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1. Introduction

Circuit algebras are a symmetric version of Jones’s planar algebras [22]. Their basic data consists of a

graded monoid equipped with a contraction (or trace) operation and a levelwise symmetric action. They

were introduced by Bar-Natan and Dansco [2] as a framework for relating local and global features of

virtual tangles in the study of finite-type invariants (see also [8,21,45]). Recently, Dancso, Halacheva and

Robertson have shown [9] that oriented circuit algebras are equivalent to wheeled props [33,34], and used
this to describe the graded Kashiwara-Vergne and Grothendieck-Teichmiiller groups KRV and GRT as
automorphism groups of circuit algebras [10].

Though the term “circuit algebra” is not commonly used outside quantum topology, circuit algebra

structures appear in different guises widely across mathematics. This paper defines a broad class of circuit

algebras — including wheeled props — and explains how they may be equivalently characterised as algebras

over an operad, as monoidal functors, and as modular operads with an extra operation.
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Table 1

Comparison of circuit algebras and generalisations obtained from suboperads of wiring diagrams: The subcategories of Brauer
diagrams in Row 3, like the operads in Row 2, are dependent on colouring. Modular operads cannot be described as functors
from categories of Brauer diagrams. Row 4 indicates (dimension parameter dependent) groups that are related by Schur-Weyl
duality to (sub)categories of monochrome (non)oriented Brauer diagrams. The planar case is not studied in this work. Row 5
refers to the (colouring-independent) monads described in [37].

1 Structure CIRCUIT ALGEBRAS (CAs) NONUNITAL (OR MODULAR OPERADS PLANAR
DOWNWARD) CAs ALGEBRAS
Special cases:
Oriented Wheeled props, [9] (see Nonunital wheeled props ‘Wheeled properads
e.g., [11,33]) (see e.g., [44]) (see e.g., [18])
2  Governing operad Wiring diagrams (WDs) downward WDs (Koszul connected WDs planar
[27,44]) diagrams
3 Classifying category Brauer diagrams (BDs) downward BDs (cospans, Temperley-Lieb
Remark 3.12) diagrams
4 Rep. theory (Sections 3.3 & 6.1) (Sections 3.3 & 6.2) (See CA column)
nonoriented mono. O4, Spa O, Spes [39] (quantum SUs)
oriented mono. GLg [11] GL [39]
5 Monad in [37] LDT LT (has arities [37]) DT

Theorem 1.1 (Theorem 4.12 € Proposition 5.11). A circuit algebra is, equivalently

(1) an algebra over an operad of wiring diagrams,
(2) a symmetric lax monoidal functor from a category of Brauer diagrams,
(3) a modular operad equipped with an additional graded product.

To my knowledge, this is the first time that these perspectives (though not new) have been explicitly
stated and compared, together in one work and in such generality. Each description relates to structures
that arise in different areas of mathematics, so Theorem 1.1 provides a dictionary for translating results
between these contexts. Moreover, the categorical and operadic structures underlying each version may be
generalised (and specialised) in distinct ways, thereby precisely locating circuit algebras within a diverse
zoo of related concepts (see Table 1 for a partial overview).

As an application of this combined approach, and building on [11], the following theorem, providing a
circuit algebra characterisation of algebras over the orthogonal and symplectic groups, is proved:

Theorem 1.2 (Theorem 6.3). The category of algebras over the d-dimensional orthogonal (respectively sym-
plectic) group is equivalent to a subcategory of circuit algebras that satisfy two simple relations.

In their original low-dimensional topology and quantum algebra context (first in [2], then e.g., [8,21,45]),
circuit algebras are defined as algebras over operads of wiring diagrams (see e.g., [9,10]).

Different flavours of circuit algebras — including nonoriented [35], oriented (wheeled props), and mixed —
are described by different “coloured” operads of wiring diagrams (see Section 3.2 and Definition 4.8). This
also gives an alternative proof that oriented circuit algebras are wheeled props (see Example 4.13). For any
given colouring, several important generalisations of circuit algebras arise as algebras over suboperads of
wiring diagrams. The columns of Table 1 are indexed by structures — including (coloured) planar algebras
[22] and modular operads [15,19,36,37] — obtained this way. Rows (2)-(3) describe the operads and categories
governing these in the sense of Theorem 1.1.

Statements (1) & (2) of Theorem 1.1 are already implicit in the original definition of circuit algebras [2].
The categories of Brauer diagrams (or “Brauer categories” cf. Remark 3.1) in Statement (2) are equivalent
to labelled 1-dimensional cobordism categories [1,43]. As such, the equivalence of Statements (1) & (2)
echoes the results of [43] relating traced categories and oriented cobordisms.

Brauer diagrams have been widely studied since Brauer’s 1937 paper [5] extending Schur-Weyl duality to
representations of the finite dimensional orthogonal and symplectic groups (see e.g., [28,49]). More recently,
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categories of Brauer diagrams have been used to simultaneously study systems of related representations
[30,38-40]. So, Statement (2) of Theorem 1.1 implies a link between circuit algebras and classical themes
in representation theory. However, the proof of Theorem 1.2 in Section 6 does not explicitly use these
methods. Instead, since wheeled props are equivalent to oriented circuit algebras, Theorem 1.2 is proved
by adapting Derksen and Makam’s invariant-theoretic approach to wheeled props [11] from the oriented, to
the unoriented case (see Section 6).

The final characterisation (3) in Theorem 1.1 describes circuit algebras as modular operads equipped
with an extra product operation. Modular operads were first introduced in [15] to study moduli spaces of
higher genus curves. General unital modular operads, as in [19,20,36], may be obtained from Theorem 1.1,
(1) by restricting to a suboperad of connected wiring diagrams. Unlike the restriction to planar diagrams,
which respects the categorical structure (in the sense of Lemma 4.6), this is a purely operadic construction
and admits no categorical description in terms of Brauer diagrams.

This paper is one of a pair that, together, provide a detailed conceptual and technical account of circuit
algebra combinatorics. In the companion paper [37], I use the modular operadic perspective to build on the
results of [36] and construct a monad and graphical calculus and prove an abstract nerve theorem for circuit
algebras. Thus, circuit algebras also admit combinatorial characterisations as algebras for a monad on a
category of graded symmetric objects, and as “Segal presheaves” on a category of graphs [37, Section 8].

The monad for circuit algebras in [37] is constructed, using iterated distributive laws [6], as a composite
LDT of three simpler monads, each governing a different aspect of the circuit algebra structure. This
piecewise construction is central to the proof of the nerve theorem [37, Theorem 8.4]. It also dovetails with
the other perspectives in Theorem 1.1.

For example, algebras for the monad LT are nonunital circuit algebras (Table 1), that do not have
units for the modular operadic multiplication. Their combinatorics (see e.g., [27,44]) are simpler than the
unital case since they avoid the “problem of loops” [36, Section 6]. In the language of Brauer categories
(in the sense of [30,39], see Section 3.3), this problem of loops refers simply to the dimension parameter
associated to the unit trace. Under Theorem 1.1, nonunital circuit algebras correspond precisely with sym-
metric monoidal functors from subcategories of “downward” Brauer diagrams, that cannot encode (finite)
dimension. Sam and Snowden [39] have established equivalences between functors from the subcategory of
downward monochrome oriented Brauer diagrams and representations of the infinite dimensional (stable)
general linear group G L, and between functors from the subcategory of downward (monochrome nonori-
ented) Brauer diagrams and representations of the infinite dimensional orthogonal and symplectic groups
Ox and Sps, (see Remark 3.33 & Section 6.2).

Some particularly nice properties of the combinatorics of nonunital circuit algebras are included in Rows
2,3 & 5 of Table 1. The modular operadic perspective on nonunital circuit algebras, together with the results
of [39], has been exploited in [29] to prove that the Malcev Lie algebras associated to the Torelli groups
of surfaces of arbitrary genus are stably Koszul. The relationship is also noted in [44] where nonunital
(d.g.)-modular operads are characterised as lax functors from a “Brauer properad” obtained by restricting
to connected diagrams in the initial nonunital circuit algebra.

The primary aim of this paper is to provide a precise formal framework for studying a broad class of circuit
algebra structures as they arise across mathematics, and thereby extend the toolboxes of representation
theorists, low-dimensional topologists and operad theorists alike. This presents a plethora of options for
generalising circuit algebras and for translating results in new contexts:

A particular motivation for a formal study of circuit algebra structures (here and in [37]) comes from
the work of Dansco, Halacheva and Robertson [10] who have used circuit algebras to obtain results relating
the graded Grothendieck-Teichmiiller and Kashiwara-Verne groups GRT and KRV. In order to extend these
results to the ungraded groups GT and KV, it is necessary to relax the circuit algebra axioms up to homotopy
[10, Introduction, Remark 1.1]. Weakening the characterisation in [37, Theorem 8.4] of circuit algebras in
terms of Segal functors suggests one way to do this. However, there are difficulties adapting the methods,



4 S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105

used in [20] and [36] to construct Segal models for homotopy modular operads, to model homotopy circuit
algebras [37, Section 8.4].

Stoeckl’s construction [44] of a model for nonunital (oo, 1)-wheeled props, and the proof, in [27], that
the operad for monochrome nonunital circuit algebras is Koszul, potentially provide another (operadic)
approach to constructing a model. From the categorical perspective, Sharma’s model structure for compact
closed categories [41] may also shed light on this question.

Several questions about duality arise from the circuit algebra characterisations in Theorem 1.1. For
example: Can the operadic perspective provide new insights into the Schur-Weyl duality of the classical
groups and their quantisations? Given that the operads governing nonunital wheeled props and circuit
algebras are Koszul [27,44], it is natural and useful to ask whether this is also true of the operads for unital
circuit algebras (i.e., operads of wiring diagrams). How can this be interpreted in terms of the (downward)
Brauer diagram categories? Is there a general Tannakian formalism [24] for such questions? (I thank Ross
Street for helpful discussions on duality.)

Finally, the categorical and graphical structures governing circuit algebras are seeing increasing applica-
tions outside pure mathematics. They provide a powerful formal framework for organising, understanding
and classifying complex networked systems, by studying their local-global-local structure. Potentially, these
methods could help define the theoretical limits of emerging technologies, as well as improving transparency
(e.g., in AI) and informing efficient design of algorithms and software. For example, the ZX-calculus [7],
that provides a rigorous graphical formalism for quantum computation (and could, potentially, make quan-
tum computation accessible to a general audience [13]), admits a circuit algebra description. It would be
interesting to compare this with circuit algebras that arise in quantisation problems [2,10].

1.1. Overview

Categorical preliminaries are given in Section 2 to establish notation and terminology for the (symmetric
monoidal category) concepts in the rest of the paper.

Section 3 provides a detailed discussion of the categories of (coloured) Brauer diagrams, and describes
their relation to several known results on the invariant theory of classical groups (cf. [30,39]).

Categories of Brauer diagrams are used, in Section 4, to define circuit algebras. Section 4.1 provides a
quick introduction to operads and their algebras. In Section 4.2, operads of wiring diagrams and circuit
algebras are introduced and defined using the categories of Brauer diagrams from Section 3.

In Section 5, an axiomatic characterisation of circuit algebras is given and it is shown that they are
modular operads that admit an extra graded product. Finally, in Section 6, Theorem 1.2 is proved as
an application of the preceding ideas. The method is then extended to give a nonunital circuit algebra
characterisation (Theorem 6.13) of algebras for Oy and Spso.

The companion paper [37] builds on the modular operadic perspective to obtain a graphical calculus,
monad and nerve theorem for circuit algebras. The machinery used, involving a combined application of
iterated distributive laws [6] and abstract nerve theory [3], is also explained in detail [37, Section 2].

Acknowledgements. I thank Marcy Robertson, Zsuzsanna Dancso, and Chandan Singh and Kurt Stoeckl
for encouraging my interest and learning in this field. I am grateful to Ole Warnaar for all his support, to
Kevin Coulembier for patiently explaining some representation theory and to my students and colleagues at
James Cook University, Bindal Country, for their curiosity and friendship. I thank the members of Centre
of Australian Category Theory, Macquarie University, Dharug Country, where I first began thinking about
this work. I am particularly grateful to Ross Street for his friendship and patience discussing duality with
me, and Richard Garner for a remark that led to new perspectives. Thanks also to the anonymous reviewer
who read this work so carefully and suggested highly relevant additional references.
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2. Key categorical concepts

This section provides a brief outline of the notation and terminology conventions for symmetric monoidal
categories that will be used in the rest of the paper. For precise definitions and a detailed discussion of
symmetric monoidal categories, see e.g., [14, Chapters 2 & 8].

2.1. Symmetric monoidal categories

A monoidal category is a category X together with a bifunctor ® : X x X — X (the monoidal product) that
is associative up to natural associator isomorphism, and for which there is an object I of X (the monoidal
unit) that acts as a two-sided identity for ® up to natural unitor isomorphisms. The monoidal product
and the associator and unitor isomorphisms are required to satisfy axioms that mean that certain sensible
diagrams commute. If the associator and unitor isomorphisms are the identity, then the monoidal category
is called strict monotdal.

