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Circuit algebras are a symmetric analogue of Jones’s planar algebras introduced 
to study finite-type invariants of virtual knotted objects. Circuit algebra structures 
appear, in different forms, across mathematics. This paper provides a dictionary for 
translating between their diverse incarnations and describing their wider context. 
A formal definition of a broad class of circuit algebras is established and three 
equivalent descriptions of circuit algebras are provided: in terms of operads of wiring 
diagrams, modular operads and categories of Brauer diagrams. As an application, 
circuit algebra characterisations of algebras over the orthogonal and symplectic 
groups are given.
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1. Introduction

Circuit algebras are a symmetric version of Jones’s planar algebras [22]. Their basic data consists of a 
graded monoid equipped with a contraction (or trace) operation and a levelwise symmetric action. They 
were introduced by Bar-Natan and Dansco [2] as a framework for relating local and global features of 
virtual tangles in the study of finite-type invariants (see also [8,21,45]). Recently, Dancso, Halacheva and 
Robertson have shown [9] that oriented circuit algebras are equivalent to wheeled props [33,34], and used 
this to describe the graded Kashiwara-Vergne and Grothendieck-Teichmüller groups KRV and GRT as 
automorphism groups of circuit algebras [10].

Though the term ``circuit algebra'' is not commonly used outside quantum topology, circuit algebra 
structures appear in different guises widely across mathematics. This paper defines a broad class of circuit 
algebras -- including wheeled props -- and explains how they may be equivalently characterised as algebras 
over an operad, as monoidal functors, and as modular operads with an extra operation.
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Table 1
Comparison of circuit algebras and generalisations obtained from suboperads of wiring diagrams: The subcategories of Brauer 
diagrams in Row 3, like the operads in Row 2, are dependent on colouring. Modular operads cannot be described as functors 
from categories of Brauer diagrams. Row 4 indicates (dimension parameter dependent) groups that are related by Schur-Weyl 
duality to (sub)categories of monochrome (non)oriented Brauer diagrams. The planar case is not studied in this work. Row 5 
refers to the (colouring-independent) monads described in [37].

1 Structure Circuit algebras (CAs) Nonunital (or 
downward) CAs

Modular operads Planar 
algebras

Special cases: 
Oriented Wheeled props, [9] (see 

e.g., [11,33])
Nonunital wheeled props 
(see e.g., [44])

Wheeled properads 
(see e.g., [18])

2 Governing operad Wiring diagrams (WDs) downward WDs (Koszul 
[27,44])

connected WDs planar 
diagrams

3 Classifying category Brauer diagrams (BDs) downward BDs (cospans, 
Remark 3.12)

Temperley-Lieb 
diagrams

4 Rep. theory (Sections 3.3 & 6.1) (Sections 3.3 & 6.2) (See CA column)
nonoriented mono. Od, Spd O∞, Sp∞ [39] (quantum SU2)
oriented mono. GLd [11] GL∞ [39]

5 Monad in [37] LDT LT (has arities [37]) DT

Theorem 1.1 (Theorem   4.12 & Proposition   5.11). A circuit algebra is, equivalently 

(1) an algebra over an operad of wiring diagrams,
(2) a symmetric lax monoidal functor from a category of Brauer diagrams,
(3) a modular operad equipped with an additional graded product.

To my knowledge, this is the first time that these perspectives (though not new) have been explicitly 
stated and compared, together in one work and in such generality. Each description relates to structures 
that arise in different areas of mathematics, so Theorem 1.1 provides a dictionary for translating results 
between these contexts. Moreover, the categorical and operadic structures underlying each version may be 
generalised (and specialised) in distinct ways, thereby precisely locating circuit algebras within a diverse 
zoo of related concepts (see Table 1 for a partial overview).

As an application of this combined approach, and building on [11], the following theorem, providing a 
circuit algebra characterisation of algebras over the orthogonal and symplectic groups, is proved:

Theorem 1.2 (Theorem   6.3). The category of algebras over the d-dimensional orthogonal (respectively sym
plectic) group is equivalent to a subcategory of circuit algebras that satisfy two simple relations.

In their original low-dimensional topology and quantum algebra context (first in [2], then e.g., [8,21,45]), 
circuit algebras are defined as algebras over operads of wiring diagrams (see e.g., [9,10]).

Different flavours of circuit algebras -- including nonoriented [35], oriented (wheeled props), and mixed -- 
are described by different ``coloured'' operads of wiring diagrams (see Section 3.2 and Definition 4.8). This 
also gives an alternative proof that oriented circuit algebras are wheeled props (see Example 4.13). For any 
given colouring, several important generalisations of circuit algebras arise as algebras over suboperads of 
wiring diagrams. The columns of Table 1 are indexed by structures -- including (coloured) planar algebras 
[22] and modular operads [15,19,36,37] -- obtained this way. Rows (2)-(3) describe the operads and categories 
governing these in the sense of Theorem 1.1.

Statements (1) & (2) of Theorem 1.1 are already implicit in the original definition of circuit algebras [2]. 
The categories of Brauer diagrams (or ``Brauer categories'' cf. Remark 3.1) in Statement (2) are equivalent 
to labelled 1-dimensional cobordism categories [1,43]. As such, the equivalence of Statements (1) & (2) 
echoes the results of [43] relating traced categories and oriented cobordisms.

Brauer diagrams have been widely studied since Brauer’s 1937 paper [5] extending Schur-Weyl duality to 
representations of the finite dimensional orthogonal and symplectic groups (see e.g., [28,49]). More recently, 
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categories of Brauer diagrams have been used to simultaneously study systems of related representations 
[30,38--40]. So, Statement (2) of Theorem 1.1 implies a link between circuit algebras and classical themes 
in representation theory. However, the proof of Theorem 1.2 in Section 6 does not explicitly use these 
methods. Instead, since wheeled props are equivalent to oriented circuit algebras, Theorem 1.2 is proved 
by adapting Derksen and Makam’s invariant-theoretic approach to wheeled props [11] from the oriented, to 
the unoriented case (see Section 6).

The final characterisation (3) in Theorem 1.1 describes circuit algebras as modular operads equipped 
with an extra product operation. Modular operads were first introduced in [15] to study moduli spaces of 
higher genus curves. General unital modular operads, as in [19,20,36], may be obtained from Theorem 1.1, 
(1) by restricting to a suboperad of connected wiring diagrams. Unlike the restriction to planar diagrams, 
which respects the categorical structure (in the sense of Lemma 4.6), this is a purely operadic construction 
and admits no categorical description in terms of Brauer diagrams.

This paper is one of a pair that, together, provide a detailed conceptual and technical account of circuit 
algebra combinatorics. In the companion paper [37], I use the modular operadic perspective to build on the 
results of [36] and construct a monad and graphical calculus and prove an abstract nerve theorem for circuit 
algebras. Thus, circuit algebras also admit combinatorial characterisations as algebras for a monad on a 
category of graded symmetric objects, and as ``Segal presheaves'' on a category of graphs [37, Section 8].

The monad for circuit algebras in [37] is constructed, using iterated distributive laws [6], as a composite 
LDT of three simpler monads, each governing a different aspect of the circuit algebra structure. This 
piecewise construction is central to the proof of the nerve theorem [37, Theorem 8.4]. It also dovetails with 
the other perspectives in Theorem 1.1.

For example, algebras for the monad LT are nonunital circuit algebras (Table 1), that do not have 
units for the modular operadic multiplication. Their combinatorics (see e.g., [27,44]) are simpler than the 
unital case since they avoid the ``problem of loops'' [36, Section 6]. In the language of Brauer categories 
(in the sense of [30,39], see Section 3.3), this problem of loops refers simply to the dimension parameter 
associated to the unit trace. Under Theorem 1.1, nonunital circuit algebras correspond precisely with sym
metric monoidal functors from subcategories of ``downward'' Brauer diagrams, that cannot encode (finite) 
dimension. Sam and Snowden [39] have established equivalences between functors from the subcategory of 
downward monochrome oriented Brauer diagrams and representations of the infinite dimensional (stable) 
general linear group GL∞, and between functors from the subcategory of downward (monochrome nonori
ented) Brauer diagrams and representations of the infinite dimensional orthogonal and symplectic groups 
O∞ and Sp∞ (see Remark 3.33 & Section 6.2).

Some particularly nice properties of the combinatorics of nonunital circuit algebras are included in Rows 
2,3 & 5 of Table 1. The modular operadic perspective on nonunital circuit algebras, together with the results 
of [39], has been exploited in [29] to prove that the Malcev Lie algebras associated to the Torelli groups 
of surfaces of arbitrary genus are stably Koszul. The relationship is also noted in [44] where nonunital 
(d.g.)-modular operads are characterised as lax functors from a ``Brauer properad'' obtained by restricting 
to connected diagrams in the initial nonunital circuit algebra.

The primary aim of this paper is to provide a precise formal framework for studying a broad class of circuit 
algebra structures as they arise across mathematics, and thereby extend the toolboxes of representation 
theorists, low-dimensional topologists and operad theorists alike. This presents a plethora of options for 
generalising circuit algebras and for translating results in new contexts:

A particular motivation for a formal study of circuit algebra structures (here and in [37]) comes from 
the work of Dansco, Halacheva and Robertson [10] who have used circuit algebras to obtain results relating 
the graded Grothendieck-Teichmüller and Kashiwara-Verne groups GRT and KRV. In order to extend these 
results to the ungraded groups GT and KV, it is necessary to relax the circuit algebra axioms up to homotopy 
[10, Introduction, Remark 1.1]. Weakening the characterisation in [37, Theorem 8.4] of circuit algebras in 
terms of Segal functors suggests one way to do this. However, there are difficulties adapting the methods, 
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used in [20] and [36] to construct Segal models for homotopy modular operads, to model homotopy circuit 
algebras [37, Section 8.4].

Stoeckl’s construction [44] of a model for nonunital (∞, 1)-wheeled props, and the proof, in [27], that 
the operad for monochrome nonunital circuit algebras is Koszul, potentially provide another (operadic) 
approach to constructing a model. From the categorical perspective, Sharma’s model structure for compact 
closed categories [41] may also shed light on this question.

Several questions about duality arise from the circuit algebra characterisations in Theorem 1.1. For 
example: Can the operadic perspective provide new insights into the Schur-Weyl duality of the classical 
groups and their quantisations? Given that the operads governing nonunital wheeled props and circuit 
algebras are Koszul [27,44], it is natural and useful to ask whether this is also true of the operads for unital 
circuit algebras (i.e., operads of wiring diagrams). How can this be interpreted in terms of the (downward) 
Brauer diagram categories? Is there a general Tannakian formalism [24] for such questions? (I thank Ross 
Street for helpful discussions on duality.)

Finally, the categorical and graphical structures governing circuit algebras are seeing increasing applica
tions outside pure mathematics. They provide a powerful formal framework for organising, understanding 
and classifying complex networked systems, by studying their local-global-local structure. Potentially, these 
methods could help define the theoretical limits of emerging technologies, as well as improving transparency 
(e.g., in AI) and informing efficient design of algorithms and software. For example, the ZX-calculus [7], 
that provides a rigorous graphical formalism for quantum computation (and could, potentially, make quan
tum computation accessible to a general audience [13]), admits a circuit algebra description. It would be 
interesting to compare this with circuit algebras that arise in quantisation problems [2,10].

1.1. Overview

Categorical preliminaries are given in Section 2 to establish notation and terminology for the (symmetric 
monoidal category) concepts in the rest of the paper.

Section 3 provides a detailed discussion of the categories of (coloured) Brauer diagrams, and describes 
their relation to several known results on the invariant theory of classical groups (cf. [30,39]).

Categories of Brauer diagrams are used, in Section 4, to define circuit algebras. Section 4.1 provides a 
quick introduction to operads and their algebras. In Section 4.2, operads of wiring diagrams and circuit 
algebras are introduced and defined using the categories of Brauer diagrams from Section 3.

In Section 5, an axiomatic characterisation of circuit algebras is given and it is shown that they are 
modular operads that admit an extra graded product. Finally, in Section 6, Theorem 1.2 is proved as 
an application of the preceding ideas. The method is then extended to give a nonunital circuit algebra 
characterisation (Theorem 6.13) of algebras for O∞ and Sp∞.

The companion paper [37] builds on the modular operadic perspective to obtain a graphical calculus, 
monad and nerve theorem for circuit algebras. The machinery used, involving a combined application of 
iterated distributive laws [6] and abstract nerve theory [3], is also explained in detail [37, Section 2].

Acknowledgements. I thank Marcy Robertson, Zsuzsanna Dancso, and Chandan Singh and Kurt Stoeckl 
for encouraging my interest and learning in this field. I am grateful to Ole Warnaar for all his support, to 
Kevin Coulembier for patiently explaining some representation theory and to my students and colleagues at 
James Cook University, Bindal Country, for their curiosity and friendship. I thank the members of Centre 
of Australian Category Theory, Macquarie University, Dharug Country, where I first began thinking about 
this work. I am particularly grateful to Ross Street for his friendship and patience discussing duality with 
me, and Richard Garner for a remark that led to new perspectives. Thanks also to the anonymous reviewer 
who read this work so carefully and suggested highly relevant additional references.
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2. Key categorical concepts

This section provides a brief outline of the notation and terminology conventions for symmetric monoidal 
categories that will be used in the rest of the paper. For precise definitions and a detailed discussion of 
symmetric monoidal categories, see e.g., [14, Chapters 2 & 8].

2.1. Symmetric monoidal categories

A monoidal category is a category X together with a bifunctor ⊗ : X×X → X (the monoidal product) that 
is associative up to natural associator isomorphism, and for which there is an object I of X (the monoidal 
unit) that acts as a two-sided identity for ⊗ up to natural unitor isomorphisms. The monoidal product 
and the associator and unitor isomorphisms are required to satisfy axioms that mean that certain sensible 
diagrams commute. If the associator and unitor isomorphisms are the identity, then the monoidal category 
is called strict monoidal.

A braiding on a monoidal category (X,⊗, I) is a collection of isomorphisms σx,y : x⊗ y → y ⊗ x (defined 
for all x, y ∈ X) that satisfy the braid identities

(σy,z ⊗ idx)(idy ⊗ σx,z)(σx,y ⊗ idz) = (idz ⊗ σx,y)(σx,z ⊗ idy)(idx ⊗ σy,z) for all x, y, z. (2.1)

If σy,x = σ−1
x,y for all x, y, then the monoidal structure on X is symmetric.

Remark 2.2. In this paper, associators, unitors and symmetry (braiding) isomorphisms will be ignored in 
the notation, and (symmetric) monoidal categories will be denoted simply by X or (X,⊗, I).

Example 2.3. For any category X and object x ∈ X, objects of the slice category x/X of X under x are pairs 
(y, f) where f ∈ X(x, y). Morphisms (y, f)→ (y′, f ′) are commuting triangles in X of the form:

x
f f ′

y
g

y′.

The slice category X/x of X over x is defined similarly, with objects (y, f) : f ∈ X(y, x) and morphisms 
g : (y, f)→ (y′, f ′) given by morphisms g ∈ X(y′, y) such that f ◦ g = f ′.

If (X,⊗, I) is a monoidal category, then in general X/x (respectively x/X) does not inherit a monoidal 
structure from X. However, since I⊗I ∼ = I by definition, ⊗ defines a monoidal product on I/X (respectively 
X/I) with unit idI ∈ X(I, I).

Definition 2.4. Symmetric strict monoidal categories are called permutative categories. The notation ⊕ and 
0 will often be used to designate the monoidal product and unit of a permutative category.

An (ordinary) 𝔇-coloured prop is a small permutative category P whose object monoid is free on a set 
𝔇. When 𝔇 = {1} is a singleton, then P is a (monochrome) prop (with object set N) in the original sense 
of [32].

Example 2.5. For each n ∈ N, let n denote the set {1, 2, . . . , n} (so 0 = ∅), and let Σn be the group of 
permutations on n. Let Σ be the symmetric groupoid with Σ(n, n) = Σn for all n, and Σ(m,n) = ∅ when 
m ̸= n. Addition of natural numbers gives Σ a (monochrome) prop structure.

More generally, let 𝔇 be a set, and let list(𝔇) =
∐︁

n∈N 𝔇n denote the set of finite ordered sets 𝒄 =
(c1, . . . , cn) of elements of 𝔇. So list(𝔇) underlies the free associative monoid on 𝔇. For 𝒄 = (c1, . . . , cm)
and 𝒅 = (d1, . . . , dn) in list(𝔇), their (concatenation) product 𝒄𝒅 = 𝒄⊕ 𝒅 is given by



6 S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105 

𝒄𝒅
def= (c1, . . . , cm, d1, . . . , dn).

The empty list is the unit for ⊕ and is denoted by ∅ (or ∅𝔇).
The symmetric groupoid Σ acts on list(𝔇) from the right by σ : (𝒄σ) def= (cσ1, . . . , cσm) ↦→ 𝒄, for all 

𝒄 = (c1, . . . , cm) and σ ∈ Σm.
The 𝔇-coloured prop so obtained is the free symmetric groupoid Σ𝔇 on 𝔇.

