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A B S T R A C T

Research in behavioral biometrics, especially keystroke and mouse behavioral biometrics, has increased in recent 
years, gaining traction in industry and academia across various fields, including the detection of emotion, age, 
gender, fatigue, identity theft, and online assessment fraud. These methods are popular because they collect data 
non-invasively and continuously authenticate users by analyzing unique keystroke or mouse behavior. However, 
user behavior evolves over time due to several underlying factors. This can affect the performance of current 
keystroke and mouse behavioral biometric-based user authentication systems. We comprehensively survey 
current keystroke and mouse behavioral biometric approaches, exploring their use in user authentication and 
other real-world applications while outlining trends and research gaps. In particular, we investigate whether 
current approaches compensate for user behavior evolution. We find that current keystroke and mouse behav
ioral biometrics approaches cannot adapt to user behavior evolution and suffer from limited efficacy. Our survey 
highlights the need for new and improved keystroke and mouse behavioral biometrics approaches that can adapt 
to user behavior evolution. This study will assist researchers in improving current research efforts toward 
developing more secure, effective, sustainable, robust, adaptable, and privacy-preserving keystroke and mouse- 
behavioral biometric-based authentication systems.

1. Introduction

Authentication is establishing the integrity of one’s identity before 
accessing critical services, information, or resources to which one is 
entitled. In other words, it is a fundamental system that ensures the 
confidentiality, integrity, and accessibility of resources (Andrean et al., 
2020; Albalawi et al., 2022). Current user authentication systems use 
passwords or a combination of factors to identify users, mainly during 
log-in time (Andrean et al., 2020; Ometov et al., 2018; Lucia et al., 
2023). Using passwords with other authentication factors for user 
authentication does not diminish the possibility of identity fraud, as the 
user, once authenticated, may not be the one currently accessing the 
system (Lucia et al., 2023). Continuous Authentication (CA) can over
come this weakness by regularly verifying user identity during an active 
session (Mondal and Bours, 2013). Research in keystroke and mouse 
behavioral biometric-based authentication systems has gained traction 
for this specific application (Siddiqui et al., 2021; Subash et al., 2023). 
Furthermore, these systems can be realized effortlessly due to the ease of 
data collection and minimalistic hardware requirements (Babich, 2012; 

Zheng et al., 2011).
The rising occurrence of phishing and identity theft underscores the 

urgent need for enhanced cybersecurity measures (DeLiema et al., 2020; 
Guedes et al., 2023). This is particularly true for sophisticated and 
cutting-edge authentication systems. The popularity of keystroke and 
mouse behavioral biometrics comes when cybersecurity attacks, such as 
phishing and identity theft, are rising. Identity theft is the intentional, 
unauthorized, and unlawful use of a person’s identity for malicious ac
tivities (Guedes et al., 2023). According to a recent report from Javelin 
Strategy, total losses associated with identity theft amount to USD 43 
billion. This figure includes losses due to traditional identity fraud and 
scams orchestrated by criminals (Sando, 2024). Similarly, phishing at
tacks have also become equally widespread. Such attacks deceive users 
into revealing confidential information by posing as legitimate entities. 
As per the Anti-Phishing Working Group (APWG) reports, the total 
number of unique phishing attacks detected as of 2023 amounts to ~4.9 
million attack instances. This figure has risen from ~2.8 million unique 
phishing attacks detected in 2021. This represents a 75 % increase in 
phishing attacks detected in just two years.
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Keystroke and mouse behavioral biometric-based authentication 
methods can alleviate this problem by providing a more secure alter
native to conventional password or one-time authentication methods. 
This is due to their ability to effectively perform CA non-invasively 
(Siddiqui et al., 2021; Subash et al., 2023). For example, a system an
alyzes users’ keystroke and mouse behavioral patterns and creates 
unique profiles for each user to continuously authenticate the users 
during their interaction with the system (Albalawi et al., 2022). Since 
authentication is performed based on user behavior, it becomes hard to 
reproduce and spoof the system, thereby making it secure (Siddiqui 
et al., 2021; Albalawi et al., 2022). However, studies have claimed that 
user behavior evolves over time due to various underlying factors (Jain 

and Pankanti, 2006; Ceker and Upadhyaya, 2016; Mhenni et al., 2019a; 
Subash and Song, 2021). Since current keystroke and mouse behavioral 
biometric-based authentication systems analyze behavior, changes in 
behavior can cause a rise in false positives, making the current ap
proaches less effective.

Therefore, we comprehensively survey current keystroke and mouse 
behavioral biometric approaches, exploring their use in user authenti
cation and other real-world applications, such as online assessment 
fraud detection, while outlining trends and research gaps. In particular, 
we investigate their adaptability to user behavior evolution. As an 
additional contribution, we will also compare our survey to previously 
published surveys to show the comprehensive nature of our study.

Fig. 1. PRISMA flow diagram illustrating keyword search and exclusion criterion.

A. Subash et al.                                                                                                                                                                                                                                 Computers & Security 160 (2026) 104731 

2 



2. Preliminaries and initial concepts

2.1. Inclusion and exclusion criteria

The Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) flow diagram was employed to identify and screen 
articles from databases and registers through a three-step process: 

1. Identification: We meticulously analyzed 105 articles sourced from 
major publishers, including IEEE, ACM, Elsevier, Wiley, arXiv, and 
Springer (Fig. 1). Several articles published between 2009 and 2024, 
including empirical research, surveys, and literature reviews 
focusing on conventional authentication systems, physiological bio
metrics, and behavioral biometrics, were selected for our analysis.

2. Screening: Out of the 105 articles identified, 24 articles were 
excluded as they were found to be outside the scope of research, 
related to topics such as physiological biometric modalities, 
authentication protocols, user profile-based multimodal authentica
tion systems, and conventional authentication systems. Furthermore, 
duplicate survey papers were also excluded. The main objective of 
this survey is to perform a comprehensive study of keystroke and 
mouse behavioral biometrics and give a detailed review of trends, 
research gaps, and future work in the field. In particular, we inves
tigate the adaptability of current keystroke and mouse behavioral 
biometric research methods toward user behavior evolution. This 
survey article mainly includes empirical and qualitative research on 
keystroke and mouse behavioral biometrics.

3. Final Selection: The remaining articles are evaluated based on their 
relevance to the research topic, the data utilized for analysis, the 
details of the experimental methodology, and the evaluation metrics 
used by them. After a comprehensive evaluation, the 81 articles 
screened were finally selected for further analysis.

2.1.1. Biometric-Based authentication systems
Biometric authentication systems rely on the unique physiological 

and behavioral characteristics of individuals to verify their identity, 
addressing the limitations of traditional knowledge-based (e.g., pass
words/PINs) and ownership-based (e.g., key cards/ cryptographic keys) 
authentication systems (Ometov et al., 2018; Zheng et al., 2011; Subash 
and Song, 2021). Conventional authentication systems are widely 
deployed but are susceptible to cybersecurity threats such as dictionary 
attacks, rainbow table attacks, and social engineering (Wang and Wang, 
2015; Deb Das et al., 2013; Heartfield and Loukas, 2016). Physical 
authentication tokens, such as key cards, are also prone to being lost or 
stolen, further exposing users to potential security breaches (Zheng 
et al., 2011).

