
audio learning and video understanding. This suggests that rather 
than requiring extensive RPM-specific modifications, standard video 
transformers might be adaptable for rPPG signal learning through more 
minimal adjustments, potentially offering both performance benefits 
and greater generalizability.

In this work, we address three key research questions: (1) Can 
general video transformers (GVT), originally designed for action recog-
nition, be adapted for physiological signal extraction without archi-
tectural modifications? (2) What are the optimal data preprocessing 
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and network configuration strategies for adapting GVT to RPM across 
different datasets? and (3) How does the generalizability of adapted 
GVT compare to specialized RPM methods in cross-dataset settings? 
We refer GVT as transformer architectures designed for broad video 
understanding. We conducted an empirical study to adapt GVT to 
RPM (GVT2RPM) and proposed practical GVT2RPM guidelines for 
their adaptation to solve RPM challenges. This adaptation maintains 
the original transformer architectures, thus making it adaptable to 
various video transformer models and robust to different datasets and 
settings. Our guideline includes simple but effective strategies such as 
appropriate data pre-processing and additional temporal downsampling 
between the transformer blocks. Following our guidelines, we show 
steps to obtain optimal configurations for GVTs specific to datasets 
(in Section 4). As shown in Fig.  1, we evaluated various methods on 
five commonly used public datasets, including Multi-domain Mobile 
video Physiology Dataset (MMPD) [31], MMPD-simple [31], Remote 
Learning Affect and Physiologic dataset (RLAP) [32], Univ. Bourgogne 
Franche-Comté (UBFC)-rPPG [33], and UBFC-Phys [34] under intra- 
and cross-dataset settings using HR estimation to assess the quality of 
learned rPPG signals. Moreover, we conducted a majority voting based 
on empirical results in Section 5 and proposed general configurations 
for GVTs to achieve reasonable results on RPM in Section 6. Our 
GVT2RPM retains the original transformer architecture, allowing for 
straightforward integration with newly developed transformer models 
and diverse datasets. This flexibility reduces the need for extensive cus-
tomization of RPM-specific modules, as GVT2RPM can seamlessly adopt 
updates from the latest advancements in transformer architectures.

1.1. Contributions

Our work presents three main contributions that advance the cur-
rent state-of-the-arts:

• Unlike existing transformer-based RPM methods that rely heavily 
on customized modules (e.g., Temporal Difference Convolution 
in PhysFormer [28], handcrafted STMaps in RhythmNet [35]), 
we demonstrate that general video transformers can achieve su-
perior performance without any RPM-specific modifications. This 
challenges the prevailing assumption in the field that specialized 
modules are necessary for capturing subtle physiological signals.

• We provide the first comprehensive empirical study establishing 
practical guidelines for adapting any general video transformer 
to RPM. Our guidelines are validated across 3 different GVT 
architectures (MViTv2 [36], UniFormer [25], Video Swin [24]) 
and 5 datasets, showing consistent improvements over baseline 
GVTs.

• Our approach demonstrates better cross-dataset performance
compared to existing methods. For instance, PhysFormer shows 
degraded performance in cross-dataset settings (as shown in Fig. 
1), while our GVT2RPM maintains robust performance, address-
ing a critical limitation in current RPM methods.

2. Related works

2.1. Transformer for general video analysis

Applying 3D CNNs [15,17] to capture the spatiotemporal relation-
ships in the videos is intuitive. However, these methods have been 
constrained to the usage of short videos due to the limited recep-
tive fields of the CNNs. In contrast, transformer [21] designed for 
sequential data learning can handle long-range relationships and is 
therefore suitable for processing time-series data. For example, Berta-
sius et al. [37] extended the ViT [22] architecture to process 3D volume 
inputs where the self-attention mechanism was applied to spatial and 
temporal dimensions separately. Similarly, Arnab et al. [38] proposed 
a transformer-based model in which video inputs were tokenized along 
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spatial and temporal axes to produce 3D cubes, followed by a stack 
of transformer layers to learn spatiotemporal relationships. In contrast, 
rather than feeding raw cubes into the transformer, Neimark et al. [39] 
integrated inductive biases and applied CNNs to extract features from 
each frame before sending them into the transformer to model the tem-
poral relationships. Moreover, Fan et al. [23] implemented multiscale 
feature hierarchies for the transformer to achieve efficient and effective 
video recognition, which they learned from the success of CNNs.

2.2. Transformer for remote physiological measurement

The transformer can be helpful when applied to RPM. For example, 
Liu et al. [26] proposed using tensor-shifted 2D convolutions [40] 
to generate 2D feature maps from 3D videos, which were then fed 
into the 2D Transformer to learn the spatiotemporal relationships. 
Similarly, Liu et al. [41] converted video inputs into handcrafted 2D 
spatiotemporal Map (STMap) representations [35], and then ViT was 
applied to extract underlying signal features. Instead of converting 
videos into 2D representations, Yu et al. [28,42] proposed a video-
transformer-based architecture for rPPG signal representation learning 
that Temporal Difference Convolution (TDC) [43] was used for self-
attention calculation capturing temporal difference features. However, 
two limitations are identified for the above methods: (1) converting 
3D facial videos into handcrafted 2D STMap requires prior knowledge 
about physiology, resulting in biases, and (2) customized transformer 
modules for the RPM deteriorate the model generalizability and hinder 
sharing the advancements from general video recognition.

3. General Video Transformers (GVTs)

Due to the additional time dimension in video inputs, learning the 
temporal dependencies among the video frames is essential for video 
understanding. Initially, researchers [37,38] applied self-attention
along the temporal axis to learn spatiotemporal relationships. This 
design style of transformer evolved into a hybrid structure consisting 
of CNN and transformer [23–25]. Specifically, a standard scheme of 
these methods is to integrate multiscale hierarchy in the CNN into the 
transformer achieving an optimal speed-accuracy trade-off. We refer 
this architecture as General Video Transformers (GVTs). In practice, 
the GVTs consists of five sequential stages as shown in Fig.  2. Firstly, 
the patchify stem is applied to split inputs into space–time cubes for 
later self-attention operations. Then, positional encodings are added 
for each cube. Afterward, cubes are fed into four stages sequentially 
to extract spatiotemporal features. Each stage contains multiple blocks 
consisting of transformer encoder or CNN block structures. The number 
of blocks in each stage depends on different model designs, but the 
feature map dimensions inside each stage remain the same. Therefore, 
the multiscale hierarchy only happens during the transition of stages 
and is agnostic to different hybrid video transformers.

4. GVT2RPM guidelines: Exemplified with MViTv2

This section describes our guidelines for adapting the GVT to RPM 
as shown in Fig.  2. We used the recent video transformer of Multiscale 
Vision Transformer v2 (MViTv2) [36] as our baseline. Starting from the 
MViTv2’s standard settings, we show the changes in its performance 
from our adaptation in Fig.  3.

Experiment Settings. Due to the differences between general video 
recognition and RPM, the training strategies can vary. To make exper-
iments consistent and reproducible, we integrated the official MViTv2 
implementation1 with rPPG-Toolbox [44] to benchmark algorithms and 

1 https://github.com/facebookresearch/SlowFast/tree/main/projects/
mvitv2

https://github.com/facebookresearch/SlowFast/tree/main/projects/mvitv2
https://github.com/facebookresearch/SlowFast/tree/main/projects/mvitv2
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Fig. 2. Overview of our proposed guidelines for adapting general video transformer to remote physiological measurement. We used blue color to highlight the 
designs that could affect final performance. The parameters of each guideline are listed within the bracket and are selected based on empirical results. The 
decision for each design is made sequentially using a greedy algorithm, which selects the best available option at each step without revisiting previous choices. 
For each decision, we choose the setting that yields the lowest MAE and fix it before optimizing the next factor. For example, when evaluating input dimensions, 
120 × 64 × 64 produced the minimum MAE, so it was chosen and fixed for all subsequent experiments.
Fig. 3. Experiment results under MMPD-simple intra-dataset setting by explor-
ing the adaption from MViTv2 to GVT2RPM-MViT. We used Mean Absolute 
Error (MAE) as the metric, computed by comparing the model’s predicted heart 
rates with the ground-truth heart rates for each video clip across the entire 
dataset.

run experiments. We used the PyTorch [45] library and kept most 
default training strategies in the rPPG-Toolbox: the batch size was set 
to 4, and the optimizer was AdamW [46]. We extended the number 
of epochs to 50, modified the learning rate to 1e−3, and removed the 
learning rate scheduler to reduce hyperparameters. For simplicity, we 
4 
used the MViTv2-S2 as the backbone and kept the hyperparameters 
unchanged unless specified. The model performance was evaluated 
under the intra-dataset setting (train/validation/test ratio of 7:1:2, split 
based on subjects) on MMPD-simple [31], and the Mean Absolute Error 
(MAE) was used as the metric.