Example 2.6. For any category X, a functor S : Σ → X is equivalently described by a sequence (S(n))n of 
objects of X such that Σn acts on S(n) for all n.

A list(𝔇)-graded symmetric object in X is a functor B : Σ𝔇 → X. Equivalently, it is a collection 

(B(𝒅))𝒅∈list(𝔇) of X-objects, and X-isomorphisms B(σ𝒅)
∼ =  −→ B(𝒅), defined for all 𝒅 = (d1, . . . , dn) ∈ 𝔇n

and all σ ∈ Σn.

Let V be a symmetric monoidal category. In a V-(enriched) category, the hom sets are instead V-objects 
and composition is a V-morphism such that compatibility axioms are satisfied. Other than (ordinary) Set
enriched categories, this paper will also consider categories enriched in the categories Vect𝕜 of 𝕜-vector spaces 
(where 𝕜 is an algebraically closed field of characteristic 0), and R-Mod of modules over a commutative ring 
R.

Example 2.7. Let R be a commutative ring. Then R[Σ] def= 
⨁︁

n∈N R[Σn], where R[Σn] denotes the group 
algebra (for n ∈ N), describes the free R-Mod-prop on Σ.

Example 2.8. Given a vector space V , the (Vect𝕜-enriched) endomorphism prop associated to V is denoted 
by T (V ), with T (V )(m,n) = Hom𝕜(V ⊗m, V ⊗n), the space of linear transformations V ⊗m → V ⊗n. By 
convention, V ⊗0 = 𝕜, so T (V )(0, 0) = 𝕜, and T (V ) embeds canonically in Vect𝕜 as the full subcategory with 
objects V ⊗n, n ∈ N. These categories are identified in what follows.

For each n ∈ N, the symmetric group Σn acts on V ⊗n by permuting factors. Hence Σ acts on T (V )
levelwise.

Definition 2.9. A (lax) monoidal functor (Θ, ηΘ, θ) : (X1,⊗1, I1)→ (X2,⊗2, I2) consists of a functor Θ : X1 →
X2, together with a morphism η = ηΘ : I2 → Θ(I1) in X2 and a natural transformation π = πΘ : Θ(−) ⊗2
Θ(−) ⇒ Θ(− ⊗1 −) such that all the expected structure diagrams commute. A monoidal functor (Θ, π, η)
is called strong if π and η are invertible, and strict if they are the identity.

Example 2.10. As in Example 2.5, let Σ be the symmetric groupoid. For any symmetric monoidal category 
(X,⊗, I) and any choice of object x ∈ X, there is a unique symmetric strict monoidal functor Σ → X with 
0 ↦→ I and 1 ↦→ x.

Definition 2.11. A list(𝔇)-graded symmetric monoid in X is a symmetric monoidal functor

(B, π, η) : (Σ𝔇,⊕,∅)→ (X,⊗, I)

where (Σ𝔇,⊕,∅) is the prop defined in Example 2.6. The structure maps (π, η) describe a commutative 
and associative (up to symmetry and associators in X) unital monoid structure on the underlying graded 
symmetric object (B(𝒅))𝒅.

Remark 2.12. Enriched (lax) monoidal V-functors between monoidal V-categories are defined as in Defini
tion 2.9 except that the underlying functor is V-enriched and the structure maps are V-morphisms such 
that the relevant diagrams commute in V.
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Fig. 1. String diagram representation of the triangle identities. 

Fig. 2. (a) ⌈f⌉ : y∗ ⊗ x → I; (b) ⌊f⌋ : I → y ⊗ x∗; (c) f∗ : y∗ → x∗. 

Symmetric monoidal categories enriched in a linear category (such as Vect𝕜) are often called tensor 
categories [14]. In the tensor category literature, (tensor) functors between tensor categories are usually 
assumed to preserve the monoidal product strictly. This contrasts with the approach of this paper where 
all monoidal functors are assumed to be lax, unless explicitly stated otherwise.

2.2. Categorical duality and trace

Definition 2.13. An object x of a symmetric monoidal category X has a dual object x∗ in X if there are 
morphisms ∪x : I → x⊗ x∗ and ∩x : x∗ ⊗ x→ I that satisfy the triangle identities (illustrated in Fig. 1):

(∩x ⊗ idx) ◦ (idx ⊗ ∪x) = idx = (idx ⊗ ∩x∗) ◦ (∪x∗ ⊗ idx). (2.14)

.
A compact closed category is a symmetric monoidal category such that every object has a dual [32].

Let X be a compact closed category. For all morphisms f ∈ X(x, y), there is a corresponding evaluation 
morphism ⌈f⌉ ∈ X(y∗ ⊗ x, I) induced by composition with ∩y (Fig. 2 (a)) and coevaluation morphism 
⌊f⌋ ∈ X(I, y ⊗ x∗) induced by composition with ∪x (Fig. 2 (b)):

⌈f⌉ def= ∩y ◦ (idy∗ ⊗ f) and ⌊f⌋ def= (f ⊗ idx∗) ◦ ∪x, (2.15)

and a dual morphism (called the transpose morphism in e.g., [41]) f∗ ∈ X(y∗, x∗) (Fig. 2 (c)):

f∗ def= (∩y ⊗ idx∗) ◦ (idy∗ ⊗ f ⊗ idx∗) ◦ (idy∗ ⊗ ∪x). (2.16)

In particular ∩x = ⌈idx⌉, ∪x = ⌊idx⌋ and (idx)∗ = idx∗ for all objects x. And, for composable morphisms 
f and g, (g ◦ f)∗ = f∗ ◦ g∗ in X.

Example 2.17. Let 𝕜 be a field. The monoidal category (Vectf𝕜,⊗, 𝕜) of finite dimensional 𝕜-vector spaces 
has a canonical compact closed structure given by V ∗ = Vect𝕜(V, 𝕜). For each V ∈ Vectf𝕜, its dimension 
dim(V ) over 𝕜 is equal to its categorical dimension given by ∩V ◦ ∪V ∈ 𝕜.

A traced symmetric monoidal category [25] is a monoidal category (X,⊗, I) equipped with a family of 
(partial) trace functions trzx,y : X(x⊗ z, y ⊗ z)→ X(x, y), natural in objects x, y, z ∈ X and satisfying:
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Vanishing: For all objects x, y, a, b ∈ X, trIx,y is the identity on X(x, y) = X(x ⊗ I, y ⊗ I), and tra⊗b
x,y =

trax,y ◦ trbx⊗a,y⊗a : X(x⊗ a⊗ b, y ⊗ a⊗ b)→ X(x, y)
Superposing: For all f ∈ X(x⊗ a, y ⊗ a) and g ∈ X(w, z), traw⊗x,z⊗y(g ⊗ f) = g ⊗ trax,y(f).
Yanking: Let σx,y : x⊗ y → y ⊗ x denote the symmetry in X. For all x ∈ X, trxx,x(σx,x) = idx.

(In a V-enriched traced monoidal category, the trace tr is described by V-morphisms.)
A compact closed category (X,⊗, I, ∗) is traced monoidal with trace defined by

trax,y(f) def= (idy ⊗ ∩a∗) ◦ f ◦ (idx ⊗ ∪a) ∈ X(x, y)

for all a, x, y ∈ X and f ∈ X(x ⊗ a, y ⊗ a). As Example 2.20 shows, the converse is not true. However, via 
the ``Int construction'' [25, Section 4], any traced symmetric monoidal category X embeds fully faithfully in 
its compact closed completion Int(V ).

Another special class of traced symmetric monoidal category is given by wheeled props. These appear in 
a variety of contexts involving algebraic structures with trace operations (see e.g., [33,34]).

Definition 2.18. A (𝔇-coloured) wheeled prop (P,⊕P , 0, trP ) is a (𝔇-coloured) prop (P,⊗P , I) equipped with 
a trace trP satisfying the axioms of [25].

Most applications consider wheeled props enriched in a linear category such as Vect𝕜. (Proposition 3.26
describes wheeled props enriched in V in terms of symmetric monoidal functors to V.)

Remark 2.19. Wheeled props are usually defined as algebras for a graph substitution monad (see e.g., [9,33, 
34]). The equivalence of Definition 2.18 with the graph substitution definition follows from [37, Theorem 7.9].

Example 2.20. Let V be a finite dimensional 𝕜-vector space. The endomorphism prop T (V ) described in 
Example 2.8 is not compact closed since the dual space V ∗ = Vect𝕜(V, 𝕜) is not an object of T (V ). However, 
the canonical isomorphism T (V )(m,n) = Vect𝕜(V ⊗m, V ⊗n) ∼ = (V ∗)⊗m ⊗ V ⊗n (for all m,n ∈ N) induces a 
trace on T (V ) by

v1 ⊗ · · · ⊗ vn ⊗ α1 ⊗ · · · ⊗ αm ↦→ αm(vn)(v1 ⊗ · · · ⊗ vn−1 ⊗ α1 ⊗ · · · ⊗ αm−1).

Henceforth, T (V ) will be assumed to be a wheeled prop with the canonical trace.
The ({V, V ∗}-coloured) mixed tensor prop T {⁀︆↑, ↓}(V ) ⊂ Vectf𝕜 is closed under duals and thus inherits 

the compact closed structure from Vectf𝕜. It is straightforward to check that T {⁀︆↑, ↓}(V ) is equivalent -- via 
shuffle permutations of mixed tensor products (V ∗)⊗m ⊗ V ⊗n -- to the compact closed category Int(T (V ))
obtained by applying the Int construction of [25].

3. Brauer diagrams

Circuit algebras are defined in Section 4 as algebras over an operad of wiring diagrams. It will follow 
from Theorem 4.12 that they admit an equivalent description as symmetric monoidal functors from cate
gories of (coloured) Brauer diagrams. These diagrams are an important tool in the representation theory of 
orthogonal, symplectic and general linear groups [5,40].

The category BD of monochrome Brauer diagrams is described in Section 3.1. In Section 3.2, this definition 
is generalised to categories of coloured Brauer diagrams, of which oriented Brauer diagrams -- that encode 
the combinatorics of wheeled props (cf., Proposition 3.26) -- are a special case.
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Remark 3.1. Several variations of the categories of Brauer diagrams defined in this work have appeared 
in diverse contexts, usually under the name ``Brauer category'' : For some authors (e.g., [1,35]), Brauer 
categories are ordinary categories and coincide with the categories BD (and BD(ℭ,ω)) described in this 
section. However, most works (e.g., [30,38--40]) define linear Brauer categories, enriched in the category 
R-Mod of R-modules for some commutative ring R. The definition of these categories is dependent on a 
choice of parametrising element of the ground ring.

Hence, to distinguish them from linear versions, the categories BD, BD(ℭ,ω) described here are called 
“categories of Brauer diagrams''.

3.1. Monochrome Brauer diagrams

The category BD of (nonoriented monochrome) Brauer diagrams may be pithily defined as the free 
compact closed category generated by a single self-dual object. This section gives a more concrete description 
of BD, in terms of pairings on finite sets.

Definition 3.2. A pairing (perfect matching) on a set X is a fixed point free involution τ on X.

Equivalently, a pairing τ on X is a partition of X into two-element subsets. In particular, a finite set X
admits a pairing if and only if it has even cardinality. The empty set has trivial pairing ∅ by convention.

Example 3.3. If ℳ is a compact 1-manifold, then its boundary ∂ℳ has a canonical pairing τℳ such that 
x = τℳy if x and y are in the same connected component of ℳ and x ̸= y.

Definition 3.4. A (monochrome) Brauer diagram f between natural numbers m and n is a pair (τf , 𝔨f ) of 
a pairing τ on the disjoint union 𝔖(f) ⨿ 𝔗(f) -- where 𝔖(f) = {s1, . . . , sm} is the source, and 𝔗(f) =
{t1, . . . , tn} is the target, of f -- and a natural number 𝔨f called the number of closed components of f . An 
open Brauer diagram is a Brauer diagram τ = (τ, 0) with no closed components.

Let BD(m,n) denote the set of Brauer diagrams from m to n.

Example 3.5. For all n, there is a canonical inclusion Σn ↪→ BD(n, n) that takes σ ∈ Σn to the open Brauer 
diagram induced by the pairing si ↦→ tσi on {s1, . . . , sn} ⨿ {t1, . . . , tn}, 1 ≤ i ≤ n.

In particular, the pairing si ↦→ ti, 1 ≤ i ≤ n defines the identity (open) Brauer diagram idn on n.

Brauer diagrams may be represented graphically as follows: a pairing τ on the disjoint union X ⨿ Y of 
finite sets X and Y is described by a univalent graph whose vertices are indexed by X ⨿ Y , with elements 
of X below those of Y , and edges connecting vertices v1 and v2 if and only if the corresponding elements 
of X ⨿ Y are identified by τ . A Brauer diagram f = (τ, 𝔨) : m→ n may be represented by the graph for τ , 
together with 𝔨 closed circles (called bubbles in [38]) drawn next to it.

Given finite sets X,Y, Z, and pairings τX,Y and τY,Z on X⨿Y and Y ⨿Z respectively, one may vertically 
stack the diagrams for τX,Y and τY,Z as in Fig. 3 to obtain a pairing on X ⨿ Z:

Namely, τX,Y and τY,Z generate an equivalence relation on X⨿Y ⨿Z where objects x and y are equivalent 
if and only if they are related by a sequence of (alternating) applications of τX,Y and τY,Z (Fig. 3(b)(i)
(iv)). Each equivalence class contains precisely zero or two elements of X ⨿Z. The classes that contain two 
elements of X ⨿Z -- the open components of the composition -- describe the desired pairing on X ⨿Z. The 
remaining equivalence classes -- that describe cycles of elements of Y -- are called closed components formed 
by the composition of τX,Y and τY,Z .

Likewise, Brauer diagrams f = (τf , 𝔨f ) ∈ BD(l,m) and g = (τg, 𝔨g) ∈ BD(m,n) may be composed 
vertically to obtain a Brauer diagram g ◦ f = (τgf , 𝔨gf ) ∈ BD(l, n) with
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Fig. 3. (a) Composition of pairings on X ⨿ Y and Y ⨿ Z; (b) the resulting pairing on X ⨿ Z, together with the single closed 
component formed in the composition.

• the pairing τgf is the composition pairing τg ◦ τf obtained by identifying 𝔗(f) = 𝔖(g) according to 
tf,i ↦→ sg,i;

• the number 𝔨gf of closed components in g ◦ f satisfies 𝔨gf = 𝔨f + 𝔨g + 𝔨(τf , τg) where 𝔨(τf , τg) is the 
number of closed components formed by the composition of τf and τg.

This composition is associative, with two-sided units (idn, 0) ∈ BD(n, n). Hence, we may define:

Definition 3.6. The category BD of (monochrome unoriented) Brauer diagrams has objects n ∈ N, morphism 
sets BD(m,n) and composition given by vertical composition of Brauer diagrams.

The category BD is a prop with monoidal product (horizontal sum) induced by addition of natural 
numbers and juxtaposition of Brauer diagrams: for (τ1, 𝔨1) : m1 → n1 and (τ2, 𝔨2) : m2 → n2,

(τ1, 𝔨1)⊕ (τ2, 𝔨2) = (τ1 ⨿ τ2, 𝔨1 + 𝔨2) : m1 + m2 → n1 + n2.

The monoidal unit is given by the trivial open Brauer diagram (∅, 0) : 0→ 0.
Note, in particular, that any Brauer diagram f = (τ, 𝔨) : m → n may be written as a horizontal sum 

(τ, 0)⊕ (∅, 𝔨) of an open Brauer diagram (τ, 0) : m→ n and a scalar (∅, 𝔨) =
⨁︁𝔨

i=1(∅, 1) : 0→ 0.
Let id1 ∈ BD(1, 1), ∪ ∈ BD(0, 2) and ∩ ∈ BD(2, 0) be the morphisms induced by the unique pairing 

on the two-element set. For all n ∈ N, idn =
⨁︁n

i=1 id1 ∈ BD(n, n), and ∪n
def= ⌊idn⌋ ∈ BD(0, 2n) and 

∩n
def= ⌈idn⌉ ∈ BD(2n, 0) satisfy the n-fold triangle identities.

(∩n ⊕ idn) ◦ (idn ⊕ ∪n) = idn = (idn ⊕ ∩n) ◦ (∪n ⊕ idn). (3.7)

As such, BD is the free compact closed category generated by one self-dual object. Hence, it has the 
following universal property:

Lemma 3.8. For any symmetric monoidal category C and any self-dual object x ∈ C, there is a unique 
symmetric strict monoidal functor ξx : BD→ C such that ξx(1) = x.

Remark 3.9. It is important to note that the subsets B̊D(m,n) ⊂ BD(m,n) of open Brauer diagrams do not 
describe a subcategory of BD. Namely, the unit trace tr(idi) = ⃝ = ∩ ◦ ∪ satisfies ⃝ = (∅, 1) ∈ BD(0, 0)
which is not open.