A braiding on a monoidal category (X, ®,I) is a collection of isomorphisms o, ,: ¢ @y — y ® = (defined
for all z,y € X) that satisfy the braid identities

(0y,» ®idy)(idy ® 05 2)(0s,y @id,) = (id, @ 04 4y) (0> @ idy)(idy ® 0y ,) for all z,y, 2. (2.1)
If oy o= a;é for all x,y, then the monoidal structure on X is symmetric.

Remark 2.2. In this paper, associators, unitors and symmetry (braiding) isomorphisms will be ignored in
the notation, and (symmetric) monoidal categories will be denoted simply by X or (X, ®, I).

Example 2.3. For any category X and object z € X, objects of the slice category x/X of X under x are pairs
(y, f) where f € X(z,y). Morphisms (y, f) — (¢/, f') are commuting triangles in X of the form:

xr
/N
g
y ——— .

The slice category X/x of X over x is defined similarly, with objects (y, f): f € X(y,z) and morphisms
g: (y, f) = (¢, f') given by morphisms g € X(y',y) such that fog= f'.

If (X,®,7I) is a monoidal category, then in general X/x (respectively x/X) does not inherit a monoidal
structure from X. However, since I ® I = I by definition, ® defines a monoidal product on I/X (respectively
X/I) with unit id; € X(I,1I).

Definition 2.4. Symmetric strict monoidal categories are called permutative categories. The notation & and
0 will often be used to designate the monoidal product and unit of a permutative category.

An (ordinary) ©-coloured prop is a small permutative category P whose object monoid is free on a set
©. When © = {1} is a singleton, then P is a (monochrome) prop (with object set N) in the original sense
of [32].

Example 2.5. For each n € N, let n denote the set {1,2,...,n} (so 0 = @), and let X,, be the group of
permutations on n. Let ¥ be the symmetric groupoid with X(n,n) = %, for all n, and ¥(m,n) = § when
m # n. Addition of natural numbers gives 3 a (monochrome) prop structure.

More generally, let ® be a set, and let list(D) = ], D" denote the set of finite ordered sets ¢ =
(c1,...,¢n) of elements of ©. So list(D) underlies the free associative monoid on ®. For ¢ = (¢1,...,¢m)
and d = (dy,...,dy,) in list(D), their (concatenation) product ed = ¢ ® d is given by
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def
cd = (Cl,...,cm,dl,...,dn).

The empty list is the unit for @ and is denoted by & (or @g).

The symmetric groupoid ¥ acts on list(®) from the right by o: (co) def (Co1y-+-yCom) — ¢, for all
c=(c1,...,cm) and o € Xyy,.

The D-coloured prop so obtained is the free symmetric groupoid X° on .

Example 2.6. For any category X, a functor S: ¥ — X is equivalently described by a sequence (S(n)), of
objects of X such that %,, acts on S(n) for all n.

A list(D)-graded symmetric object in X is a functor B: ¥® — X. Equivalently, it is a collection
(B(d))dciist(») of X-objects, and X-isomorphisms B(od) N B(d), defined for all d = (dy,...,d,) € D"
and all 0 € X,,.

Let V be a symmetric monoidal category. In a V-(enriched) category, the hom sets are instead V-objects
and composition is a V-morphism such that compatibility axioms are satisfied. Other than (ordinary) Set-
enriched categories, this paper will also consider categories enriched in the categories Vecty of k-vector spaces
(where k is an algebraically closed field of characteristic 0), and R-Mod of modules over a commutative ring

R.

Example 2.7. Let R be a commutative ring. Then R[X] & )

algebra (for n € N), describes the free R-Mod-prop on .

nen B[En], where R[X,] denotes the group

Example 2.8. Given a vector space V, the (Vectg-enriched) endomorphism prop associated to V is denoted
by T(V), with T(V)(m,n) = Homyg(V®™ V&™) the space of linear transformations V®™ — V& By
convention, V&% =k, so T(V)(0,0) = k, and T(V) embeds canonically in Vecty as the full subcategory with
objects V®" n € N. These categories are identified in what follows.

For each n € N, the symmetric group %, acts on V®" by permuting factors. Hence ¥ acts on T'(V)
levelwise.

Definition 2.9. A (laz) monoidal functor (0,1ne,0): (X1, ®1,11) = (X2, ®a2, I3) consists of a functor ©: X; —
Xz, together with a morphism n = ng: I — (/1) in X2 and a natural transformation ™ = mg: O(—) ®2
©(—) = O(— ®; —) such that all the expected structure diagrams commute. A monoidal functor (0, m,n)
is called strong if m and 7 are invertible, and strict if they are the identity.

Example 2.10. As in Example 2.5, let 3 be the symmetric groupoid. For any symmetric monoidal category
(X,®, I) and any choice of object & € X, there is a unique symmetric strict monoidal functor ¥ — X with
0— T and 1~ z.

Definition 2.11. A list(®D)-graded symmetric monoid in X is a symmetric monoidal functor
(Bym,n): (£%,8,2) = (X,®,1)

where (X%, @, @) is the prop defined in Example 2.6. The structure maps (m,n) describe a commutative
and associative (up to symmetry and associators in X) unital monoid structure on the underlying graded
symmetric object (B(d))q-

Remark 2.12. Enriched (lax) monoidal V-functors between monoidal V-categories are defined as in Defini-
tion 2.9 except that the underlying functor is V-enriched and the structure maps are V-morphisms such
that the relevant diagrams commute in V.
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Fig. 2. (a) [fl:v*" ®z — I; (b) |f]: [ 2 y®z"; (c) fF:y* — ™.

Symmetric monoidal categories enriched in a linear category (such as Vecty) are often called tensor
categories [14]. In the tensor category literature, (tensor) functors between tensor categories are usually
assumed to preserve the monoidal product strictly. This contrasts with the approach of this paper where
all monoidal functors are assumed to be lax, unless explicitly stated otherwise.

2.2. Categorical duality and trace

Definition 2.13. An object z of a symmetric monoidal category X has a dual object x* in X if there are
morphisms U, : I — 2 ® z* and N,: 2* @ x — [ that satisfy the triangle identities (illustrated in Fig. 1):

(M ®idy) 0 (idy ® Uy) = idy = (idy ® Ng) 0 (Up- @ idy). (2.14)

A compact closed category is a symmetric monoidal category such that every object has a dual [32].

Let X be a compact closed category. For all morphisms f € X(z,y), there is a corresponding evaluation
morphism [f] € X(y* ® x,I) induced by composition with N, (Fig. 2 (a)) and coevaluation morphism
Lf] € X(I,y ® x*) induced by composition with U, (Fig. 2 (b)):

(1% N, o (idy- ® f) and |f] % (f @ idy) o Uy, (2.15)

and a dual morphism (called the transpose morphism in e.g., [41]) f* € X(y*,z*) (Fig. 2 (c)):
F LNy ®idye) o (idye ® f ® idge) 0 (idye ® Uy). (2.16)

In particular N, = [id,], U, = |id,] and (id;)* = id,- for all objects . And, for composable morphisms
fand g, (go f)* = f*og* in X

Example 2.17. Let k be a field. The monoidal category (Vecty, ®,k) of finite dimensional k-vector spaces
has a canonical compact closed structure given by V* = Vecty(V,k). For each V € Vectfy, its dimension
dim(V') over k is equal to its categorical dimension given by Ny o Uy € k.

A traced symmetric monoidal category [25] is a monoidal category (X, ®,I) equipped with a family of
(partial) trace functions tr @ X(z ® 2,y ® z) — X(z,y), natural in objects z,y, 2 € X and satisfying:
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Vanishing: For all objects z,y,a,b € X, trl  is the identity on X(z,y) = X(z ® I,y ® I), and tri%" =
trg ., ° tri®a7y®a X(rz®a®by®Ra®b) — X(z,y)

Superposing: For all f € X(z ® a,y ® a) and g € X(w, 2), tri0, 0,0 @ f) =g trg (f).

Yanking: Let 0, ,: * ®y — y ® z denote the symmetry in X. For all x € X, tr{ (042) = id,.

(In a V-enriched traced monoidal category, the trace tr is described by V-morphisms.)
A compact closed category (X, ®, 1, %) is traced monoidal with trace defined by

tre () = (idy ® Nax) © f o (id, ® U,) € X(,)
for all a,z,y € X and f € X(z ® a,y ® a). As Example 2.20 shows, the converse is not true. However, via
the “Int construction” [25, Section 4], any traced symmetric monoidal category X embeds fully faithfully in
its compact closed completion Int(V).

Another special class of traced symmetric monoidal category is given by wheeled props. These appear in
a variety of contexts involving algebraic structures with trace operations (see e.g., [33,34]).

Definition 2.18. A (®-coloured) wheeled prop (P, ®p,0,trp) is a (D-coloured) prop (P, ®p, I) equipped with
a trace trp satisfying the axioms of [25].

Most applications consider wheeled props enriched in a linear category such as Vecty. (Proposition 3.26
describes wheeled props enriched in V in terms of symmetric monoidal functors to V.)

Remark 2.19. Wheeled props are usually defined as algebras for a graph substitution monad (see e.g., [9,33,
34]). The equivalence of Definition 2.18 with the graph substitution definition follows from [37, Theorem 7.9].

Example 2.20. Let V be a finite dimensional k-vector space. The endomorphism prop T(V) described in
Example 2.8 is not compact closed since the dual space V* = Vecty(V, k) is not an object of T'(V'). However,
the canonical isomorphism T'(V)(m,n) = Vecty (VO™ V&) = (V*)®™" @ VO (for all m,n € N) induces a
trace on T'(V') by

VI® QU @1 @ Q= A (V) (11 @ O V1 @ AL ® -+ @ A1),

Henceforth, T(V) will be assumed to be a wheeled prop with the canonical trace.

The ({V,V*}-coloured) mixed tensor prop T{m}(V) C Vectfy is closed under duals and thus inherits
the compact closed structure from Vectfy. It is straightforward to check that T{m}(V) is equivalent — via
shuffle permutations of mixed tensor products (V*)®™ @ V®" — to the compact closed category Int(T(V))
obtained by applying the Int construction of [25].

3. Brauer diagrams

Circuit algebras are defined in Section 4 as algebras over an operad of wiring diagrams. It will follow
from Theorem 4.12 that they admit an equivalent description as symmetric monoidal functors from cate-
gories of (coloured) Brauer diagrams. These diagrams are an important tool in the representation theory of
orthogonal, symplectic and general linear groups [5,40].

The category BD of monochrome Brauer diagrams is described in Section 3.1. In Section 3.2, this definition
is generalised to categories of coloured Brauer diagrams, of which oriented Brauer diagrams — that encode
the combinatorics of wheeled props (cf., Proposition 3.26) — are a special case.



S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105 9

Remark 3.1. Several variations of the categories of Brauer diagrams defined in this work have appeared
in diverse contexts, usually under the name “Brauer category”: For some authors (e.g., [1,35]), Brauer
categories are ordinary categories and coincide with the categories BD (and BD(®“)) described in this
section. However, most works (e.g., [30,38-40]) define linear Brauer categories, enriched in the category
R-Mod of R-modules for some commutative ring R. The definition of these categories is dependent on a
choice of parametrising element of the ground ring.

Hence, to distinguish them from linear versions, the categories BD, BD(®“) described here are called
“categories of Brauer diagrams”.

3.1. Monochrome Brauer diagrams

The category BD of (nonoriented monochrome) Brauer diagrams may be pithily defined as the free
compact closed category generated by a single self-dual object. This section gives a more concrete description
of BD, in terms of pairings on finite sets.

Definition 3.2. A pairing (perfect matching) on a set X is a fixed point free involution 7 on X.

Equivalently, a pairing 7 on X is a partition of X into two-element subsets. In particular, a finite set X
admits a pairing if and only if it has even cardinality. The empty set has trivial pairing @ by convention.

Example 3.3. If M is a compact 1-manifold, then its boundary M has a canonical pairing 7™ such that
r = 7™y if 2 and y are in the same connected component of M and x # y.

Definition 3.4. A (monochrome) Brauer diagram f between natural numbers m and n is a pair (77, %5) of
a pairing 7 on the disjoint union &(f) II T(f) — where &(f) = {s1,...,5m} is the source, and T(f) =
{t1,...,t,} is the target, of f — and a natural number ; called the number of closed components of f. An
open Brauer diagram is a Brauer diagram 7 = (7,0) with no closed components.

Let BD(m,n) denote the set of Brauer diagrams from m to n.

Example 3.5. For all n, there is a canonical inclusion %,, < BD(n, n) that takes o € X,, to the open Brauer
diagram induced by the pairing s; — ty; on {s1,...,8,} I {t1,...,tn}, 1 <i < mn.
In particular, the pairing s; — t;, 1 < ¢ < n defines the identity (open) Brauer diagram id,, on n.

Brauer diagrams may be represented graphically as follows: a pairing 7 on the disjoint union X I Y of
finite sets X and Y is described by a univalent graph whose vertices are indexed by X I1' Y, with elements
of X below those of Y, and edges connecting vertices vy and vy if and only if the corresponding elements
of X IT'Y are identified by 7. A Brauer diagram f = (7,¢): m — n may be represented by the graph for 7,
together with ¢ closed circles (called bubbles in [38]) drawn next to it.