Our guidelines consisted of two parts: (1) data pre-processing with 
four sub-parts: input dimensions, output format, frame format, and 
signal normalization, and (2) network configuration with two sub-parts: 
positional encodings and scaling strategies. Following each part sequen-
tially, the model was adapted to RPM. The choice of configuration in 
each part is based on a greedy algorithm, which selects the best option 
at the current step and does not revisit earlier configurations. We began 
with the default setting of input dimension with ‘120 × 64 × 64’, output 
format with ‘HR values’, frame format - ‘RGB’, signal normalization - 
‘Disabled’, positional encoding - REL, and scaling strategy with Scale-0. 
The first step of the guideline is to determine the input dimension of 
video clips. As shown in Fig.  3, an input dimension of 120 × 64 × 64 
achieved the lowest MAE and was therefore fixed for subsequent exper-
iments. Next, Fig.  3 shows that the results of using signals were better 
than using HR values, producing lower MAE, and thus we changed to 
use rPPG signals as labels. At this stage, the model design choices were: 
(1) an input dimension of 120 × 64 × 64 and (2) using signals as labels 
(changed from using HR in the default setting). The remaining steps 
follow the same greedy selection process.

4.1. Data pre-processing

4.1.1. Input dimensions
The input dimensions of video recognition are generally 16 × 224 ×

224 (Frame length 𝑇× Height 𝐻× Width 𝑊 ), which is different in the 
RPM task. Therefore, these two tasks have opposite biases to the spatial 
and temporal information. In general video recognition, models need 
more spatial details to detect objects within the video. Still, they need 

2 Later use of MViTv2 refers to this model size unless specified.
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Fig. 4. Design of averaging and upsampling modules. For heart rate output, 
the extracted features are averaged and passed to the classification head 
for prediction. For signal output, the features are upsampled to generate 
continuous signal predictions instead of being averaged.

sparse time-related information (e.g., key frames) to define an action 
(such as a tennis hit’s beginning, middle, and ending moments). In con-
trast, RPM requires dense temporal information to capture continuous 
rPPG signal features. The spatial information, however, is less critical, 
providing facial semantics and containing potential noises disturbing 
the training process [47,48]. Therefore, we tested a set of spatial dimen-
sions {256, 128, 64, 32} where numbers are powers of 2 and a set of 
temporal dimensions {240, 120, 60, 30} where numbers are multiples 
of 30, which is the standard setting of Frames Per Second (FPS) for 
RPM. As shown in Fig.  3, we first fixed the temporal dimension to 120 
since it is close to the common setting of existing RPM methods and 
found that spatial dimension 64 achieved the best result with an MAE 
of 7.59. We then fixed the spatial dimension to 64 and found that the 
temporal dimension 120 performed the best. This suggests that compared 
with general video recognition, RPM requires a smaller frame size to reduce 
environmental noises and a longer clip length for enriched signal features.

4.1.2. Output format
For video classification, the final predictions are made by either 

the class (CLS) token [22] or by averaging output tokens from the 
last transformer block and applying a classification head [36]. In RPM, 
outputs can be either rPPG signals or HR values derived from the 
rPPG signals. When the output format is HR, we can use the averaging 
module to make predictions without modifications. When predicting 
continuous signals, we appended an upsampling module to map learned 
features to signals . In detail, after the last transformer block, we added 
K of upsampling modules depending on the feature map dimensions 
and target signals. We show the design of upsampling module in Fig. 
4. Each upsampling module consists of a nearest upsampling layer, 
a 3D convolutional layer, a 3D batch normalization layer, and an 
Exponential Linear Unit (ELU) activation layer. The scaling factor of 
the upsampling layer was set to (2, 1, 1). The 3D convolutional layer 
kept the input and output dimensions the same with a kernel size of 
(3, 1, 1), stride of 1, and padding of (1, 0, 0). In the experiment, using 
rPPG signals as ground truth reduces the MAE to 5.05, showing that signals 
contain more information than HR values.

4.1.3. Video frame format
Using raw RGB video frames as inputs is common in video recogni-

tion. However, based on the skin reflection model [11], RGB inputs can 
be sub-optimal, affecting algorithm performances due to the reflection 
noises resulting from the light source and skin tone of subjects. There-
fore, calculating Differences of Normalized frames (DiffNorm) [47], 
which minimizes the RGB input constraints, has become a popular 
data pre-processing to capture underlying rPPG signals under various 
illumination conditions. After applying DiffNorm to raw inputs, the MAE 
dropped from 5.05 to 1.76 (see Fig.  3), indicating the effectiveness of 
DiffNorm in reducing inherent noises in RGB-format videos.
5 
4.1.4. Signal normalization
Normalizing signals into the same scale can help stabilize the gra-

dient descent steps and improve the model convergence rate in most 
cases [49]. Standardization, which transforms values to have a mean of 
0 and a standard deviation of 1, is a prevalent normalization technique, 
assuming the data follows a Gaussian distribution [50]. However, this 
assumption can be invalid for some datasets and thus hinder the model 
training. In our experiment, signal normalization reduced the MAE by 0.51 
to 1.25 (see Fig.  3).

4.2. Network configurations

4.2.1. Position encodings
In contrast to CNNs, which inherently contain positional informa-

tion by the sliding window operation, the transformer processes all 
input tokens in parallel without referring to the order or positions. 
Understanding positional information is essential in vision recognition, 
and it helps to learn high-level semantic meanings like relationships 
between objects [51]. In our studies, we evaluated three different 
position encodings, including absolute position encodings (ABS) [23], 
relative position encodings (REL) [36], and conditional position en-
codings (CPE) [52]. Although ViT [22] speculated that ABS and REL 
have no differences in image classification, MViTv2 [36] found that 
REL can achieve better performances in video recognition. Recently, 
CPE was proposed to integrate translation equivalence into the vision 
transformer to improve performance. Since CPE was initially proposed 
for 2D images, we extended it for 3D video inputs by replacing the 2D 
CNN layers with 3D CNN. In this experiment, REL performed better than 
the other two position encodings with an MAE of 1.25 (see Fig.  3).

4.2.2. Scaling strategies
The key idea of modern GVTs is to integrate multiscale feature 

hierarchies in CNNs with the transformer architecture. This is im-
plemented by reducing the spatial resolution of feature maps and 
increasing the channel capacity at certain stages. With prior knowl-
edge about rPPG signals, RPM methods are required to extract dense 
temporal signals from facial videos with more frames than general 
video analysis (e.g., 120 v.s. 16 frames). Therefore, the default scaling 
strategy in GVTs, which only downsample over spatial dimensions 
after the patchify stem, can be suboptimal for RPM. We designed and 
experimented with different scaling strategies to investigate how space–
time hierarchies affect model performances. In addition to pooling 
spatial resolutions only (Scale-0), we implemented pooling over tempo-
ral resolution to emphasize time hierarchy efficacy in RPM. As shown in 
Fig.  5, Scale-1, Scale-2, and Scale-3 involve temporal downsampling at 
Stage 1, Stage 2, and Stage 3, respectively. Meanwhile, Scale-4, Scale-
5, and Scale-6 employ more aggressive temporal scaling, reducing the 
temporal resolution at two stages through different combinations. We 
find that introducing appropriate temporal downsampling is beneficial; in 
our case, Scale-2 achieved the lowest MAE of 0.66 (see Fig.  3).

Summary. Following the proposed guidelines, we derived optimal 
configurations for adapting MViTv2 to RPM (GVT2RPM-MViT) on the 
MMPD-simple dataset: input dimension of 120 × 64 × 64, using rPPG 
signals as labels, applying DiffNorm for frames representation, nor-
malizing signals, using REL position encoding, and applying Scale-2 
strategy. This adaptation largely improved performance, reducing the 
MAE from 7.59 to 0.66, a 91.3% decrease, compared to the standard 
MViTv2 with the same input dimensions (see Fig.  3).

5. Empirical evaluations on different datasets and settings

Following the GVT2RPM guidelines in Section 4, we exemplified 
how to adapt a GVT (e.g., MViTv2) to RPM and find optimal configura-
tions for a specific dataset without using RPM-specific modules. In this 
section, we evaluate the robustness of GVT2RPM through intra-dataset 
experiments on three additional datasets and cross-dataset experiments 
across five datasets. Based on the empirical results, we provide practical 
insights for selecting optimal GVT configurations tailored to different 
datasets.
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Fig. 5. Details of scaling strategies. The default scaling strategy in GVTs, Scale-0, applies downsampling only to spatial dimensions after the patchify stem. 
To introduce space–time hierarchies, we developed Scale-1, Scale-2, and Scale-3 by incorporating temporal downsampling at Stages 1, 2, and 3, respectively. 
Furthermore, we created Scale-4, Scale-5, and Scale-6 by adding temporal downsampling across two stages with varying combinations.
Table 1
Results of adapting MViTv2 to GVT2RPM-MViT on MMPD-simple, MMPD, RLAP, and UBFC-rPPG under intra-dataset settings. MAE is used as the metric. The 
best combination of video frame format and signal normalization has a green background, the best positional encoding has a blue background, and the best 
scaling strategy has a yellow background. 