Example 3.10. Brauer diagrams may equivalently be defined as tangles in some high (>3)-dimensional space 
(e.g., [1]). In fact, BD is a skeletal subcategory of the 1-dimensional cobordism category whose morphisms 
are boundary-preserving isotopy classes of compact 1-manifolds. Hence, symmetric monoidal functors from 
BD may be referred to as lax TQFTs (cf., [16]).

Let I denote the unit interval [0, 1], and let ℳ∼ = no(I)⨿ nc(S1) be a compact 1-manifold with canonical 
pairing τℳ on ∂ℳ as in Example 3.3. If m,n ∈ N satisfy m+n = 2no, and ϕ : {s1, . . . , sm}⨿{t1, . . . , tn} →
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∂ℳ is any isomorphism, then (ϕ−1τℳϕ, nc) ∈ BD(m,n). Conversely, given a morphism f = (τ, 𝔨) ∈
BD(m,n), there is a unique (up to boundary-preserving isotopy) compact 1-manifold ℳf

∼ = m+n
2 (I)⨿ 𝔨(S1)

and isomorphism ϕf : 𝔖(f)⨿ 𝔗(f)→ ∂ℳ such that ϕ−1
f τℳfϕf = τ .

Let f = (τ, 𝔨) ∈ BD(m,n). Following Example 3.10, ∂f def= 𝔖(f) ⨿ 𝔗(f) is called the boundary of 
f = (τ, 𝔨) ∈ BD(m,n). A component of f is an element of the set π0(f) of connected components of a 
compact manifold ℳf as in Example 3.10. So, |π0(f)| = (m+n)

2 + 𝔨.
There is a canonical map ∂f → π0(f) so that f is described by a diagram of cospans of finite sets:

𝔖(f)
Si ↦→τ(Si)

∂f 𝔗(f)
tj ↦→τ(tj)

π0(f).

(3.11)

Remark 3.12. By (3.11), for composable morphisms f ∈ BD(k,m) and g ∈ BD(m,n), we may consider the 
pushout diagram:

𝔖(f)

τf

𝔗(f) = 𝔖(g)

τf τg

𝔗(g)

τg

∂f ∂g

π0(f) P (gf) π0(g)

πP (gf).

(3.13)

However, BD is not a cospan category since, in general, P (gf) ̸∼ = ∂(gf) = 𝔖(f) ⨿ 𝔗(g) and hence 
composition of morphisms in BD is not described by compositions (pushouts) of cospans as in (3.13).

For example, in the pushout (3.13) for the composition ∩ ◦ ∪ = ⃝, P (∩ ◦ ∪) has two elements, but 
∂⃝ = ∅. This is equivalent to the observation that open Brauer diagrams do not describe a subcategory of 
BD and is closely related to the problem of loops discussed in detail in [36, Section 6].

By e.g., [30, Theorem 2.6] or [1, Proposition 2.15], the category BD is generated, under horizontal and 
vertical composition, by the open morphisms id1, ∪, ∩ and the unique non-identity permutation σ2 ∈ Σ2 ⊂
BD(2, 2), with the obvious identity, symmetry and triangle relations (Fig. 1). Interesting subcategories of 
BD may be obtained by taking subsets of the generating set.

Definition 3.14. The category dBD ⊂ BD of downward Brauer diagrams is the subcategory of open mor
phisms (τ↓, 0) ∈ BD(m,n) such that, for all y ∈ 𝔗(f), τ↓(y) ∈ 𝔖(f).

The category uBD ⊂ BD of upward Brauer diagrams is the opposite category of dBD.

The category dBD is generated by id1, σ2, and ∩ (and uBD is generated by id1, σ2, and ∪) under horizontal 
and vertical composition, according to the relations in BD. In particular, dBD(m,n) is empty whenever 
n > m, so ∪ is not a morphism in dBD (and ∩ is not a morphism in uBD). Since morphisms in dBD are 
open, dBD(m,n) is finite for all m,n. Moreover, composition in dBD (respectively uBD) may be described 
by pushouts of cospans as in (3.13).
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In [39] and Section 6.2, representations of the infinite orthogonal and symplectic groups are described 
in terms of dBD and, in Definition 5.5, dBD is used to define nonunital circuit algebras. (See also [37, 
Section 5].)

Remark 3.15. Other interesting subcategories of BD may be obtained by restricting to different subsets of 
the generating morphisms. Of course, the intersection of dBD and uBD in BD is the permutation groupoid 
Σ generated by id1 and σ2. The Temperley-Lieb category TL ⊂ BD is the subcategory of planar Brauer 
diagrams generated by id1,∪,∩, but not the symmetry morphism σ2 (see [17]).

3.2. Coloured Brauer diagrams, orientations and wheeled props

Generalisations of categories of Brauer diagrams are obtained by colouring the diagram components. By 
considering involutions on colours, the same constructions also serve to describe (coloured) oriented, and 
mixed Brauer diagrams. (See also [12,36].)

Definition 3.16. A pair (ℭ, ω) of a set ℭ together with an involution ω : ℭ → ℭ is called an (involutive) 
palette. Elements c ∈ ℭ are called colours in (ℭ, ω). The set of orbits of ω in ℭ is denoted by ˜︁ℭ.

For any palette (ℭ, ω), there is an induced free monoid palette (list(ℭ),←−𝝎 ) with involution

←−𝝎 : (c1, . . . , cn) ↦→ (ωcn, . . . , ωc1). (3.17)

Objects of the category Pal are palettes (ℭ, ω), and morphisms (ℭ, ω)→ (ℭ′, ω′) are given by morphisms 
λ ∈ Set(ℭ,ℭ′) such that λ ◦ ω = ω′ ◦ λ.

Now let (ℭ, ω) be any palette and (X, τ) be the palette described by a pairing τ on a finite set X.

Definition 3.18. A (ℭ, ω)-colouring of τ is a morphism λ : (X, τ)→ (ℭ, ω) in Pal.
A (ℭ, ω)-colouring λ of a Brauer diagram f = (τ, 𝔨) ∈ BD(m,n) is given by a pair λ = (λ∂ , ˜︁λ) where λ∂

is a colouring of τ and ˜︁λ is a map π0(f)→ ˜︁ℭ such that the following diagram of sets commutes:

∂f
λ∂

∼ = τ

ℭ

ω∼ = 

∂f
λ∂

ℭ

π0(f)
˜︁λ ˜︁ℭ.

(3.19)

The type of the colouring λ is the pair (𝒄,𝒅) ∈ (list(ℭ))2 -- where 𝒄 is called the input type, and 𝒅 is called 
the output type, of (f, λ) -- defined by:

𝒅 = (d1, . . . , dn) = λ∂(𝔗(f)), and 𝒄 = (c1, . . . , cm) = ω ◦ λ∂(𝔖(f)). (3.20)

Remark 3.21. The application of ω in the definition of the input type 𝒄 = ω◦λ∂(𝔖(f)) is necessary to define 
categorical composition of coloured Brauer diagrams in Definition 3.22.

Given 𝒄 = (c1, . . . , cm) and 𝒅 = (d1, . . . , dn) in list(ℭ), objects of the set BD(ℭ,ω)(𝒄,𝒅) of (ℭ, ω)-coloured 
Brauer diagrams from 𝒄 to 𝒅 are pairs (f, λ) where f = (τ, 𝔨) is a morphism in BD(m,n), and λ is a colouring 
of f of type (𝒄,𝒅).
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Fig. 4. Composing coloured pairings. 

Horizontal composition ⊕ of coloured Brauer diagrams (f, λ)∈BD(ℭ,ω)(𝒄1,𝒅1) and (g, γ)∈BD(ℭ,ω)(𝒄2,𝒅2)
is given by juxtaposition and concatenation:

(f, λ)⊕ (g, γ) = (f ⊕ g, λ⨿ γ) ∈ BD(ℭ,ω)(𝒄1𝒄2,𝒅1𝒅2).

To define vertical composition, let (f, λ) ∈ BD(ℭ,ω)(𝒃, 𝒄) and (g, γ) ∈ BD(ℭ,ω)(𝒄,𝒅) with f = (τf , 𝔨f ) ∈
BD(k,m) and g = (τg, 𝔨g) ∈ BD(m,n) be such that gf = (τgf , 𝔨gf ) ∈ BD(k, n). By definition, γ∂(y) = ωλ∂(y)
for each y ∈ 𝔗(f) = 𝔖(g). So λ and γ induce a well-defined colouring γλ on g ◦ f (Fig. 4).

Definition 3.22. Objects of the category BD(ℭ,ω) of (ℭ, ω)-coloured Brauer diagrams are elements of list(ℭ). 
Morphisms in BD(ℭ,ω)(𝒄,𝒅) are (ℭ, ω)-coloured Brauer diagrams of type (𝒄,𝒅), with composition of mor
phisms (f, λ) ∈ BD(ℭ,ω)(𝒃, 𝒄) and (g, γ) ∈ BD(ℭ,ω)(𝒄,𝒅) is given by (gf, γλ) ∈ BD(ℭ,ω)(𝒃,𝒅).

Remark 3.23. Let 𝒄 = (c1, . . . , cm),𝒅 = (d1, . . . , dn) and let (f, λ) ∈ BD(ℭ,ω)(𝒄,𝒅) be a morphism with 
underlying Brauer diagram f = (τ, 𝔨f ) ∈ BD(m,n).

The pairing τ induces a pairing on {c1, . . . , cm}⨿ {d1, . . . , dn} in the obvious manner and λ̃ describes an 
unordered 𝔨f -tuple in ˜︁ℭ. Hence, a (f, λ) ∈ BD(ℭ,ω)(𝒄,𝒅) may also be denoted simply by (τ, λ̃).

The category BD(ℭ,ω) is a ℭ-coloured prop (see Section 2.1), with monoidal structure ⊕ induced by 
concatenation of object lists and disjoint union of coloured Brauer diagrams. It has a compact closed 
structure given by 𝒄∗ = ←−𝝎 (𝒄) for all 𝒄.

Remark 3.24. When ω = idℭ is the identity, BD(ℭ,ω) is a category of nonoriented ℭ-coloured Brauer diagrams, 
called a chromatic Brauer category in [35]. Extending [1], these are used in [35] to distinguish exotic smooth 
spheres.

Of particular importance is the palette {⁀︆↑, ↓} given by the unique non-trivial involution (↑) ↔ (↓) on 

the two-element set {↑, ↓}. A {⁀︆↑, ↓}-coloured Brauer diagram is called oriented and OBD def= BD{⁀︆↑, ↓} is 
the category of (monochrome) oriented Brauer diagrams. Objects of OBD are finite words in the alphabet 
{↑, ↓}. Let ↑n (respectively ↓n) denote the object of OBD given by n copies of ↑ (respectively ↓) in list{↑, ↓}. 
So objects of OBD are concatenations of words of the form ↑m and ↓n. Morphisms in OBD are represented, 
as in Fig. 5, by diagrams of oriented intervals and (unoriented) circles.

More generally, if 𝔇 is a set, and ℭ = 𝔇 × {⁀︆↑, ↓}, then the category OBD𝔇 def= BD(ℭ,ω) of 𝔇-coloured 
oriented Brauer diagrams is the free compact closed prop generated by elements of the set 𝔇 and their formal 
duals. For 𝒅 = (d1, . . . , dn) ∈ list(𝔇), let ↑𝒅 (respectively ↓𝒅) denote ((d1, ↑), . . . , (dn, ↑)) ∈ list(𝔇× {⁀︆↑, ↓}). 
If ↓𝒅 is defined similarly, then objects of OBD𝔇 are concatenations of words of the form ↑𝒅 and ↓𝒄. Note 

that ←−𝝎 (↑𝒅) =↓𝒅† where 𝒅† def= (dn, . . . , d1).
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Fig. 5. (a) Composing oriented Brauer diagrams. (b) Up to a shuffle permutation, this is equivalent to a composition of walled 
Brauer diagrams, where horizontal arrows go from left to right.

Example 3.25. The full subcategory W𝔇 ⊂ OBD𝔇 on objects of the form ↑𝒅 is canonically a 𝔇-coloured 
wheeled prop. But it is not compact closed, since W𝔇 does not admit duals.

Applying the Int construction [25] to W𝔇 results in the category WBD𝔇 of 𝔇-coloured walled Brauer 
diagrams. This is the full subcategory of OBD𝔇 on objects of the form ↑𝒄↓𝒅, 𝒄,𝒅 ∈ list(𝔇). The inclusion 
WBD𝔇 ↪→ OBD𝔇 is an equivalence of categories since every object of OBD𝔇 is isomorphic -- via a canonical 
shuffle permutation -- to a unique object of WBD𝔇 (see Fig. 5). (Walled Brauer algebras were introduced 
independently in [28,47].)

In fact, the category OBD𝔇 classifies 𝔇-coloured wheeled props (see also [43]):

Proposition 3.26. There is an equivalence of categories between the category WP𝔇
X of 𝔇-coloured wheeled 

props in a symmetric monoidal category (X,⊗, I) and the category [OBD𝔇,X]lax of symmetric monoidal 
functors OBD𝔇 → X and natural transformations that commute with the structure maps.

Proof. Let (𝒜, π, η) : OBD𝔇 → X be a symmetric monoidal functor. This describes a 𝔇-coloured wheeled 
prop (P𝒜,⊗P ,∅𝔇, trP ) as follows:

For 𝒄,𝒅 ∈ list(𝔇), P𝒜(𝒄,𝒅) def= 𝒜(↑𝒄↓𝒅†). The symmetric structure of (𝒜, π) induces symmetry isomor
phisms in P𝒜. The monoidal (horizontal) composition ⊗P on morphisms in P𝒜 is obtained from π by 
composition with the appropriate symmetry (shuffle) isomorphism and has monoidal unit 1∅ = η : IX →
P𝒜(∅,∅) = 𝒜(∅).

For each d ∈ 𝔇, the identity 1d : I → P𝒜(d, d) is given by the composition

I
η −→ 𝒜(∅)

𝒜(∪↑d ) −−−−−→ 𝒜(↑d↓d) = P𝒜(d, d).

Categorical (vertical) composition P𝒜(𝒃, 𝒄)⊗ P𝒜(𝒄,𝒅)→ P𝒜(𝒃,𝒅) in P𝒜 is defined by

𝒜(id↑𝒃 ⊗ ∩↑𝒄 ⊗ id↓𝒅† ) ◦ π : 𝒜(↑𝒃↓𝒄†
)⊗𝒜(↑𝒄↓𝒅†

)→ 𝒜(↑𝒃↓𝒅†
),

and likewise the trace is given by

P𝒜(𝒄𝒃,𝒅𝒃)
tr𝒃𝒄,𝒅

P𝒜(𝒄,𝒅)

𝒜(↑𝒄↑𝒃↓𝒃†↓𝒅†)
𝒜(id↑𝒄⊗∩↓𝒃†⊗id↓𝒅† )

𝒜(↑𝒄↓𝒅†)

It follows immediately from the relations in OBD𝔇 that P𝒜 satisfies the axioms for traced monoidal 
categories (Section 2.2).



S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105 15

Conversely, let (P,⊗P ,∅𝔇, tr) be a 𝔇-coloured wheeled prop in X. Define (𝒜P , πP , ηP ) : OBD𝔇 → X
by 𝒜P (↑𝒄↓𝒅) def= P (𝒄,𝒅†). The symmetric action on 𝒜P is induced by symmetry in P . Permutations that 
shuffle ↑𝒄 with ↓𝒅† act trivially on 𝒜P .

Horizontal composition ⊗P in P induces a lax multiplication πP on 𝒜 with a lax unit for 𝒜P described 
by the unit morphism 1∅ : IV → P (∅,∅) = 𝒜P (∅).

For each d ∈ 𝔇,

𝒜(∩↓d) = trd : 𝒜(↑d↓d)→ 𝒜(∅)

and 𝒜(∪↓d) is given by

𝒜(∅ℭ) = P (0, 0)

tr(id0)

P (d, d) = 𝒜(↑d↓d).

I

1d

Since P satisfies the wheeled prop axioms (Definition 2.18 & [25]), 𝒜P satisfies the relations in OBD𝔇, 
and hence defines a symmetric lax functor from OBD𝔇.

The assignments 𝒜 → P𝒜 and P → 𝒜P preserve all defining structure and are each others’ inverses up 
to shuffle isomorphisms in OBD𝔇. Hence WP𝔇

X ≃ [OBD𝔇,X]lax. □
By [9], this result will also follow from Theorem 4.12. A similar result may also be found in [43].

3.3. Representations of BD and OBD

This short section reviews some known results in the representation theory of (oriented) Brauer diagrams.
Let R be a commutative ring, and R-Mod its category of modules. For δ ∈ R, let Brδ = BrRδ be the 

R-Mod-enriched Brauer category (with specialisation δ) defined in [30], whose objects are natural numbers 
n ∈ N and, for all m,n ∈ N, Brδ(m,n) is the free R-module (finitely) generated by the open Brauer diagrams 
τ ∈ B̊D(m,n). If τf ∈ Brδ(k,m) and τg ∈ Brδ(m,n) are generating morphisms, then their composition in 
Brδ is defined by τgτf = δ𝔨gf τgf ∈ Brδ(k, n). In particular, Brδ(0, 0) = ⟨δ⟩ ⊂ R is the ideal generated by δ.