In contrast, biometric authentication systems leverage inherent and 
immutable traits of users, such as fingerprints, facial features, or 
behavioral patterns, making them a more secure alternative (Zheng 
et al., 2011; Jain and Pankanti, 2006). Biometric authentication can be 
classified into physiological and behavioral biometrics (Albalawi et al., 
2022; Babich, 2012; Subash and Song, 2021). Physiological biometrics 
rely on physical traits, including fingerprints, facial recognition, and iris 
scans, unique to each individual (Albalawi et al., 2022; Babich, 2012; 
Jain et al., 2006). On the other hand, behavioral biometrics analyze 
dynamic behavioral traits, such as typing rhythms, mouse movement 
patterns, and touchscreen gestures, to identify users non-invasively and 
continuously (Babich, 2012; Zheng et al., 2011; Jain et al., 2006). In 
addition to the aforementioned modalities, behavioral biometrics also 
analyzes voice, gait patterns, eye movement, and widget interaction for 
user authentication (Fig. 2). Behavioral biometrics offers several ad
vantages over physiological biometrics, including continuously veri
fying user identity using commonly available input devices, such as 
keyboards, mouse pointers, microphone sensors, and cameras, making it 
more inexpensive, accessible, and practical (Zheng et al., 2011).

3. Keystroke behavioral biometrics

Keystroke behavioral biometric-based systems analyze users’ typing 
patterns on digital devices to create a unique signature for user 
authentication (Albalawi et al., 2022). Over the years, there has been a 
sharp increase in research in the field due to its ability to perform CA 
non-invasively, specifically since the 1980s (Albalawi et al., 2022; 
Kochegurova and Martynova, 2020). Gaines (1980) was the first to 
propose the technology by developing the first automated keystroke 
dynamic-based recognition system. Since then, significant advance
ments have been made by implementing Machine Learning (ML) and 
Deep Learning (DL) approaches (Subash et al., 2023; Maheshwary et al., 
2017).

Based on preliminary analysis, we confirm that keystroke behavioral 
biometric-based authentication was performed for two primary pur
poses: user authentication and identification (Messerman et al., 2010; 
Banerjee and Woodard, 2012). User authentication involves extracting 
sample keystroke features and comparing them with the features in a 
database to perform a one-on-one match to confirm the subject’s iden
tity. The process will verify whether the user is who they claim to be, 
either approving or rejecting the claimed identity, i.e., classifying the 
subject as an imposter (0) or genuine (1). On the other hand, user 
identification is identifying a particular user from a list of given users. 
This process looks through the entire database to find the user to whom 
the keystroke belongs (Messerman et al., 2010; Banerjee and Woodard, 
2012).

3.1. Types of keystroke behavioral biometric datasets

Keystroke behavioral biometric datasets generally fall under static 
and dynamic datasets. Static datasets collect data by requesting users to 
enter a predetermined text of fixed length, which can be the same or 
different for each user. Analysis of static text is performed in systems 
with no scope for further text entry, mainly during the log-in phase. On 
the other hand, dynamic datasets collect free-form text that reflects real- 
world scenarios and enables CA. This type of data collection does not 
restrict the user on what is typed and is performed while users engage in 
their daily activities without restriction (Messerman et al., 2010; 
Banerjee and Woodard, 2012).

The description of several datasets implemented in keystroke 
behavioral biometric analysis is described below: 

Fig. 2. Categorization of biometric authentication methods and main focus.
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1) Public Datasets
A. CMU Benchmark Dataset: Collected keystroke data (Killourhy and 
Maxion, 2009) from 51 subjects who typed a predetermined pass
word 50 times each session. Data was collected over 8 sessions, 
during which each subject provided 400 samples of keystroke data. 
Keystroke behavior data were collected from 30 males and 21 fe
males, of whom eight were left-handed and 43 were right-handed. 
The median age group was 31–40, the youngest was 18–20, and 
the oldest was 61–70. According to the author, each subject’s session 
took between 1.25 and 11 min, with the median session time being 3 
min (Killourhy and Maxion, 2009).
B. Teh dataset: Collected keystroke data from 150 subjects, of which 
132 belong to the public, while the rest are from academia. Data 
collection is facilitated using an Android application where subjects 
entered one 16-digit (1379,666,624,680,852) and one 4-digit PIN 
(5560). Specifically, they entered each PIN 10 times, contributing 20 
samples each. Furthermore, subjects could choose which location to 
perform the activity (Maiorana et al., 2019).
C. Antal Dataset: The author collected keystroke data from 54 sub
jects who typed 3 different passwords, including easy, logically 
strong, and strong passwords, in 3 sessions, providing 60 samples 
each. Five of the 54 subjects were female, and 49 were male. Ac
cording to the author, the subjects also participated in a de
mographic and experience survey (Antal and Nemes, 2016).
D. Coakley Dataset: Collected keystroke data from 52 subjects. The 
sample size is selected from a set of computer users, accounting for 
two-thirds of the undergraduate population enrolled in introductory 
computing courses and one-third of the working professionals. Each 
subject typed a 10-digit string (9141,937,761) 30 times (Coakley 
et al., 2016).
E. Android Dataset: Collected static keystroke data from 42 subjects 
using an Android application. Subjects were required to type a pre
determined password 30 times during two sessions. Of the 42 sub
jects, 24 were males, and 18 were females (Antal et al., 2015).
F. WEBGREYC Dataset: This is another publicly available keystroke 
dataset collected by Giot et al. (2012) from 45 subjects who typed the 
same password, SESAME.
G. Aalto University Dataset: This dataset contains two parts: 1) The 
Dhakal et al. (2018) dataset that contains desktop keystroke data 
collected from a sample size of 168,000 subjects, and 2) The Palin 
et al. (2019) dataset comprising of mobile keystroke data collected 
from a sample size of 260,000 subjects. The same data collection 
procedure was implemented for both datasets, based on controlled 
free text. The data acquisition procedure required subjects to 
memorize English sentences and reproduce them as accurately as 
possible. These sentences were chosen from 1525 sentences acquired 
from Enron Mobile Email and Gigaword Newswire Corpus. Data 
collection was conducted using a web application.
H. The Clarkson 2 Dataset: This dataset was collected by Murphy 
et al. (2017) and contains free-form keystroke data from 103 subjects 
typing on a desktop keyboard over a long period (2.5 years) in a 
completely uncontrolled scenario.
I. Buffalo Dataset: Collected by Yan Sun et al. (2016), comprising 
desktop keystroke data from 148 subjects. Subjects were required to 
participate in 3 data collection sessions spanning 28 days. Each 
session required the subjects to complete two tasks: transcribing a 
pre-defined text and answering free-text questions. The dataset 
contains two subsets of data: 1) baseline and 2) keyboard variation 
data. In the baseline, subjects participated in 3 sessions using the 
same keyboard and used 3 different types of keyboards while col
lecting the keyboard variation data for 3 sessions.
J. HMOG Dataset: The hand movement, orientation, and grasp 
(HMOG) dataset uses accelerometer, gyroscope, and magnetometer 
readings to capture subtle hand micro-movements while participants 
tap on a screen. Data was collected from 100 participants during 
eight keystroke typing sessions. Participants were required to answer 