Datasets
Raw
input

DiffNorm
input

Positional
encoding

Scaling
strategies

w/o
signal
norm

with
signal
norm

w/o
signal
norm

with
signal
norm

ABS REL CPE Scale-0 Scale-1 Scale-2 Scale-3 Scale-4 Scale-5 Scale-6

MMPD-simple 5.05 4.03 1.76 1.25 1.54 1.25 2.05 0.81 1.54 0.66 0.88 3.08 3.59 1.61 
MMPD 13.06 7.23 7.22 7.72 7.3 7.22 8.83 8.65 7.21 8.67 8.37 7.69 7.04 6.83 
RLAP 17.36 1.69 1.67 1.48 1.87 1.48 2.11 1.7 1.69 1.38 1.45 1.54 1.82 1.74 
UBFC-rPPG 3.03 3.91 2.93 2.83 2.14 2.83 2.15 2.15 1.76 2.25 1.66 1.95 1.56 2.93 
5.1. Datasets

• MMPD [31]: This dataset contains 660 videos recorded by a 
Samsung Galaxy S22 Ultra mobile phone at 30 FPS with a res-
olution of 1280 × 720 and compressed to 320 × 240 stored in 
H.264 format. An HKG-07C+ oximeter records the ground truth 
PGG signals. Videos are recorded under four lighting conditions, 
motions, and skin tones. This dataset contain 33 subjects with 
1,188,000 frames.

• MMPD-Simple [31]: Due to the difficulty of the original MMPD, 
authors created a subset to contain videos with stationary, skin 
tone type 3, and artificial light conditions. It has 49 videos with 
132,300 frames.

• RLAP [32]: This dataset contains 754 videos recorded by a Log-
itech C920c webcam at 30 FPS with a resolution of 1920 × 1080 
stored in MJPG format. A CMS50E transmissive pulse oximeter 
records the ground truth PPG signals. During video recording, 
subjects completed tasks or watched videos under different light-
ing conditions. This dataset contain 58 subjects with 3,530,000 
frames.

• UBFC-rPPG [33]: This dataset contains 46 videos recorded by a 
Logitech C920 HD Pro webcam at 30 FPS with a resolution of 
640 × 480 in uncompressed 8-bit RGB format. A CMS50E trans-
missive pulse oximeter records corresponding PPG signals. The 
recording is conducted indoors with sufficient sunlight and arti-
ficial illumination. This dataset contain 42 subjects with 57,420 
frames.

• UBFC-Phys [34]: This dataset contains 168 videos recorded by 
an EO-23121C RGB digital camera at 35 FPS with a resolution 
of 1024 × 1024 stored in MJPG format. The underlying BVP 
signals were recorded by the Empatica E4 wristband. The col-
lection is conducted with three tasks with significant amounts 
of unconstrained motion under static lighting conditions. This 
dataset contain 56 subjects with 1,048,320 frames.
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5.2. Experiment settings

We conducted two experiment protocols, including intra-dataset 
and cross-dataset experiments. For the intra-dataset experiments, mod-
els were trained, validated, and tested on the same dataset with a split 
ratio of 7:1:2. For the cross-dataset experiments, models were trained 
and validated on the same dataset with a split ratio of 8:2, and then 
tested on another dataset.

The training process was the same as in Section 4. It was consistent 
for intra-dataset and cross-dataset experiments, except that we fixed 
the input dimensions to 120 × 64 × 64 and the output format to rPPG 
signals, as this combination consistently had better performances than 
other combinations. We evaluated the model performance based on the 
metric MAE.

The exploration of model designs consisted of 3 parts: video frame 
format and signal normalization, positional encodings, and scaling 
strategies. Each part choice was based on the greedy algorithm.

5.3. Intra-dataset experiments

We conducted intra-dataset experiments on MMPD-simple, MMPD, 
RLAP, and UBFC-rPPG. Table  1 summarizes the performance of differ-
ent designs of GVT2RPM-MViT on intra-dataset experiments. There are 
some findings we have identified:

5.3.1. DiffNorm helps in most cases.
Our results suggest that videos pre-processed by the DiffNorm al-

ways performed better, compared to using raw RGB inputs. Considering 
the case of using raw signals (w/o signal norm), DiffNorm reduced MAE 
over half for MMPD-simple and RLAP, 44.7% for MMPD, and 3.3% for 
UBFC-rPPG. This demonstrates that DiffNorm was key to adapting a 
GVT for RPM. It amplifies the underlying rPPG signals by suppressing 
the motion and illumination noises in the raw RGB videos and enforces 
the transformer to focus on subtle pixel variations instead of human 
anatomy.
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Table 2
Results of adapting MViTv2 to GVT2RPM-MViT on MMPD-simple, MMPD, RLAP, UBFC-rPPG, and UBFC-Phys under cross-dataset settings. MAE is used as the 
evaluation metric. The best combination of video frame format and signal normalization has a green background, the best positional encoding has a blue 
background, and the best scaling strategy has a yellow background.

Train
dataset

Test
dataset

Raw
input

DiffNorm
input

Positional
encoding

Scaling
strategies

w/o
signal
norm

with
signal
norm

w/o
signal
norm

with
signal
norm

ABS REL CPE Scale-0 Scale-1 Scale-2 Scale-3 Scale-4 Scale-5 Scale-6

UBFC-rPPG 28.17 27.71 8.14 9.12 7.3 8.14 1.46 6.11 13.81 12.72 7.76 25.3 23.14 21.66 
UBFC-Phys 12.42 11.13 6.04 7.14 5.09 6.04 7.04 5.47 5.92 5.92 5.89 7.5 6.28 7.28 MMPD-

simple RLAP 7.68 8.82 5.23 5.31 5.81 5.23 3.7 5.78 3.27 3.27 4.58 6.44 4.99 4.96 
UBFC-rPPG 20.57 15.95 5.75 8.06 2.78 5.75 2.49 2.2 3.87 4.46 3.98 8.56 7.47 9.14 
UBFC-Phys 10.8 24.68 5.49 10.18 5.16 5.49 6.24 4.5 5.69 6.07 6.05 5.26 4.95 7.9 MMPD
RLAP 20.19 15.48 3.42 7.16 3.4 3.42 3.76 3.98 5.23 4.75 4.57 4.04 5.14 4.76 
MMPD-simple 18.07 4.71 3.23 1.92 0.79 1.92 1.38 0.97 2.31 3.44 1.17 2.59 2.6 4.14 
MMPD 13.48 11.75 10.03 9.02 9.95 9.02 9.75 9.2 9.44 8.58 9.72 8.86 9.39 9.7 
UBFC-rPPG 19.48 12.74 6.36 5.57 2.05 5.57 1.48 2.36 5.44 4.33 1.9 5.57 5.61 4.04 RLAP
UBFC-Phys 10.97 4.96 4.57 4.32 4.19 4.32 4.31 4.31 4.68 4.9 4.17 4.44 4.76 4.49 
MMPD-simple 16.8 22.24 1.96 1.87 3.14 1.87 2.55 2.73 4.34 5.94 4.39 10.6 7.32 5.54 
MMPD 14.12 17.31 12.2 11.5 12.47 11.5 12.67 11.71 11.28 11.71 13.16 12.02 12.02 11.45 
UBFC-Phys 6.46 6.2 4.49 4.75 4.36 4.49 5.3 4.72 5.31 4.78 4.36 5.01 4.99 5.11 UBFC-

rPPG
RLAP 6.63 7.41 3.01 3.27 3.49 3.01 3.49 3.32 3.45 3.26 3.07 3.91 3.88 3.35 
5.3.2. Signal normalization helps in simple scenarios.
We observe that signal normalization helps when the dataset con-

tains relatively simple settings, e.g., non-rigid movement and constant 
and sufficient illumination, such that the MAE was reduced from 1.76 
to 1.25 in MMPD-simple, from 1.67 to 1.48 in RLAP, and from 2.93 
to 2.83 in UBFC-rPPG. MMPD, having rigid head motions, various skin 
tones, and changing lighting conditions, can cause many outliers and 
break Gaussian distribution, thus making it incompatible with signal 
normalization.