Let BDR be the free R-Mod-category on BD. So, for each pair m,n of natural numbers, BDR(m,n)
is the free R module (infinitely) generated by BD(m,n). There is a canonical isomorphism BD ∼ = BrR[t]

t

of R-Mod-enriched categories given by (τ, 𝔨) ↔ t𝔨τ . For each δ ∈ R, let Tδ : BD → Brδ be the obvious 
identity-on-objects symmetric (strict) monoidal functor such that ⃝ = ∩ ◦∪ ↦→ δ. This factors through the 
symmetric strict monoidal (R-Mod)-enriched specialisation functor BrR[t]

t → Brδ induced by t ↦→ δ.
In the oriented case, let OBrδ be the oriented Brauer category (with specialisation δ) defined similarly to 

Brδ (but with oriented Brauer diagrams). In particular, the free R-Mod category OBD on OBD is isomorphic 
to OBrR[t]

t . As in the unoriented case, for each δ ∈ R, the obvious identity-on-objects symmetric (strict) 
monoidal functor OBD→ OBrδ such that ⃝ ↦→ δ is denoted by Tδ.

If (𝒜, π, η) : BD → R-Mod is a symmetric monoidal functor, then 𝒜(0) is an R-algebra with unit η and 
algebra multiplication π. For r ∈ R, it is convenient to denote η(r) ∈ 𝒜(0) simply by r.

Lemma 3.27. A symmetric monoidal functor 𝒜 : BD→ R-Mod factors through Tδ if and only if 𝒜(⃝) = δ. 
An identical statement -- with BD replaced by OBD -- holds in the oriented case.

Proof. If 𝒜 factors through Tδ, then clearly 𝒜(⃝) = δ. For the converse, let 𝒜 : BD → R-Mod be a 
symmetric monoidal functor such that 𝒜(⃝) = δ. Define a symmetric monoidal functor 𝒜 : Brδ → R-Mod
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by 𝒜(τ ′) = 𝒜(τ ′, 0) for each generator τ ′ ∈ Brδ(m,n). Since 𝒜 is lax monoidal, for all morphisms f =
(τ, 𝔨) = (τ, 0)⊕ (∅, 𝔨) ∈ BD(m,n),

𝒜(f) = δ𝔨𝒜(τ) = δ𝔨𝒜(τ) = 𝒜(Tδ(f)).

Hence 𝒜 = 𝒜 ◦ Tδ : BD→ Brδ → R-Mod. The proof is unchanged for the oriented case. □
For fixed δ ∈ R and n ∈ N, the endomorphism algebras Brδ(n, n) coincide with Brauer algebras, in

troduced by Brauer in [5] to study of representations of the finite dimensional orthogonal and symplectic 
groups Od and Spk (d, k ∈ N).

Let 𝕜 be a field of characteristic 0 and let V be a d-dimensional vector space equipped with a nondegen
erate bilinear form θ : V ⊗V → 𝕜 that is either symmetric or skew-symmetric (in which case, nondegeneracy 
implies that d = 2k for some k). Since θ is nondegenerate, it defines an isomorphism v ↦→ θ(v,−) of V with 
its dual V ∗. Fix δ = d if θ is symmetric, and δ = −k = −d/2 if θ is skew-symmetric.

The isometry group G = {g : θ(gv, gw) = θ(v, w) for all v, w,∈ V } ⊂ GL(V ) of θ is

• the orthogonal group O(V, θ) ∼ = Od when θ is symmetric
• the symplectic group Sp(V, θ) ∼ = Spk when θ is skew-symmetric.

Brauer [5] extended the Schur-Weyl duality between representations of the symmetry and general linear 
groups to prove that, for n ≥ |δ|, representations of Br𝕜δ(n, n) in V ⊗n are in one-to-one correspondence with 
degree n representations of G.

Categorified versions of these results were established in [30, Theorems 3.4, 4.6, 4.8, 5.9, 6.10]:
View the endomorphism prop T (V ) (see Example 2.8) as a full sub-category of Vect𝕜 with objects 

V ⊗k, k ∈ N (by convention, V ⊗0 = 𝕜). Note that objects of T (V ) have a G-module structure induced by 
the factorwise action g · (v1, . . . , vn) = (g(v1), . . . , g(vn)) on each V ⊗n.

Let TG(V ) ⊂ T (V ) be the subprop of G-equivariant morphisms. By definition θ : V ⊗2 → 𝕜 is in TG(V )
and hence, for all n ∈ N and 1 ≤ i < j ≤ n + 2, so are the ``contraction'' maps θi‡j : V ⊗(n+2) → V ⊗n

induced by applying θ to the ith and jth factors.
Recall that 𝕜[Σ] def= 

⨁︁
n∈N 𝕜[Σn] describes a monochrome Vect𝕜-prop. The canonical levelwise action of 

Σ on T (V ) by permuting factors (see Example 2.8) extends linearly to a functor 𝕜[Σ] ↪→ T (V ).
For all k ≥ 0, define

e(k) def= 
∑︂

σ∈Σk

sgn(σ)σ ∈ 𝕜[Σk] (3.28)

where sgn(σ) is the sign of a permutation σ ∈ Σk. Since 𝕜[Σ] ⊂ Brδ for all δ ∈ 𝕜, for each m,n ∈ N, 
we may define ⟨e(k)⟩m,n ⊂ Brδ(m,n) to be the subspace generated by e(k) under horizontal and vertical 
composition in Brδ.

Theorem 3.29. [Lehrer-Zhang, 2015] There is a unique symmetric strict monoidal (tensor) functor Brδ →
Vect𝕜 such that 1 ↦→ V , ∩ ↦→ θ. This factors through the inclusion TG(V ) ↪→ Vect𝕜. Let FG : Brδ → TG(V )
denote the corresponding (corestriction) functor.

Let σ2 ∈ Σ2 ⊂ Brδ(2, 2) be the unique non-identity permutation. For all v ⊗ w ∈ V ⊗2,

FG(σ2)(v ⊗ w) =
{︇
w ⊗ v when θ is symmetric,
−w ⊗ v when θ is skew-symmetric.

The functor FG is full. Its restriction Brδ(m,n) → TG(V )(V ⊗m, V ⊗n) is injective when m + n ≤ 2|δ|. 
When m + n > 2|δ|, its kernel is ⟨e(|δ|+ 1)⟩m,n.



S. Raynor / Journal of Pure and Applied Algebra 229 (2025) 108105 17

Remark 3.30. The statement that FG : Brδ → TG(V ) is full is one formulation of the first fundamental 
theorem of invariant theory for the orthogonal and symplectic groups. In particular, it implies that, since 
Brδ(m,n) = 0 when m + n is odd, so also TG(V )(V ⊗m, V ⊗n) = 0 when m + n is odd.

The description of the kernels of the maps FG(m,n) : Brδ(m,n) → TG(V )(V ⊗m, V ⊗n) gives the second 
fundamental theorem.

Weyl’s first and second fundamental theorems of invariant theory of the finite dimensional general linear 
groups are obtained from an oriented version of Theorem 3.29:

If V is a finite d-dimensional vector space, then the general linear group GL = GL(V ) (left) acts on V
by the standard representation (g, v) ↦→ g(v), and (right) acts on V ∗ by the dual representation (g, α) ↦→(︁
v ↦→ α(g−1(v))

)︁
. As above, let TGL(V ) ⊂ T (V ) be the subcategory of subcategory of GL-equivariant 

morphisms. In particular, the trace on T (V ) is GL-equivariant, as is the monoidal product of GL-equivariant 
morphisms in T (V ), so TGL(V ) inherits a wheeled prop structure from T (V ).

For k ∈ N, let e(k) ∈ 𝕜[Σ] be defined as above (3.28) and let ⟨e(k)⟩𝕜[Σ]
n,n ⊂ 𝕜[Σn] be the subspace generated 

by e(k) under horizontal and vertical composition in 𝕜[Σ].

Theorem 3.31 (Weyl, [50]). The category TGL(V ) of GL-equivariant morphisms in T (V ) is a Vect𝕜-groupoid 
such that TGL(V )(m,n) = 0 when m ̸= n.

For n ≤ d, TGL(V )(n, n) ∼ = 𝕜[Σn] and for n > d, TGL(V )(n, n) ∼ = 𝕜[Σn]/⟨e(d + 1)⟩𝕜[Σ]
n,n .

By Proposition 3.26, this can be reformulated almost identically to Theorem 3.29:

Corollary 3.32. There is a unique symmetric strict monoidal (tensor) functor OBrd → Vect𝕜 such that (↑) ↦→
V , (↓) ↦→ V ∗ and ∩ ↦−→ ((α, v) ↦→ α(v) : V ∗ ⊗ V → 𝕜). This factors through the inclusion T {⁀︆↑, ↓}

GL (V ) ↪→
Vect𝕜.

The corresponding (corestriction) functor FGL : OBrd → T {⁀︆↑, ↓}(V )GL is full. For m,n ∈ N, its restric
tion OBrδ(m,n)→ T {⁀︆↑, ↓}(V )GL(V ⊗m, V ⊗n) is injective when m+n ≤ 2d. When m+n > 2d, its kernel is 
⟨e(d + 1)⟩m,n ⊂ OBrd(m,n).

By [11], there is an equivalence of categories between algebras over GLd and wheeled props for which 
⃝ = d and e(d + 1) = 0. The comparison of Theorems 3.31 and 3.29 is used in Section 6 to prove similar 
results -- in terms of unoriented circuit algebras -- for the categories of Od and Spk algebras.

Remark 3.33. Given a sequence of groups (Gd)d such that Gd ↪→ Gd+1 for all d ≥ 0, let G∞
def= 

⋃︁
Gd denote 

the colimit. A representation W of G∞ is the colimit of a sequence of representations (Wd)d of the sequence 
of groups (Gd)d with inclusions Wd ↪→Wd+1 induced by the inclusions Gd ↪→ Gd+1.

For example, for all d ≥ 1, the d-dimensional general linear group GLd is naturally a subgroup of 
GLd+1 under the inclusion induced by 𝕜d ↪→ 𝕜

d+1 = 𝕜
d × 𝕜. The infinite general linear, orthogonal and 

symplectic groups GL∞, O∞ and Sp∞ are the colimits of the induced sequences (GLd)d, (Od)d and (Spk)k. 
Let 𝑽 def= 

⋃︁∞
j=0 𝕜

⊗j be the standard representation.
The triangle identities (3.7) in BD imply that, if F : BD → Vect𝕜 is a strict (or strong) symmetric 

monoidal functor with F (1) = V , then θ = F (∩) induces an isomorphism θ∗ : V
∼ =  −→ V ∗ and V must be 

finite dimensional. Hence, there is no strict monoidal functor BD→ Vect𝕜 such that 1 ↦→ 𝑽 .
However, if the sequence (θd)d of nondegenerate symmetric or skew-symmetric forms induces the sequence 

of orthogonal or symplectic groups (Gd)d, there is a unique form 𝜽
def= colimdθd on 𝑽 and a unique strict 

monoidal functor 𝑭 : dBD → Vect𝕜, 1 ↦→ 𝑽 and ∩ ↦→ 𝜽, the image of which is the colimit of the (image of 
the) functors FGd

described in Theorem 3.29.
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Sam and Snowden [39] established a contravariant equivalence between the categories of finite length 
functors dBD → Vect𝕜 (respectively dOBD → Vect𝕜) and representations of the infinite orthogonal and 
symplectic groups (respectively algebraic representations of the infinite general linear group). See also Re
mark 5.6 and Section 6.2, where a related result, Theorem 6.13, is proved by extending the methods of 
[11].

4. Wiring diagrams and circuit algebras

A circuit algebra is a given by a family of objects, indexed by some free commutative monoid (see Sec
tion 4.2), with operations that are governed by wiring diagrams. These are, essentially, non-planar versions 
of Jones’s planar diagrams [22]. Wiring diagrams are commonly described by partitioning boundaries of 
1-manifolds (e.g., [2,9,10]). However, they admit a straightforward definition in terms of Brauer diagrams. 
This paper takes the latter approach.

4.1. Operadic preliminaries

This section summarises the basic theory of (coloured) operads. See [31] and [4] for more details.
A (symmetric) 𝔇-coloured operad 𝒪 (in the category of sets) is given by a (list(𝔇) × 𝔇)-graded set 

(𝒪(𝒄; d))(𝒄;d), and a family of composition morphisms,

γ : 𝒪(𝒄; d)×
(︄

m ∏︂

i=1
𝒪(𝒃i; ci)

)︄
→ 𝒪(𝒃1 . . . 𝒃m; d),

defined for each d ∈ 𝔇, 𝒄 = (ci)mi=1 ∈ list(𝔇) and 𝒃i ∈ list(𝔇), for 1 ≤ i ≤ m.
If ϕ ∈ 𝒪(c1, . . . , cm; d), then d is called the output of ϕ and each ci is an input of ϕ. The symmetric 

groupoid Σ acts on 𝒪 by permuting the inputs: each σ ∈ Σm induces isomorphisms 𝒪(cσ1, . . . , cσm; d)
∼ =  −→

𝒪(c1, . . . , cm; d). The composition γ is required to be associative and equivariant with respect to the Σ-action 
on 𝒪.

Moreover, for all d ∈ 𝔇, there is an element νd ∈ 𝒪(d; d) that acts as a 2-sided unit for γ: for all 
𝒄 = (c1, . . . , cm) ∈ list(𝔇), the composite morphisms

𝒪(𝒄; d)
∼ =  −→ I ×𝒪(𝒄; d) (νd,id) −−−−→ 𝒪(d; d)×𝒪(𝒄; d) γ −→ 𝒪(𝒄; d),

𝒪(𝒄; d)
∼ =  −→ 𝒪(𝒄; d)× I

(id,
⨂︁m

i=1 νci
) −−−−−−−−→ 𝒪(𝒄; d)×

(︄
m ⨂︂

i=1 
𝒪(ci; ci)

)︄
γ −→ 𝒪(𝒄; d)

are the identity on 𝒪(𝒄; d).
Let (C,⊕, 0) be a small permutative category with object set C0.

Definition 4.1. The C0-coloured operad 𝒪C underlying (C,⊕, 0) is defined by

𝒪C(x1, . . . , xn; y) def= C(x1 ⊕ · · · ⊕ xn, y),

with operadic composition γ in 𝒪C induced by composition in C as follows:
Let the operation g ∈ 𝒪C(x1, . . . , xn; y) correspond to the morphism g ∈ C(x1 ⊕ · · · ⊕ xn, y) and, for 

1 ≤ i ≤ n, let f i ∈ 𝒪C(wi,1, . . . , wi,mi
;xi) correspond to fi ∈ C(wi,1 ⊕ · · · ⊕ wi,mi

, xi). Then,

γ
(︁
g, (f i)i

)︁ def= (g ◦ (f1 ⊕ · · · ⊕ fn)).
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(In fact, any small cocomplete symmetric monoidal category X has an underlying operad by defining, for 
x1, . . . , xn ∈ X, the object x1 ⊗ · · · ⊗ xn ∈ X as in Example 4.3.)

Observe that, if 𝒪C is the operad underlying a small permutative category C, then, for all f1 ∈
𝒪C(x1,1, . . . , x1,m; y1) and f2 ∈ 𝒪C(x2,1, . . . , x2,n; y2), there is an operation

f1 ⊕ f2
def= γ

(︁
idy1⊕y2 , (f1, f2)

)︁ ∈ 𝒪C(x1,1, . . . , x1,m, x2,1, . . . , x2,n; y1 ⊕ y2). (4.2)

By definition, 𝒪C(−; y) ∼ = 𝒪C(0; y) canonically for all y. In particular, there is a canonical isomor
phism 𝒪C(−; 0)

∼ =  −→ 𝒪C(0; 0) = C(0, 0). Let id0 ∈ 𝒪C(−; 0) be the preimage of id0 ∈ C(0, 0) under this 
isomorphism. Then, for all (x1, . . . , xk, y), precomposition with (

⨂︁k
i=1 idxk

, id0) induces an isomorphism 

𝒪C(x1, . . . , xk, 0; y)
∼ =  −→ 𝒪C(x1, . . . , xk; y).