Given finite sets X, Y, Z, and pairings 7x y and 7y,z on X I1Y and Y I Z respectively, one may vertically
stack the diagrams for 7x y and 7y z as in Fig. 3 to obtain a pairing on X II Z:

Namely, 7xy and 7y, z generate an equivalence relation on XIIY IIZ where objects « and y are equivalent
if and only if they are related by a sequence of (alternating) applications of 7x y and 7y,z (Fig. 3(b)(i)-
(iv)). Each equivalence class contains precisely zero or two elements of X IT Z. The classes that contain two
elements of X II Z — the open components of the composition — describe the desired pairing on X II Z. The
remaining equivalence classes — that describe cycles of elements of Y — are called closed components formed
by the composition of Tx y and Ty, z.

Likewise, Brauer diagrams f = (77,%;) € BD(l,m) and ¢ = (74,¢,) € BD(m,n) may be composed
vertically to obtain a Brauer diagram g o f = (7,¢,%,7) € BD(I,n) with
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(@) /.:é:;hj N < j <b>O z
e mg BREERE

Fig. 3. (a) Composition of pairings on X II'Y and Y II Z; (b) the resulting pairing on X II Z, together with the single closed
component formed in the composition.

o the pairing 7,5 is the composition pairing 7, o 74 obtained by identifying T(f) = &(g) according to
tri v Sgis

o the number £,; of closed components in g o f satisfies £,y = £y + £, + &(7f,7,) where €(7f,7,) is the
number of closed components formed by the composition of 7; and 7.

This composition is associative, with two-sided units (id,,,0) € BD(n,n). Hence, we may define:

Definition 3.6. The category BD of (monochrome unoriented) Brauer diagrams has objects n € N, morphism
sets BD(m,n) and composition given by vertical composition of Brauer diagrams.

The category BD is a prop with monoidal product (horizontal sum) induced by addition of natural
numbers and juxtaposition of Brauer diagrams: for (71,%): m; — n; and (72, €): ma — na,

(Tl,él)@ (TQ,EQ) = (Tl I 7,8 —l—?g)t mi + mo — nq + Na.

The monoidal unit is given by the trivial open Brauer diagram (&,0): 0 — 0.

Note, in particular, that any Brauer diagram f = (7,€): m — n may be written as a horizontal sum
(1,0) @ (2, ) of an open Brauer diagram (7,0): m — n and a scalar (&, €) = @le(g, 1): 0 — 0.

Let ¢d; € BD(1,1), U € BD(0,2) and N € BD(2,0) be the morphisms induced by the unique pairing
on the two-element set. For all n € N, id,, = @,_,id; € BD(n,n), and U, Lof lid,] € BD(0,2n) and

N def [id,] € BD(2n,0) satisfy the n-fold triangle identities.

(N, @ idy) o (idy, ®Uy) =id, = (id, ®Ny,) o (U, @ idy,). (3.7)

As such, BD is the free compact closed category generated by one self-dual object. Hence, it has the
following universal property:

Lemma 3.8. For any symmetric monoidal category C and any self-dual object x € C, there is a unique
symmetric strict monoidal functor £;: BD — C such that &,(1) = z.

Remark 3.9. It is important to note that the subsets BD(1m, n) C BD(mn,n) of open Brauer diagrams do not
describe a subcategory of BD. Namely, the unit trace tr(id;) = O = No U satisfies O = (&,1) € BD(0,0)
which is not open.

Example 3.10. Brauer diagrams may equivalently be defined as tangles in some high (>3)-dimensional space
(e.g., [1]). In fact, BD is a skeletal subcategory of the 1-dimensional cobordism category whose morphisms
are boundary-preserving isotopy classes of compact 1-manifolds. Hence, symmetric monoidal functors from
BD may be referred to as lax TQFTs (cf., [16]).

Let | denote the unit interval [0, 1], and let M = n,(1) I n.(S*) be a compact 1-manifold with canonical
pairing 7™ on OM as in Example 3.3. If m,n € N satisfy m+n = 2n,, and ¢: {s1,..., 8y [I{t1,... .t} —
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OM is any isomorphism, then (¢~ 17M¢p, n.) € BD(m,n). Conversely, given a morphism f = (7,€) €
BD(m,n), there is a unique (up to boundary-preserving isotopy) compact 1-manifold M = 222 (1) [T€(S)
and isomorphism ¢;: &(f) LI T(f) — OM such that dJJTlTMf(;Sf =T

Let f = (1,¢) € BD(m,n). Following Example 3.10, 0f def S(f) I Z(f) is called the boundary of
f = (7,%) € BD(m,n). A component of f is an element of the set mo(f) of connected components of a
compact manifold My as in Example 3.10. So, |mo(f)| = (m—;n) + &

There is a canonical map df — 7mo(f) so that f is described by a diagram of cospans of finite sets:

Si —7(S;) t; —=7(t;)
S(1)- o1 () (3.11)
-
mo(f)-

Remark 3.12. By (3.11), for composable morphisms f € BD(k,m) and g € BD(m,n), we may consider the
pushout diagram:

&(f) T(f) =6&(g) T(g)
\ o / \/ o /

(3.13)

l o “« e -
mo(f) R P(gf) B mo(g)
]
™ (gf).

However, BD is not a cospan category since, in general, P(gf) % 0(g9f) = &(f) II T(g) and hence
composition of morphisms in BD is not described by compositions (pushouts) of cospans as in (3.13).

For example, in the pushout (3.13) for the composition No U = (), P(N o U) has two elements, but
00 = (. This is equivalent to the observation that open Brauer diagrams do not describe a subcategory of
BD and is closely related to the problem of loops discussed in detail in [36, Section 6].

By e.g., [30, Theorem 2.6] or [1, Proposition 2.15], the category BD is generated, under horizontal and
vertical composition, by the open morphisms id;, U, N and the unique non-identity permutation o9 € ¥ C
BD(2,2), with the obvious identity, symmetry and triangle relations (Fig. 1). Interesting subcategories of
BD may be obtained by taking subsets of the generating set.

Definition 3.14. The category dBD C BD of downward Brauer diagrams is the subcategory of open mor-
phisms (7+,0) € BD(m, n) such that, for all y € T(f), 7+(y) € &(f).
The category uBD C BD of upward Brauer diagrams is the opposite category of dBD.

The category dBD is generated by idy, o2, and N (and uBD is generated by id;, o2, and U) under horizontal
and vertical composition, according to the relations in BD. In particular, dBD(m,n) is empty whenever
n > m, so U is not a morphism in dBD (and N is not a morphism in uBD). Since morphisms in dBD are
open, dBD(m, n) is finite for all m, n. Moreover, composition in dBD (respectively uBD) may be described
by pushouts of cospans as in (3.13).
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In [39] and Section 6.2, representations of the infinite orthogonal and symplectic groups are described
in terms of dBD and, in Definition 5.5, dBD is used to define nonunital circuit algebras. (See also [37,
Section 5].)

Remark 3.15. Other interesting subcategories of BD may be obtained by restricting to different subsets of
the generating morphisms. Of course, the intersection of dBD and uBD in BD is the permutation groupoid
> generated by id; and og. The Temperley-Lieb category TL C BD is the subcategory of planar Brauer
diagrams generated by idy, U, N, but not the symmetry morphism oz (see [17]).

3.2. Coloured Brauer diagrams, orientations and wheeled props

Generalisations of categories of Brauer diagrams are obtained by colouring the diagram components. By
considering involutions on colours, the same constructions also serve to describe (coloured) oriented, and
mixed Brauer diagrams. (See also [12,36].)

Definition 3.16. A pair (€,w) of a set € together with an involution w: € — € is called an (involutive)
palette. Elements ¢ € € are called colours in (€, w). The set of orbits of w in € is denoted by €.
For any palette (€,w), there is an induced free monoid palette (list(€), &) with involution

Ti(er, ... en) > (Wen, ... wer). (3.17)

!

Objects of the category Pal are palettes (€, w), and morphisms (&€, w) — (€’,w’) are given by morphisms

A € Set(€, ¢’) such that Aow =w' o A
Now let (€, w) be any palette and (X, 7) be the palette described by a pairing 7 on a finite set X.

Definition 3.18. A (€, w)-colouring of T is a morphism A: (X, 7) — (€,w) in Pal.
A (€, w)-colouring X of a Brauer diagram f = (1,¢) € BD(m,n) is given by a pair A = (Ag, \) where A\

is a colouring of 7 and Nis a map 7o(f) — € such that the following diagram of sets commutes:

(3.19)

The type of the colouring X is the pair (¢, d) € (list(€))? — where c is called the input type, and d is called
the output type, of (f,\) — defined by:

d=(dy,...,dn) =2(%(f)), and ¢ = (c1,...,cm) =w o A (6(f)). (3.20)

Remark 3.21. The application of w in the definition of the input type ¢ = woAg(G&(f)) is necessary to define
categorical composition of coloured Brauer diagrams in Definition 3.22.

Given ¢ = (c1,...,¢m) and d = (di, ..., d,) in list(€), objects of the set BD'**)(¢, d) of (€,w)-coloured
Brauer diagrams from ¢ to d are pairs (f, A) where f = (7, ¥) is a morphism in BD(m,n), and X is a colouring
of f of type (¢, d).
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Fig. 4. Composing coloured pairings.

Horizontal composition & of coloured Brauer diagrams (f, \)eBD®*)(¢y, d;) and (g,7)eBD ) (¢,, dy)
is given by juxtaposition and concatenation:

(£, N) @ (9.7) = (f ® g, A1) € BD'®)(¢)¢c0,didy).

To define vertical composition, let (f,A) € BD®*)(b,¢) and (g,~) € BD®“)(¢,d) with f = (14,%5) €
BD(k,m) and g = (74, ¢,) € BD(m,n) besuch that gf = (747, %,7) € BD(k,n). By definition, v5(y) = wAs(y)
for each y € T(f) = &(g). So A and v induce a well-defined colouring yA on go f (Fig. 4).

Definition 3.22. Objects of the category BD(®%) of (€, w)-coloured Brauer diagrams are elements of list(€).
Morphisms in BD®*)(¢,d) are (€,w)-coloured Brauer diagrams of type (¢, d), with composition of mor-
phisms (f,\) € BD®*)(b, ¢) and (g,~) € BD'**)(¢,d) is given by (gf,v\) € BD®*)(b,d).

Remark 3.23. Let ¢ = (c1,...,¢m),d = (dy,...,d,) and let (f,\) € BD®*)(¢,d) be a morphism with
underlying Brauer diagram f = (7,¢;) € BD(m,n).

The pairing 7 induces a pairing on {c1, ..., ¢, I1{d1,...,d,} in the obvious manner and X describes an
unordered £;-tuple in ¢. Hence, a (f,\) € BD(E¥) (e, d) may also be denoted simply by (7, ).

The category BD(®*) is a ¢-coloured prop (see Section 2.1), with monoidal structure @ induced by
concatenation of object lists and disjoint union of coloured Brauer diagrams. It has a compact closed
structure given by ¢* = & (e) for all ¢.

Remark 3.24. When w = id¢ is the identity, BD(®“) isa category of nonoriented €-coloured Brauer diagrams,
called a chromatic Brauer category in [35]. Extending [1], these are used in [35] to distinguish exotic smooth
spheres.

Of particular importance is the palette {1, |} given by the unique non-trivial involution (1) < (J) on

the two-element set {1,]}. A {m}—coloured Brauer diagram is called oriented and OBD &f gpif 1 4

the category of (monochrome) oriented Brauer diagrams. Objects of OBD are finite words in the alphabet
{1,4}. Let 1™ (respectively |™) denote the object of OBD given by n copies of 1 (respectively |) in list{1,|}.
So objects of OBD are concatenations of words of the form 1" and |”. Morphisms in OBD are represented,
as in Fig. 5, by diagrams of oriented intervals and (unoriented) circles.

More generally, if © is a set, and € = D X {T,/‘l}, then the category OBD® LT BDEY) of D-coloured
oriented Brauer diagrams is the free compact closed prop generated by elements of the set © and their formal
duals. For d = (dy, ..., d,) € list(D), let 12 (respectively |%) denote ((dy,1),- .., (dn,T)) € list(D x {m})
If |4 is defined similarly, then objects of OBD?® are concatenations of words of the form 14 and }¢. Note

that 5 (19) =19 where d' % (d,, ..., dy).



14 S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105

¢ o

Fig. 5. (a) Composing oriented Brauer diagrams. (b) Up to a shuffle permutation, this is equivalent to a composition of walled
Brauer diagrams, where horizontal arrows go from left to right.

Example 3.25. The full subcategory W C OBD® on objects of the form 1% is canonically a ©-coloured
wheeled prop. But it is not compact closed, since W? does not admit duals.

Applying the Int construction [25] to W® results in the category WBD?® of ®-coloured walled Brauer
diagrams. This is the full subcategory of OBD® on objects of the form 1€|%, ¢,d € list(®). The inclusion
WBD® — OBD? is an equivalence of categories since every object of OBD® is isomorphic — via a canonical
shuffle permutation — to a unique object of WBD® (see Fig. 5). (Walled Brauer algebras were introduced
independently in [28,47].)