5.3.3. Relative positional encoding is robust in most cases.
The REL obtained lower MAEs on MMPD-simple, MMPD, and RLAP 

than the other two positional encodings. Except for UBFC-rPPG, the 
ABS achieved a lower MAE of 2.14.

5.3.4. Appropriate temporal hierarchy helps signal learning.
We find that adding temporal downsampling between transformer 

blocks assisted better understanding of signals such that the MAE was 
reduced from 0.81 to 0.66 in MMPD-simple, from 8.65 to 6.83 in 
MMPD, from 1.7 to 1.38 in RLAP, and from 2.14 to 1.56 in UBFC-
rPPG. These results suggest that temporal downsampling enhances 
the model’s efficiency in processing dense temporal information over 
longer intervals. It allows the model to focus on critical signal features 
within a consistent context, particularly when the training and testing 
datasets exhibit similar temporal dynamics and visual characteristics.

5.3.5. Summary
Based on the empirical results of intra-dataset experiments, we con-

ducted a majority voting and proposed general configurations for GVTs: 
(1) for data pre-processing, the input clip dimension was 120 × 64 × 64, 
rPPG signals were used for outputs, and each frame was pre-processed 
by DiffNorm; (2) depending on dataset complexity, output signals were 
normalized for simple scenarios; (3) for network configurations, REL 
positional encoding was used, and the scaling strategy was set to 
Scale-2.

5.4. Cross-dataset experiments

We conducted cross-dataset experiments on MMPD-simple, MMPD, 
UBFC-rPPG, UBFC-Phys, and RLAP. Table  2 shows the performance 
of different designs of GVT2RPM-MViT on cross-dataset experiments. 
Since MMPD-Simple is a subset of MMPD, we excluded them due to 
the data leakage when training on MMPD-Simple and testing on MMPD, 
and vice versa. The choices of designs have different effects compared 
with the intra-dataset setting, and we conclude:
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5.4.1. DiffNorm significantly improves transfer learning.
Consistent with the intra-dataset experiments, DiffNorm proved ad-

vantageous for transfer learning. We observed that applying DiffNorm 
reduced MAEs by an average of 55.6% across all cases when using raw 
signals, and by 43.9% when using normalized signals.

5.4.2. The efficacy of signal normalization depends on the training dataset.
We noticed that signal normalization can hinder model learning 

when we trained on MMPD-simple and MMPD. It suggests that us-
ing raw signals is a better choice when transferring from low-quality 
video datasets (H.264 compressed) to higher-quality datasets (MJPG 
compressed or uncompressed). In contrast, when training on the high-
quality RLAP, normalized signals are better for the transfer learning.

5.4.3. Positional encoding can be selected based on the target dataset.
Unlike intra-dataset experiments where REL outperformed in most 

cases, the cross-dataset experiments revealed dataset-specific prefer-
ences. CPE achieved better performance when the target dataset was 
UBFC-rPPG, reducing MAEs by an average of 70.7% compared to REL. 
Similarly, ABS excelled for UBFC-Phys, lowering MAEs by an average 
of 6.91% when replacing REL.

5.4.4. Spatial hierarchy is more robust for transfer learning.
We observe that half of the experiments showed better performances 

with Scale-0, the default GVT setting where no temporal downsampling 
is applied. The other half performed better with Scale-1, Scale-2, or 
Scale-3, which apply a single temporal downsampling between trans-
former blocks. However, applying multiple temporal downsampling 
steps (Scale-4, Scale-5, and Scale-6) hindered the model’s ability to 
learn robust signal features. This indicates that excessive temporal 
downsampling may obscure subtle temporal variations essential for 
RPM task, especially those affected by dataset-specific factors such as 
lighting conditions, head movements, and camera settings.

5.4.5. Summary
Based on the empirical results from cross-dataset experiments, we 

proposed general configurations for GVTs in cross-dataset scenarios: (1) 
for data pre-processing, the input clip dimension was 120 × 64 × 64, 
rPPG signals were used for outputs, and each frame was pre-processed 
by DiffNorm; (2) depending on dataset quality, output signals were 
normalized when training on high-quality datasets; (3) the choice of 
position encoding was determined by the target dataset, such that CPE 
for UBFC-rPPG, ABS for UBFC-Phys, and REL for all other cases; (4) the 
scaling strategy was fixed to Scale-0.
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Fig. 6. Intra-dataset experiment results on MMPD-simple, MMPD, RLAP, and UBFC-rPPG. We evaluated five SOTA methods for RPM. Their averaged results are 
denoted by SOTA-avg with red error bar. The best performing method is denoted by SOTA-best. Also, we tested three GVTs, including MViTv2, UniFormer, and 
Video Swin. Based on our empirical results in Section 5, we constructed GVT2RPM-MViT-general, GVT2RPM-UniFormer-general, and GVT2RPM-Swin-general. 
Following Section 4, we further optimized them into GVT2RPM-MViT-optimal, GVT2RPM-UniFormer-optimal, and GVT2RPM-Swin-optimal. We used MAE as the 
metric.
6. Evaluations of different GVTs

This section demonstrates the application of our GVT2RPM to multi-
ple GVTs where we employed the recent SOTA GVT of UniFormer [25], 
and Video Swin [24], in addition to the MViTv2 [36] from Section 4. 
We conducted intra-dataset experiments to evaluate their performance 
on MMPD-simple, MMPD, RLAP, and UBFC-rPPG. For fair comparisons, 
we applied 3-fold cross-validation except for RLAP, where the official 
split [32] was used. All models were trained from scratch.

We applied the general configurations in Section 5.3.5 to the above 
GVTs and adapted them to GVT2RPM-MViT-general, GVT2RPM-
UniFormer-general, and GVT2RPM-Swin-general. Additionally, each 
model was optimized following the proposed guidelines in Section 4 to 
obtain the optimal configurations. Therefore, we have GVT2RPM-MViT-
optimal, GVT2RPM-UniFormer-optimal, and GVT2RPM-Swin-optimal 
(configuration details in the Appendix  A). To compare, we trained 
SOTA RPM methods, including DeepPhys [47], PhysNet [20], TSCAN
[53], EfficientPhys [26], and PhysFormer [28], using rPPG-toolbox 
with default settings and averaged their performance as the base-
line, named SOTA-avg. The best-performing method was denoted as 
SOTA-best.

Experimental results are shown in Fig.  6. We observe that applying 
our general configurations successfully adapted GVTs to RPM, where 
all three GVT2RPM-*-general methods achieved better MAEs than the 
SOTA-avg in four datasets. In contrast, naively using GVTs for RPM 
with their original versions (GVT2RPM-*-original), as expected, per-
formed worse than the SOTA-avg except with the MMPD. This indicates 
that our GVT2RPM is generalizable to different GVTs and robust to 
various datasets.

Moreover, optimizing GVTs using our guidelines delivered bet-
ter results, competing favorably with RPM-specific SOTA methods. 
For instance, GVT2RPM-MViT-optimal obtained better results than 
the other two GVTs and outperformed the SOTA-best in UBFC-rPPG, 
MMPD-simple, and MMPD datasets. Notably, the superior performance 
of GVT2RPM-MViT aligns with trends in general video tasks, where 
MViTv2, with practical enhancements such as residual connections and 
Key-Value pooling, demonstrated better video representations com-
pared to UniFormer and Video Swin. Furthermore, we observe that 
the optimization of MViTv2 from its original version yielded greater 
improvements than the other two GVTs, with average improvements 
across four datasets of 76.81% for MViTv2, 73.14% for UniFormer, and 
68.28% for Video Swin.

Across the four datasets, all methods showed reduced performance 
on MMPD, likely due to its more challenging scenarios, such as rigid 
patient face movements, varying lighting conditions, and diverse skin 
tones, compared to the other datasets. It is interesting to note that 
in this complex dataset, all GVT2RPM-*-origin models outperformed 
the SOTA-avg, highlighting the superior capability of GVTs to handle 
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Table 3
The computational cost of scaling strategies. The efficiency was measured by 
the total number of model parameters with the unit of Million (M), Floating 
Point Operations Per Second (FLOPs) with the unit of Giga (G), and the model 
inference speed with the unit of frames per sec. (frame/sec.).
 Scaling strategies #Params (M) FLOPs (G) Throughput (frame/sec.) 
 Scale-0 (Original) 35,997,601 115.6 3644  
 Scale-1 37,712,545 217.5 2102  
 Scale-2 37,717,921 167.9 2874  
 Scale-3 37,764,385 123.5 3740  
 Scale-4 39,485,089 383.3 1289  
 Scale-5 39,482,977 244.6 2071  
 Scale-6 39,488,353 195.1 2812  

complex data. Furthermore, our GVT2RPM guidelines improved their 
performance, with both GVT2RPM-*-general and GVT2RPM-*-optimal 
achieving lower MAEs than the SOTA-best.