For i ∈ {1, 2}, let (𝒪i, γi, νi) be a 𝔇i-coloured operad. A morphism ℱ : (𝒪1, γ1, ν1) → (𝒪2, γ2, ν2) of 
(coloured) operads is given by a map of sets f : 𝔇1 → 𝔇2, and a (list(𝔇)1 ×𝔇1)-indexed family of maps

ℱ(c1,...,ck;d) : 𝒪1(c1, . . . , ck; d)→ 𝒪2(f(c1), . . . , f(ck); f(d))

that respect units and composition, and are equivariant with respect to the symmetric action.
If f = id𝔇 (with 𝔇 = 𝔇1 = 𝔇2), then ℱ : 𝒪1 → 𝒪2 is called colour-preserving. The category of 𝔇

coloured operads and colour-preserving morphisms is denoted by Op𝔇.
In the remains of this section, (X,⊗, I) is a symmetric monoidal category with all finite colimits, and 

(C,⊕, 0) is a small permutative category with object set C0.

Example 4.3. For any n-tuple (x1, . . . , xn) of objects in X, define x1 ⊗ · · · ⊗ xn to be the colimit, under 
associator isomorphisms in X, of all ways (indexed by planar binary rooted trees) of tensoring x1, . . . , xn. 
Given a set 𝔇 and a 𝔇-indexed object A = (Ac)c∈𝔇 in X, the 𝔇-coloured endomorphism operad EndA is 
defined by

EndA(c1, . . . , ck; d)
def= X (Ac1 ⊗ · · · ⊗Ack , Ad) ,

together with the obvious composition and units induced by composition and identities in X.

Definition 4.4. A X-algebra for a 𝔇-coloured operad 𝒪 is a 𝔇-indexed object (Ac)c∈𝔇 in X, together with a 
morphism 𝒜 : 𝒪 → EndA of 𝔇-coloured operads.

The category AlgX(𝒪) of X-algebras for 𝒪 is the subcategory of the slice category 𝒪/Op𝔇 whose objects 
are X-algebras for 𝒪. Morphisms in AlgX(𝒪) ((A,𝒜), (B,ℬ)) are of the form (g, (gc)c) where g : 𝒜 → ℬ in 
𝒪/Op𝔇 and, for all c ∈ 𝔇, gc ∈ X(Ac, Bc) such that, if ϕ ∈ 𝒪(c1, . . . , ck; d), then the following diagram 
commutes in X:

Ac1 ⊗ · · · ⊗Ack

𝒜(ϕ)

gc1⊗···⊗gck
Bc1 ⊗ · · · ⊗Bck

g𝒜(ϕ)

Ad gd
Bd.

Remark 4.5. Observe that Definition 4.4, though it relies on the symmetric monoidal structure on X, is 
concerned with operads in the category of sets and does not involve operads enriched in a (closed) symmetric 
monoidal category. It therefore diverges slightly from the usual definition of an operad algebra (as in [4]).
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Let (C,⊕, 0) be a small permutative category and (X,⊗, I) a cocomplete symmetric monoidal category 
and let [C,X]lax denote the category of symmetric monoidal functors 𝒜 : (C,⊕, 0)→ (X,⊗, I). The following 
is known (see e.g., [31, Chapters 2-3,], in particular Example 2.1.10 and Section 3.3):

Lemma 4.6. The categories AlgX(𝒪C) of X-algebras for the operad 𝒪C underlying (C,⊕, 0) and [C,X]lax are 
canonically isomorphic.

Proof. If 𝒪 = 𝒪C is the C0-coloured operad underlying C, and (𝒜, π, η) : C → X is a symmetric monoidal 
functor, then (𝒜(x))x∈C0 has an 𝒪-algebra structure as follows: For k ≥ 1 and all f ∈ 𝒪(x1, . . . , xk; y)
induced by f ∈ C(x1 . . . xk, y),

𝒜x1,...,xk;y(f) = 𝒜(f) ◦ πx1,...,xn
∈ X(𝒜(x1)⊗ · · · ⊗ 𝒜(xk),𝒜(y)).

(Here πx1,...,xn
: 𝒜(x1)⊗ · · · ⊗ 𝒜(xn)→ 𝒜(x1 . . . xn) is the universal map from the colimit.)

When k = 0, and f ∈ 𝒪(−; y) is induced by f ∈ C(0, y),

𝒜−;y(f) def= 𝒜(f) ◦ η ∈ X(I,𝒜(y)).

Conversely, a X-algebra (A,𝒜) for 𝒪 induces a functor 𝒜 : C → X described by x ↦→ Ax for all x ∈ C. 
If f ∈ 𝒪(x; y) is induced by f ∈ C(x, y), then f ↦→ 𝒜(f) ∈ X(Ax, Ay). This has symmetric lax monoidal 
structure π𝒜 : Ax⊗Ay → Ax⊕y induced by idx⊕y ∈ 𝒪(x, y;x⊕y) and η𝒜 : I → A0 induced by id0 ∈ 𝒪(−; 0). 
It follows from the definitions that the assignments (𝒜, π, η) ↦→ ((𝒜(x))x,𝒜) and (A,𝒜) ↦→ (𝒜, π𝒜, η𝒜)
extend to mutually inverse functors AlgX(𝒪C) ⇆ [C,X]lax. □
Definition 4.7. Let (A,𝒜) be an algebra over a 𝔇-coloured operad 𝒪. An ideal of (A,𝒜) is an 𝒪-subalgebra 
(I, ℐ) ⊂ (A,𝒜) such that, for all n ∈ N, (c1, . . . , cn) ∈ 𝔇n, d ∈ 𝔇 and xi ∈ Aci , and all ϕ ∈ 𝒪(c1, . . . , cn; d), 
if xj ∈ Icj for some 1 ≤ j ≤ n, then 𝒜(ϕ)(x1, . . . , xn) ∈ ℐ(d).

Equivalently, (I, ℐ) ⊂ (A,𝒜) is an ideal precisely if the quotient (A/I,𝒜/ℐ) inherits an 𝒪-algebra struc
ture from (A,𝒜).

If 𝒪C is the operad underlying a monoidal category C, and (𝒜, π, η) : C → X is a symmetric monoidal 
functor as in Lemma 4.6, then an ideal (I, ℐ) of the operad algebra corresponding to 𝒜 is a symmetric 
monoidal subfunctor ℐ ↪→ 𝒜 such that, for all x, y ∈ C, the restrictions of πx,y : 𝒜(x)⊗𝒜(y)→ 𝒜(x⊕ y) to 
ℐ(x)⊗𝒜(y) and 𝒜(x)⊗ ℐ(y) describe morphisms to ℐ(x⊕ y).

4.2. Wiring diagrams and circuit algebras

As in [2,9,10], circuit algebras will be defined as algebras over an operad of wiring diagrams.

Definition 4.8. For a given palette (ℭ, ω), and each (𝒄1, . . . , 𝒄k;𝒅) ∈ list2(ℭ) × list(ℭ), a wiring diagram of 
type (𝒄1, . . . , 𝒄k;𝒅) is an element of the set

WD(ℭ,ω)(𝒄1, . . . , 𝒄k;𝒅) def= BD(ℭ,ω)(𝒄1 ⊕ · · · ⊕ 𝒄k;𝒅).

The list(ℭ)-coloured operad of (ℭ, ω)-wiring diagrams is the operad WD(ℭ,ω) def= 𝒪BD(ℭ,ω) underlying BD(ℭ,ω).
In particular, for (ℭ, ω) = {⁀︆↑, ↓}, OWD def= WD(ℭ,ω) is the operad of (monochrome) oriented wiring dia

grams, and for a set 𝔇, the operad OWD𝔇 of 𝔇-coloured oriented wiring diagrams is the operad underlying 

the category OBD𝔇 = BD𝔇×{⁀︆↑, ↓} of 𝔇-coloured oriented Brauer diagrams.
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Fig. 6. Composition in WD. (See also Fig. 7.) 

Fig. 7. Disc representation of the wiring diagram composition in Fig. 6. 

When ℭ is the singleton set, the N-coloured operad of (monochrome) wiring diagrams WD(ℭ,ω) def= 𝒪BD

is denoted by WD.

Definition 4.9. A (ℭ, ω)-coloured X-circuit algebra is a X-valued algebra for the operad WD(ℭ,ω) of (ℭ, ω)
coloured wiring diagrams. The full subcategory of X-circuit algebras in Alg(WD(ℭ,ω)) is denoted by 
X-CA(ℭ,ω). When X = Set, X-CA(ℭ,ω) is denoted simply by CA(ℭ,ω).

If (ℭ, ω) = {∗} is trivial, then X-CA def= X-CA∗ is the category of monochrome X-circuit algebras.
Oriented (respectively non-oriented) circuit algebras are algebras over operads of oriented (respectively 

non-oriented) wiring diagrams.

Remark 4.10. Though Definition 4.8 is already observed in [2, Definition 2.9], wiring diagrams are commonly 
described (for example in [9,10]) as isotopy classes of immersions of compact 1-manifolds in punctured 2-discs 
that are injective on boundaries and preserve boundaries and interiors.

In this representation, composition is defined by inserting discs into the punctures in such a way that the 
boundaries agree. Fig. 7 provides a punctured disc representation of the same composition of wiring diagrams 
as Fig. 6. In the coloured case, 1-manifolds are coloured according to Example 3.10 and Definition 3.18 to 
define (ℭ, ω)-coloured wiring diagrams. For the operadic composition in WD(ℭ,ω) the colours on the disc 
boundaries are required to match.

The punctured disc representation of wiring diagrams provides a clear visualisation of the relationship 
of wiring diagrams (and hence circuit algebras) to planar diagrams and algebras [22] and tangle categories 
[46]. It also exhibits the operad of monochrome wiring diagrams as a suboperad of Spivak’s operad of wiring 
diagrams [42]. Moreover, the disc representation of wiring diagrams is highly suggestive of the relationship 
between circuit algebras and modular operads (cf., Section 5.2), and the graphical construction of circuit 
algebras that is developed in the sister paper [37]. On the other hand, the definition in terms of Brauer 
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diagrams is obviously combinatorial and reveals connections between circuit algebras and representations 
of classical groups (cf., Sections 3.3, 6).

The equivalence of these representations is also described for the oriented case in [43].

Let (X,⊗, I) be a cocomplete symmetric monoidal category. As an algebra for the operad WD(ℭ,ω), 
a (ℭ, ω)-coloured X-circuit algebra consists of objects (𝒜(𝒄))𝒄∈list(ℭ) and, for each (𝒄1, . . . , 𝒄k;𝒅) ∈
list2ℭ × list(ℭ), a set of X-morphisms 𝒜(f, λ) :

⨂︁k
i=1𝒜(𝒄i) → 𝒜(𝒅) indexed by Brauer diagrams (f, λ) ∈

BD(ℭ,ω)(𝒄1 ⊕ · · · ⊕ 𝒄k,𝒅). These satisfy:

• for all 𝒄 ∈ list(ℭ), 𝒜(id𝒄) = id𝒜(𝒄) ∈ X(𝒜(𝒄),𝒜(𝒄));
• the morphisms 𝒜(f, λ) are equivariant with respect to the Σ-action on list(ℭ) and on WD(ℭ,ω);
• given wiring diagrams (f, λ) ∈ WD(ℭ,ω)(𝒄1, . . . , 𝒄k;𝒅), and, for all 1 ≤ i ≤ k, (f i

, λi) ∈
WD(ℭ,ω)(𝒃i,1, . . . , 𝒃i,ki

; 𝒄i), the following diagram commutes in X:

⨂︁k
i=1

⨂︁ki

j=1𝒜(𝒃i,j)

𝒜γ
(︅
(f,λ),(fi

,λi)i
)︅

⨂︁k
i=1 𝒜(fi

,λi) ⨂︁k
i=1𝒜(𝒄i)

𝒜(f,λ)

𝒜(𝒅)

(4.11)

The following is immediate from Lemma 4.6:

Theorem 4.12. The category X-CA(ℭ,ω) of (ℭ, ω)-coloured X-circuit algebras is isomorphic to the category of 
symmetric monoidal functors BD(ℭ,ω) → X.

Example 4.13. Oriented circuit algebras are described in detail in [9,10]. Proposition 3.26 and Theorem 4.12
provide another proof of the result, established in [9], that 𝔇-coloured oriented circuit algebras are equivalent 
to 𝔇-coloured wheeled props. See also [43].

Example 4.14. Let ℱ : BD→ Set be the circuit algebra defined by ℱ(n) def= BD(0, n) and for all g ∈ BD(m,n), 
ℱ(g)(f) = g◦f . This is initial in the category of (monochrome) circuit algebras in Set: For any such (𝒜, π, η), 
there is a unique morphism α𝒜 : ℱ → 𝒜 such that α𝒜(f) = (𝒜(f) ◦ η)(1) ∈ 𝒜(n) for all f ∈ BD(0, n).

As in Section 3.3, for a fixed commutative ring R, let BD be the free R-Mod-category on BD. Let 𝒰 = 𝒰R
be the free R-Mod-circuit algebra on ℱ , defined by 𝒰(n) def= BD(0, n). This is initial in the category of 
(monochrome) R-Mod-circuit algebras.

For a palette (ℭ, ω), the initial (ℭ, ω)-coloured circuit algebra ℱ (ℭ,ω) (and (R-Mod)-circuit algebra 𝒰 (ℭ,ω)) 
with ℱ (ℭ,ω)(𝒄) def= BD(ℭ,ω)(∅, 𝒄) may be similarly defined. In particular, by Proposition 3.26, 𝒰{⁀︆↑, ↓} de
scribes the initial monochrome R-Mod-wheeled prop U (called 𝒵 in [11]) with U(m,n) = BD{⁀︆↑, ↓}(∅, ↑m↓n).

In the following examples, Vect𝕜 is always the category of vector spaces over a field 𝕜 of characteristic 0 
and V is a (finite) d-dimensional vector space that generates the full subcategory T (V ) ⊂ Vect𝕜 on objects 
of the form V ⊗n, n ∈ N.

Example 4.15. If θ is a symmetric or skew-symmetric nondegenerate bilinear form on V with isometry group 
G, then let

δ =
{︇
d when θ is symmetric, in which case G ∼ = Oδ

−d
2 when θ is skew-symmetric, , in which case G ∼ = Sp|δ|.
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By Theorem 3.29, there is a unique symmetric strict monoidal functor 𝒱θ : BD→ Vect𝕜 such that 1 ↦→ V

and ∩ ↦→ θ, and this factors through the symmetric strict monoidal functor FG : Brδ → TG(V ) where 
TG(V ) ⊂ T (V ) is the subprop of G-equivariant morphisms and, as in Section 3.3, Brδ is the Brauer category 
with specialisation δ ∈ 𝕜. Theorem 3.29 implies, moreover, that the kernel of the unique Vect𝕜-circuit algebra 
morphism αθ : 𝒰 → 𝒱θ is the circuit algebra ideal ℐθ ⊂ 𝒰 generated by ⃝− δ ∈ 𝒰(0) and ⌊e(|δ|+ 1)⌋ ∈
𝒰(2(|δ|+ 1)), where

⌊e(k)⌋ def= 
∑︂

σ∈Σk

sgn(σ)⌊σ⌋ (4.16)

is the element of 𝒰(2k) obtained by linear coevaluation of the components of e(k) ∈ BD(k, k) (3.28).
In particular, if 𝒱G

θ ⊂ 𝒱θ is the G-invariant sub-circuit algebra, then 𝒰/ℐθ ∼ = 𝒱G
θ .

In Section 6, it is proved that there is an equivalence between algebras over the orthogonal (and symplec
tic) groups and circuit algebras 𝒜 such that ⌊e(|δ|+ 1)⌋ and ⃝−δ are in the kernel of the unique morphism 
α𝒜 : 𝒰 → 𝒜.

Example 4.17. As in Section 3.3, TGL(V ) ⊂ T (V ) is the sub-wheeled prop of GL(V )-equivariant morphisms. 
By Theorem 3.31, the kernel of the unique morphism aV : U → TGL(V ) of wheeled props is generated by 
e(d+ 1) ∈ U(d+ 1, d+ 1) and ⃝− d ∈ U(0, 0). Equivalently, the kernel of the unique Vect𝕜-valued oriented 

circuit algebra morphism 𝒰{⁀︆↑, ↓} → 𝒱 is generated by ⌊e(d + 1)⌋ and ⃝− d.

Definition 4.18. Given any list(ℭ)-graded set S = (S𝒄)𝒄∈list(ℭ), the free (Set-valued) circuit algebra ℱ (ℭ,ω)⟨S⟩
on S is defined as follows:

The collection (F (ℭ,ω)⟨S⟩𝒅)𝒅∈list(ℭ) of (ℭ, ω)-coloured wiring diagrams decorated by S is defined by

F (ℭ,ω)⟨S⟩𝒅 =
∐︁

(𝒄1,...,𝒄k)∈list2ℭ

(︅
WD(ℭ,ω)(𝒄1, . . . , 𝒄k;𝒅)×∏︁k

i=1 S(𝒄i)
)︅

=
∐︁

((𝒄⊕···⊕𝒄k),(f,λ)))∈BD(ℭ,ω)/𝒅

(︅∏︁k
i=1 S(𝒄i)

)︅
.