In fact, the category OBD® classifies D-coloured wheeled props (see also [43]):

Proposition 3.26. There is an equivalence of categories between the category WP)? of ®-coloured wheeled
props in a symmetric monoidal category (X, ®,I) and the category [OBD®, Xy of symmetric monoidal
functors OBD® — X and natural transformations that commute with the structure maps.

Proof. Let (A,m,n): OBD® — X be a symmetric monoidal functor. This describes a ®-coloured wheeled
prop (P4, ®%, @9,tr) as follows:

For ¢,d € list(D), P4(c,d) def A(T%dT). The symmetric structure of (A, 7) induces symmetry isomor-
phisms in P4. The monoidal (horizontal) composition ® p on morphisms in P4 is obtained from 7 by
composition with the appropriate symmetry (shuffle) isomorphism and has monoidal unit 15 = 7: Ix —
P,(2,2) = A(D).

For each d € @, the identity 14: I — P4(d,d) is given by the composition

A(U
1 Age) 2,

A1) = Pa(d, d).
Categorical (vertical) composition P4(b,c) ® Pa(c,d) — Pa(b,d) in P4 is defined by
Alidyo ® e @ id 1) o m: A1) @ A(TeL) — AL,
and likewise the trace is given by

b
t"'a,d

P4(cb, db) Pa(c,d)

Aot ) A(tedt)

A(ich ®nib1\ ®idld1- )

It follows immediately from the relations in OBD® that P4 satisfies the axioms for traced monoidal
categories (Section 2.2).
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Conversely, let (P,®p,Jp,tr) be a D-coloured wheeled prop in X. Define (Ap,wp,np): OBD® — X
by Ap(1¢l9) def P(c,d"). The symmetric action on Ap is induced by symmetry in P. Permutations that
shuffle 1¢ with LdT act trivially on Ap.

Horizontal composition ® p in P induces a lax multiplication 7p on A with a lax unit for Ap described
by the unit morphism 1g: Iy — P(&, @) = Ap(9).

For each d € D,

A(Nya) = trt s AT — A(2)

and A(U,a) is given by

A(@e) = P(0,0) ———— P(d.d) = A(1}9).

I

Since P satisfies the wheeled prop axioms (Definition 2.18 & [25]), Ap satisfies the relations in OBD?®,
and hence defines a symmetric lax functor from OBD®.

The assignments A — P4 and P — Ap preserve all defining structure and are each others’ inverses up
to shuffle isomorphisms in OBD®. Hence WP? ~ [OBDQ, Xjax. O

By [9], this result will also follow from Theorem 4.12. A similar result may also be found in [43].
8.8. Representations of BD and OBD

This short section reviews some known results in the representation theory of (oriented) Brauer diagrams.

Let R be a commutative ring, and R-Mod its category of modules. For § € R, let Brs = Br? be the
R-Mod-enriched Brauer category (with specialisation ¢) defined in [30], whose objects are natural numbers
n € N and, for all m,n € N, Brs(m, n) is the free R-module (finitely) generated by the open Brauer diagrams
T € BD(m,n). If 7t € Brs(k,m) and 7, € Brs(m,n) are generating morphisms, then their composition in
Brs is defined by 7,7¢ = 8%/ 7,5 € Brs(k,n). In particular, Brs(0,0) = (§) C R is the ideal generated by é.

Let BDy be the free R-Mod-category on BD. So, for each pair m,n of natural numbers, BDy(m,n)
is the free R module (infinitely) generated by BD(m,n). There is a canonical isomorphism BD = Br,f2 [t
of R-Mod-enriched categories given by (7,€) <+ t'7. For each § € R, let Ts: BD — Brs be the obvious
identity-on-objects symmetric (strict) monoidal functor such that ) = NoU — 4. This factors through the
symmetric strict monoidal (R-Mod)-enriched specialisation functor BrtR M Brs induced by ¢+ 4.

In the oriented case, let OBrs be the oriented Brauer category (with specialisation o) defined similarly to
Brs (but with oriented Brauer diagrams). In particular, the free R-Mod category OBD on OBD is isomorphic
to OBrf ], As in the unoriented case, for each § € R, the obvious identity-on-objects symmetric (strict)
monoidal functor OBD — OBrs such that O) +— § is denoted by Tj.

If (A, 7,n): BD — R-Mod is a symmetric monoidal functor, then A(0) is an R-algebra with unit 1 and

algebra multiplication 7. For r € R, it is convenient to denote n(r) € A(0) simply by r.

Lemma 3.27. A symmetric monoidal functor A: BD — R-Mod factors through T if and only if A(QO) = 4.
An identical statement — with BD replaced by OBD - holds in the oriented case.

Proof. If A factors through Ty, then clearly A(Q) = J. For the converse, let A: BD — R-Mod be a
symmetric monoidal functor such that A((Q)) = 4. Define a symmetric monoidal functor A: Brs — R-Mod
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by

(7,

(t') = A(7’,0) for each generator 7 € Brs(m,n). Since A is lax monoidal, for all morphisms f =
= (7,0) @ (0,¢) € BD(m, n),

Z

A(f) = 8" A(r) = 8° A7) = A(T5(f))-
Hence A = Ao Ts: BD — Brs — R-Mod. The proof is unchanged for the oriented case. O

For fixed 6 € R and n € N, the endomorphism algebras Brs(n,n) coincide with Brauer algebras, in-
troduced by Brauer in [5] to study of representations of the finite dimensional orthogonal and symplectic
groups Oy and Spy, (d,k € N).

Let k be a field of characteristic 0 and let V' be a d-dimensional vector space equipped with a nondegen-
erate bilinear form 0: V®V — k that is either symmetric or skew-symmetric (in which case, nondegeneracy
implies that d = 2k for some k). Since 6 is nondegenerate, it defines an isomorphism v — 6(v, —) of V with
its dual V*. Fix 6 = d if 0 is symmetric, and 6 = —k = —d/2 if 0 is skew-symmetric.

The isometry group G = {g: 8(gv, gw) = 0(v,w) for all v,w,e V} C GL(V) of 8 is

o the orthogonal group O(V,0) = O4 when 6 is symmetric
« the symplectic group Sp(V,0) = Spy when 6 is skew-symmetric.

Brauer [5] extended the Schur-Weyl duality between representations of the symmetry and general linear
groups to prove that, for n > |§|, representations of Brﬂg(n, n) in V& are in one-to-one correspondence with
degree n representations of G.

Categorified versions of these results were established in [30, Theorems 3.4, 4.6, 4.8, 5.9, 6.10]:

View the endomorphism prop T(V) (see Example 2.8) as a full sub-category of Vecty with objects
V®k k€ N (by convention, V¥ = k). Note that objects of T(V') have a G-module structure induced by
the factorwise action g - (v1,...,v,) = (g(v1),...,g(vn)) on each V&™,

Let Tg(V) € T(V) be the subprop of G-equivariant morphisms. By definition 6: V®2 — k is in Tg(V)
and hence, for allm € N and 1 < i < j < n+ 2, so are the “contraction” maps Qiti. ye(nt2) _y yon

induced by applying # to the i*" and j*" factors.

Recall that k[X] &f D,.cn k[En] describes a monochrome Vecty-prop. The canonical levelwise action of
Y on T(V) by permuting factors (see Example 2.8) extends linearly to a functor k[X] < T(V).

For all £ > 0, define

e(k) €Y sgn(o)o € k[T (3.28)
oEX)

where sgn(o) is the sign of a permutation o € Y. Since k[X] C Brs for all § € k, for each m,n € N,
we may define {(e(k))m,n C Brs(m,n) to be the subspace generated by e(k) under horizontal and vertical
composition in Brg.

Theorem 3.29. [Lehrer-Zhang, 2015] There is a unique symmetric strict monoidal (tensor) functor Brs —
Vecty such that 1 — V, N+ 0. This factors through the inclusion Tg(V) — Vecty. Let Fg: Brs — Tg(V)
denote the corresponding (corestriction) functor.

Let 05 € ¥ C Brs(2,2) be the unique non-identity permutation. For all v @ w € V&2,

wR v when 6 is symmetric,

Fa(oz)(v@w) = {

—w®uv when 0 is skew-symmetric.

The functor Fg is full. Its restriction Brs(m,n) — Tg(V)(VE™ VE™) is injective when m + n < 2|d].
When m +n > 2|4|, its kernel is (e(|0] + 1))m.n-
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Remark 3.30. The statement that Fg: Brs — T¢(V) is full is one formulation of the first fundamental
theorem of invariant theory for the orthogonal and symplectic groups. In particular, it implies that, since
Brs(m,n) = 0 when m + n is odd, so also Tg(V)(V®™ V®) = 0 when m + n is odd.

The description of the kernels of the maps Fg(m,n): Brs(m,n) — Tg(V)(VE™, VE") gives the second
fundamental theorem.

Weyl’s first and second fundamental theorems of invariant theory of the finite dimensional general linear
groups are obtained from an oriented version of Theorem 3.29:

If V is a finite d-dimensional vector space, then the general linear group GL = GL(V) (left) acts on V
by the standard representation (g,v) — g(v), and (right) acts on V* by the dual representation (g, ) —
(v = (g (v))). As above, let Tgr(V) C T(V) be the subcategory of subcategory of G L-equivariant
morphisms. In particular, the trace on T'(V') is G L-equivariant, as is the monoidal product of G L-equivariant
morphisms in T'(V'), so T (V) inherits a wheeled prop structure from T'(V).

For k € N, let e(k) € k[X] be defined as above (3.28) and let (e(k))ﬂfl[,%] C k[X,,] be the subspace generated
by e(k) under horizontal and vertical composition in k[X].

Theorem 3.31 (Weyl, [50]). The category Tar (V) of GL-equivariant morphisms in T (V') is a Vectk-groupoid
such that Tar,(V)(m,n) = 0 when m # n.
Forn <d, Ter(V)(n,n) Zk[X,] and forn > d, Tar,(V)(n,n) 2 k[X,]/(e(d + 1))“,2[%]

By Proposition 3.26, this can be reformulated almost identically to Theorem 3.29:

Corollary 3.32. There is a unique symmetric strict monoidal (tensor) functor OBry — Vecty such that (1) +—

V,{) —»V*and N +— ((a,v) = a(v): V¥ @V — k). This factors through the inclusion TéTL “(V) —
Vecty.

The corresponding (corestriction) functor Fgr,: OBrg — T{m}(V)GL is full. For m,n € N, its restric-
tion OBrs(m,n) — it 3 (V)ar(VE™, VO™ is injective when m+n < 2d. When m +n > 2d, its kernel is
(e(d+ 1))m.n C OBrg(m,n).

By [11], there is an equivalence of categories between algebras over GL, and wheeled props for which
O =d and e(d + 1) = 0. The comparison of Theorems 3.31 and 3.29 is used in Section 6 to prove similar
results — in terms of unoriented circuit algebras — for the categories of Oy and Spy, algebras.

Remark 3.33. Given a sequence of groups (G4)q4 such that G4 < G441 for all d > 0, let G def |JGq denote
the colimit. A representation W of G, is the colimit of a sequence of representations (Wy)4 of the sequence
of groups (G4)q with inclusions Wy < Wy induced by the inclusions Gy < Gg41.

For example, for all d > 1, the d-dimensional general linear group GLg is naturally a subgroup of
G Ly, 1 under the inclusion induced by k¢ < k%! = k? x k. The infinite general linear, orthogonal and
symplectic groups G Lo, O and Spo. are the colimits of the induced sequences (GLg)4, (Oq)q and (Spg) k-
Let V&' U;C:o k®J be the standard representation.

The triangle identities (3.7) in BD imply that, if F': BD — Vecty is a strict (or strong) symmetric
monoidal functor with F'(1) = V, then § = F(N) induces an isomorphism 6*: V = V* and V must be
finite dimensional. Hence, there is no strict monoidal functor BD — Vecty such that 1 — V.

However, if the sequence (04)4 of nondegenerate symmetric or skew-symmetric forms induces the sequence
of orthogonal or symplectic groups (G4)4, there is a unique form 6 et colimgfy on V' and a unique strict
monoidal functor F': dBD — Vecty, 1 — V and N — 0, the image of which is the colimit of the (image of
the) functors Fg, described in Theorem 3.29.
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Sam and Snowden [39] established a contravariant equivalence between the categories of finite length
functors dBD — Vecty (respectively dOBD — Vecty) and representations of the infinite orthogonal and
symplectic groups (respectively algebraic representations of the infinite general linear group). See also Re-
mark 5.6 and Section 6.2, where a related result, Theorem 6.13, is proved by extending the methods of
[11].

4. Wiring diagrams and circuit algebras

A circuit algebra is a given by a family of objects, indexed by some free commutative monoid (see Sec-
tion 4.2), with operations that are governed by wiring diagrams. These are, essentially, non-planar versions
of Jones’s planar diagrams [22]. Wiring diagrams are commonly described by partitioning boundaries of
1-manifolds (e.g., [2,9,10]). However, they admit a straightforward definition in terms of Brauer diagrams.
This paper takes the latter approach.