7. Computational cost

We evaluated the computational costs of different scaling strategies 
via the total number of model parameters with the unit of Million (M), 
Floating Point Operations Per Second (FLOPs) with the unit of Giga (G), 
and the inference speed with the unit of frames per sec. (frame/sec.). 
All algorithms were run on a machine with Intel(R) Core(TM) i9-
9900 K CPU and a single Nvidia GeForce RTX 4090 24G. The input 
data came from the MMPD-simple dataset and had the size of 1 × 3 ×
120 × 64 × 64 representing batch size × channels × frames × height ×
width. As shown in Table  3, compared with the original GVT scaling 
strategy Scale-0, due to aggressive temporal scaling in the early stages, 
the strategy Scale-4 had the worst efficiency achieving only 1/3 of 
inference speed. In contrast, the strategy Scale-2, which is the best 
strategy for intra-dataset experiments, achieved 18.5% better MAE with 
the cost of 21.1% lower inference speed compared to the original GVT 
scaling strategy. It shows that there exists an optimal trade-off between 
model accuracy and computational efficiency when applying temporal 
downsampling. We found that Scale-3 achieved slightly better inference 
speed (3740 frame/sec.) than the original Scale-0 (3644 frame/sec.) 
while maintaining similar FLOPs, suggesting that strategic placement 
of temporal downsampling at later stages can improve inference speed 
without significantly increasing computational burden. These findings 
demonstrate that the distribution of temporal downsampling opera-
tions across network stages can impact both model performance and 
efficiency, with early aggressive downsampling (as in Scale-4) largely 
reducing throughput, while more balanced approaches (like Scale-2 
and Scale-3) offer more favorable accuracy-efficiency trade-offs for the 
RPM.
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8. Discussion

Our experimental design validates our core hypothesis that GVTs 
can be successfully adapted for RPM through systematic configuration 
optimization rather than architectural redesign. Regarding RQ1: Our 
key finding demonstrates that unmodified GVT architectures achieve 
77% performance improvements over baseline configurations, with 
GVT2RPM-MViT-optimal outperforming specialized methods on three 
datasets, as shown in experiments in Section 5.3. This directly validates 
our hypothesis and establishes our primary novelty - that RPM-specific 
architectural modifications (like Temporal Difference Convolution in 
PhysFormer) are unnecessary. The experimental evidence validates the 
hypothesis that appropriate data preprocessing (particularly DiffNorm) 
and configuration adjustments are sufficient to adapt general video 
understanding capabilities to physiological signal extraction tasks. Re-
garding RQ2: Our hypothesis was that systematic exploration of con-
figuration parameters would reveal generalizable patterns that could be 
summarized into practical guidelines, despite dataset-specific variations 
in optimal settings. The key finding validates this hypothesis through 
our greedy optimization approach across six design dimensions (Sec-
tion 4), which consistently identified beneficial configurations across 
multiple datasets. Specifically, DiffNorm preprocessing emerged as con-
sistently beneficial for various datasets, while other parameters like 
temporal downsampling showed predictable context-dependent pat-
terns (Scale-2 for intra-dataset, Scale-0 for cross-dataset scenarios). 
This experimental evidence supports our hypothesis that while optimal 
configurations vary by dataset complexity and experimental setting, 
underlying principles can be systematically identified and generalized. 
Our novelty lies in transforming the traditionally ad-hoc process of 
RPM method customization into a systematic empirical framework, 
providing the first comprehensive guidelines for adapting any GVT ar-
chitecture to RPM through principled configuration optimization rather 
than trial-and-error approaches. Regarding RQ3: Our cross-dataset ex-
periments (in Section 5 and Fig.  1) reveal superior generalization com-
pared to existing methods, with consistent performance maintenance 
while specialized methods like PhysFormer show degraded transfer 
performance. The key finding is that our approach achieves 4.3–13.4% 
MAE reductions across different dataset combinations. This validates 
our hypothesis that avoiding over-specialized architectural modifica-
tions enhances robustness. Our novelty is demonstrated through the 
first systematic cross-dataset evaluation showing that general video 
understanding capabilities transfer more effectively to diverse RPM 
scenarios than highly customized approaches.

The convergent evidence across all three research questions sup-
ports our central hypothesis that general video transformers possess 
inherent capabilities for physiological signal learning that can be 
unlocked through systematic adaptation rather than architectural re-
design.

9. Limitations

We identified three limitations in this work. First, we did not 
investigate the impact of patients’ skin tones on performance, which 
introduces additional challenges for robustness due to variations in 
skin tone reflections. We will explore color normalization and video 
synthesis techniques in future research. Second, we used a smaller 
version of the video transformer with fewer parameters compared to 
larger variants. While this smaller model offers better efficiency and 
ease of training, it yields slightly lower performance. In future work, 
we will assess if our guidelines generalize to larger models. Given that 
our GVT2RPM guidelines has no restrictions on the GVT size, we expect 
better results with larger GVTs. Lastly, the optimal configurations 
in our experiments were selected manually based on our guidelines. 
Automating this process, for instance, by adopting approaches simi-
lar to nnUNet [54], could streamline configuration selection through 
interdependent rules and empirical decision-making.
9 
10. Conclusions

In this paper, we conducted empirical research for adapting GVTs to 
the RPM. We demonstrated that GVT2RPM adapted GVTs can achieve 
reasonable performance without relying on RPM-specific modules, 
such as Temporal Difference Convolution or handcrafted Spatiotem-
poral Maps, by making simple adjustments to data pre-processing. 
Furthermore, optimizing the transformer configurations based on our 
GVT2RPM guidelines, such as introducing different biases via positional 
encodings and integrating spatiotemporal hierarchies via different scal-
ing strategies, helps the model compete favorably with SOTA methods 
in both intra- and cross-dataset experiments. We also identified differ-
ent behaviors in model performance between intra- and cross-dataset 
experiments, providing insights into selecting optimal configurations 
for different tasks. The proposed GVT2RPM guidelines were validated 
using three SOTA video transformers (MViTv2, UniFormer, and Video 
Swin) across five public datasets under intra- and cross-dataset settings. 
Our findings highlight that GVT2RPM is both generalizable to various 
transformer architectures and robust across diverse datasets.
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Appendix A. Details of GVT2RPM-MViT-optimal configurations

We demonstrate the optimal configurations for adapting MViTv2
[55] to remote physiological measurement (RPM), i.e., GVT2RPM-
MViT-optimal, in Table  A.4.

Appendix B. Details of experiment results

We used rPPG-Toolbox [44] to evaluated five state-of-the-art
(SOTA) methods, including DeepPhys [47], PhysNet [20], TS-CAN [53],
EfficientPhys [26], and PhysFormer [36]. We compared them with 
GVT2RPM adapted version of MViTv2 [55], UniFormer [25], and Video 
Swin [24]. In addition to Mean Absolute Error (MAE), we also used 
metrics of Root Mean Square Error (RMSE) and Pearson Correlation 
Coefficient (𝜌).

For intra-dataset experiments, we evaluated on four datasets, in-
cluding MMPD-Simple [31], MMPD [31], UBFC-rPPG [33], and RLAP
[32]. We show method performances of each fold in Tables  B.5, B.6, 
B.7, B.8. The results are shown with mean ± std. Additionally, for three 
GVT2RPM-*-optimal methods, we visualized the differences between 
predictions and ground truth values by Bland-Altman plots in Figs  B.7, 
B.8, B.9, B.10.

For cross-dataset experiments, we used five datasets, including 
MMPD-Simple [31], MMPD [31], UBFC-rPPG [33], RLAP [32], and 
UBFC-Phys [34]. We show detailed results in Tables  B.9, B.10, B.11, 
B.12, B.13. The results are shown with mean ± std.