three questions per session by typing at least 250 characters for each 
question. Participants were required to perform the task while sitting 
and walking in a controlled environment. In addition to keystroke 
data, the accelerometer, gyroscope, and magnetometer data were 
also recorded for analysis (Senarath et al., 2023b; Sitova et al., 2016; 
Acien et al., 2021).
K. HuMIdb Database: The Human Mobile Interaction Database 
(HuMIdb) is a publicly accessible dataset comprising 5GB of data 
recorded from various mobile sensors through an unsupervised data 
collection approach. The dataset was gathered from 600 participants 
as they performed eight distinct tasks designed to reflect everyday 
mobile device interactions. These tasks included typing (name, sur
name, and a predefined sentence), tapping (pressing a sequence of 
buttons), swiping (upward and downward gestures), air movements 
(drawing circle and cross gestures in the air), handwriting (writing 
digits), and voice recording (speaking the sentence "I am not a 
robot"). Data collection occurred over five sessions, with a one-day 
interval between sessions (Sitova et al., 2016; Acien et al., 2021; 
Nguyen et al., 2024). In addition to keystroke and touchscreen data, 
the dataset includes sensor data from accelerometers, magnetome
ters, gyroscopes, orientation sensors, proximity sensors, gravity 
sensors, light sensors, GPS, WiFi, Bluetooth, and microphones. The 
data collection process was uncontrolled, ensuring the dataset re
flected natural usage scenarios (Sitova et al., 2016; Acien et al., 
2021; Nguyen et al., 2024).
L. FETA Dataset: The dataset was collected from 470 participants 
over 31 sessions. Participants were recruited via Amazon Mechanical 
Turk (MTurk), a crowdsourcing platform. An iOS application was 
developed to facilitate data acquisition, which recorded touch and 
sensor data as participants interacted with their mobile devices. 
Participants performed two primary activities: social media and 
image gallery tasks. The social media task aimed to simulate vertical 
scrolling behavior typical of activities such as browsing social media 
feeds or navigating through a list of news articles. This task was 
designed to collect touch data reflecting everyday user interactions 
with mobile devices. The image gallery task was implemented to 
capture horizontal scrolling data. During this task, participants 
browsed a horizontal list of images, with only one image visible at a 
time. They were instructed to count specific objects as they swiped 
through the gallery. This setup enabled the acquisition of detailed 
horizontal scrolling behavior (Georgiev et al., 2023; Nguyen et al., 
2024).
2) Novel Datasets: According to our findings, several studies have 
collected their own data for keystroke behavior biometric analysis. 
The data collection strategy for such datasets has been described 
below:
A. Epp et al. (2011) collected both static and free-form keystroke 
data from 26 subjects in an uncontrolled manner. A specific appli
cation was built to record keystroke data based on the subject’s 
current activity. At regular intervals, the computer program prompts 
the subject to review the keystroke text that was entered previously. 
Subsequently, the subject was required to complete an emotional 
state questionnaire and a static text task. Of 12 subjects, 10 were 
male and 2 were female, with the average age being 28.5 years.
B. Tsimperidis et al. (2017, 2020, I. 2018) collect free-form keystroke 
data using a developed free text keylogger called IRecU, which could 
be installed on any portable smart device with any version of MS 
Windows. In addition to keystroke data, subjects were also requested 
to provide demographic (Tsimperidis et al., 2017), academic degree 
information (Tsimperidis et al., 2020), and gender (I. Tsimperidis 
et al., 2018) information. According to the study, the software was 
distributed between 20/February/2014 and 27/December/2014.
C. Subash et al. (2023) collected free-form keystroke data for online 
fraud detection. A website consisting of 4 assessment-like tasks was 
developed for data collection. Recruited subjects were requested to 
perform all tasks, which included 2 tasks of answering the questions 
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and 2 tasks of copying the passage questions. Specifically, each 
subject was asked to write at least 100 words to collect enough 
volume of data. A sample size of 13 students was recruited for the 
study. In addition to keystroke data, questionnaires requesting de
mographic information, emotional state, and computer proficiency 
were also distributed.
D. Ulinskas et al. (2018) collected keystroke behavior data from 4 
subjects between the ages of 22 and 33. The data collection pro
cedure lasted 2 weeks, during which the subjects were required to 
participate in trials 3 times a day. During each trial, the subject 
entered a predetermined paragraph that varied as the day 
progressed.
E. Alshanketi et al. (2019) collected keystroke behavior data from 
100 participants while they typed a variable one-time password 
(OTP) and a fixed password composed of strings. Specifically, par
ticipants were asked to enter the same fixed password followed by a 
generated OTP 10 times across two sessions. Data acquisition was 
facilitated through an Android mobile application installed on a Sony 

smartphone. Each participant was instructed to perform the tasks 
using the same device throughout the study.
F. Bours (2012) collected free-form keystroke data from 35 subjects 
recruited from Gjøvik University College (GUC), Norway. Subjects 
were requested to run an application on their systems for 6 days. This 
application records keystroke behavior data and sends it back for 
analysis. According to the author, only 25 subjects provided suffi
cient keystroke data for analysis.
G. Da Silva et al. (2016) collected keystroke and mouse data from 55 
subjects playing the game League of Legends. All samples were ac
quired from the same set of devices. All subjects were required to 
play a match together. They were also free to decide which device 
they wanted to play on and which avatar they wanted to play with. 
Each subject had a different role in the game, which provided a 
heterogeneous sample for analysis. According to the study, each 
game lasted between 30 and 50 min. A background application was 
developed using C# to collect the necessary information.

Table 1 
Summary of the various datasets implemented in keystroke behavioral biometric analysis.

Dataset Name Implemented in Studies Publicly 
Available

Sample 
Size

Environment Type of 
Dataset

Forgery 
Samples

Number of Sessions

CMU Andrean et al., 2020 Yes 51 Controlled Static No 8 (sessions separated ~1 day
Novel Dataset Subash et al., 2023 No 13 - Dynamic No 1 (only 1 session recorded)
GREYC Mhenni et al., 2019a Yes 100 Controlled Static No ~5 (sessions separated by ~1 week)
WEBGREY-C ​ Yes 45 Uncontrolled Static Yes 5 (sessions separated by ~1 week)
CMU ​ Yes 51 Controlled Static No 8 (sessions separated ~1 day
CMU Ceker and Upadhyaya, 

2016
Yes 51 Controlled Static No ​

CMU Subash and Song, 2021 Yes 51 Controlled Static No ​
CMU Maheshwary et al., 2017 Yes 51 Controlled Static No ​
CMU Killourhy and Maxion, 

2009
Yes 51 Controlled Static No ​

Teh Dataset Maiorana et al., 2019 Yes 150 Semi- 
Controlled

Static No 1 (only 1 session recorded)

Palin Dataset Senarath et al., 2023a Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
Palin Dataset Senarath et al., 2023b Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
HMOGdb ​ Yes 99 Controlled Dynamic No 24 (time between sessions not defined
HuMIdb ​ Yes 428 Uncontrolled Dynamic No 5 (sessions separated by 1 day)
HMOGdb Nguyen et al., 2024 Yes 99 Controlled Dynamic No 24 (time between sessions not defined
HuMIdb ​ Yes 428 Uncontrolled Dynamic No 5 (sessions separated by 1 day)
Palin Dataset ​ Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
FETA Dataset ​ Yes 347 Uncontrolled Dynamic No 31 (sessions separated by 1 day)
Novel Dataset Epp et al., 2011 No 12 Uncontrolled Dynamic/ 

static
No Continuous collection of keystroke data 

for ~4 weeks
Novel Dataset Tsimperidis et al., 2017 No - Uncontrolled Dynamic No Continuous collection of keystroke data 

for 10 months
Novel Dataset Tsimperidis et al., 2020 Yes - Uncontrolled Dynamic No Continuous collection of keystroke data 

for 10 months
Novel Dataset I. Tsimperidis et al., 2018 No 75 Uncontrolled Dynamic No Continuous collection of keystroke data 

for 10 months
Novel Dataset Ulinskas et al., 2018 No 4 - Static No 14 (sessions separated by 1 day)
Novel Dataset Alshanketi et al., 2019 No 100 Controlled Static No 2 (time between sessions not defined)
Novel Dataset Bours, 2012 No 25 Uncontrolled Dynamic No Continuous collection of keystroke data 

for ~6 days
Novel Dataset Da Silva Beserra et al., 

2016
No 55 Controlled Dynamic No Sessions not specified (Data collected for 

~4 months)
Novel Dataset Krishnamoorthy et al., 

2018
No 77 Uncontrolled Static No ~5 (sessions separated by 1 day)

CMU A. Mhenni et al., 2018 Yes 51 Controlled Static No 8 (sessions separated ~1 day
WEBGREY-C ​ Yes 118 Uncontrolled Static No 5 (sessions separated by ~1 week)
Teh Dataset Kalita et al., 2020 Yes 150 Uncontrolled Static No 1 (only 1 session recorded)
Antal Dataset ​ Yes 54 - Static No 3 (sessions separated by ~1 week)
Coakley 