For each (f, λ) ∈WD(ℭ,ω)(𝒄1, . . . , 𝒄k;𝒅), the morphism ℱ (ℭ,ω)⟨S⟩(f, λ) : F (ℭ,ω)⟨S⟩𝒄1⊗· · ·⊗F (ℭ,ω)⟨S⟩𝒄k
→

F (ℭ,ω)⟨S⟩𝒅 is described by

k∏︂

i=1

(︂
(f i

, λi), (xi
ji)

mi
ji=1

)︂
↦→

(︆
γ
(︂
(f, λ),

(︂
(f i

, λi)ki=1

)︂)︂
, (xi

ji)1≤ji≤mi
1≤i≤k 

)︆
.

For a fixed commutative ring R, let 𝒰 (ℭ,ω)⟨S⟩ be the R-Mod-circuit algebra freely generated by ℱ (ℭ,ω)⟨S⟩. 
So, for all 𝒄, 𝒰 (ℭ,ω)⟨S⟩(𝒄) is the free R-module on F (ℭ,ω)⟨S⟩𝒄.

When (ℭ, ω) = {∗} is trivial, write ℱ⟨S⟩ = ℱ (ℭ,ω)⟨S⟩ and 𝒰⟨S⟩ = 𝒰 (ℭ,ω)⟨S⟩.

Note that, when S = ∅, ℱ (ℭ,ω)⟨S⟩ = ℱ (ℭ,ω) (and likewise 𝒰 (ℭ,ω)⟨S⟩ = 𝒰 (ℭ,ω)) is just the initial (R-Mod-) 
(ℭ, ω)-coloured circuit algebra.

Circuit algebras, like operads, admit presentations in terms of generators and relations (see [10, Re
mark 2.6]): A (R-Mod-) circuit algebra 𝒜 = (A,α) may be obtained as a quotient of the free (R-Mod-) 
circuit algebra ℱ (ℭ,ω)⟨A⟩ (or 𝒰 (ℭ,ω)⟨A⟩ on its underlying symmetric graded set A.

In the remainder of this paper, we will always take R = 𝕜, a field of characteristic 0 and so R-Mod = Vect𝕜.

Example 4.19. Let T4 = { , } and Tn = ∅ for n ̸= 4. Then, ℱ⟨T ⟩(n) = ∅ when n is odd and 

ℱ⟨T ⟩(2m) is the set of diagrams (planar representations) of virtual tangles on m unoriented strands. The 
circuit algebra of virtual tangles 𝒯 is the quotient of ℱ⟨T ⟩ by the (ordinary) Reidemeister relations since the 
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virtual Reidemeister relations of [26] are a consequence of the relations in BD. The oriented virtual tangle 

circuit algebra 𝒪𝒯 , with generating set { } ⊂ 𝒪𝒯 (↑2↓2) is defined similarly. This is explained in 
detail in [9, Section 4.2].

More generally, we may consider circuit algebras of (ℭ, ω)-coloured virtual tangles. This includes, for 
example, circuit algebras of embedded tangles of mixed dimensions.

Example 4.20. Given a (virtual) tangle with 2m labelled boundary points, its skeleton [2] is the virtual 
tangle obtained by replacing each over- and under-crossing with a virtual (symmetric) crossing. This is an 
element of BD(0, 2m).

In [2] and [10], a circuit algebra with skeleton is a circuit algebra 𝒮 indexed by Brauer diagrams rather than 
lists of colours. More formally, 𝒮 is a circuit algebra together with a surjective circuit algebra morphism 
𝒮 → ℱ . Equivalently, this is a symmetric monoidal functor from the slice category (0/BD,⊕, id0) (see 
Example 2.3). Oriented circuit algebras with skeleton may be similarly defined as symmetric monoidal 
functors from (0/OBD,⊕, id0).

5. Circuit algebras are modular operads

Modular operads [19,20,36] are symmetric graded objects that admit two operations -- contraction and 
multiplication -- such that certain axioms are satisfied. They were introduced in the study of moduli spaces 
of higher genus curves [15].

In Section 5.1, an axiomatic (biased) description of circuit algebras is given in terms of operations on 
the underlying graded symmetric monoid and, in Section 5.2, this is shown to satisfy the modular operad 
axioms.

5.1. Axioms for circuit algebras

By Theorem 4.12, the combinatorics of a (ℭ, ω)-coloured circuit algebra are completely described by 
BD(ℭ,ω). This enables an axiomatic (biased) description of circuit algebras in terms of their underlying 
symmetric monoids.

Let (ℭ, ω) be a palette. For 1 ≤ i ≤ n and 𝒄 = (c1, . . . , cn) ∈ ℭn, let 𝒄î
def= (c1, . . . , ci−1, ci+1, . . . , cn) ∈

ℭn−1 be the tuple obtained by ``forgetting'' ci. More generally, for distinct 1 ≤ j1, . . . , jk ≤ n, the tuple 
𝒄ˆ︊ j1,...,jk

∈ ℭn−k is obtained from 𝒄 by forgetting cj1 , . . . , cjk .
Let S = (S(𝒄))𝒄 be a list(ℭ)-graded symmetric object in X.

Definition 5.1. A contraction ζ on S is a collection of morphisms ζi‡j𝒄 : S(𝒄) → S(𝒄ˆ︅i,j) in X, defined for all 
𝒄 = (c1, . . . , cn) ∈ list(ℭ) such that ci = ωcj , i ̸= j.

A multiplication ⋄ on S is a family of maps

−⋄i‡j𝒄,𝒅 : S𝒄 ⊗ S𝒅 → S(𝒄î𝒅ĵ) (5.2)

defined for all 𝒄 ∈ ℭm,𝒅 ∈ ℭn and 1 ≤ i ≤ m, 1 ≤ j ≤ n such that ci = ωdj .

A contraction or multiplication that commutes with the Σ-action on S is Σ-equivariant.
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A multiplication ⋄ is commutative if, for all 𝒄,𝒅 as above, the following diagram commutes in E:

S𝒄 ⊗ S𝒅

⋄i‡j
𝒄,𝒅

∼ = 

S𝒄î𝒅ĵ

∼ = 

S𝒅 ⊗ S𝒄
⋄j‡i
𝒅,𝒄

S𝒅ĵ𝒄î
.

A unit ϵ for a commutative multiplication ⋄ on S is a choice, for each c ∈ ℭ, of distinguished morphism 
ϵc : I → Sc,ωc in X, such that for all 𝒄 = (c1, . . . , cn) ∈ list(ℭ) and 1 ≤ i ≤ n such that ci = c, the 
compositions

S𝒄

∼ =  −→ I ⊗ S𝒄
ϵc⊗idS𝒄 −−−−−→ Sc,ωc ⊗ S𝒄

⋄2‡i
(c,ωc),𝒄 −−−−−→ S𝒄

and

S𝒄

∼ =  −→ I ⊗ S𝒄
ϵωc⊗idS𝒄 −−−−−−→ Sc,ωc ⊗ S𝒄

⋄1‡i
(c,ωc),𝒄 −−−−−→ S𝒄

are equal to the identity on S𝒄.
By [36, Lemma 1.13], if a multiplication ⋄ on S admits a unit ϵ, then it is unique.
Observe in particular that, if ((S𝒄)𝒄,⊠, η, ζ) is a symmetric list(ℭ)-graded monoid with contraction, then 

S admits a commutative equivariant multiplication given by:

⋄i‡j𝒄,𝒅

def= ζi‡m+j
𝒄𝒅 ◦⊠𝒄,𝒅 : S(𝒄)⊗ S(𝒅)→ S(𝒄î𝒅ĵ), (5.3)

defined for all 𝒄 = (c1, . . . , cm),𝒅 = (d1, . . . , dn) and all 1 ≤ i ≤ m, 1 ≤ j ≤ n such that ci = ωdj .

Proposition 5.4. A list(ℭ)-graded symmetric object (A𝒄)𝒄 in X describes a X-circuit algebra if and only 
if it has the structure of a symmetric graded monoid (A,⊠, η) in X and is equipped with an equivariant 
contraction ζ and, for each c ∈ ℭ, a distinguished unit morphism ϵc : I → A(c,ωc), such that the following 
conditions (illustrated in Fig. 8) hold:

(c1) the graded monoidal product ⊠ on (A𝒄)𝒄∈list(ℭ) is associative up to associators in X;
(c2) contractions commute (see also (m1) Definition 5.7):

ζi
′‡j′

𝒄ˆ︇k,m
◦ ζk‡m𝒄 = ζk

′‡m′
𝒄ˆ︃i,j ◦ ζi‡j𝒄 : A𝒄 → A𝒄ˆ︌ i,j,k,m

wherever defined;

(c3) contraction commutes with the monoid operation:

ζi‡j𝒄𝒅 ◦ ⊠𝒄,𝒅 = ⊠𝒄ˆ︃i,j⊕𝒅 ◦ (ζi‡j𝒄 ⊗ id𝒅) : A𝒄 ⊗A𝒅 → A𝒄ˆ︃i,j𝒅

for all 𝒅 ∈ list(ℭ) and 𝒄 = (c1, . . . , cm) ∈ list(ℭ) with ci = ωcj, 1 ≤ i < j ≤ m.

(e1) the distinguished morphisms (ϵc)c provide units for the multiplication ⋄ induced, as in (5.3), by ⊠ and 
ζ:

idA𝒄 = ζ2‡2+j
(c,ωc)𝒄 ◦⊠(c,ωc)𝒄 ◦ (ϵc ⊗ id𝒄)

= ζ1‡2+j
(c,ωc)𝒄 ◦⊠(c,ωc)𝒄 ◦ (ϵωc ⊗ id𝒄).
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Fig. 8. Circuit algebras satisfy the conditions (c1)-(c3). 

A morphism of (ℭ, ω)-coloured circuit algebras in X is precisely a morphism of the underlying graded 
symmetric objects in X that preserves the monoid operation, contraction and multiplicative units.

Proof. By Theorem 4.12, a (ℭ, ω)-coloured X-circuit algebra is given by a symmetric monoidal functor 
(𝒜, π, η) : BD(ℭ,ω) → X. Since Σℭ ⊂ BD(ℭ,ω), (𝒜, π, η) describes a symmetric graded monoid in X and thus 
satisfies (c1).

Let (τ i‡j𝒄 , ∅) ∈ dBD(ℭ,ω)(𝒄, 𝒄ˆ︅i,j) be the downward Brauer diagram given by

𝒄 ∋ ck ↦→
{︄

cj k = i

ck ∈ 𝒄ˆ︅i,j k ̸= i, k ̸= j.

This defines an equivariant contraction ζ on (𝒜(𝒄))𝒄 given by ζi‡j𝒄
def= 𝒜(τ i‡j𝒄 ). The relations in BD(ℭ,ω)

imply that (𝒜, π, ζ) satisfies (c2) and (c3). (See [30, Theorem 2.6] or [1, Proposition 2.15].) For c ∈ ℭ, define 

ϵc
def= 𝒜(∪c) : 𝒜(∅ℭ)→ 𝒜(c, ωc). This satisfies (e1) by the triangle identities in BD(ℭ,ω).
Conversely, let ((A𝒄)𝒄,⊠, η, ζ, ϵ) satisfy (c1)-(c3) and (e1). Then (A,⊠, η) describes a symmetric monoidal 

functor 𝒜 : Σℭ → X. By [30, Theorem 2.6] or [1, Proposition 2.15], there is a unique symmetric monoidal 
functor 𝒜 : BD(ℭ,ω) → X such that 𝒜 = 𝒜 on Σℭ and, for all c ∈ ℭ,

𝒜(∩c) = ζ(ωc,c)1‡2 : A(ωc,c) → A∅ℭ

and

𝒜(∪c) ◦ η = ϵc : I → A(c,ωc).

The final statement -- that morphisms of circuit algebras are morphisms of graded symmetric monoids 
preserving these maps -- is immediate. □

Observe that, in the proof of Proposition 5.4, the cap morphisms ∩c in BD(ℭ,ω) induce contractions while 
the units for the multiplication ⋄ are induced by cup morphisms ∪c. In particular, a lax monoidal functor 
ℬ : dBD(ℭ,ω) → 𝒳 is, equivalently, a symmetric graded monoid with contraction satisfying (c1)-(c3) but 
without a unit for the induced multiplication. This motivates the following:

Definition 5.5. A (ℭ, ω)-coloured nonunital X-circuit algebra is a symmetric lax monoidal functor 
𝒜 : dBD(ℭ,ω) → X.
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Equivalently, these are algebras over the operad dWD(ℭ,ω) of downward (ℭ, ω)-coloured wiring diagrams.

Remark 5.6. By [39], nonunital monochrome circuit algebras describe algebras in the category of represen
tations of O∞ and Sp∞. Algebras in the category of representations of GL∞ are described by nonunital 
monochrome oriented circuit algebras. See also Sections 3.3 & 6.2.

5.2. Circuit algebras and modular operads

As usual, let (ℭ, ω) be an involutive palette and (X,⊗, I) a symmetric monoidal category.

Definition 5.7. A (ℭ, ω)-coloured modular operad with values in X is a list(ℭ)-graded symmetric object 
S = (S𝒄)𝒄∈ℭ together with a unital multiplication (⋄, ϵ), and a contraction ζ, such that the following axioms 
are satisfied:

(m1) Multiplication is associative:
For all 𝒃 = (b1, . . . , bn1), 𝒄 = (c1, . . . , cn2),𝒅 = (d1, . . . , dn3) ∈ list(ℭ) and all 1 ≤ i ≤ n1, 1 ≤ j, k ≤ n2
with j ̸= k and 1 ≤ m ≤ n3 such that bi = ωcj and ck = ωdm, the following square commutes:

S𝒃 ⊗ S𝒄 ⊗ S𝒅

⋄i‡j
𝒃,𝒄⊗idS𝒅

idS𝒃
⊗⋄k‡m

𝒄,𝒅

S𝒃î𝒄ĵ
⊗ S𝒅

⋄k′‡m
𝒃
î
𝒄
ĵ
,𝒅

S𝒃 ⊗ S𝒄k̂𝒅m̂

⋄i‡j′
𝒃,𝒄

k̂
𝒅m̂

S𝒃î𝒄ˆ︆j,k𝒅m̂
.

(m2) Contractions commute (see (c2), Proposition 5.4 and Fig. 8)
(m3) Multiplication and contraction commute:

For all 𝒄 = (c1, . . . , cn1),𝒅 = (d1, . . . , dn1) ∈ list(ℭ) and all distinct 1 ≤ i, j, k ≤ n1, 1 ≤ m ≤ n2 such 
that ci = ωcj and ck = ωdm, the following square commutes:

S𝒄 ⊗ S𝒅

ζi‡j
𝒄 ⊗idS𝒅

⋄k‡m
𝒄𝒅

S𝒄ˆ︃i,j ⊗ S𝒅

⋄k′‡m
𝒄ˆ︃i,j ,𝒅

S𝒄k̂𝒅m̂

ζi′‡j′
𝒄
k̂
𝒅m̂

S𝒄ˆ︈i,j,k𝒅m̂
.
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(m4) ``Parallel multiplication'' of pairs is well-defined:
For all 𝒄 = (c1, . . . , cn1),𝒅 = (d1, . . . , dn1) ∈ list(ℭ) and all distinct 1 ≤ i, j ≤ n1 and distinct 
1 ≤ k,m ≤ n2 such that ci = ωdk and cj = ωdm, the following square commutes:

S𝒄 ⊗ S𝒅

⋄i‡k
𝒄𝒅

⋄j‡m
𝒄𝒅

S𝒄î𝒅k̂

ζj′‡m′
𝒄
î
𝒅
k̂

S𝒄ĵ𝒅m̂

ζi′‡k′
𝒄
ĵ
𝒅m̂

S𝒄ˆ︃i,j𝒅ˆ︇k,m
.

Morphisms in the category X-MO(ℭ,ω) of (ℭ, ω)-coloured modular operads with values in X are morphisms 
of the underlying symmetric graded objects that preserve multiplication, contraction and units.

Symmetric graded objects with multiplication and contraction satisfying (m1)-(m4) but without a unit for 
the multiplication are called nonunital modular operads. The category of (ℭ, ω)-coloured nonunital modular 
operads and levelwise maps that preserve multiplication and contraction is denoted X-MO(ℭ,ω)−.

Remark 5.8. This paper considers (coloured) modular operads and circuit algebras, enriched in a symmetric 
monoidal category X, in the sense of [19,20]. In particular, their definition is relative to a fixed palette (ℭ, ω), 
which can be thought of as the set of objects.

In [37, Section 3], modular operads are defined internal to a category E with sufficient (co)limits. Under 
this definition, which is based on [23] and follows the construction of [36], the object set is replaced with an 
involutive object object in E. The two versions coincide (up to equivalence) in Set.

The assignment (ℭ, ω) ↦→ X-CA(ℭ,ω) defines a Cat-valued presheaf caX on the palette category Pal: a 
morphism ϕ : (ℭ, ω)→ (ℭ′, ω′) in Pal induces a strict symmetric monoidal functor BD(ℭ,ω) → BD(ℭ′,ω′), and 

hence 𝒜′ ∈ CA(ℭ′,ω′)
X may be pulled back to a (ℭ, ω)-coloured circuit algebra ϕ∗𝒜′ ∈ X-CA(ℭ,ω).