Appendix C. Dataset details

For cross-dataset experiments, the training set was spited into 
train/val set with ratio 8:2. For intra-dataset experiments, 3-fold cross-
validation was used and we show the fold details in the following:
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Table A.4
Optimal configurations for GVT2RPM-MViT.
 Training set Testing set Frame 

format
Signal 
normalization

Positional 
encoding

Scaling 
strategy

 

 MMPD-simple DiffNorm Yes REL Scale-2  
 MMPD DiffNorm No REL Scale-6  
 RLAP DiffNorm Yes REL Scale-2  
 UBFC-rPPG DiffNorm Yes ABS Scale-5  
 
MMPD-simple

UBFC-rPPG DiffNorm No CPE Scale-0  
 UBFC-Phys DiffNorm No ABS Scale-0  
 RLAP DiffNorm No CPE Scale-2  
 
MMPD

UBFC-rPPG DiffNorm No CPE Scale-0  
 UBFC-Phys DiffNorm No ABS Scale-0  
 RLAP DiffNorm No ABS Scale-0  
 
RLAP

MMPD-simple DiffNorm Yes ABS Scale-0  
 MMPD DiffNorm Yes REL Scale-2  
 UBFC-rPPG DiffNorm Yes CPE Scale-3  
 UBFC-Phys DiffNorm Yes ABS Scale-3  
 
UBFC-rPPG

MMPD-simple DiffNorm Yes REL Scale-0  
 MMPD DiffNorm Yes REL Scale-1  
 UBFC-Phys DiffNorm No ABS Scale-3  
 RLAP DiffNorm No REL Scale-3  
Table B.5
Intra-dataset experiment results on UBFC-rPPG.
 Methods Fold 0 Fold 1 Fold 2
 MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys 1.76 ± 1.22 4.08 ± 13.57 0.98 ± 0.07 0 ± 0 0 ± 0 1 ± 0 3.91 ± 1.50 5.96 ± 14.90 0.97 ± 0.09 
 TS-CAN 1.07 ± 0.91 2.94 ± 8.08 0.99 ± 0.05 0 ± 0 0 ± 0 1 ± 0 3.13 ± 1.50 5.48 ± 15.24 0.97 ± 0.08 
 EfficientPhys 1.07 ± 0.91 2.94 ± 8.08 0.99 ± 0.05 7.52 ± 6.30 20.35 ± 384.66 0.60 ± 0.30 1.86 ± 1.16 3.94 ± 9.75 0.99 ± 0.03 
 PhysNet 1.95 ± 1.21 4.12 ± 13.53 0.97 ± 0.07 1.86 ± 0.96 3.42 ± 6.75 0.98 ± 0.07 2.93 ± 1.43 5.19 ± 14.43 0.98 ± 0.08 
 PhysFormer 1.46 ± 0.98 3.28 ± 8.09 0.99 ± 0.06 1.27 ± 0.75 2.57 ± 5.10 0.99 ± 0.04 2.34 ± 1.13 4.12 ± 8.61 0.99 ± 0.05 
 GVT2RPM-MViT-optimal 1.56 ± 1.21 4.12 ± 13.52 0.99 ± 0.06 1.56 ± 0.97 3.31 ± 6.85 0.99 ± 0.06 0.87 ± 0.82 2.63 ± 6.55 0.99 ± 0.03 
 GVT2RPM-UniFormer-optimal 0.48 ± 0.46 1.46 ± 2.02 0.99 ± 0.02 1.85 ± 0.96 3.42 ± 6.75 0.98 ± 0.06 1.85 ± 1.15 3.94 ± 9.75 0.98 ± 0.07 
 GVT2RPM-Swin-optimal 1.36 ± 1.09 3.56 ± 11.61 0.99 ± 0.06 1.07 ± 0.75 2.50 ± 5.13 0.99 ± 0.03 2.14 ± 1.36 4.63 ± 14.40 0.99 ± 0.04 
Table B.6
Intra-dataset experiment results on MMPD-simple.
 Methods Fold 0 Fold 1 Fold 2
 MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys 17.50 ± 4.18 22.32 ± 159.07 −0.002 ± 0.33 2.72 ± 1.14 4.51 ± 12.20 0.60 ± 0.28 0.62 ± 0.39 1.39 ± 1.28 0.87 ± 0.17 
 TS-CAN 2.00 ± 0.76 3.21 ± 5.06 0.95 ± 0.10 1.23 ± 0.60 2.26 ± 2.99 0.92 ± 0.14 0.79 ± 0.50 1.78 ± 2.06 0.94 ± 0.12 
 EfficientPhys 1.54 ± 0.63 2.67 ± 3.53 0.97 ± 0.08 1.32 ± 0.62 2.51 ± 3.17 0.88 ± 0.15 0.88 ± 0.56 2.07 ± 2.79 0.91 ± 0.14 
 PhysNet 1.52 ± 0.77 2.96 ± 6.61 0.97 ± 0.08 1.32 ± 0.81 2.87 ± 6.00 0.85 ± 0.19 0.18 ± 0.11 0.39 ± 0.10 0.99 ± 0.04 
 PhysFormer 18.78 ± 3.03 21.30 ± 136.53 0.20 ± 0.33 3.60 ± 0.81 4.42 ± 6.04 0.51 ± 0.30 1.67 ± 0.74 2.87 ± 4.78 0.73 ± 0.24 
 GVT2RPM-MViT-optimal 0.51 ± 0.36 1.37 ± 1.53 0.99 ± 0.03 0.80 ± 0.38 1.79 ± 2.41 0.94 ± 0.10 0.64 ± 0.45 1.63 ± 2.39 0.85 ± 0.17 
 GVT2RPM-UniFormer-optimal 1.17 ± 0.57 2.27 ± 3.21 0.98 ± 0.06 1.19 ± 0.52 2.10 ± 2.20 0.90 ± 0.14 0.55 ± 0.37 1.37 ± 1.66 0.91 ± 0.13 
 GVT2RPM-Swin-optimal 1.02 ± 0.39 1.72 ± 1.54 0.99 ± 0.05 3.03 ± 1.09 4.72 ± 11.61 0.49 ± 0.28 1.91 ± 0.67 2.95 ± 3.86 0.56 ± 0.27 
Table B.7
Intra-dataset experiment results on MMPD.
 Methods Fold 0 Fold 1 Fold 2
 MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑ MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys 22.37 ± 1.56 28.85 ± 88.97 0.04 ± 0.09 20.30 ± 1.44 26.40 ± 78.66 0.05 ± 0.09 17.98 ± 1.23 23.02 ± 57.35 0.15 ± 0.09 
 TS-CAN 10.40 ± 1.36 19.01 ± 67.11 0.32 ± 0.08 10.95 ± 1.20 17.88 ± 50.47 0.48 ± 0.07 9.45 ± 1.06 15.55 ± 38.63 0.43 ± 0.07 
 EfficientPhys 13.67 ± 1.50 22.36 ± 76.37 0.19 ± 0.08 13.30 ± 1.35 20.75 ± 66.85 0.25 ± 0.08 11.96 ± 1.15 18.09 ± 44.92 0.37 ± 0.08 
 GVT2RPM-MViT-optimal 6.04 ± 0.86 11.72 ± 29.39 0.63 ± 0.06 8.31 ± 0.96 14.05 ± 35.28 0.58 ± 0.07 4.69 ± 0.66 9.08 ± 18.64 0.67 ± 0.06 
 GVT2RPM-UniFormer-optimal 6.91 ± 0.92 12.85 ± 31.05 0.52 ± 0.07 7.38 ± 0.96 13.54 ± 37.46 0.60 ± 0.06 5.81 ± 0.75 10.57 ± 22.04 0.54 ± 0.07 
 GVT2RPM-Swin-optimal 6.94 ± 1.04 13.97 ± 40.20 0.45 ± 0.07 8.34 ± 1.04 14.89 ± 41.41 0.58 ± 0.07 5.18 ± 0.76 10.33 ± 26.39 0.55 ± 0.07 
C.1. MMPD-simple

Due to the difficulty of the original MMPD, authors created a subset 
to contain videos with stationary, skin tone type 3, and artificial light 
conditions.

For Fold 0, the training set is {‘subject25’, ‘subject6’, ‘subject24’, 
‘subject4’, ‘subject22’, ‘subject12’, ‘subject21’, ‘subject9’, ‘subject18’, 
10 
‘subject5’, ‘subject3’, ‘subject19’, ‘subject20’}, and the testing set is 
{‘subject32’, ‘subject33’, ‘subject29’, ‘subject27’}.

For Fold 1, the training set is {‘subject29’, ‘subject6’, ‘subject21’, 
‘subject19’, ‘subject4’, ‘subject25’, ‘subject18’, ‘subject3’, ‘subject32’, 
‘subject22’, ‘subject24’, ‘subject33’, ‘subject12’}, and the testing set is 
{‘subject27’, ‘subject9’, ‘subject5’, ‘subject20’}.