Dataset
​ Yes 52 Controlled Static No Session data not specified

Android 
Dataset

Daribay et al., 2019 Yes 42 Controlled Static No 2 (time between sessions not defined)

Dhakal Dataset Acien et al., 2022 Yes 168,000 Uncontrolled Dynamic No 15 (time between sessions not defined
Palin Dataset ​ Yes 60,000 Uncontrolled Dynamic No 15 (time between sessions not defined
Clarkson 

Dataset
​ Yes 103 Uncontrolled Dynamic No Continuous collection of keystroke data 

for ~2.5 years
Buffalo Dataset ​ Yes 148 Controlled Dynamic No 3 (sessions separated by ~28 days)
Palin Dataset Stragapede et al., 2024 Yes 30,400 Uncontrolled Dynamic No 15 (time between sessions not defined
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H. Krishnamoorthy et al. (2018) collected static keystroke data from 
94 subjects using an Android application. This application prompts 
the subjects to type a pre-determined password (.tie5Roanl) 30 times 
over 5 days. Each subject provides 30 password entries. According to 
the author, the data collection process lasted 4 to 6 weeks, as the 
subjects could provide more entries in addition to the required 30 
samples. Out of 94 subjects, only data supplied by 77 were valid after 
pre-processing.

Our investigation confirms that the data needed for keystroke anal
ysis varies depending on the application device, whether desktop or 
mobile. If keystroke analysis is performed on mobile devices, additional 
raw data collected includes pressure (pre), area of touch (AOT), 
keyboard layout, touch coordinates (TC), and sensor data (accelerom
eter and gyroscope) (Kalita et al., 2020). Some studies also collect var
iable data; for example, Alshanketi et al. (2019) collected variable OTP 
and fixed password keystroke behavior data. After data collection, raw 
data, such as key press time, release time, unique key codes, name of the 
key, and timestamp of event occurrence (Andrean et al., 2020; Subash 
et al., 2023; Maiorana et al., 2019; Epp et al., 2011; Tsimperidis et al., 
2017, 2020; Bours, 2012), are acquired for feature extraction.

Table 1 (Moved to Appendix) shows that most studies rely on pub
licly available datasets for keystroke behavioral biometric analysis, with 
over half utilizing such datasets. Among these, static datasets are 
commonly used despite the growing availability of dynamic datasets. 
This finding suggests that studies have a continued preference for static 
datasets in specific research contexts, potentially due to their avail
ability, structured nature, and ease of implementation. Approximately 
40 % of the analyzed studies collect novel datasets for particular ap
plications, including user authentication on mobile devices (smart
phones) and one-time password (OTP) authentication (Alshanketi et al., 
2019). Notably, some of these novel datasets are static, indicating their 
use in applications that require authentication during login times. In 
some cases, static datasets have been collected for specific applications. 
For example, Ulinskas et al. (2018) collected static data for human fa
tigue analysis. In contrast, the majority of novel datasets are dynamic 
datasets designed for CA across several devices, such as desktops, lap
tops, and mobile platforms. In addition to security-related applications, 
some novel datasets have been collected for demography (age, gender), 
physiology (fatigue), and psychology (emotion detection)-related 
recognition, making them highly application-oriented. Recently pub
lished datasets, such as the BehavePass database, offer new opportu
nities for analysis (Stragapede et al., 2022), as it is one of the few 
datasets that have collected skilled forgery samples.

Further analysis shows that most novel datasets are not publicly 
accessible. This is because some datasets contain user-specific infor
mation, and making them accessible may raise privacy concerns and 
make them prone to misuse. Furthermore, stringent privacy laws, such 
as the General Data Protection Regulation (GDPR) in Europe, restrict 
data sharing that can potentially identify individuals.

3.2. Keystroke behavior features

In this section, we describe the features implemented for keystroke 
analysis. Based on our comprehensive review (Fig. 4), we find that 
several features, such as Hold time (HT), down-down time (DD), and up- 
down time (UD), were extracted from the raw data mentioned in Section 
3.1 (Andrean et al., 2020; Subash and Song, 2021; Maheshwary et al., 
2017; Epp et al., 2011; Tsimperidis et al., 2017). The description of the 
primary raw data and extracted features is shown below: 

1) Basic Raw Data
A. Key Press Time (PT): the time taken to press a key. Denoted by PTi, 
where i = 0,1,2, 3…n.
B. Key Release Time (RT): the time taken to release a key. Denoted by 
RTi, where i = 0,1,2, 3…n.

C. Screen Touch Data: This feature includes features generated when 
the subject’s finger touches the screen. Basic features such as finger 
Pressure (P), finger size (FS) or area of touch (AoT), and touch co
ordinates (TC) are collected. These features can only be collected 
from touchscreen-based devices like mobile devices.
D. Motion Data: Basic features under this category include acceler
ometer and gyroscope data. These features can be collected from 
sensors integrated into mobile touchscreen devices, like tablets and 
smartphones. The accelerometer and gyroscope data depict how 
subjects move and hold the mobile device. In addition to the accel
erometer and gyroscope data, other sensor data, such as magne
tometer data, have also been used in analysis.
2) Extracted Features
A. Hold Time (HT): Hold time is the time difference between a single 
key’s press and release time. Normally denoted as HTi, where i =
0,1,2, 3…n.
B. Down-down Time (DD): Like HT, DD time is the time difference 
between the press time of one key and the press time of the subse
quent key. Normally denoted by DDi, where i = 0,1,2, 3…., n.
C. Up-down Time (UD): This feature is keystroke latency or flight 
time. It can be defined as the time difference between the key’s 
release time and the subsequent key’s press time. Unlike other at
tributes, the value of this feature can be negative. It is denoted by 
UDi, where i = 0,1,2, 3…., n.
D. Down-up Time (DU): This feature can be defined as the time dif
ference between the press time of one key and the release time of the 
subsequent key. It is denoted by DUi, where i = 0,1,2, 3…., n.
E. Up-Up Time (UU): The time difference between the key’s release 
time and the subsequent key’s release time. It is denoted by UUi, 
where i = 0,1,2, 3…. n.
F. Aggregate Data (Agg): These features include aggregate informa
tion such as mean (mean), minimum (min), maximum (max), and 
standard deviation (std) of UD, PT, HT, P, and AOT.

Few studies have also analyzed and detected the most frequently 
used digraphs among the recruited subjects and used specifically 
developed programs to extract relevant keystroke behavior features 
(Tsimperidis et al., 2017; Bours, 2012). For example, Tsimperidis et al. 
(2017) developed the ISqueeze application, which reads raw keystroke 
log files collected using the IReCU keylogging application and extracts 
average keystroke latency time. Similarly, Bours (2012) chose specific 
keys and key combinations for user profile creation.

Fig. 3 lists several behavioral features currently used in keystroke 
behavioral biometric research. Based on our analysis, the most 
frequently used features include a combination of HT, DD, and UD times. 
Several other features such as cumulants, touch coordinates (TC), 
interquartile range (IQR), key codes (KC), accelerometer sensor data 
(ASD), swipe information, gyroscope sensor data (GSD), GPS informa
tion, wireless connection data (WiFi Sensor), gravity sensor data, rota
tion sensor data, proximity sensor data, magnetometer sensor data, press 
speed, content-based attributes, and several other unique features, 
including the combination of statistical and information-theoretic 
measures were also used for keystroke behavioral biometric analysis.