For a symmetric monoidal category (X,⊗, I), let X-CA be the category of all X-circuit algebras: objects are 
pairs ((ℭ, ω),𝒜) of a palette (ℭ, ω) and a (ℭ, ω)-coloured X-circuit algebra 𝒜, and morphisms ((ℭ, ω),𝒜)→
((ℭ′, ω′),𝒜′) are pairs (ϕ, γ) where ϕ : ℭ → ℭ′ satisfies ϕω = ω′ϕ and γ : ϕ∗𝒜′ → 𝒜. When X = Set, write 

CA def= X-CA.
The categories X-CA− of all nonunital X-circuit algebras, and X-MO (and X-MO−) of all (nonunital) 

X-modular operads are defined similarly.

Remark 5.9. Note that X-CA is not a category of algebras for some single operad since the operad compo
sition in each WD(ℭ,ω) is dependent on (ℭ, ω). However, when X = Set, CA can be obtained as a category 
of algebras for a monad. In this construction -- based on [23,36] -- the palette (ℭ, ω) is just part of the data 
of any given object. More generally, if E is a symmetric monoidal category with all finite limits, then it is 
possible to construct a monad whose algebras are circuit algebras internal to E with palettes replaced by 
involutive objects in E. This is described in detail in [37].

Example 5.10. A morphism 𝒜 → OWD in CA pulls back to an orientation on 𝒜. Hence, by Proposition 3.26, 
the category WP of wheeled props (of all colours) in X is equivalent to the slice category OCA ≃ CA/OWD.
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More generally, a morphism of palettes (ℭ, ω)→ {⁀︆↑, ↓} induces an orientation on (ℭ, ω). Objects of the 
category X-WP of wheeled props (of any colour) with values in X are equivalent to pairs (θ,𝒜) with 𝒜 a 
(ℭ, ω)-coloured X-circuit algebra and θ : (ℭ, ω) → {⁀︆↑, ↓} a morphism of palettes. Morphisms in X-WP are 
described by morphisms on the underlying circuit algebras that preserve the orientation on palettes.

Proposition 5.11. There are canonical inclusions of categories

X-CA X-MO

X-CA− X-MO−.

Proof. Since multiplicative units are unique, the vertical inclusions are full and induced by simply forgetting 
units.

Let (𝒜, π, η) : dBD(ℭ,ω) → X define a nonunital (ℭ, ω)-coloured circuit algebra. By Proposition 5.4, 𝒜
admits a contraction ζ such that (𝒜, π, η, ζ) satisfies (c1)-(c3).

Since (m2) coincides with (c2), and 𝒜 satisfies (e1), it is only necessary to check that (𝒜, ζ, ⋄) satisfies 
(m1), (m3), (m4).

Let 𝒃 = (b1, . . . , bn1), 𝒄 = (c1, . . . , cn2),𝒅 = (d1, . . . , dn3) ∈ list(ℭ) and all 1 ≤ i ≤ n1, 1 ≤ j, k ≤ n2 with 
j ̸= k and 1 ≤ m ≤ n3 such that bi = ωcj and ck = ωdm. The composition

𝒜(𝒃)⊗𝒜(𝒄)⊗𝒜(𝒅)
⋄i‡j
𝒃,𝒄⊗id𝒅 𝒜(𝒃î𝒄ĵ)⊗𝒜(𝒅)

⋄k′‡m
𝒃
î
𝒄
ĵ
,𝒅

𝒜(𝒃î𝒄ˆ︅j,k𝒅m̂)

is given by

ζk
′‡m′

𝒃î𝒄ĵ𝒅
◦ π𝒃î𝒄ĵ ,𝒅

◦
(︅
ζ
i‡(n1+j)
𝒃𝒄 ◦ π𝒃,𝒄 ⊗ id𝒜(𝒅)

)︅
where k′ = (n1 − 1) + k,m′ = (n1 + n2 − 2) + m. By (c1)-(c3) this is

ζk
′‡m′

𝒃î𝒄ĵ𝒅
◦ π𝒃î𝒄ĵ ,𝒅

◦
(︅
ζ
i‡(n1+j)
𝒃𝒄 ◦ π𝒃,𝒄 ⊗ id𝒜(𝒅)

)︅ (c3)= ζk
′‡m′

𝒃î𝒄ĵ𝒅
◦ ζi‡(n1+j)

𝒃𝒄𝒅 ◦ π𝒃𝒄,𝒅 ◦
(︁
π𝒃,𝒄 ⊗ id𝒜(𝒅)

)︁
(c1)= ζk

′‡m′
𝒃î𝒄ĵ𝒅

◦ ζi‡(n1+j)
𝒃𝒄𝒅 ◦ π𝒃,𝒄𝒅 ◦

(︁
id𝒜(𝒃) ⊗ π𝒄,𝒅

)︁ (c2)= ζi
′‡j′

𝒃𝒄k̂𝒅m̂
◦ ζ(n1+k)‡(n1+n2+m)

𝒃𝒄𝒅 ◦ π𝒃,𝒄𝒅 ◦
(︁
id𝒜(𝒃) ⊗ π𝒄,𝒅

)︁
(c3)= ζi

′‡j′
𝒃𝒄k̂𝒅m̂

◦ π𝒃,𝒄k̂𝒅m̂
◦
(︅
id𝒜(𝒃) ⊗ ζk‡m𝒄𝒅 ◦ π𝒄,𝒅

)︅
. 

And this is precisely the composition

𝒜(𝒃)⊗𝒜(𝒄)⊗𝒜(𝒅)
id𝒃⊗⋄k‡m

𝒄,𝒅 𝒜(𝒃)⊗𝒜(𝒄k̂𝒅m̂)
⋄i‡j′
𝒃,𝒄

k̂
𝒅m̂ 𝒜(𝒃î𝒄ˆ︅j,k𝒅m̂).

Hence (𝒜, ⋄, ζ) satisfies (m1). Axioms (m3) and (m4) follow similarly, whereby (𝒜, π, η) defines a modular 
operad. Hence, since ⋄ is obtained as a composition of ζ and π, this defines a functorial inclusion of categories 
X-CA− ↪→ X-MO−.

Finally, if 𝒜 extends to a functor from BD(ℭ,ω), it admits a unital multiplication (⋄, ϵ) with ⋄ defined as 
in (5.3) and ϵ induced by 𝒜(∪c). □
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Remark 5.12. The relationship between circuit algebras and modular operads observed in Proposition 5.11
generalises that between wheeled props and wheeled properads (cf. [48]).

The image of a wheeled prop (viewed as a circuit algebra with oriented palette) under the forgetful 
functor X-CA→ X-MO is its underlying wheeled properad (see [18,51]).

By Theorem 4.12, circuit algebras may be characterised categorically, as lax monoidal functors from a 
category of Brauer diagrams, or operadically, as algebras over an operad of wiring diagrams. By contrast, 
the modular operad structure is inherently operadic: modular operads cannot be described by functors from 
some subcategory of BD(ℭ,ω). They do, however, admit a straightforward description in terms of wiring 
diagrams:

A connected wiring diagram in f in WD(ℭ,ω) is one that cannot be obtained as a disjoint sum f = f1⊕f2
of non-trivial wiring diagrams as in (4.2). Note that this notion of connectedness only makes sense in the 
operad WD and not in the category BD. Connected wiring diagrams form a suboperad of WD (or WD(ℭ,ω)) 
and modular operads are algebras over this suboperad of connected wiring diagrams. See [37, Section 6] for 
more details.

In fact, the inclusions in Proposition 5.11 are the right adjoints in a square of monadic adjunctions. The 
left adjoints for the vertical pairs are obtained by formally adjoining units, and the left adjoints for the 
horizontal pairs are induced by the free graded monoid monad on the underlying symmetric graded objects. 
This is discussed in detail in [37].

6. Circuit algebras and invariant theory

Henceforth, unless otherwise stated, all circuit algebras will take values in the category Vect𝕜 of vector 
spaces over a field 𝕜 of characteristic 0.

Derksen and Makam [11] have described algebras over the finite dimensional general linear groups GLd

in terms of wheeled props. The aim of this section is to adapt their methods to provide a circuit algebra 
characterisation of the categories of algebras for the orthogonal and symplectic groups.

6.1. Unital circuit algebras and finite dimensional classical groups

An action of an algebraic group G on a (possibly infinite dimensional) 𝕜-vector space W is rational if for 
all w ∈W , there is a finite dimensional G-stable subspace Ww ⊂W containing w. In other words, there is a 
𝕜-linear morphism γ : W → 𝕜[G]⊗W such that, if γ(w) =

∑︁k
i=1 fi⊗wi, then G acts by g ·w =

∑︁k
i=1 fi(g)wi.

Definition 6.1. A G-algebra is a commutative 𝕜-algebra R equipped with a rational action of G by 𝕜-algebra 
automorphisms. The category of G-algebras and G-equivariant ring homomorphisms is denoted by Alg(G).

As in Example 4.14, let U be the initial Vect𝕜-valued wheeled prop and, for any wheeled prop P , let 
aP : U → P denote the unique wheeled prop map. Note that, for all k ≥ 0, there are distinguished morphisms 
e(k) =

∑︁
σ∈Σk

sgn(σ)σ ∈ U(k, k) and (⃝− k) ∈ U(0, 0).

Theorem 6.2 (Derksen-Makam   ‘23 [11], Theorems   5.2   &   7.3). There is an equivalence of categories between 
Alg(GLd) and the category of wheeled props P such that e(d+1) and ⃝−d are in the kernel of aP : U → P .

By Proposition 3.26, Theorem 6.2 may be restated in terms of oriented circuit algebras. Therefore, given 
the relationship between Theorems 3.29 and 3.31, it is natural to ask whether there is an undirected circuit 
algebra version of Theorem 6.2 that characterises algebras over the (finite dimensional) orthogonal and 
symplectic groups.
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To this end, let V be a (finite) d-dimensional vector space equipped with a nondegenerate bilinear form 
θ : V ⊗ V → 𝕜 that is either symmetric or skew-symmetric (so d = 2k). As in Section 3.3, let δ = d if θ
is symmetric, and δ = −k if θ is skew-symmetric. If G ⊂ GL(V ) is the isometry group of θ, then for θ
symmetric, G ∼ = Oδ and, for θ skew-symmetric G ∼ = Sp(−δ).

As in Example 4.15, let ℐθ ⊂ 𝒰 be the ideal generated by ⌊e(|δ|+ 1)⌋ ∈ 𝒰(2(|δ|+ 1)) (defined in (4.16)) 
and (⃝− δ) ∈ 𝒰(0). Let CAθ ⊂ Vect𝕜-CA be the subcategory of (monochrome Vect𝕜-) circuit algebras 𝒜
such that ℐθ is in the kernel of the unique circuit algebra morphism α𝒜 : 𝒰 → 𝒜.

The remainder of this section is devoted to the proof of the following theorem:

Theorem 6.3. The categories Alg(G) and CAθ are equivalent.

By Lemma 3.27, a circuit algebra 𝒜 such that 𝒜(⃝) = δ factors through Brδ. Hence, Theorem 6.3
may be reformulated as the statement that Alg(G) is equivalent to the category of symmetric monoidal 
Vect𝕜-functors Brδ → Vect𝕜 for which e(|δ|+ 1) ∈ Brδ(|δ|+ 1, |δ|+ 1) vanishes.

The proof of Theorem 6.3 is closely based on the proof method of [11, Sections 5-7] and involves showing 
that Alg(G) and CAθ are each equivalent to a third category Kθ that will now be described.

Recall from Example 4.15 that 𝒱θ : BD→ Vect𝕜 is the circuit algebra described by the unique symmetric 
strict monoidal functor such that 1 ↦→ V and ∩ ↦→ θ. For any 𝕜-algebra R, we may construct a circuit 
algebra R⊗ 𝒱θ with (R⊗ 𝒱θ)(n) = R⊗ V ⊗n in the obvious way: contraction in 𝒱θ extends to R⊗ 𝒱θ, and 
the monoidal product on R⊗ 𝒱θ is induced by(︉

(
∑︂

i 
ri ⊗ vi), (

∑︂

j

rj ⊗ vj)

)︉
↦→

∑︂

i,j 
rirj ⊗ (vi ⊗ vj).

Let Kθ be the full subcategory of Vect𝕜-CA whose objects are circuit algebras 𝒜 such that there exists a 
𝕜-algebra R and an injective morphism of circuit algebras 𝒜 ↪→ R⊗ 𝒱θ.

For R ∈ Alg(G), the subspace 
⨁︁

n(R⊗ V ⊗n)G of G-invariant elements in the image of R⊗ 𝒱θ is closed 
under the image of BD morphisms by Theorem 3.29, and hence describes a circuit algebra (R⊗𝒱θ)G. And, 
if ϕ : R→ S is a G-algebra homomorphism, then the induced morphism of circuit algebras ϕ⊗ id : R⊗𝒱θ →
S ⊗ 𝒱θ is G-equivariant. Hence, the assignment R ↦→ (R⊗ 𝒱θ)G extends to a functor Φ : Alg(G)→ Kθ.

The construction of the converse functor Ψ : Kθ → Alg(G) is more involved.
Let R be a 𝕜-algebra. For each n ∈ N, the pairing θ on V extends to a pairing V ⊗n ⊗ V ⊗n → 𝕜 by

v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wn ↦→
n ∏︂

i=1
θ(vi, wi),

and hence to a 𝕜-algebra map R⊗ V ⊗n ⊗ V ⊗n → R that will also be denoted by θ.
For any morphism ρ : 𝒜 → R⊗𝒱θ of circuit algebras, we may consider the subspace Tρ ⊂ R spanned by 

elements of the form θ(ρ(a), v), where a ∈ 𝒜(n) if v ∈ V ⊗n. This is a 𝕜-algebra since

θ(ρ(a), v)θ(ρ(b), w) = θ(ρ(a)⊗ ρ(b), v ⊗ w)

for all a, b ∈ 𝒜 and v, w ∈ 𝒱θ such that θ(ρ(a), v), θ(ρ(b), w) are defined.
Observe that ρ : 𝒜 → R ⊗ 𝒱θ factors through the inclusion Tρ ⊗ 𝒱θ ↪→ R ⊗ 𝒱θ induced by Tρ ⊂ R: 

Namely, for any non-zero w ∈ V ⊗n, let w∗ ∈ V ⊗n be the element defined by θ(w,w∗) = 1. Since (V, θ) is an 
orthogonal (or symplectic) space then, for all n there exists a basis (wi)i for V ⊗n such that for all a ∈ 𝒜(n),

ρ(a) =
∑︂

i 
θ(ρ(a), w∗

i )⊗ wi ∈ Tρ ⊗ V ⊗n.
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Assume now that ρ : 𝒜 → R ⊗ 𝒱θ is, moreover, an injective morphism of circuit algebras. Then, the 
subspace Tρ ⊂ R has the following universal property (cf., [11, Lemma 5.1]):

Lemma 6.4. If ρ : 𝒜 → R⊗ 𝒱θ is injective, then, for any 𝕜-algebra S and morphism λ : 𝒜 → S ⊗ 𝒱θ in CA, 
there is a unique 𝕜-algebra homomorphism ϕ : Tρ → S such that the following diagram commutes

𝒜 ρ

λ

Tρ ⊗ 𝒱θ
ϕ⊗id

S ⊗ 𝒱θ.

(6.5)

Moreover, Tρ ∈ Alg(G) and the assignment 𝒜 ↦→ Tρ extends to a functor Ψ : Kθ → Alg(G).

Proof. Let S be a 𝕜-algebra and let λ : 𝒜 → S ⊗ 𝒱θ be a circuit algebra morphism.
For all n ∈ N, there exist wi ∈ V ⊗n such that, for all a ∈ 𝒜(n),

ρ(a) =
∑︂

i 
θ(ρ(a), w∗

i )⊗ wi and λ(a) =
∑︂

i 
θ(λ(a), w∗

i )⊗ wi.

Since ρ is injective, the elements ϕ(θ(ρ(a), w∗
i ))

def= θ(λ(a), w∗
i ) ∈ S are well-defined. This assignment extends 

linearly to a unique 𝕜-algebra homomorphism ϕ : Tρ → S such that Diagram (6.5) commutes.
Following [11, Proof of Lemma 5.1], to obtain a G-algebra structure on Tρ, let γ𝒱θ

: 𝒱θ → 𝕜[G]⊗𝒱θ describe 
the rational G-action on 𝒱θ. By the universal property of Tρ, there is a unique 𝕜-algebra homomorphism 
μ : Tρ → Tρ ⊗ 𝕜[G] such that the following diagram commutes:

𝒜 ρ

ρ

Tρ ⊗ 𝒱θ
id⊗γ𝒱θ

Tρ ⊗ 𝒱θ
μ⊗id

Tρ ⊗ 𝕜[G]⊗ 𝒱θ.