4.1. Operadic preliminaries

This section summarises the basic theory of (coloured) operads. See [31] and [4] for more details.
A (symmetric) ®-coloured operad O (in the category of sets) is given by a (list(D) x D)-graded set
(O(¢;d))(e;a), and a family of composition morphisms,

m

w@@@x@j@%@)%@@”bm@

defined for each d € ©, ¢ = (¢;)7; € list(®) and b; € list(D), for 1 <i < m.
If ¢ € Olcy,...,cm;d), then d is called the output of ¢ and each ¢; is an input of ¢. The symmetric

groupoid ¥ acts on O by permuting the inputs: each o € 3, induces isomorphisms O(cg1, .- -, Com;d) —
O(c1, ..., ¢m; d). The composition v is required to be associative and equivariant with respect to the Y-action
on O.

Moreover, for all d € ©, there is an element vy € O(d;d) that acts as a 2-sided unit for +: for all
c=(c1,...,cm) € list(D), the composite morphisms

Ole;d) Z T x O(c;d) X2 0(d: d) x O(e; d) 2> O(e; d)
=~ (id, @, ve;) S v
O(e;d) = O(e;d) x I ————— O(c¢;d) % ®O(Ci;ci) = O(¢;d)
i=1

are the identity on O(c; d).
Let (C,®,0) be a small permutative category with object set Co.

Definition 4.1. The Cy-coloured operad O¢ underlying (C,®,0) is defined by
Oc(xla cey Ty y) d:Cf C(Jfl O---D .fn,y),
with operadic composition v in @€ induced by composition in C as follows:

Let the operation § € O%(z1,...,,;y) correspond to the morphism g € C(z; © --- @ x,,%) and, for
1<i<nlet f, € (’)C(wm, ooy Wi, @) correspond to f; € Clw;1 @ - -+ B Wi m,, x;). Then,

v @ F)) Elgo (e @ fa)):
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(In fact, any small cocomplete symmetric monoidal category X has an underlying operad by defining, for
Z1,...,Zy € X, the object 1 ® -+ ® x,, € X as in Example 4.3.)

Observe that, if OC is the operad underlying a small permutative category C, then, for all f, €
O%(21.1, -+, T1m;y1) and fo € O%(w21,...,%2.,;Y2), there is an operation

— = def -
Fi®F2 S v (idy @y, (F1. F2)) € O(@11, -, T1m, T21s - - T2, Y1 B Yo). (4.2)

By definition, O“(—;y) = O¢(0;y) canonically for all 3. In particular, there is a canonical isomor-
phism O¢(—;0) EN 0%(0;0) = C(0,0). Let idg € O°(—;0) be the preimage of idy € C(0,0) under this
isomorphism. Then, for all (z1,...,xx,y), precomposition with ((8?21 id,,,idg) induces an isomorphism
O%(z1,...,71,0;%) =, O%(z1,...,7;9).

For i € {1,2}, let (O% ~*,v") be a D;-coloured operad. A morphism F: (0!, 41, v1) — (0?42, 1?) of
(coloured) operads is given by a map of sets f: D1 — Da, and a (list(D); x D1)-indexed family of maps

]:(cl,...,ck;d) : 01 (Ch <oy Gk d) - 02(f(61), sy f(ck)7 f(d))

that respect units and composition, and are equivariant with respect to the symmetric action.

If f =ido (with ® = D; = D3), then F: O! — O? is called colour-preserving. The category of D-
coloured operads and colour-preserving morphisms is denoted by Opg.

In the remains of this section, (X,®,I) is a symmetric monoidal category with all finite colimits, and
(C,&,0) is a small permutative category with object set Co.

Example 4.3. For any n-tuple (z1,...,2,) of objects in X, define 1 ® -+ ® x,, to be the colimit, under
associator isomorphisms in X, of all ways (indexed by planar binary rooted trees) of tensoring x1,...,Zy,.
Given a set ® and a D-indexed object A = (A.)een in X, the D-coloured endomorphism operad End? is
defined by

End*(cy,...,cud) X (A, ® -+ ® A, Ag)

together with the obvious composition and units induced by composition and identities in X.

Definition 4.4. A X-algebra for a ©-coloured operad O is a D-indexed object (A.)ceco in X, together with a
morphism A: O — End? of ®-coloured operads.

The category Algy (O) of X-algebras for O is the subcategory of the slice category O/ Op® whose objects
are X-algebras for O. Morphisms in Algy(O) ((A,.A), (B, B)) are of the form (g, (g.).) where g: A — B in
O/Opr)D and, for all ¢ € D, g. € X(A, B.) such that, if ¢ € O(cy,...,cx;d), then the following diagram
commutes in X:

gnl®...®ng
Acl®"'®Ack —>Bcl ®...®Bck

A(¢)l lgA(@

Ad By.

gd

Remark 4.5. Observe that Definition 4.4, though it relies on the symmetric monoidal structure on X, is
concerned with operads in the category of sets and does not involve operads enriched in a (closed) symmetric
monoidal category. It therefore diverges slightly from the usual definition of an operad algebra (as in [4]).
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Let (C,@,0) be a small permutative category and (X,®,I) a cocomplete symmetric monoidal category
and let [C, X]jax denote the category of symmetric monoidal functors A: (C,®,0) — (X, ®, I). The following
is known (see e.g., [31, Chapters 2-3,], in particular Example 2.1.10 and Section 3.3):

Lemma 4.6. The categories Algy (O%) of X-algebras for the operad O¢ underlying (C,®,0) and [C,X]jax are
canonically isomorphic.

Proof. If O = OC€ is the Cy-coloured operad underlying C, and (A, 7, 7): C — X is a symmetric monoidal
functor, then (A(7))zec, has an O-algebra structure as follows: For k > 1 and all f € O(x1,..., 7% y)
induced by f € C(z1...zg,y),

Az cariy(F) = A(f) © Ty o, € X(A(21) @ - ® Aar), Aly))-

(Here 7y, 0, s Alz1) ® - @ A(xy,) = A(21 ... 2y is the universal map from the colimit.)
When k =0, and f € O(—;y) is induced by f € C(0,y),

Ay (f) = A(f) o € X(I, A(y))-

Conversely, a X-algebra (A,fl) for O induces a functor A: C — X described by « — A, for all x € C.
If f € O(z;y) is induced by f € C(z,y), then f fl(?) € X(Az, Ay). This has symmetric lax monoidal
structure m4: Ay ® Ay — Aygy induced by id,e, € O(x,y;2®y) and na: I — Ag induced by idy € O(—;0).
It follows from the definitions that the assignments (A, 7, 7) — ((A(z))s,A) and (4, 4) — (A, 74,14)
extend to mutually inverse functors Algy (O¢) < [C, X|jax. O

Definition 4.7. Let (A, A) be an algebra over a D-coloured operad O. An ideal of (A, .A) is an O-subalgebra
(I,T) C (A, A) such that, for alln € N, (¢1,...,¢,) €D™, d€D and z; € A, and all ¢ € O(cy,...,cn;d),
if 2; € I, for some 1 < j < n, then A(¢)(z1,...,2,) € Z(d).

Equivalently, (I,Z) C (4, A) is an ideal precisely if the quotient (A/I,.A/T) inherits an O-algebra struc-
ture from (A4, A).

If OF is the operad underlying a monoidal category C, and (A,7,7n): C — X is a symmetric monoidal
functor as in Lemma 4.6, then an ideal (I,Z) of the operad algebra corresponding to A is a symmetric
monoidal subfunctor Z < A such that, for all z,y € C, the restrictions of 7, ,: A(z) ® A(y) = A(z @ y) to
Z(z) ® A(y) and A(z) ® Z(y) describe morphisms to Z(z @ y).

4.2. Wiring diagrams and circuit algebras

As in [2,9,10], circuit algebras will be defined as algebras over an operad of wiring diagrams.

Definition 4.8. For a given palette (€,w), and each (ci, ..., cy;d) € list*(€) x list(€), a wiring diagram of
type (c1,...,cx;d) is an element of the set

WD ey, ..., exid) ©BDE (e @ & exid).

The list(€)-coloured operad of (€, w)-wiring diagrams is the operad WD(&+) def pepte underlying BD(®*).
In particular, for (€,w) = {m}, OWD &' WD) ig the operad of (monochrome) oriented wiring dia-
grams, and for a set D, the operad OWD® of D-coloured oriented wiring diagrams is the operad underlying

the category OBD® = BD®*{" ¥} of D-coloured oriented Brauer diagrams.
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Fig. 6. Composition in WD. (See also Fig. 7.)

1

1

_ ¥,
T X
2 4 \ 2 3 2
7] \ Y. (f:)i)
3 2

fa fa

Fig. 7. Disc representation of the wiring diagram composition in Fig. 6.

When € is the singleton set, the N-coloured operad of (monochrome) wiring diagrams WD(€w) & BD
is denoted by WD.

Definition 4.9. A (€, w)-coloured X-circuit algebra is a X-valued algebra for the operad WD(&*) of (€, w)-
coloured wiring diagrams. The full subcategory of X-circuit algebras in AIg(WD(¢’“’)) is denoted by
X-CAE*) When X = Set, X-CA®*) is denoted simply by CA®*),
If (€, w) = {x} is trivial, then X-CA 4 X-CA* is the category of monochrome X-circuit algebras.
Oriented (respectively non-oriented) circuit algebras are algebras over operads of oriented (respectively

non-oriented) wiring diagrams.

Remark 4.10. Though Definition 4.8 is already observed in [2, Definition 2.9], wiring diagrams are commonly
described (for example in [9,10]) as isotopy classes of immersions of compact 1-manifolds in punctured 2-discs
that are injective on boundaries and preserve boundaries and interiors.

In this representation, composition is defined by inserting discs into the punctures in such a way that the
boundaries agree. Fig. 7 provides a punctured disc representation of the same composition of wiring diagrams
as Fig. 6. In the coloured case, 1-manifolds are coloured according to Example 3.10 and Definition 3.18 to
define (€, w)-coloured wiring diagrams. For the operadic composition in WD) the colours on the disc
boundaries are required to match.

The punctured disc representation of wiring diagrams provides a clear visualisation of the relationship
of wiring diagrams (and hence circuit algebras) to planar diagrams and algebras [22] and tangle categories
[46]. Tt also exhibits the operad of monochrome wiring diagrams as a suboperad of Spivak’s operad of wiring
diagrams [42]. Moreover, the disc representation of wiring diagrams is highly suggestive of the relationship
between circuit algebras and modular operads (cf., Section 5.2), and the graphical construction of circuit
algebras that is developed in the sister paper [37]. On the other hand, the definition in terms of Brauer
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diagrams is obviously combinatorial and reveals connections between circuit algebras and representations
of classical groups (cf., Sections 3.3, 6).
The equivalence of these representations is also described for the oriented case in [43].

Let (X,®,I) be a cocomplete symmetric monoidal category. As an algebra for the operad WD(Q"‘)),
a (€,w)-coloured X-circuit algebra consists of objects (A(c))ceiist(e)y and, for each (ci,...,cx;d) €
list?€ x list(€), a set of X-morphisms A(F,\): @, A(ci) — A(d) indexed by Braver diagrams (f,)) €
BD®)(¢; @ - @ ¢, d). These satisfy:

o for all c € list(€), A(ide) = id ac) € X(A(c), A(c));
« the morphisms A(f, \) are equivariant with respect to the Y-action on list(¢) and on WD(Q‘“);_
o given wiring diagrams (F,)\) € WD (ey, ... epd), and, for all 1 < i < k (f,\) €

WD(Q‘“)(bM, ..., bik;; ¢;), the following diagram commutes in X:
LAY
k k; i=1 k
®i=1 ®j=1 A(bl}j) ®¢=1 Alcei) (4.11)
lv‘\(f,)\)
Av((FN)(F A
A(d)

The following is immediate from Lemma 4.6:

Theorem 4.12. The category X-CA(®w) of (€, w)-coloured X-circuit algebras is isomorphic to the category of
symmetric monoidal functors BD(®) s X.

Example 4.13. Oriented circuit algebras are described in detail in [9,10]. Proposition 3.26 and Theorem 4.12
provide another proof of the result, established in [9], that D-coloured oriented circuit algebras are equivalent
to D-coloured wheeled props. See also [43].

Example 4.14. Let F: BD — Set be the circuit algebra defined by F(n) L BD(0,n) and for all g € BD(m, n),
F(g)(f) = gof. This is initial in the category of (monochrome) circuit algebras in Set: For any such (A, 7, ),
there is a unique morphism « 4: F — A such that a4(f) = (A(f) on)(1) € A(n) for all f € BD(0,n).

As in Section 3.3, for a fixed commutative ring R, let BD be the free R-Mod-category on BD. Let U = Ug
be the free R-Mod-circuit algebra on F, defined by U(n) f BD(0,n). This is initial in the category of
(monochrome) R-Mod-circuit algebras.