3.3. AI approach and evaluation metrics used in keystroke behavioral 
biometrics

According to analysis, we find that ML approaches, such as Multi- 
Layer Perceptron (MLP) (Andrean et al., 2020; Maheshwary et al., 
2017; Tsimperidis et al., 2017; I. 2018), Decision Trees (DT) (Epp et al., 
2011), Support Vector Machines (SVM) (Ceker and Upadhyaya, 2016; 
Ulinskas et al., 2018), Gaussian mixture Models (GMM) (Kalita et al., 
2020), Random Forest (RF), Naive Bayesian (NB) (Alshanketi et al., 
2019; Daribay et al., 2019), Radial Basis Function Network (RBFN) (I. 
Tsimperidis et al., 2018), XGBoost (Daribay et al., 2019), K-Nearest 
Neighbor (KNN) (Mhenni et al., 2019a), Linear Regression (LR) (Daribay 
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et al., 2019), and Random Radial Basis Function Network (R2BFN) 
(Tsimperidis et al., 2020) have been implemented for keystroke 
behavioral biometric-based authentication. In addition to ML ap
proaches, DL approaches, and distance-based anomaly detection 
methods (DBAD) have also been used for classification. These include 
Convolutional Neural Networks (CNNs) (Subash et al., 2023; Subash and 
Song, 2021; Maiorana et al., 2019), Recurrent Neural Networks (RNNs) 
(Subash et al., 2023; Daribay et al., 2019), and transformers (Subash 
et al., 2023), along with anomaly detection techniques leveraging 
Euclidean, Mahalanobis, and Manhattan distance metrics (Killourhy and 
Maxion, 2009).

Researchers also use sampling, data condensation (data reduction), 
and feature selection methods before feeding extracted features into the 
ML or DL approaches. Some methods implemented include correlation- 
based feature subset attribute selection (Epp et al., 2011), information 
gain (IG) (I. Tsimperidis et al., 2018), minimum redundancy maximum 
relevance (mRMR) (Krishnamoorthy et al., 2018), under-sampling (Epp 
et al., 2011), GLDA-TRA (Ulinskas et al., 2018), and filter-based random 
sub-field data condensation method (Tsimperidis et al., 2020). 
Furthermore, specific pre-processing methods, such as segmentation, 
are also used to prepare the data for analysis. For example, Subash et al. 
(2023) implemented this process to generate logical blocks of attributes 
to create session data. Specifically, keystroke data is converted into 
5-character length records to simulate session-like data.

Our analysis (Table 2) shows that only a few research studies 
implemented distance-based anomaly detectors and fuzzy logic for 
keystroke analysis. Statistically, most of the studies analyzed relied on 
state-of-the-art (SOTA) DL approaches for classification. Further inves
tigation shows that MLP and transformer-based DL architectures are the 
most popular approaches implemented for keystroke behavioral bio
metric analysis. It is important to note that this statistic also includes 
research studies that conduct comparative analyses between 
approaches.

Most studies analyzed in this paper fall under empirical research, 
which is evaluated using several evaluation metrics. These include equal 
error rate (EER) (Andrean et al., 2020; Maheshwary et al., 2017), ac
curacy (Acc) (Andrean et al., 2020; Maheshwary et al., 2017; Maiorana 
et al., 2019; Epp et al., 2011; Tsimperidis et al., 2017; Kalita et al., 
2020), precision (PRE), recall (REC), kappa statistics (KS), area under 
curve (AUC), receiver operating characteristic (ROC) curve (Andrean 
et al., 2020; Ceker and Upadhyaya, 2016; Kalita et al., 2020), root mean 
square error (MSE), and mean absolute error (MAE) (Andrean et al., 
2020; Ceker and Upadhyaya, 2016; Kalita et al., 2020). Other evaluation 
metrics, such as time complexity (TBM), false rejection rate (FRR), false 
acceptance rate (FAR), and stability (Tsimperidis et al., 2020; I. 2018), 

have also been used for evaluation. The summary of the evaluation 
metrics utilized in research studies is depicted in Table 3.

We also confirm that different techniques were used for evaluation, 
including cross-validation (Maheshwary et al., 2017; Epp et al., 2011; 
Tsimperidis et al., 2017, 2020) and a hold-out approach (Subash et al., 
2023; Subash and Song, 2021; Daribay et al., 2019). Furthermore, 
comprehensive experimentations are performed by comparing perfor
mance achieved using different numbers of classes (I. Tsimperidis et al., 
2018), classification approaches (Subash et al., 2023; Ceker and Upad
hyaya, 2016; Maheshwary et al., 2017; Tsimperidis et al., 2020; I. 2018), 
model architectures (Maiorana et al., 2019), model parameters 
(Learning rate and momentum), varied number of hidden layer neurons 
(Tsimperidis et al., 2017), different number of features (I. Tsimperidis 
et al., 2018; Krishnamoorthy et al., 2018; Kalita et al., 2020), and 
pre-processing methods (Kalita et al., 2020). We also confirm that a few 
studies develop their evaluation categorization based on already 
established evaluation metrics, such as True Positives (TP) and False 
Positives (FP) (Epp et al., 2011).

Studies also propose using different evaluation metrics to evaluate 
keystroke-based authentication methods. For example, according to 
Bours (2012), continuous keystroke behavioral biometric systems have 
better reflections than EER systems. Alternatively, the speed at which an 
imposter is detected, i.e., the number of keystrokes the imposter can use 
before the system’s trust falls below a specified threshold, is a better 
indication of performance. To accomplish this, the study develops a 
continuous keystroke dynamic (CKD) authentication system that im
plements a penalty and reward function that adapts the trust level of the 
system. Similarly, studies performed by (Senarath et al., 2023a, Senar
ath et al., 2023b) also propose unique evaluation metrics, such as us
ability, time to correct reject (TCR), false reject worse interval (FRWI), 
and false acceptance worse interval (FAWI) for performance evaluation.

Some studies also conduct reliability analysis to determine if the 
identified features result in effective keystroke behavior biometric- 
based authentication. For example, Subash et al. (2023) propose to 
evaluate DL models with a significantly larger publicly available dataset 
(CMU benchmark) containing the same features as the ones identified in 
the study. Specifically, the study compares its novel data with a publicly 
available (CMU benchmark dataset) dataset containing the same fea
tures (Subash et al., 2023).

Only some studies evaluate different fusion approaches. Alshanketi 
et al. (2019) propose a multimodal keystroke-based authentication 
scheme that combines keystroke behavior obtained from OTP and fixed 
passwords. Furthermore, two fusion models were built and compared: 
matching decision and feature-level fusion methods.

Comparisons are also conducted between different loss functions. For 

Fig. 3. Keystroke behavior features distribution.
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example, Acien et al. (2022) propose TypeNet, an RNN-LSTM architec
ture for keystroke biometric authentication for large-scale free-form text 
scenarios. Different models were trained using 3 different loss functions, 
namely softmax, triplet, and contrastive loss, and then compared. 
Furthermore, a comparison between 1) different numbers of training 
samples and lengths of keystroke sequences, 2) conventional statistical 
models and deep learning architectures, and 3) types of device datasets 
collected from touchscreen and physical keyboard datasets was also 
performed.

3.4. Keystroke behavioral biometrics research applications

Keystroke behavioral biometric research is implemented for several 
real-world applications, including identity theft detection, which covers 
user authentication and identification (Maheshwary et al., 2017). In 
addition to security-related applications, researchers have used 
keystroke behavioral biometrics to determine a user’s age, educational 
level, online assessment fraud, fatigue, and emotion (Epp et al., 2011).

Recently, studies have also focused on predicting user characteristics 
based on keystroke behavior analysis (Tsimperidis et al., 2017). Spe
cifically, research performed by Tsimperidis et al. (2017) and I. Tsim
peridis et al. (2018) has expanded keystroke behavioral biometrics 
toward identifying user characteristics such as age, gender, and opera
tion handedness. In addition, researchers can also determine the edu
cation level of the person behind the keyboard (Tsimperidis et al., 2020).