(6.6)

In particular, μ defines a rational right action of G on Tρ such that, if μ(r) =
∑︁

i ri ⊗ f ′
i , then r · g =∑︁

i rifi(g), and hence a rational left action of G on R by g · r = r · g−1.
Finally, observe that, if ρ : 𝒜 → R ⊗ 𝒱θ and λ : 𝒜 → S ⊗ 𝒱θ are both injective morphisms of circuit 

algebras, then it follows from the universal property that ρ(a) ↦→ λ(a) induces an isomorphism Tρ
∼ = Tλ. 

Hence, we may define T𝒜 ∼ = Tρ to be the limit of Tρ where ρ varies over all injective circuit algebra morphisms 
of the form 𝒜 ↪→ R⊗ 𝒱θ (with R a 𝕜-algebra).

By (6.6), if 𝒜,ℬ ∈ Kθ, then T𝒜, Tℬ ∈ Alg(G) and, if γ : 𝒜 → ℬ is a morphism of circuit algebras, then, 
by the universal property (6.5), there is a 𝕜-algebra morphism T𝒜 → Tℬ that commutes with the G-algebra 
structure by construction. Hence, 𝒜 ↦→ T𝒜 extends to a functor Ψ : Kθ → Alg(G). □
Proposition 6.7. The functors Φ : Alg(G) ⇆ Kθ : Ψ define an equivalence of categories.

Proof. The proof follows that of [11, Theorem 5.2].
To see that Φ ◦ Ψ is equivalent to the identity functor on Kθ, observe first that, if ρ : 𝒜 → R ⊗ 𝒱θ is 

an injective morphism of circuit algebras with R a 𝕜-algebra, then its image ρ(𝒜) is invariant under the 
G-action on Tρ ⊗ 𝒱θ: Namely, for g ∈ G, let Lg and Rg respectively define left and right multiplication by 
g in Tρ and 𝒱θ. So G acts on Tρ ⊗ 𝒱θ by g ↦→ Lg ⊗ Lg = Rg−1 ⊗ Lg. By (6.6) above,
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(Lg ⊗ Lg) ◦ ρ = (Rg−1 ⊗ Lg) ◦ ρ = (id⊗ Lg) ◦ (Rg−1 ⊗ id) ◦ ρ = (id⊗ Lg) ◦ (id⊗ Lg−1) ◦ ρ = ρ.

So, ρ(𝒜) is G-invariant in (Tρ ⊗ 𝒱θ).
To prove that (Tρ ⊗ 𝒱θ)G ⊂ ρ(𝒜) and therefore ρ(𝒜) = (Tρ ⊗ 𝒱θ)G, let u ∈ Tρ ⊗ V ⊗n. So,

u =
∑︂

i 
θ(ρ(ai), vi)⊗ wi with ai ∈ 𝒜(ni), vi ∈ V ⊗ni and wi ∈ V ⊗n.

Writing fi
def= θ(−, vi)⊗ wi : V ⊗ni → V ⊗n, gives u =

∑︁
i fi(ρ(ai)).

The elements ρ(ai) are G-invariant since ρ(𝒜) ⊂ (Tρ⊗𝒱θ)G. So, if u(Tρ⊗𝒱θ)G is also G-invariant, then, 
by applying the Reynolds operator to u and 

∑︁
fi(ρ(ai)), each fi may also be assumed to be G-invariant. 

Hence, by Theorem 3.29, fi is a linear combination of morphisms in the image of 𝒱θ : BD→ Vect𝕜 whereby 
u ∈ ρ(𝒜) and ρ(𝒜) = (Tρ ⊗ 𝒱θ)G.

In particular, since ρ is injective, 𝒜 ∼ = (Tρ ⊗ 𝒱θ)G. It follows from the definitions of Φ and Ψ that this 
extends to an equivalence of functors Φ ◦Ψ ≃ idKθ

.
For the converse, let R ∈ Alg(G). Let ρ : (R⊗𝒱θ)G ↪→ R⊗𝒱θ denote the inclusion. This factors through 

Tρ ⊗ 𝒱θ, where Tρ ⊂ R is a G-subalgebra. In particular, restricting ι⊗ id𝒱θ
to G-invariant subspaces gives 

(Tρ ⊗ 𝒱θ)G = (R⊗ 𝒱θ)G = Φ(R).
Since Tρ

∼ = (Ψ ◦ Φ)(R), we want to show that Tρ = R. Let ι : Tρ → R denote the inclusion. This is 
a morphism of G-algebras by Lemma 6.4. In particular, Tρ

∼ = 
⨁︁

W TW and R ∼ = 
⨁︁

W RW , where the 
sum is over all irreducible G-representations W , and TW ⊂ Tρ and RW ⊂ R are the corresponding W
isotypic components of Tρ and R. Since ι preserves G-subrepresentations, it follows that ι =

⨁︁
W ιW where 

ιW : TW → RW is the restriction.
Hence, to show that Tρ = R, it suffices to show that ιW is an isomorphism for all irreducible representa

tions W of G.
Let W ⊂ V ⊗n be an irreducible representation. Then θ : (RW ⊗W )G ⊗W → R induces isomorphisms 

(RW ⊗W )G ⊗W ∼ = RW and (TW ⊗W )G ⊗W ∼ = TW , and hence there is an equivariant map ψW : (Tρ ⊗
W )G⊗W → (R⊗W )G⊗W -- of the form ψW = ψ̃W ⊗ idW for some ψ̃W : (Tρ⊗W )G → (R⊗W )G -- such 
that the following diagram commutes

TW

ιW

∼ = 

TW

∼ = 

(Tρ ⊗W )G ⊗W
ψW

(R⊗W )G ⊗W.

(6.8)

Since ιW is injective, so is ψ̃W . Hence, by the universal property of Tρ, ψ̃W is the restriction to (Tρ⊗W )G
of ι ⊗ idW and therefore an isomorphism. Therefore TW = RW for all irreducible representations W of G
whereby R = Tρ

∼ = (Ψ ◦ Φ)(R) in Alg(G).
This extends, by G-equivariance of morphisms in Alg(G) and Kθ, to an equivalence of functors Ψ ◦ Φ ≃

idAlg(G), and therefore the categories Alg(G) and Kθ are equivalent. □
It remains to prove that Kθ is also equivalent to CAθ. As in [11, Proposition 5.3 & Remark 5.4], this rests 

on the following:

Lemma 6.9. If 𝒜 ∼ = (R⊗ 𝒱θ)G for some R ∈ Alg(G) and 𝒥 ⊂ 𝒜 is a circuit algebra ideal, then there exists 
an ideal J ⊂ R such that 𝒥 = (J ⊗ 𝒱θ)G.

Furthermore, if 𝒜 ∈ Kθ and ϕ : 𝒜 → ℬ is a morphism of circuit algebras, then ϕ(𝒜) ∈ Kθ.
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Proof. Let R be a G-algebra and 𝒜 = (R ⊗ 𝒱θ)G its image under Φ. Let ρ : 𝒥 ⊂ 𝒜 be the inclusion of a 

circuit algebra ideal and J
def= Tρ ⊂ R. By the proof of Proposition 6.7, 𝒥 ∼ = (J ⊗ 𝒱θ)G as circuit algebras. 

To show that J is an ideal of R, let r ∈ R and let u =
∑︁

j θ(ρ(βj), wj) -- with βj ∈ 𝒥 (mi) and wj ∈ V ⊗mj

– be an element of J . By the proof of Proposition 6.7, r =
∑︁

i θ(αi, vi) for some αi ∈ 𝒜(ni), vi ∈ V ⊗ni . 
Hence,

ru =
∑︂

i,j 
θ(αi, vi)θ(ρ(βj), wj) =

∑︂

i,j 
θ(αi ⊗ ρ(βj), vi ⊗ wj).

Since 𝒥 ⊂ 𝒜 is a circuit algebra ideal, αi ⊗ ρ(βj) ∈ 𝒥 for all i, j, and therefore ru ∈ J , whereby J is an 
ideal of R.

For the second statement, let ϕ : 𝒜 = (R ⊗ 𝒱θ)G → ℬ be a morphism of circuit algebras with kernel 
𝒥 ⊂ 𝒜. So, there is an isomorphism ϕ(𝒜) ∼ = 𝒜/𝒥 of circuit algebras.

Let ι : J ↪→ R denote the inclusion of the ideal J such that 𝒥 ∼ = (J ⊗ 𝒱θ)G, and let q : R → R/J be the 
quotient. The inclusion 𝒥 ↪→ 𝒜 is given by the restriction to (J ⊗ 𝒱θ)G of ι⊗ id𝒱θ

.
Then the following diagram -- where the vertical arrows are inclusions -- commutes:

0 𝒥
ι⊗id𝒱θ

|𝒥 𝒜 𝒜/𝒥 0

0 J ⊗ 𝒱θ
ι⊗id𝒱θ

R⊗ 𝒱θ
q⊗id𝒱θ

R/J ⊗ 𝒱θ 0.

(6.10)

It follows that 𝒜/𝒥 is isomorphic to the image of the restriction to 𝒜 = (R ⊗ 𝒱θ)G of the quotient 
q⊗ id𝒱θ

: R⊗𝒱θ → R/J ⊗𝒱θ. Since ι : J → R, and hence also q : R→ R/J , is G-equivariant, so is q⊗ id𝒱θ
. 

Hence, the image of its restriction to 𝒜 is G-invariant, and therefore 𝒥 ⊂ (R/J ⊗ 𝒱θ)G is in Kθ and the 
lemma is proved. □
Proposition 6.11. The categories Kθ and CAθ are equivalent.

Proof. For all G-algebras R, since ⌊e(|δ|+ 1)⌋ and ⃝− δ are in the kernel of αθ : 𝒰 → 𝒱θ, they are in the 
kernel of the unique circuit algebra morphism z : 𝒰 → (R ⊗ 𝒱θ)G. It follows, from Proposition 6.7, that Kθ

is a full subcategory of CAθ. It therefore suffices to show that each 𝒜 ∈ CAθ is equivalent to some object of 
Kθ. The proof follows that of [11, Theorem 7.3].

Let 𝒜 ∈ CAθ with underlying graded set A = (An)n and let 𝒰⟨A⟩ be the free Vect𝕜-circuit algebra 
generated by A (Definition 4.18). Then, there is a circuit algebra ideal ℐ ⊂ 𝒰⟨A⟩ such that 𝒜 ∼ = 𝒰⟨A⟩/ℐ. If 
ℐθ ⊂ 𝒰⟨A⟩ is the ideal generated by ⌊e(d + 1)⌋ and ⃝− δ, and ℬ def= 𝒰⟨A⟩/ℐθ, then ℐθ ⊂ ℐ since 𝒜 ∈ CAθ. 
So, there exists a circuit algebra ideal 𝒥 ⊂ ℬ such that 𝒜 ∼ = ℬ/𝒥 .

To prove the proposition, it therefore suffices (by Lemma 6.9) to show that there is a 𝕜-algebra R and 
an inclusion of circuit algebras ℬ ⊂ R⊗ 𝒱θ.

So, let {e1, . . . , ed} be a basis for V and, for each n, let {ej1,...,jn}1≤ji≤d denote the induced basis for 
V ⊗n. For each α ∈ An ⊂ A, introduce formal variables {aαj1,...,jn}(j1,...,jn)∈{1,...,d}n and define

R
def= 𝕜[aαj1,...,jn |(j1, . . . , jn) ∈ {1, . . . , d}n, α ∈ An, n ∈ N].

Then, the circuit algebra morphism ρ : ℬ → R⊗ 𝒱θ given by

α ↦→
∑︂

(j1,...,jn)

aαj1,...,jn ⊗ ej1,...,jn , α ∈ An
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is well defined since Iθ vanishes in 𝒱θ and therefore also in R⊗𝒱θ. Moreover, by Theorem 3.29, ρ is injective. 
Hence ℬ ∈ Kθ and therefore, by Lemma 6.9, so is 𝒰⟨A⟩/ℐ ∼ = 𝒜.

It follows that CAθ ≃ Kθ as required. □
Theorem 6.3 follows immediately from Propositions 6.7 and 6.11.

Remark 6.12. The ideals of the initial Vect𝕜-wheeled prop U are classified in [11, Section 4], and the ideals 
of the initial circuit algebra 𝒰 may be similarly described. It is therefore natural to whether there are 
interesting statements, analogous to Proposition 6.7, that consider quotients of 𝒰 by different ideals, and 
whether this leads to a (partial) classification of monochrome (oriented) circuit algebras via duality results 
like Theorem 6.3 and Theorem 6.2.

6.2. Nonunital circuit algebras and representations of infinite dimensional groups

As in Remark 3.33, let G∞ =
⋃︁

d Gd be the infinite dimensional orthogonal or symplectic group with 

standard representation 𝑽 =
⋃︁

d Vd and induced symmetric (or skew-symmetric) form 𝜽
def= 

⋃︁
d θd. For all 

d ≥ 0, θd is a nondegenerate (orthogonal or symplectic) form on the finite dimensional space Vd and θd+1

restricts to θd on Vd ⊂ Vd+1. An algebra W over G∞ is, in particular, an algebra over Gd for all d ≥ 1. 
Hence by Proposition 6.7, there is a compatible sequence of circuit algebras (𝒜d)d with 𝒜d

def= (W ⊗𝒱θd)Gd

d .
For d ≥ 0, let 𝒱θd be the nonunital circuit algebra given by the restriction of 𝒱θd to dBD. Since 𝒱θd : dBD→

Vect𝕜 is a strict monoidal functor, 𝒱θd is the unique extension of 𝒱θd to BD.
As in Remark 3.33, let 𝑭 : dBD→ Vect𝕜 be the strict symmetric monoidal functor 1 ↦→ 𝑽 , ∩ ↦→ 𝜽. Then 

𝑭 = colimd𝒱θd and is G∞-equivariant. In particular, for each d ≥ 0, there is a morphism of nonunital circuit 
algebras pd : 𝑭 → 𝒱θd that commutes with the actions of G∞ and Gd on either side.

Let K̃𝜽 be the category of nonunital circuit algebras 𝒜 for which there exists a 𝕜-algebra R and an 
inclusion of nonunital circuit algebras ρ : 𝒜 ↪→ R⊗ 𝑭 .

Theorem 6.13. There is an equivalence of categories ˜︁K𝜽 ≃ Alg(G∞).

Proof. Given a G∞-algebra R, we may construct the nonunital circuit algebra (R ⊗ 𝑭 )G∞ ∈ ˜︁K𝜽. The 
assignment R ↦→ (R⊗ 𝑭 )G∞ clearly extends to a functor Φ̃ : Alg(G∞)→ ˜︁K𝜽.

Conversely, let R be a 𝕜-algebra and let ρ : 𝒜 → R⊗ 𝑭 be an inclusion of nonunital circuit algebras.
Let T̃ be the space generated by 𝜽(ρ(a), v) for all a ∈ 𝒜(n), v ∈ 𝑭 (n) and all n ∈ N. This is a 𝕜-algebra 

as 𝜽(ρ(a), v)𝜽(ρ(b), w) = 𝜽(ρ(a)⊗ ρ(b), v ⊗ w).
To show that T̃ is a G∞-algebra, observe that, since 𝒱θd admits a unique extension to a circuit algebra 

(namely 𝒱θd) for all d, there is an increasing sequence of circuit algebras (R⊗𝒱θd)d. Moreover, for all d ≥ 0, 
there is an injection 𝒜/kerd → R ⊗ 𝒱θd of nonunital circuit algebras, where kerd ⊂ 𝒜 is the kernel of the 
nonunital circuit algebra morphism ρd = pd ◦ ρ : 𝒜 → R⊗𝒱θd . Since ρ is an injection, kerd does not depend 
on R.

As 𝒱θd admits a unique extension to a circuit algebra (namely 𝒱θd), so does 𝒜/kerd. Let 𝒜d be the circuit 
algebra so defined. Then there is an inclusion 𝒜d ↪→ R ⊗ 𝒱θd and hence, by Proposition 6.7, there is a Gd

algebra Td ⊂ R such that 𝒜d
∼ = (Td ⊗ 𝒱θd)Gd .

Moreover, Td is generated by elements of the form 𝜽(ρ(a), v) for all a ∈ 𝒜d(n), v ∈ 𝒱θd(n) = 𝒱θd(n) and 
all n ∈ N and is, up to isomorphism, independent of R.

It follows, in particular, that T̃ =
⋃︁

d Td describes a filtration and hence T̃ is independent of R and a G∞

algebra. The assignment 𝒜 ↦→ T̃ clearly extends to a functor Ψ̃ : ˜︁K𝜽 → Alg(G∞) and Φ̃ : Alg(G∞) ⇆ ˜︁K𝜽 : Ψ̃
describes an equivalence of categories by Proposition 6.7 and the constructions of Φ̃, Ψ̃. □
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A directed version of Theorem 6.13, relating nonunital wheeled props and GL∞-algebras may be obtained 
by similarly modifying the results of [11].
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