For a palette (€, w), the initial (€, w)-coloured circuit algebra F(©«) (and (R-Mod)-circuit algebra 2/(©+))
with F(©)(c) def BD(Q’N)(Q,C) may be similarly defined. In particular, by Proposition 3.26, U1} de-

scribes the initial monochrome R-Mod-wheeled prop U (called Z in [11]) with U(m,n) = @{ﬁ}(@’ ™).

In the following examples, Vecty is always the category of vector spaces over a field k of characteristic 0
and V is a (finite) d-dimensional vector space that generates the full subcategory T'(V) C Vecty on objects
of the form V®"? n € N.

Example 4.15. If 6 is a symmetric or skew-symmetric nondegenerate bilinear form on V' with isometry group
G, then let

5= {d when 6 is symmetric, in which case G = Os

% when 6 is skew-symmetric, , in which case G = Sps).
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By Theorem 3.29, there is a unique symmetric strict monoidal functor Vy: BD — Vecty such that 1 — V'
and N — 6, and this factors through the symmetric strict monoidal functor Fg: Brs — Tg(V) where
Te(V) C T(V) is the subprop of G-equivariant morphisms and, as in Section 3.3, Brs is the Brauer category
with specialisation § € k. Theorem 3.29 implies, moreover, that the kernel of the unique Vecty-circuit algebra
morphism «ag: U — Vy is the circuit algebra ideal Zy C U generated by O — § € U(0) and |e(|6] +1)] €
U2(|8] + 1)), where

le(k)] =Y sgn(o)]o] (4.16)

ceX)

is the element of U(2k) obtained by linear coevaluation of the components of e(k) € BD(k, k) (3.28).

In particular, if VQG C Vy is the G-invariant sub-circuit algebra, then U/Zy = VQG .

In Section 6, it is proved that there is an equivalence between algebras over the orthogonal (and symplec-
tic) groups and circuit algebras A such that [e(]6| + 1)] and O — ¢ are in the kernel of the unique morphism
aq: U — A

Example 4.17. As in Section 3.3, T (V) C T(V) is the sub-wheeled prop of GL(V)-equivariant morphisms.
By Theorem 3.31, the kernel of the unique morphism ay: U — T (V) of wheeled props is generated by
e(d+1) eU(d+1,d+ 1) and O —d € U(0,0). Equivalently, the kernel of the unique Vecty-valued oriented
circuit algebra morphism Ut 5 v s generated by |e(d+1)| and O —d.

Definition 4.18. Given any list(¢)-graded set S = (S¢)celist(e), the free (Set-valued) circuit algebra F(&w)(G)
on S is defined as follows:
The collection (F(®«) (S)d)aelist(e) of (€, w)-coloured wiring diagrams decorated by S is defined by

w k
FOYS)a =1l enersee (WD (er, ... exsd) x [Ti, S(ei)
k
= (ew-wen.ramesoea/a (Il S(e))

For each (F,\) € WD&*) (¢, ..., ex; d), the morphism F(&*) (S)(F, \): F(&)(S), @---@F@¥)(S), —
F(&@)(S) 4 is described by

ﬁ(fx ;ﬁgyaQﬁimQﬁme)@)i@J-

i=1

For a fixed commutative ring R, let 4/(®*)(S) be the R-Mod-circuit algebra freely generated by F(©«)(S).
So, for all ¢, U(®<)(S)(c) is the free R-module on F(®«)(S),.
When (€,w) = {*} is trivial, write F(S) = F(&«)(S) and U(S) = UE)(S).

Note that, when S = ), F(©«)(S) = F(&«) (and likewise U(®*)(S) = L)) is just the initial (R-Mod-)
(€, w)-coloured circuit algebra.

Circuit algebras, like operads, admit presentations in terms of generators and relations (see [10, Re-
mark 2.6]): A (R-Mod-) circuit algebra A = (A, ) may be obtained as a quotient of the free (R-Mod-)
circuit algebra F(©<)(A) (or U< (A) on its underlying symmetric graded set A.

In the remainder of this paper, we will always take R = k, a field of characteristic 0 and so R-Mod = Vecty.

Example 4.19. Let Ty, = { >X_, >Z_} and T}, = 0 for n # 4. Then, F(T)(n) = § when n is odd and

F{(T)(2m) is the set of diagrams (planar representations) of virtual tangles on m unoriented strands. The
circuit algebra of virtual tangles T is the quotient of F(T') by the (ordinary) Reidemeister relations since the
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virtual Reidemeister relations of [26] are a consequence of the relations in BD. The oriented virtual tangle
circuit algebra OT , with generating set {:X , <<\K} C OT(1%]?) is defined similarly. This is explained in
detail in [9, Section 4.2].

More generally, we may consider circuit algebras of (€, w)-coloured virtual tangles. This includes, for
example, circuit algebras of embedded tangles of mixed dimensions.

Example 4.20. Given a (virtual) tangle with 2m labelled boundary points, its skeleton [2] is the virtual
tangle obtained by replacing each over- and under-crossing with a virtual (symmetric) crossing. This is an
element of BD(0, 2m).

In [2] and [10], a circuit algebra with skeleton is a circuit algebra S indexed by Brauer diagrams rather than
lists of colours. More formally, S is a circuit algebra together with a surjective circuit algebra morphism
S — F. Equivalently, this is a symmetric monoidal functor from the slice category (0/BD,®,idy) (see
Example 2.3). Oriented circuit algebras with skeleton may be similarly defined as symmetric monoidal
functors from (0/OBD, @, idp).

5. Circuit algebras are modular operads

Modular operads [19,20,36] are symmetric graded objects that admit two operations — contraction and
multiplication — such that certain axioms are satisfied. They were introduced in the study of moduli spaces
of higher genus curves [15].

In Section 5.1, an axiomatic (biased) description of circuit algebras is given in terms of operations on
the underlying graded symmetric monoid and, in Section 5.2, this is shown to satisfy the modular operad

axioms.
5.1. Axioms for circuit algebras

By Theorem 4.12; the combinatorics of a (€, w)-coloured circuit algebra are completely described by
BD(®“). This enables an axiomatic (biased) description of circuit algebras in terms of their underlying
symmetric monoids.

Let (€,w) be a palette. For 1 <i < n and ¢ = (c1,...,¢,) € €, let ¢; def (ClyeevyCim1,Cit1y---5Cn) €
¢"~! be the tuple obtained by “forgetting” c;. More generally, for distinct 1 < ji,...,Jr < n, the tuple

¢ € ¢~k is obtained from ¢ by forgetting c;, ..., cj,
Let S = (S(c))c be a list(€)-graded symmetric object in X.

Definition 5.1. A contraction ¢ on S is a collection of morphisms (i : S(c) — S(e5) in X, defined for all
c=(c1,...,cn) € list(€) such that ¢; = wej, @ # j.
A multiplication ¢ on S is a family of maps

—Oijffi: Se ® Sq — S(Czdj) (5.2)
defined for all c € €, d € €" and 1 <i < m,1 < j < n such that ¢; = wd;.

A contraction or multiplication that commutes with the Y-action on S is X-equivariant.
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A multiplication ¢ is commutative if, for all ¢, d as above, the following diagram commutes in E:

tia

Se ®Sd%5‘cd

% E

Sq ® Se %Sdc
oifL

A wunit e for a commutative multiplication ¢ on S is a choice, for each ¢ € €, of distinguished morphism
€t I — Scwe in X, such that for all ¢ = (¢1,...,¢,) € list(€) and 1 < i < n such that ¢; = ¢, the

compositions

o2t

€c®ids (c,we),e
—— Scwe ® Se ——— Se

S, 5 I®8S.

and

144

<
(c,we),c
Sc,wc ® Sc I Sc

€we®ids,

S, S I1®S,

are equal to the identity on S.

By [36, Lemma 1.13], if a multiplication ¢ on S admits a unit €, then it is unique.

Observe in particular that, if ((S¢)e, X, 7, () is a symmetric list(€)-graded monoid with contraction, then
S admits a commutative equivariant multiplication given by:

ol LT 0 R, 42 S(c) ® S(d) —+ S(e;d;), (5.3)
defined for all ¢ = (c1,...,¢m),d=(d1,...,d,) and all 1 <i <m,1 < j <n such that ¢; = wd;.

Proposition 5.4. A list(€)-graded symmetric object (Ac)e in X describes a X-circuit algebra if and only
if it has the structure of a symmetric graded monoid (A,X,n) in X and is equipped with an equivariant
contraction ¢ and, for each c € €, a distinguished unit morphism e.: I — A(c ), such that the following
conditions (illustrated in Fig. 8) hold:

(cl) the graded monoidal product X on (Ac)ceiist(e) s associative up to associators in X;
(¢2) contractions commute (see also (m1) Definition 5.7):

: ij o (Htm = C(]fim/ o (M wherever defined,
i,

(c3) contraction commutes with the monoid operation:
Céjfjj o IZIc,d = IZlcifj@d o (C(Zzi] ® de) Ac ® Ad — Acf,jd
for all d € list(€) and ¢ = (c1,...,cm) € list(€) with ¢; =we;, 1 <i<j<m.

(el) the distinguished morphisms (e.). provide units for the multiplication ¢ induced, as in (5.3), by W and
¢:

e C212+J (c we)e o (ec & ch)

(c,wc)

4112+]C |Z(c,wc)c © (Ewc & ch)

(c,we)

ida
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Fig. 8. Circuit algebras satisfy the conditions (c1)-(c3).

A morphism of (€,w)-coloured circuit algebras in X is precisely a morphism of the underlying graded
symmetric objects in X that preserves the monoid operation, contraction and multiplicative units.

Proof. By Theorem 4.12, a (€, w)-coloured X-circuit algebra is given by a symmetric monoidal functor
(A, m,m): BD(®*) — X. Since X¢ ¢ BD®*), (A, 7,n) describes a symmetric graded monoid in X and thus
satisfies (cl).

Let (7i47,0) € dBD'®)(c, cﬁ) be the downward Brauer diagram given by

Cj k=1
C>DCp— . .
Cr € ¢ k#ik+#j.

This defines an equivariant contraction ¢ on (A(c)). given by (i o A(7i7). The relations in BD(®*)
imply that (A, () satisfies (c2) and (¢3). (See [30, Theorem 2.6] or [1, Proposition 2.15].) For ¢ € €, define
e, A(Ug): A(De¢) — A(c,we). This satisfies (e1) by the triangle identities in BD(®*),

Conversely, let ((Ae)e, X, n, ¢, €) satisfy (c1)-(c3) and (el). Then (A, X, n) describes a symmetric monoidal
functor A: £¢ — X. By [30, Theorem 2.6] or [1, Proposition 2.15], there is a unique symmetric monoidal

functor A: BD®*) — X such that A = A4 on £¢ and, for all ¢ € €,
A(Ne) = ue,eyizt Awe,e) = Az
and
AlUc)on=ec: I = A(cue)-

The final statement — that morphisms of circuit algebras are morphisms of graded symmetric monoids
preserving these maps — is immediate. O

Observe that, in the proof of Proposition 5.4, the cap morphisms N, in BD(®*) induce contractions while
the units for the multiplication ¢ are induced by cup morphisms U,. In particular, a lax monoidal functor
B: dBD®%) — x is, equivalently, a symmetric graded monoid with contraction satisfying (c1)-(c3) but
without a unit for the induced multiplication. This motivates the following:

Definition 5.5. A (€, w)-coloured nonunital X-circuit algebra is a symmetric lax monoidal functor
A: dBD®) — X.
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Equivalently, these are algebras over the operad dWD(&*) of downward (€, w)-coloured wiring diagrams.

Remark 5.6. By [39], nonunital monochrome circuit algebras describe algebras in the category of represen-
tations of Oy and Sps.. Algebras in the category of representations of G L., are described by nonunital
monochrome oriented circuit algebras. See also Sections 3.3 & 6.2.

5.2. Clircuit algebras and modular operads

As usual, let (€, w) be an involutive palette and (X, ®,I) a symmetric monoidal category.

Definition 5.7. A (€, w)-coloured modular operad with values in X is a list(€)-graded symmetric object
S = (S¢)cee together with a unital multiplication (o, €), and a contraction ¢, such that the following axioms
are satisfied:

(m1) Multiplication is associative:
For all b= (b1,...,bn,),c=(c1,...,Cny),d=(d1,...,dn,) €list(€) and all 1 < i <mny, 1 <j k <ngy
with j # k and 1 < m < ng such that b; = wc; and ¢, = wdy,, the following square commutes:

lIJ®2de
Sb®Se ®@Sqg ————— Sb,e; @ Sa

kim k v
ids, ®0a "y ©bic-,d

Sb®Scd —>SbCA

ity
o
b,cjdy,

(m2) Contractions commute (see (¢2), Proposition 5.4 and Fig. 8)

(m3) Multiplication and contraction commute:
For all ¢ = (c1,...,¢n,),d = (di,...,dy,) € list(€) and all distinct 1 < 4,5,k < nq, 1 <m < ng such
that ¢; = we; and ¢ = wd,y,, the following square commutes:

(Sc)—fgd)(- d_<
¢ ®ids, N

Se ®Sd%SCA®Sd

~
)

/
wn

’
kim o
Cecd

N

( )

N/
~

wn
—

&W
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(m4) “Parallel multiplication” of pairs is well-defined:
For all ¢ = (c1,...,¢n,),d = (d1,...,dn,) € list(€) and all distinct 1 < 4,5 < n; and distinct
1 < k,m < ng such that ¢; = wdy, and ¢; = wd,,, the following square commutes:

_
—0 — == T
itk
Se® Sq ————— Se.q, | |

s 7
jtm 3 im
Ccd chd;; \&

Morphisms in the category X-MO(&#) of (€, w)-coloured modular operads with values in X are morphisms
of the underlying symmetric graded objects that preserve multiplication, contraction and units.