Keystroke behavioral biometrics is also used to detect user fatigue 
levels. For example, Ulinskas et al. (2018) gathered data at different 
times of the day based on the assumption that users become more tired 
as the day progresses. Keystrokes entered by a subject in the morning are 
believed to reflect those of a non-fatigued user. As the day goes on, the 
user is assumed to become moderately or fully fatigued. Consequently, 
the study classifies high, medium, and low fatigue levels. Additionally, 
the study employs unique features, including a combination of statistical 
and information-theoretic measures for classification.

Keystroke behavioral biometric-based research has found its way 
into the medical field, specifically for the early detection and monitoring 
of Parkinson’s disease (PD) (Iakovakis et al., 2018). The research mainly 
uses touchscreen keystroke behavior to estimate the severity of motor 
impairment in PD patients. This is accomplished by analyzing keystroke 
behavior recorded in clinical settings and everyday use of smartphones. 
According to the author, results indicated that the models can accurately 
estimate motor symptoms, making it a promising method for PD 
detection and monitoring. Similarly, researchers also investigate using 
keystroke behavioral biometrics as early warning signals to monitor 
disease activity in Multiple Sclerosis (MS) patients (Twose et al., 2020).

Another interesting application of keystroke behavioral biometrics is 
identifying users in the mobile domain (Maiorana et al., 2019; Kalita 
et al., 2020). The research makes use of a combination of keystroke 
behavior features with pressure (Maiorana et al., 2019; Kalita et al., 
2020), touch data (swiping, gesture), sensor data (accelerometer, gy
roscope, gravity, light, magnetometer, WiFi connections, Bluetooth, 
location (GPS) (Kalita et al., 2020) for user authentication and identi
fication. Furthermore, studies have also focused on adapting current 
keystroke behavioral biometric methods to long-term and short-term 
user behavior changes (Mhenni et al., 2019a, 2018; Ceker and Upad
hyaya, 2016; Subash and Song, 2021). However, there are very few 
studies that focus on this. The adaptability of behavioral biometric 
modalities has been explained in detail in future sections. Fig. 4 shows 
the summary of the research applications of keystroke behavioral 
biometrics.

Based on our investigation, we confirm that most keystroke-based 
behavioral biometric research is implemented for security-based appli
cations, including user identification and authentication (Fig. 4). It is 
also noticed that a small proportion of studies also focus on other 
research applications, including online assessment fraud detection, 
emotion recognition, fatigue recognition, adaptability, user character
istics (age, operation handedness, and gender prediction) recognition, 
and disease monitoring and prediction (Fig. 4).

4. Mouse behavioral biometrics

Another alternate approach to keystroke behavioral biometrics is 
mouse behavioral biometrics, which verifies user identity by analyzing 
observable mouse actions (Zheng et al., 2011). Studies show that 
behavioral biometrics first acquired popularity with research on 
keystroke behavioral biometrics. Later, research in mouse behavioral 

Table 2 
Summary of AI approaches implemented for keystroke behavioral biometrics.

ML DL Distance-based 
Anomaly Detection

Author

No MLP No Andrean et al., 
2020

No CNN, 
Transformers, 
LSTM

No Subash et al., 
2023

GA-KNN 
(Euclidean, 
Manhattan, 
Mahalanobis, 
Hamming, 
Statistical)

No No Mhenni et al., 
2019a

A-SVM, DA-SVM, 
PMT-SVM

No No Ceker and 
Upadhyaya, 2016

No CNN No Subash and Song, 
2021

No MLP No Maheshwary 
et al., 2017

SVM, K-means NN Manhattan, 
Euclidean, 
Mahalanobis, 
Nearest Neighbor 
(Mahalanobis), 
Fuzzy Logic, Outlier 
Score

Killourhy and 
Maxion, 2009

No CNN No Maiorana et al., 
2019

RF, KNN, GBC TypeNet, 
TypeFormer 
(Transformer), 
HuMINet

No Senarath et al., 
2023a

x BehaveFormer 
(Transformer)

No Senarath et al., 
2023b

x STDAT-based 
BehaveFormer

No Nguyen et al., 
2024

DT No No Epp et al., 2011
No MLP No Tsimperidis et al., 

2017
No R2BFN No Tsimperidis et al., 

2020
SVM, RF, NB MLP, RBFN No I. Tsimperidis 

et al., 2018
SVM No No Ulinskas et al., 

2018
RF No No Alshanketi et al., 

2019
No No Distance-Based 

Anomaly Detection 
+ Trust System

Bours, 2012

KNN, SVM, RF MLP No Da silva et al., 
2016

SVM-linear, 
SVM-RBF, RF

No No Krishnamoorthy 
et al., 2018

KNN No No A. Mhenni et al., 
2018

GMM No No Kalita et al., 2020
LR, XGBoost, 

GNB
MLP, LSTM, GRU No Daribay et al., 

2019
No RNN-TypeNet 

Architecture
No Acien et al., 2022

x Transformer No Stragapede et al., 
2024
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biometrics gained traction with several articles, including Ahmed and 
Traore (2005).

Like keystroke, mouse behavioral biometric authentication also falls 
under user authentication and identification scenarios (Almalki et al., 
2023).

4.1. Type of mouse behavioral biometric datasets

Like keystrokes, mouse behavioral biometrics-based research data
sets are also of two types: static and dynamic datasets. 1) Static datasets 
collect mouse behavior data from subjects while they perform a specific 
mouse operation task using specifically designed web applications, 
while 2) Free-form datasets collect data during continuous monitoring of 
subjects’ daily activities using background mouse logging applications 
(Fu et al., 2020).

This section provides a detailed overview of the datasets currently 
used in mouse behavioral biometric analysis (Table 4—Moved to 

appendix). 

1) Public Datasets
A. Minecraft Dataset: This dataset collected (Siddiqui et al., 2021) 
mouse behavior data from 10 subjects who played a Minecraft game 
on a desktop computer for 20 min. According to the author, data 
collection was conducted in a controlled setting. Furthermore, a 
Python program was implemented for data collection.
B. Balabit Dataset: This publicly available dataset collected mouse 
behavior data from 10 subjects while they worked over remote 
desktop clients connected to remote servers. The data collected is 
divided into two folders: training and testing (Almalki et al., 2023; 
Antal and Egyed-Zsigmond, 2018).
C. DFL Dataset: This publicly available dataset collects mouse 
behavior data from 21 subjects using specific data collection soft
ware installed in their systems to record data while they perform 
their daily activities. Data is also collected from different devices, 

Table 3 
Evaluation metrics used in keystroke behavioral biometrics.

Author AUC FAR FRR Acc MAE/MSE ROC EER Pre/Rec/F Measure Others

Andrean et al., 2020 No Yes Yes Yes Yes Yes Yes Yes Yes
Subash et al., 2023 No No No Yes No No No Yes Yes
Mhenni et al., 2019a Yes Yes Yes Yes No Yes Yes No No
Ceker and Upadhyaya, 2016 Yes No No No No Yes No No No
Subash and Song, 2021 No No No Yes No No No Yes No
Maheshwary et al., 2017 No No No Yes No Yes Yes No Yes
Killourhy and Maxion, 2009 No No No No No Yes Yes No Yes
Maiorana et al., 2019 No No No Yes No No Yes No Yes
Senarath et al., 2023a No No No No No No Yes No Yes
Senarath et al., 2023b No No No No No No Yes No Yes
Nguyen et al., 2024 No No No No No No Yes No Yes
Epp et al., 2011 No No No Yes No No No No Yes
Tsimperidis et al., 2017 No No No No No No Yes Yes No
Tsimperidis et al., 2020 No No No Yes No Yes No No Yes
I. Tsimperidis et al., 2018 Yes No No Yes No No No No Yes
Ulinskas et al., 2018 No No No Yes No No No No No
Alshanketi et al., 2019 No Yes Yes No No Yes Yes No No
Bours, 2012 No No No No No No No No Yes
Da silva et al., 2016 No No No Yes No No No No No
Krishnamoorthy et al., 2018 No No No Yes No No No No Yes
A. Mhenni et al., 2018 Yes No No No No Yes Yes No No
Kalita et al., 2020 No No No No No Yes Yes No No
Daribay et al., 2019 Yes Yes Yes Yes No Yes No No No
Acien et al., 2022 No No No No No Yes Yes No No
Stragapede et al., 2024 No Yes Yes No No No Yes No No