For Fold 2, the training set is {‘subject20’, ‘subject19’, ‘subject29’, 
‘subject9’, ‘subject6’, ‘subject21’, ‘subject12’, ‘subject5’, ‘subject32’, 
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Fig. B.7. Intra-dataset experiment results on UBFC-rPPG.
Table B.8
Intra-dataset experiment results on RLAP.
 Methods Official split
 MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys 3.80 ± 0.69 7.90 ± 17.35 0.71 ± 0.07 
 TS-CAN 2.58 ± 0.57 6.33 ± 13.54 0.78 ± 0.06 
 EfficientPhys 2.98 ± 0.57 6.35 ± 11.71 0.80 ± 0.06 
 PhysNet 1.30 ± 0.32 3.38 ± 4.35 0.93 ± 0.04 
 PhysFormer 1.53 ± 0.37 3.98 ± 6.27 0.91 ± 0.04 
 GVT2RPM-MViT-optimal 1.32 ± 0.30 2.96 ± 3.01 0.95 ± 0.03 
 GVT2RPM-UniFormer-optimal 1.60 ± 0.38 3.73 ± 5.67 0.92 ± 0.04 
 GVT2RPM-Swin-optimal 1.64 ± 0.40 3.91 ± 5.62 0.91 ± 0.04 

‘subject25’, ‘subject3’, ‘subject33’, ‘subject18’}, and the testing set is 
{‘subject27’, ‘subject4’, ‘subject22’, ‘subject24’}.

C.2. MMPD

For Fold 0, the training set is {‘subject8’, ‘subject26’, ‘subject21’, 
‘subject15’, ‘subject25’, ‘subject12’, ‘subject19’, ‘subject9’, ‘subject23’, 
‘subject10’, ‘subject11’, ‘subject24’, ‘subject16’, ‘subject4’, ‘subject5’, 
‘subject3’, ‘subject18’, ‘subject14’, ‘subject13’, ‘subject20’, ‘subject1’, 
‘subject22’, ‘subject6’, ‘subject17’, ‘subject7’, ‘subject2’}, and the test-
ing set is {‘subject33’, ‘subject28’, ‘subject32’, ‘subject30’, ‘subject27’, 
‘subject31’, ‘subject29’}.
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Table B.9
Cross-dataset experiment results testing on UBFC-rPPG.
 Method Training set Testing on UBFC-rPPG
 MAE↓ RMSE↓ 𝜌 ↑  
 
DeepPhys

MMPD-simple 27.25 ± 3.84 36.90 ± 279.99 0.09 ± 0.16 
 MMPD 29.72 ± 3.16 36.10 ± 195.37 0.21 ± 0.15 
 RLAP 1.15 ± 0.40 2.87 ± 3.77 0.99 ± 0.02 
 
TS-CAN

MMPD-simple 15.34 ± 3.55 27.63 ± 217.61 0.35 ± 0.15 
 MMPD 16.22 ± 3.24 26.53 ± 181.05 0.47 ± 0.14 
 RLAP 0.96 ± 0.37 2.60 ± 3.62 0.99 ± 0.02 
 
EfficientPhys

MMPD-simple 15.11 ± 3.27 26.03 ± 196.11 0.36 ± 0.15 
 MMPD 17.47 ± 3.41 28.15 ± 201.80 0.40 ± 0.14 
 RLAP 1.95 ± 0.86 5.90 ± 26.31 0.95 ± 0.05 
 
PhysNet

MMPD-simple 13.20 ± 2.66 21.69 ± 143.00 0.55 ± 0.13 
 MMPD N/A N/A N/A  
 RLAP 8.20 ± 2.52 18.30 ± 140.44 0.51 ± 0.14 
 
PhysFormer

MMPD-simple 19.11 ± 3.46 29.45 ± 211.58 0.14 ± 0.16 
 MMPD N/A N/A N/A  
 RLAP 6.88 ± 2.06 15.03 ± 92.90 0.67 ± 0.12 
 GVT2RPM-
MViT-optimal

MMPD-simple 1.46 ± 0.37 2.79 ± 2.43 0.99 ± 0.02 
 MMPD 2.05 ± 0.61 4.48 ± 10.17 0.97 ± 0.04 
 RLAP 1.21 ± 0.41 2.92 ± 3.76 0.99 ± 0.02 

For Fold 1, the training set is {‘subject20’, ‘subject7’, ‘subject11’, 
‘subject4’, ‘subject25’, ‘subject32’, ‘subject6’, ‘subject15’, ‘subject33’, 
‘subject16’, ‘subject22’, ‘subject26’, ‘subject23’, ‘subject19’, ‘subject10’, 
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Fig. B.8. Intra-dataset experiment results on MMPD-simple.
‘subject21’, ‘subject8’, ‘subject14’, ‘subject18’, ‘subject3’, ‘subject13’, 
‘subject2’, ‘subject28’, ‘subject24’, ‘subject29’, ‘subject27’}, and the 
testing set is {‘subject5’, ‘subject31’, ‘subject17’, ‘subject30’, ‘subject1’, 
‘subject12’, ‘subject9’}.

For Fold 2, the training set is {‘subject33’, ‘subject2’, ‘subject3’, ‘sub-
ject13’, ‘subject26’, ‘subject21’, ‘subject7’, ‘subject10’, ‘subject22’, ‘sub-
ject4’, ‘subject20’, ‘subject27’, ‘subject6’, ‘subject5’, ‘subject12’, ‘sub-
ject19’, ‘subject30’, ‘subject11’, ‘subject1’, ‘subject24’, ‘subject32’, ‘sub-
ject25’, ‘subject8’, ‘subject14’, ‘subject16’, ‘subject29’}, and the test-
ing set is {‘subject23’, ‘subject18’, ‘subject31’, ‘subject9’, ‘subject28’, 
‘subject17’, ‘subject15’}.

C.3. RLAP

For Fold 0, the training set is {‘subject6’, ‘subject46’, ‘subject53’, 
‘subject48’, ‘subject58’, ‘subject31’, ‘subject13’, ‘subject52’, ‘subject56’, 
‘subject14’, ‘subject36’, ‘subject18’, ‘subject38’, ‘subject9’, ‘subject49’, 
‘subject50’, ‘subject43’, ‘subject4’, ‘subject44’, ‘subject23’, ‘subject15’, 
‘subject57’, ‘subject33’, ‘subject11’, ‘subject24’, ‘subject55’, ‘subject27’, 
‘subject40’, ‘subject45’, ‘subject2’, ‘subject3’, ‘subject42’, ‘subject35’, 
‘subject20’, ‘subject21’, ‘subject32’, ‘subject10’}, the validation set is 
{‘subject28’, ‘subject26’, ‘subject17’, ‘subject5’, ‘subject30’}, and the 
testing set is {‘subject37’, ‘subject51’, ‘subject8’, ‘subject34’, ‘subject54’, 
‘subject25’, ‘subject22’, ‘subject47’, ‘subject1’, ‘subject19’, ‘subject12’, 
‘subject41’, ‘subject16’, ‘subject39’}.
12 
C.4. UBFC-rPPG

For Fold 0, the training set is {‘subject30’, ‘subject22’, ‘subject1’, 
‘subject5’, ‘subject11’, ‘subject45’, ‘subject25’, ‘subject15’, ‘subject32’, 
‘subject35’, ‘subject43’, ‘subject42’, ‘subject13’, ‘subject24’, ‘subject23’, 
‘subject31’, ‘subject8’, ‘subject39’, ‘subject37’, ‘subject17’, ‘subject49’, 
‘subject38’, ‘subject18’, ‘subject14’, ‘subject16’, ‘subject27’, ‘subject41’, 
‘subject46’, ‘subject10’, ‘subject36’, ‘subject3’, ‘subject47’, ‘subject34’}, 
and the testing set is {subject26’, ‘subject4’, ‘subject33’, ‘subject9’, 
‘subject40’, ‘subject12’, ‘subject44’, ‘subject48’, ‘subject20’}.

For Fold 1, the training set is {‘subject45’, ‘subject8’, ‘subject12’, 
‘subject20’, ‘subject27’, ‘subject38’, ‘subject30’, ‘subject13’, ‘subject23’, 
‘subject47’, ‘subject16’, ‘subject5’, ‘subject41’, ‘subject26’, ‘subject25’, 
‘subject35’, ‘subject22’, ‘subject31’, ‘subject10’, ‘subject49’, ‘subject44’, 
‘subject3’, ‘subject18’, ‘subject17’, ‘subject46’, ‘subject9’, ‘subject39’, 
‘subject32’, ‘subject42’, ‘subject43’, ‘subject37’, ‘subject24’,
‘subject40’}, and the testing set is {‘subject4’, ‘subject1’, ‘subject36’, 
‘subject15’, ‘subject34’, ‘subject33’, ‘subject11’, ‘subject14’,
‘subject48’}.