Symmetric graded objects with multiplication and contraction satisfying (m1)-(m4) but without a unit for
the multiplication are called nonunital modular operads. The category of (€, w)-coloured nonunital modular
operads and levelwise maps that preserve multiplication and contraction is denoted X-MO(&«) ™,
Remark 5.8. This paper considers (coloured) modular operads and circuit algebras, enriched in a symmetric
monoidal category X, in the sense of [19,20]. In particular, their definition is relative to a fixed palette (€, w),
which can be thought of as the set of objects.

In [37, Section 3], modular operads are defined internal to a category E with sufficient (co)limits. Under
this definition, which is based on [23] and follows the construction of [36], the object set is replaced with an
involutive object object in E. The two versions coincide (up to equivalence) in Set.

The assignment (€, w) — X-CA®*) defines a Cat-valued presheaf cax on the palette category Pal: a
morphism ¢: (€,w) = (€',w’) in Pal induces a strict symmetric monoidal functor BD(®) BD(QI""/), and
hence A’ € CAQX/’“’/) may be pulled back to a (€,w)-coloured circuit algebra ¢* A’ € X-CA(&*),

For a symmetric monoidal category (X, ®, I), let X-CA be the category of all X-circuit algebras: objects are
pairs ((€,w), A) of a palette (€, w) and a (€, w)-coloured X-circuit algebra A, and morphisms ((€,w), A) —
((¢',w"), A") are pairs (¢,7) where ¢: € — € satisfies pw = w'¢ and v: ¢* A — A. When X = Set, write
cA &' x.cA.

The categories X-CA™ of all nonunital X-circuit algebras, and X-MO (and X-MO™) of all (nonunital)
X-modular operads are defined similarly.

Remark 5.9. Note that X-CA is not a category of algebras for some single operad since the operad compo-
sition in each WD(®*) ig dependent on (€, w). However, when X = Set, CA can be obtained as a category
of algebras for a monad. In this construction — based on [23,36] — the palette (€, w) is just part of the data
of any given object. More generally, if E is a symmetric monoidal category with all finite limits, then it is
possible to construct a monad whose algebras are circuit algebras internal to E with palettes replaced by
involutive objects in E. This is described in detail in [37].

Example 5.10. A morphism A — OWD in CA pulls back to an orientation on A. Hence, by Proposition 3.26,
the category WP of wheeled props (of all colours) in X is equivalent to the slice category OCA ~ CA/OWD.
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More generally, a morphism of palettes (€, w) — {m} induces an orientation on (€, w). Objects of the
category X-WP of wheeled props (of any colour) with values in X are equivalent to pairs (6,.4) with A a
(€, w)-coloured X-circuit algebra and 6: (€,w) — {m} a morphism of palettes. Morphisms in X-WP are
described by morphisms on the underlying circuit algebras that preserve the orientation on palettes.

Proposition 5.11. There are canonical inclusions of categories

X-CA ——— X-MO

| J

X-CAm ————— X-MO"~.

Proof. Since multiplicative units are unique, the vertical inclusions are full and induced by simply forgetting
units.

Let (A,7,n): dBD®*) — X define a nonunital (€,w)-coloured circuit algebra. By Proposition 5.4, A
admits a contraction ¢ such that (A, m, 7, () satisfies (c1)-(c3).

Since (m2) coincides with (¢2), and A satisfies (el), it is only necessary to check that (A, ¢, o) satisfies
(m1), (m3), (m4).

Let b= (b1,...,bp,),c=(c1,...,Cny),d = (d1,...,dpn,) € list(€) and all 1 <7 < ny, 1 <4k < ny with
j # k and 1 <m < ng such that b; = we; and ¢, = wd,y,. The composition

1IJ®74dd Oben,d

A(b) ® A(c) ® A(d) A(bse;) @ A(d)

A(bicﬁgdm)

is given by
T 0 a0 (G 01005 i)

where k' = (n1 — 1) + k,m' = (n1 +n2 — 2) + m. By (c1)-(c3) this is

k' tm’ it(n1+j . (e3) k'tm’ it(n1+j .
Chara 0 Toiera (oo oM @ida@) = Gata © oot 0 Mo © (The ® ida)

(D) ck'gm! _ sit(na+j +k)1(n1+na+
o Cblijn OCZ)JE:Z“ J) 'ty ClEcht Yi(ni+nz+m)

. (c2) .
O T, cd © (Zd.A(b) ® ﬂ-c,d) ¢ Cbck . O Th,ed © (Zd.A(b) X ’/Tc,d)

. k
= G o mheidn © (idaw) ® (" 0 Tea)
And this is precisely the composition

idy @Okt W an,
A(b) ® A(c) © A(d) A(b) ® Alcpdy) Alb:c—dp).

i g,k

Hence (A, ¢, () satisfies (m1). Axioms (m3) and (m4) follow similarly, whereby (A, 7, n) defines a modular
operad. Hence, since ¢ is obtained as a composition of ¢ and 7, this defines a functorial inclusion of categories
X-CA™ — X-MO™.

Finally, if A extends to a functor from BD(G’“’), it admits a unital multiplication (o, €) with ¢ defined as
in (5.3) and € induced by A(U.). O
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Remark 5.12. The relationship between circuit algebras and modular operads observed in Proposition 5.11
generalises that between wheeled props and wheeled properads (cf. [48]).

The image of a wheeled prop (viewed as a circuit algebra with oriented palette) under the forgetful
functor X-CA — X-MO is its underlying wheeled properad (see [18,51]).

By Theorem 4.12, circuit algebras may be characterised categorically, as lax monoidal functors from a
category of Brauer diagrams, or operadically, as algebras over an operad of wiring diagrams. By contrast,
the modular operad structure is inherently operadic: modular operads cannot be described by functors from

(€w)

some subcategory of BD . They do, however, admit a straightforward description in terms of wiring

diagrams:

€9 is one that cannot be obtained as a disjoint sum f = ﬁ@ﬁ

A connected wiring diagram in f in WD
of non-trivial wiring diagrams as in (4.2). Note that this notion of connectedness only makes sense in the
operad WD and not in the category BD. Connected wiring diagrams form a suboperad of WD (or WD(®))
and modular operads are algebras over this suboperad of connected wiring diagrams. See [37, Section 6] for
more details.

In fact, the inclusions in Proposition 5.11 are the right adjoints in a square of monadic adjunctions. The
left adjoints for the vertical pairs are obtained by formally adjoining units, and the left adjoints for the
horizontal pairs are induced by the free graded monoid monad on the underlying symmetric graded objects.

This is discussed in detail in [37].
6. Circuit algebras and invariant theory

Henceforth, unless otherwise stated, all circuit algebras will take values in the category Vecty of vector
spaces over a field k of characteristic 0.

Derksen and Makam [11] have described algebras over the finite dimensional general linear groups GLg4
in terms of wheeled props. The aim of this section is to adapt their methods to provide a circuit algebra
characterisation of the categories of algebras for the orthogonal and symplectic groups.

6.1. Unital circuit algebras and finite dimensional classical groups

An action of an algebraic group G on a (possibly infinite dimensional) k-vector space W is rational if for
all w € W, there is a finite dimensional G-stable subspace W,, C W containing w. In other words, there is a
k-linear morphism v: W — k[G]® W such that, if y(w) = Zle fi®w;, then G acts by g-w = Zle filg)w;.

Definition 6.1. A G-algebra is a commutative k-algebra R equipped with a rational action of G by k-algebra
automorphisms. The category of G-algebras and G-equivariant ring homomorphisms is denoted by Alg(G).

As in Example 4.14, let U be the initial Vectg-valued wheeled prop and, for any wheeled prop P, let
ap: U — P denote the unique wheeled prop map. Note that, for all £ > 0, there are distinguished morphisms
e(k) = Zaezk sgn(o)o € U(k, k) and (O — k) € U(0,0).

Theorem 6.2 (Derksen-Makam ‘23 [11], Theorems 5.2 €& 7.3). There is an equivalence of categories between
Alg(GL4) and the category of wheeled props P such that e(d+1) and O —d are in the kernel of ap: U — P.

By Proposition 3.26, Theorem 6.2 may be restated in terms of oriented circuit algebras. Therefore, given
the relationship between Theorems 3.29 and 3.31, it is natural to ask whether there is an undirected circuit
algebra version of Theorem 6.2 that characterises algebras over the (finite dimensional) orthogonal and
symplectic groups.
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To this end, let V' be a (finite) d-dimensional vector space equipped with a nondegenerate bilinear form
0: V@V — k that is either symmetric or skew-symmetric (so d = 2k). As in Section 3.3, let § = d if 6
is symmetric, and § = —k if 0 is skew-symmetric. If G C GL(V) is the isometry group of 6, then for
symmetric, G = Os and, for § skew-symmetric G = Sp(_s).

As in Example 4.15, let Zy C U be the ideal generated by [e(|6]| + 1)] € U(2(|6] + 1)) (defined in (4.16))
and (O —d) € U(0). Let CAg C Vecty-CA be the subcategory of (monochrome Vecty-) circuit algebras A
such that Zy is in the kernel of the unique circuit algebra morphism a4: U — A.

The remainder of this section is devoted to the proof of the following theorem:

Theorem 6.3. The categories Alg(G) and CAg are equivalent.

By Lemma 3.27, a circuit algebra A such that A(Q) = 6 factors through Brs. Hence, Theorem 6.3
may be reformulated as the statement that Alg(G) is equivalent to the category of symmetric monoidal
Vecty-functors Brs — Vecty for which e(|d] + 1) € Brs(|d]| + 1, |5 + 1) vanishes.

The proof of Theorem 6.3 is closely based on the proof method of [11, Sections 5-7] and involves showing
that Alg(G) and CAy are each equivalent to a third category Ky that will now be described.

Recall from Example 4.15 that Vy: BD — Vecty is the circuit algebra described by the unique symmetric
strict monoidal functor such that 1 — V and N — 6. For any k-algebra R, we may construct a circuit
algebra R ® V, with (R® Vg)(n) = R® V®™ in the obvious way: contraction in Vy extends to R ® Vy, and
the monoidal product on R ® Vy is induced by

(Zrié@vi),(er@vj) '—)ZTZ‘T]‘Q@(UZ‘@UJ‘)-
i J i3

Let Ky be the full subcategory of Vecty-CA whose objects are circuit algebras A such that there exists a
k-algebra R and an injective morphism of circuit algebras A — R ® V.

For R € Alg(G), the subspace @, (R ® V)% of G-invariant elements in the image of R ® Vy is closed
under the image of BD morphisms by Theorem 3.29, and hence describes a circuit algebra (R® V,)¢. And,
if : R — S is a G-algebra homomorphism, then the induced morphism of circuit algebras ¢ ®id: RQ Vy —
S ® Vy is G-equivariant. Hence, the assignment R — (R ® Vy) extends to a functor ®: Alg(G) — K.

The construction of the converse functor ¥: Ky — Alg(G) is more involved.

Let R be a k-algebra. For each n € N, the pairing § on V extends to a pairing V®" @ V&" — k by

V@ @y @wy @ @wy > | [ 0(vs,wi),
i=1
and hence to a k-algebra map R® V®" @ V" — R that will also be denoted by 6.

For any morphism p: A — R® Vy of circuit algebras, we may consider the subspace T, C R spanned by
elements of the form 6(p(a),v), where a € A(n) if v € V®". This is a k-algebra since

0(p(a), v)0(p(b), w) = b(p(a) @ p(b), v © w)

for all a,b € A and v, w € Vy such that 6(p(a),v),8(p(b), w) are defined.

Observe that p: A — R ® Vy factors through the inclusion T, ® Vo — R ® Vs induced by T, C R:
Namely, for any non-zero w € V™ let w* € V®" be the element defined by 6(w,w*) = 1. Since (V, ) is an
orthogonal (or symplectic) space then, for all n there exists a basis (w;); for V®" such that for all a € A(n),

pla) = Za(p(a),w;) Q@w; € T, Ve,
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Assume now that p: A — R ® Vjy is, moreover, an injective morphism of circuit algebras. Then, the
subspace T}, C R has the following universal property (cf., [11, Lemma 5.1]):

Lemma 6.4. If p: A — R ® Vy is injective, then, for any k-algebra S and morphism A: A — S ®Vy in CA,
there is a unique k-algebra homomorphism ¢: T, — S such that the following diagram commutes

A—" T eV, (6.5)
$@id
A ~
S ® Vy.

Moreover, T, € Alg(G) and the assignment A — T, extends to a functor U: Kg — Alg(G).