Fig. 4. Keystroke behavioral biometrics research applications.
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such as desktops, laptops, and mouse devices (external mouse and 
touch pads) (Antal and Denes-Fazakas, 2019).
D. Choa Shen Dataset: This publicly available dataset collects (Shen 
et al., 2012) mouse behavior data from 28 subjects using a back
ground monitoring application. Specifically, this application records 
mouse behavior data while subjects perform daily activities. Ac
cording to the study, each subject performs 30 sessions over 2 
months, each containing 30 min of mouse behavior data.
2) Newly Collected (Novel) Datasets:
A. Zheng et al. (2011) performed a measure-based study by collect
ing two types of mouse behavior data. 1) Controlled Set: 30 subjects 
participated in the data collection process in a standard environ
ment. Subjects belong to different ages, occupations, and educational 
backgrounds. RUI logging tool records mouse behavior data while 
subjects perform their routine activities. Activities include word 
processing, surfing the net, programming, online chatting, and 
playing games. 2) Uncontrolled set (field set): Collects mouse 
behavior data from 1000 unique users using JavaScript.
B. Fu et al. (2020) evaluated their proposed approach using a dataset 
provided by Xi’an Jiaotong University of China. Mouse behavior data 
were collected from 15 subjects while they performed a specific 
authentication task. It is important to note that the subjects had 
different ages, educational backgrounds, and occupations. In this 
task, subjects were required to find and click targets prompted by the 
data collection program. The study collected all the data on an HP 
workstation with a 17-inch LCD monitor and Windows operating 
system.
C. Subash et al. (2024) collected application-oriented mouse 
behavior data from 10 subjects while they performed specific online 
assessment-like tasks. Subjects participated in 3 tasks, which 
included clicking the target, multiple-choice questions (MCQ), and 
matching tasks. The main objective was to collect many varieties of 
mouse events and large amounts of data for effective online fraud 
detection. Furthermore, a website application was developed for 
data collection. The author gathered subjects from the Sanjay Gandhi 
College of Education, India.

D. Shen et al. (2013) collected mouse behavior data from 37 subjects 
in a controlled setting. The author develops a Windows application 
that prompts subjects to perform a specific task. According to the 
author, the application displays the tasks on a full screen and records 
data while they perform them. The task includes 16 mouse move
ments and 8 single and double-click events. Each subject performs 
the task 20 times over 2 rounds. According to the study, each subject 
takes 15 to 60 days to complete the data collection process.
E. Wang et al. (2019) collected mouse behavior data from 18 sub
jects. The data collection procedure requires subjects to perform 2 
tasks after their emotions are aroused. Several videos are used for 
this purpose. Specifically, 3 videos are used to stimulate positive, 
negative, and neutral emotions. Furthermore, a face reader is also 
used to detect emotional changes. A well-structured academic web
site is developed for data collection. Subjects were required to 
perform 2 tasks immediately after they watched the video.
F. Gamboa and Fred (2004) used a developed web application to 
collect mouse behavior data from 50 subjects. Subjects were required 
to participate in a memory game that spanned 10–15 min. The study 
collected and created an interaction repository containing 10 h of 
mouse behavior data.
G. Siddiqui et al. (2021) collected mouse behavior data from 10 
subjects while they played Minecraft on a desktop computer. Each 
subject was required to play the game on the same desktop system. A 
Python program ran in the background for 20 min and recorded the 
necessary mouse behavior data.
H. Feher et al. (2012) collected mouse behavior data from 25 subjects 
from different groups: 1) Internal and 2) External subjects. According 
to the author, the systems used for data collection were chosen from 
various brands and hardware configurations. Furthermore, one or 
more internal subjects are authorized to interact with a particular 
system, while the rest are not.

From Table 4 (moved to appendix), we conclude that most studies 
rely on novel datasets for mouse behavioral biometric analysis, as most 
publicly available datasets are dynamic. However, despite the 

Table 4 
Summary of the various datasets implemented in mouse behavioral biometric analysis.

Dataset Name Author Publicly 
Available

Sample 
Size

Environment Type of 
Dataset

Forgery 
Samples

Number of Sessions

Novel Dataset 
(Minecraft Dataset)

Siddiqui et al., 2021 Yes 10 Controlled Dynamic No Session data not specified

Novel Dataset Zheng et al., 2011 No 30 Controlled Dynamic No Session data not specified
Novel Dataset ​ No 1000 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Novel Dataset Da Silva Beserra et al., 

2016
No 55 Controlled Dynamic No Sessions not specified (Data 

collected for ~4 months)
Balabit Dataset Almalki et al., 2023 Yes 10 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Novel Dataset Fu et al., 2020 No 15 Controlled Static No Session data not specified
Balabit Dataset Antal and 

Egyed-Zsigmond, 2018
Yes 10 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Balabit Dataset Antal and Denes-Fazakas, 

2019
Yes 10 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Choa Shen Dataset ​ Yes 28 Controlled Dynamic No 30 (sessions separated by ~1 day)
DFL Dataset ​ Yes 21 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Novel Dataset Subash et al., 2024 No 10 - Static No 1 (only 1 session recorded)
Novel Dataset Shen et al., 2013 Yes 37 Controlled Static No 15 – 60 (sessions separated by ~1 

day)
Novel Dataset Wang et al., 2019 No 18 Controlled Dynamic No 4 (sessions separated by 1 day)
Novel Dataset Gamboa and Fred, 2004 No 50 - Static No Session data not specified
Novel Dataset Feher et al., 2012 No 25 Controlled - Yes Session data not specified
Balabit Dataset Hu et al., 2019 Yes 10 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
Balabit Dataset Antal and Fejér, 2020 Yes 10 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
DFL Dataset ​ Yes 21 Uncontrolled Dynamic No Continuous collection of mouse 

behavior data
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availability of dynamic mouse behavior data, static datasets are still 
being implemented in research due to the need for specific datasets for 
user authentication. Since most mouse behavioral biometric-based 
research is focused on security-related applications, dynamic datasets 
are commonly used (Table 4 – moved to appendix) as these datasets 
better reflect user behavior in real-world scenarios. However, if studies 
focus on CA in specific scenarios, such as online education platforms 
(Subash et al., 2024), specific behavior data is required for analysis. In 
this example, the collected data must emulate user behavior on online 
education platforms, after which, utilizing this data for user authenti
cation will enhance the validity and reliability of the results. Further
more, some studies also collected static data as they focused on static 
authentication, mainly simulating user authentication during log-in 
time.

After data collection, researchers are left with raw mouse behavior 
data. They include the following: action type (Siddiqui et al., 2021; Fu 
et al., 2020; Subash et al., 2024), coordinates (Siddiqui et al., 2021; Fu 
et al., 2020; Subash et al., 2024), timestamp (ms) (Siddiqui et al., 2021; 
Fu et al., 2020; Subash et al., 2024), screen height (Subash et al., 2024), 
screen width (Subash et al., 2024), button state (Siddiqui et al., 2021), 
rtime (Siddiqui et al., 2021), and ctime (Siddiqui et al., 2021). This raw 
data is taken, pre-processed, and then sent for feature extraction.