For Fold 2, the training set is {‘subject46’, ‘subject49’, ‘subject12’, 
‘subject13’, ‘subject35’, ‘subject9’, ‘subject5’, ‘subject17’, ‘subject18’, 
‘subject3’, ‘subject26’, ‘subject20’, ‘subject4’, ‘subject31’, ‘subject14’, 
‘subject24’, ‘subject11’, ‘subject16’, ‘subject40’, ‘subject45’, ‘subject1’, 
‘subject32’, ‘subject34’, ‘subject41’, ‘subject33’, ‘subject36’, ‘subject43’, 
‘subject42’, ‘subject39’, ‘subject10’, ‘subject48’, ‘subject38’,
‘subject37’}, and the testing set is {‘subject47’, ‘subject25’, ‘subject44’, 
‘subject27’, ‘subject8’, ‘subject22’, ‘subject30’, ‘subject23’, ‘subject15’}.
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Fig. B.9. Intra-dataset experiment results on MMPD.

Fig. B.10. Intra-dataset experiment results on RLAP.
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Table B.10
Cross-dataset experiment results testing on UBFC-Phys.
 Method Training set Testing on UBFC-Phys
 MAE↓ RMSE↓ 𝜌 ↑  
 
DeepPhys

UBFC-rPPG 6.01 ± 0.88 10.70 ± 28.05 0.64 ± 0.08 
 MMPD-simple 13.36 ± 1.26 18.43 ± 52.96 0.20 ± 0.10 
 MMPD 14.65 ± 1.28 19.49 ± 56.77 0.07 ± 0.10 
 RLAP 4.81 ± 0.68 8.32 ± 16.15 0.76 ± 0.07 
 
TS-CAN

UBFC-rPPG 5.27 ± 0.68 8.63 ± 14.86 0.74 ± 0.07 
 MMPD-simple 7.91 ± 1.02 12.91 ± 34.83 0.49 ± 0.09 
 MMPD 7.19 ± 0.95 11.96 ± 30.15 0.53 ± 0.08 
 RLAP 4.36 ± 0.65 7.89 ± 16.25 0.78 ± 0.06 
 
EfficientPhys

UBFC-rPPG 6.07 ± 0.86 10.57 ± 24.47 0.64 ± 0.08 
 MMPD-simple 5.14 ± 0.79 9.49 ± 27.11 0.70 ± 0.07 
 MMPD 5.79 ± 0.80 9.95 ± 21.92 0.67 ± 0.07 
 RLAP 4.28 ± 0.67 7.95 ± 16.55 0.78 ± 0.06 
 
PhysNet

UBFC-rPPG 4.54 ± 0.75 8.80 ± 24.62 0.75 ± 0.07 
 MMPD-simple 7.28 ± 0.87 11.42 ± 25.85 0.50 ± 0.09 
 MMPD N/A N/A N/A  
 RLAP 4.48 ± 0.74 8.66 ± 25.33 0.76 ± 0.07 
 
PhysFormer

UBFC-rPPG 5.13 ± 0.73 8.98 ± 18.49 0.73 ± 0.07 
 MMPD-simple 9.23 ± 0.95 13.28 ± 30.64 0.37 ± 0.09 
 MMPD N/A N/A N/A  
 RLAP 4.48 ± 0.70 8.36 ± 22.12 0.76 ± 0.07 
 
GVT2RPM-
MViT-optimal

UBFC-rPPG 4.22 ± 0.64 7.65 ± 13.59 0.79 ± 0.06 
 MMPD-simple 5.09 ± 0.60 7.97 ± 11.99 0.76 ± 0.07 
 MMPD 4.32 ± 0.64 7.76 ± 14.83 0.78 ± 0.06 
 RLAP 4.17 ± 0.71 8.26 ± 23.49 0.77 ± 0.06 

Table B.11
Cross-dataset experiment results testing on MMPD-simple.
 Method Training set Testing on MMPD-simple
 MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys UBFC-rPPG 2.98 ± 0.81 6.35 ± 21.14 0.82 ± 0.09 
 RLAP 1.87 ± 0.61 4.60 ± 14.38 0.88 ± 0.07 
 TS-CAN UBFC-rPPG 1.61 ± 0.40 3.22 ± 4.20 0.94 ± 0.05 
 RLAP 1.32 ± 0.37 2.87 ± 3.58 0.96 ± 0.04 
 EfficientPhys UBFC-rPPG 0.91 ± 0.25 2.01 ± 1.60 0.98 ± 0.03 
 RLAP 0.97 ± 0.25 2.02 ± 1.43 0.98 ± 0.03 
 PhysNet UBFC-rPPG 2.69 ± 0.91 6.95 ± 31.79 0.70 ± 0.10 
 RLAP 1.52 ± 0.42 3.23 ± 4.32 0.95 ± 0.05 
 PhysFormer UBFC-rPPG 7.38 ± 1.97 15.53 ± 106.46 0.14 ± 0.15 
 RLAP 2.55 ± 0.78 5.96 ± 19.24 0.78 ± 0.09 
 GVT2RPM-
MViT-optimal

UBFC-rPPG 1.87 ± 0.82 6.07 ± 31.55 0.78 ± 0.09 
 RLAP 0.79 ± 0.22 1.70 ± 1.15 0.98 ± 0.03 

Table B.12
Cross-dataset experiment results testing on MMPD.
 Method Training set Testing on MMPD
 MAE↓ RMSE↓ 𝜌 ↑  
 DeepPhys UBFC-rPPG 17.72 ± 0.67 24.63 ± 37.43 0.14 ± 0.04 
 RLAP 16.74 ± 0.72 24.82 ± 40.87 0.05 ± 0.04 
 TS-CAN UBFC-rPPG 13.52 ± 0.62 20.84 ± 31.27 0.22 ± 0.04 
 RLAP 13.34 ± 0.63 20.97 ± 32.46 0.21 ± 0.04 
 EfficientPhys UBFC-rPPG 13.08 ± 0.64 20.99 ± 32.99 0.20 ± 0.04 
 RLAP 12.69 ± 0.62 20.38 ± 31.73 0.21 ± 0.04 
 PhysNet UBFC-rPPG 9.94 ± 0.48 15.84 ± 20.38 0.32 ± 0.04 
 RLAP 9.15 ± 0.50 15.67 ± 21.65 0.35 ± 0.04 
 PhysFormer UBFC-rPPG 12.98 ± 0.54 19.01 ± 27.16 0.13 ± 0.04 
 RLAP 9.99 ± 0.49 15.91 ± 21.19 0.32 ± 0.04 
 GVT2RPM-
MViT-optimal

UBFC-rPPG 10.23 ± 0.48 15.94 ± 20.38 0.31 ± 0.04 
 RLAP 8.28 ± 0.44 13.90 ± 16.63 0.45 ± 0.03 
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Table B.13
Cross-dataset experiment results testing on RLAP.
 Method Training set Testing on RLAP
 MAE↓ RMSE↓ 𝜌 ↑  
 
DeepPhys

UBFC-rPPG 4.90 ± 0.44 10.25 ± 15.77 0.54 ± 0.04 
 MMPD-simple 10.65 ± 0.56 15.64 ± 21.27 0.17 ± 0.05 
 MMPD 10.89 ± 0.54 15.50 ± 19.66 0.19 ± 0.05 
 
TS-CAN

UBFC-rPPG 3.20 ± 0.31 7.07 ± 9.37 0.76 ± 0.03 
 MMPD-simple 5.89 ± 0.43 10.55 ± 13.08 0.51 ± 0.04 
 MMPD 7.07 ± 0.47 11.89 ± 18.62 0.37 ± 0.06 
 
EfficientPhys

UBFC-rPPG 3.77 ± 0.38 8.49 ± 12.95 0.66 ± 0.04 
 MMPD-simple 3.89 ± 0.35 8.06 ± 10.65 0.67 ± 0.04 
 MMPD 4.05 ± 0.38 8.34 ± 13.54 0.64 ± 0.04 
 
PhysNet

UBFC-rPPG 3.39 ± 0.37 8.43 ± 10.89 0.68 ± 0.04 
 MMPD-simple 6.11 ± 0.42 10.36 ± 12.71 0.49 ± 0.04 
 MMPD N/A N/A N/A  
 
PhysFormer

UBFC-rPPG 4.44 ± 0.46 10.18 ± 17.35 0.54 ± 0.04 
 MMPD-simple 9.12 ± 0.64 15.73 ± 27.08 0.32 ± 0.05 
 MMPD N/A N/A N/A  
 GVT2RPM
-MViT-
optimal

UBFC-rPPG 2.83 ± 0.38 7.39 ± 13.73 0.72 ± 0.04 
 MMPD-simple 3.02 ± 0.34 6.80 ± 11.10 0.76 ± 0.04 
 MMPD 2.77 ± 0.35 6.78 ± 10.82 0.79 ± 0.03 

Data availability

The authors do not have permission to share data.
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