Proof. Let S be a k-algebra and let \: A — S ® Vy be a circuit algebra morphism.
For all n € N, there exist w; € V®™ such that, for all a € A(n),

Ze )@ w; and A(a Za ) @ w.

Since p is injective, the elements ¢(0(p(a), w})) e O(A(a),w}) € S are well-defined. This assignment extends
linearly to a unique k-algebra homomorphism ¢: T, — S such that Diagram (6.5) commutes.

Following [11, Proof of Lemma 5.1], to obtain a G-algebra structure on T, let yy, : Vg — k[G]®@Vy describe
the rational G-action on Vg. By the universal property of T}, there is a unique k-algebra homomorphism
p: T, = T, ® k[G] such that the following diagram commutes:

A ! T,® Vy (6.6)
pJ J/id®’YV9
T, @ Vg oid » T, @ k[G] @ V.

In particular, p defines a rational right action of G on T}, such that, if u(r) = >, 7 ® f/, then r- g =
>, rifi(g), and hence a rational left action of G on Rby g-r=r-g '

Finally, observe that, if p: A - R® Vy and A\: A — S ® Vy are both injective morphisms of circuit
algebras, then it follows from the universal property that p(a) — A(a) induces an isomorphism 7}, = Tj.
Hence, we may define T4 = T, to be the limit of T}, where p varies over all injective circuit algebra morphisms
of the form A — R ® Vy (with R a k-algebra).

By (6.6), if A, B € Ky, then T4, T € Alg(G) and, if v: A — B is a morphism of circuit algebras, then,
by the universal property (6.5), there is a k-algebra morphism 7'y — Tg that commutes with the G-algebra
structure by construction. Hence, A — T 4 extends to a functor ¥: Ky — Alg(G). O

Proposition 6.7. The functors ®: Alg(G) = Ko: U define an equivalence of categories.

Proof. The proof follows that of [11, Theorem 5.2].

To see that ® o U is equivalent to the identity functor on Ky, observe first that, if p: A - R® Vp is
an injective morphism of circuit algebras with R a k-algebra, then its image p(A) is invariant under the
G-action on T, ® Vp: Namely, for g € G, let L, and R, respectively define left and right multiplication by
g in T, and V4. So G acts on T, ® Vy by g+ Ly ® Ly = Ry-1 ® Lg. By (6.6) above,
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(Lg®@Lg)op=(Ryg-1®@Lg)op=(id® Ly) o (Ry-1 ®id)op= (id® Ly) o (id ® Lg-1) 0 p = p.

So, p(A) is G-invariant in (T, ® V).
To prove that (T, ® Vp) C p(A) and therefore p(A) = (T, @ V4)%, let u € T, ® V™. So,

u = Z 0(p(a;),v;) ® w; with a; € A(n;),v; € VE™ and w; € VO™,

K2

Writing f; % 0(—, v;) ® w;: VE — VO gives u = > filp(as)).

The elements p(a;) are G-invariant since p(A) C (T, ® V). So, if u(T, ® Vy)© is also G-invariant, then,
by applying the Reynolds operator to u and Y fi(p(a;)), each f; may also be assumed to be G-invariant.
Hence, by Theorem 3.29, f; is a linear combination of morphisms in the image of Vy: BD — Vecty whereby
u € p(A) and p(A) = (T, ® Vp)“.

In particular, since p is injective, A = (T, ® Vp)C. Tt follows from the definitions of ® and W that this
extends to an equivalence of functors ® o ¥ ~ idk, .

For the converse, let R € Alg(G). Let p: (R® Vy)® — R® V, denote the inclusion. This factors through
T, ® Vg, where T, C R is a G-subalgebra. In particular, restricting ¢ ® idy, to G-invariant subspaces gives
(T, ® V)¢ = (R® V)¢ = ®(R).

Since T, = (¥ o ®)(R), we want to show that T, = R. Let ¢: T, — R denote the inclusion. This is
a morphism of G-algebras by Lemma 6.4. In particular, T, = @, Tw and R = &, Rw, where the
sum is over all irreducible G-representations W, and Ty C T, and Ry C R are the corresponding W-
isotypic components of T, and R. Since ¢ preserves G-subrepresentations, it follows that « = @y, tw where
tw: Tw — Ry is the restriction.

Hence, to show that T, = R, it suffices to show that ¢ty is an isomorphism for all irreducible representa-
tions W of G.

Let W C V® be an irreducible representation. Then 0: (Ry ® W)¢ @ W — R induces isomorphisms
(Rw @ W)9 @ W = Ry and (Tw ® W)Y ® W = Ty, and hence there is an equivariant map ¢y : (7, ®
W)E@W — (R®W)E @W - of the form ¢y = tw @ idw for some Py : (T, @ W)¢ — (R@ W)Y — such
that the following diagram commutes

tw

Ty Ty (6.8)

=

(T,eW)! W ———— (RW)Y @ W.

w

Since tyy is injective, so is 1/~JW. Hence, by the universal property of 7),, 1/~JW is the restriction to (TP®W)G
of + ® idy and therefore an isomorphism. Therefore Ty = Ry for all irreducible representations W of G
whereby R =T, = (Vo ®)(R) in Alg(G).

This extends, by G-equivariance of morphisms in Alg(G) and Ky, to an equivalence of functors ¥ o & ~
id a19(cr), and therefore the categories Alg(G) and Ky are equivalent. O

It remains to prove that Ky is also equivalent to CAg. As in [11, Proposition 5.3 & Remark 5.4], this rests
on the following:

Lemma 6.9. If A= (R®V,)Y for some R € Alg(G) and J C A is a circuit algebra ideal, then there exists
an ideal J C R such that J = (J @ V,)©.
Furthermore, if A € Kg and ¢: A — B is a morphism of circuit algebras, then ¢(A) € Kg.
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Proof. Let R be a G-algebra and A = (R ® V)% its image under ®. Let p: J C A be the inclusion of a
def

circuit algebra ideal and J = T, C R. By the proof of Proposition 6.7, J = (J ® V)¢ as circuit algebras.
To show that J is an ideal of R, let r € R and let u =", 0(p(5;), w;) — with 8; € J(m;) and w; € VE™
— be an element of J. By the proof of Proposition 6.7, = . 0(c,v;) for some «; € A(n;), v; € VO™,
Hence,

ru = ZH(ai,vi)e(p(Bj),wj) = 0(c; @ p(B;),vi ® w;).

2%

Since J C A is a circuit algebra ideal, a; ® p(3;) € J for all 4, j, and therefore ru € J, whereby J is an
ideal of R.

For the second statement, let ¢: A = (R ® V)¢ — B be a morphism of circuit algebras with kernel
J C A. So, there is an isomorphism ¢(A) = A/J of circuit algebras.

Let ¢: J < R denote the inclusion of the ideal .J such that J = (J ® V)%, and let ¢: R — R/J be the
quotient. The inclusion J < A is given by the restriction to (J ® Vy) of ¢ @ idy,.

Then the following diagram — where the vertical arrows are inclusions — commutes:

L®id\;6 |7

0 J A AT ———————50 (6.10)

| | |

0————J8V)y———— RaVy — > R/J@V, ———— 0.
1®idy, gray,

It follows that A/J is isomorphic to the image of the restriction to A = (R ® Vy)¢ of the quotient
q®idy,: R®Vy — R/J®Vy. Since ¢: J — R, and hence also ¢: R — R/J, is G-equivariant, so is ¢ ® idy,.
Hence, the image of its restriction to A is G-invariant, and therefore J C (R/J ® V,)¢ is in Ky and the
lemma, is proved. O

Proposition 6.11. The categories Ko and CAg are equivalent.

Proof. For all G-algebras R, since |e(|d] +1)] and O — § are in the kernel of ag: U — Vp, they are in the
kernel of the unique circuit algebra morphism z: U — (R ® Vy)©. It follows, from Proposition 6.7, that Ky
is a full subcategory of CAy. It therefore suffices to show that each A € CAy is equivalent to some object of
Ko. The proof follows that of [11, Theorem 7.3].

Let A € CAp with underlying graded set A = (A,), and let U(A) be the free Vecty-circuit algebra
generated by A (Definition 4.18). Then, there is a circuit algebra ideal Z C U(A) such that A = U(A)/T. If
Ty C U(A) is the ideal generated by |e(d+1)] and O — §, and B Lo U(A) /Ty, then ¢ C T since A € CA,.
So, there exists a circuit algebra ideal J C B such that A= B/J.

To prove the proposition, it therefore suffices (by Lemma 6.9) to show that there is a k-algebra R and
an inclusion of circuit algebras B C R ® Vy.

So, let {e1,...,eq} be a basis for V and, for each n, let {e;, . ;. }i<j,<a denote the induced basis for

Ven, For each o € A,, C A, introduce formal variables {ajall,.“,jn}(j17~~7jn)€{1 ay» and define

.....

R =Klaj, . |(G1,---,dn) €{1,...,d}",a € Ay,;n € NJ.

Then, the circuit algebra morphism p: B =+ R ® Vy given by

«
ar Z @j1,.dn @ €jp,cins X E An
(J15--e30n)
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is well defined since I? vanishes in Vy and therefore also in R®Vy. Moreover, by Theorem 3.29, p is injective.
Hence B € Ky and therefore, by Lemma 6.9, so is U(A)/Z = A.
It follows that CAy >~ Ky as required. 0O

Theorem 6.3 follows immediately from Propositions 6.7 and 6.11.

Remark 6.12. The ideals of the initial Vecty-wheeled prop U are classified in [11, Section 4], and the ideals
of the initial circuit algebra U/ may be similarly described. It is therefore natural to whether there are
interesting statements, analogous to Proposition 6.7, that consider quotients of & by different ideals, and
whether this leads to a (partial) classification of monochrome (oriented) circuit algebras via duality results
like Theorem 6.3 and Theorem 6.2.

6.2. Nonunital circuit algebras and representations of infinite dimensional groups

As in Remark 3.33, let G = |J,;Gq be the infinite dimensional orthogonal or symplectic group with

standard representation V' = (J, V4 and induced symmetric (or skew-symmetric) form 6 Lf Uy 04 For all
d > 0, 6 is a nondegenerate (orthogonal or symplectic) form on the finite dimensional space V; and 6411

restricts to 64 on V; C Vyy1. An algebra W over G, is, in particular, an algebra over G4 for all d > 1.

Hence by Proposition 6.7, there is a compatible sequence of circuit algebras (Ag)q with Ay & (W&Vs,)

For d > 0, let Vy, be the nonunital circuit algebra given by the restriction of Vg, to dBD. Since V,, : dBD —
Vecty is a strict monoidal functor, Vy, is the unique extension of Vo , to BD.

As in Remark 3.33, let F': dBD — Vecty be the strict symmetric monoidal functor 1 — V', N — 6. Then
F = colimyVy , and is G-equivariant. In particular, for each d > 0, there is a morphism of nonunital circuit

Gq
i

algebras py: F — Vo , that commutes with the actions of G, and G4 on either side.
Let Kg be the category of nonunital circuit algebras A for which there exists a k-algebra R and an
inclusion of nonunital circuit algebras p: A< R® F.

Theorem 6.13. There is an equivalence of categories Ko ~ Alg(Go).

Proof. Given a G..-algebra R, we may construct the nonunital circuit algebra (R ® F)% € Rg. The
assignment R — (R ® F)%= clearly extends to a functor ®: Alg(Gs) — Ke.

Conversely, let R be a k-algebra and let p: A — R ® F be an inclusion of nonunital circuit algebras.

Let T be the space generated by 6(p(a),v) for all a € A(n),v € F(n) and all n € N. This is a k-algebra
as 8(p(@),0)0(p(0). w) = B(p(a)  p(b).v & w). ~

To show that T" is a G*°-algebra, observe that, since Vy, admits a unique extension to a circuit algebra
(namely Vy,) for all d, there is an increasing sequence of circuit algebras (R® Vy,)q. Moreover, for all d > 0,
there is an injection .,Zl/ kerqg — R® Vg , of nonunital circuit algebras, where kery C A is the kernel of the
nonunital circuit algebra morphism pg = pgop: A — R®Vy .- Since p is an injection, kerg does not depend
on R.

As Vy , admits a unique extension to a circuit algebra (namely Vy,), so does fl/ kerq. Let A4 be the circuit
algebra so defined. Then there is an inclusion A4 — R ® Vg, and hence, by Proposition 6.7, there is a G4
algebra Ty C R such that Ag = (T; ® Vy,)%.

Moreover, Ty is generated by elements of the form 8(p(a),v) for all a € Ag(n),v € Vy,(n) = Vy,(n) and
all n € N and is, up to isomorphism, independent of R.

It follows, in particular, that T' = Uy Ta describes a filtration and hence T is independent of R and a G
algebra. The assignment A — T clearly extends to a functor W: Ko — Alg(Gso) and @: Alg(Goo) = Ko: U
describes an equivalence of categories by Proposition 6.7 and the constructions of ®,U. 0O
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A directed version of Theorem 6.13, relating nonunital wheeled props and G L.-algebras may be obtained
by similarly modifying the results of [11].
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