4.2. Segmentation and pre-processing for mouse behavioral biometrics

Segmentation is a process that divides mouse behavior data into 
meaningful and logical blocks of information. It is a pre-processing step 
implemented to extract aggregate features that help in profiling users for 
effective user authentication and identification. In this section, we 
present our unique taxonomy for classifying various segmentation 
methods into two main categories: event-based and image-based seg
mentation methodologies.

4.2.1. Event-Based segmentation methodology
Event-based segmentation methodology involves identifying logical 

sequences of data by analyzing basic mouse events present in mouse 
behavior data. Specifically, data is examined to detect various event 
types (mouse move, mouse click, drag, and dragend), which serve as the 
basis for segmentation. According to our analysis, the following seg
mentation methods fall under this category:

4.2.1.1. Point-and-Click (PC) segmentation.

• A point-and-click segment is a series of continuous mouse-move 
events that end with a click event, which in some cases includes a 
mouse press and release event. Continuous mouse-move events can 
be further defined as a series of mouse-move events with little to no 
pause between each adjacent event. It is important to note that 
multiple PC actions are extracted for mouse behavioral biometric 
analysis (Zheng et al., 2011). For example, let j be the total number of 
point-and-click actions. Each j-th action will be composed of i mouse 
movement events denoted by <mouse movei, xi,yi, timestampi>j.

4.2.1.2. Mouse-Move (MM) segmentation.

• An alternative segmentation method involves using a sequence of 
mouse move-move (MM) events as a segment for mouse behavioral 
biometric analysis. Specifically, studies use a fixed number of MM 
events to generate a single action. According to our analysis, the 
number of MM events used for segmentation varies. For example, 
Subash et al. (2024) used 3 MM events per segment, while Siddiqui 
et al. (2021) used 10 MM events per segment.

• In addition to using a fixed number of MM events to segment the 
data, another approach involves identifying partial mouse 

movement (PMM) segments. This segment consists of MM events 
that do not end in a click event. Specifically, it represents a general 
MM action type that describes movement behavior between two 
points on a screen (Almalki et al., 2023; Antal and Egyed-Zsigmond, 
2018). PMM actions are usually isolated using the timestamp field 
(Antal and Egyed-Zsigmond, 2018).

4.2.1.3. Drag-Drop (DD) segments.

• In addition to PC and PMM segments, drag-and-drop (DD) seg
ments (Almalki et al., 2023; Antal and Egyed-Zsigmond, 2018) have 
also been extracted. These DD segments contain a series of events 
starting with a mousedown event, followed by multiple drag events, 
and concluding with a mouse release event.

4.2.1.3. Click segments.

• Another alternative segment type consists only of a click event 
without any mouse movements before it. This type of segment is 
known as Pause-and-Click. It occurs when users pause for a certain 
amount of time before clicking (Zheng et al., 2011).

4.2.2. Image-Based segmentation methodology

• Image-based segmentation methodology aims to uniquely map raw 
mouse behavior data into images to preserve all user data for reliable 
user authentication. Our analysis indicates that this innovative pre
processing technique was initially observed in the research per
formed by Hu et al. (2019). According to the study, unlike 
conventional feature extraction methods, this approach preserves all 
information regarding an individual’s mouse behavior by mapping 
basic mouse events into graphs, which are subsequently converted 
into images. Various image sets are created based on different 
numbers of basic mouse events (n = 25, 50, 100, 500, 1000). Data 
augmentation is then employed to expand the dataset, and finally, a 
7-layer CNN architecture is implemented for classification.

4.3. Mouse behavioral biometric features

After segmentation, several mouse behavior features are extracted 
and implemented for analysis. These features have been extracted using 
the raw mouse behavior data mentioned in Section 4.1. The description 
of basic and extracted features has been illustrated below: 

1) Basic Features
A. Screen Coordinates (Crd): Describes the location or screen coor
dinate at which the mouse event is performed. This attribute repre
sents a 2D coordinate system with x and y coordinates.
B. Timestamp (t): This represents the time the mouse event is per
formed. It is usually measured in milliseconds (ms).
C. Action Type (AT): This represents the mouse event performed. 
These events include mouse move, mouse click, drag and drop, and 
scroll.
D. Screen height and Screen Width (SH, SW): Represents the screen 
height and width of the web browser component that renders web
site content. The subject’s slight changes in screen height and width 
are noticed and recorded.
2) Extracted Features
A. Angle of Curvature (AOC): For any 3 recorded points A, B, and C, 
the angle of curvature is defined as the angle ABC, the angle between 
the line AB and BC.
B. Curvature Distance (CD): For three recorded points, A, B, and C, 
the curvature distance can be defined as the ratio between the length 
of line AC and the perpendicular distance of point B to the line AC. 
Specifically, this ratio is between two distances.
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C. Speed (S): This feature is usually calculated between each point- 
and-click action. It is defined as the ratio between the traveled dis
tance for that action and the time taken to complete that action.
D. Pause-and-Click (PauC): This attribute represents the time dif
ference between the end of the movement and the click event. Spe
cifically, it is the duration between the amount of time pausing and 
clicking the target.
E. Velocity: This feature represents the velocity measurement be
tween mouse events. Velocity is divided into directional velocities 
measured in x (HVi), y-axis (VVi), and tangential velocity (TVi). The 
formula to calculate all 3 types of velocity is shown in Eqs. (1), 2, and 
3. 

HVi =
xi − xi− 1

ti − ti− 1
, where i = 2, .., n (1) 

VVi =
yi − yi− 1

ti − ti− 1
, where i = 2, .., n (2) 

TVi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

HVi
2 + VVi

2
√

, where i = 2, .., n (3) 

F. Coordinate difference (dx, dy): The difference between the x, and y 
coordinates, respectively. The formula for calculations is shown in 
Eqs. (4) and 5. 

dxi = xi − xi− 1, where i = 2, .., n. (4) 

dyi = yi − yi− 1, where i = 2, .., n. (5) 

G. Acceleration (A): Is the velocity change in unit time, which is 
represented as TA. Like velocity, acceleration is also divided into 
directional accelerations, measured on the x-axis (Ax) and y-axis 
(Ay), and tangential acceleration (TA), which is acceleration across 
the mouse plane. The formulas are shown in Eqs. (6), 7, and 8. 

Axi =
HVi − HVi− 1

ti − ti− 1
, where i = 2, .., n. (6) 

Ayi =
VVi − VVi− 1

ti − ti− 1
, where i = 2, .., n. (7) 

TAi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Axi

2 + Ayi
2

√
, where i = 2, .., n. (8) 

H. Jerk (J): Is the change in acceleration per unit time. Like accel
eration and velocity, jerk can also be measured directionally. Jerk is 
on the x-axis (Jx), y-axis (Jy), and along the mouse plane (TJ). The 
formulas for jerk are mentioned in Eqs. (9), 10, and 11. 

Jxi =
Axi − Axi− 1

ti − ti− 1
, where i = 2, .., n. (9) 

Jyi =
Ayi − Ayi− 1

ti − ti− 1
, where i = 2, .., n (10) 

TJi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Jxi

2 + Jyi
2

√
, where i = 2, .., n. (11) 

I. Angular Movement (θi): This feature represents the path angle 
between mouse movement and the screen’s horizontal axis. It is 
measured using the atan or arctan function on the differential of x 
and y coordinates. The formula is shown in Eq. (12). 

θi =
dyi

dxi
, where i = 2, .., n. (12) 

J. Travelled Distance (TD) or Distance end-to-end (DE): Is the dis
tance between the first and last data points in a mouse action. This 
feature is determined using Eq. (13). 

TD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xn
2 − xi

2) + (yn
2 − yi

2)

√

, where i = 2, .., n (13) 

K. Trajectory Length (TL): The sum of the distance between all data 
points in a mouse action. This feature is determined by Eq. (14). 

TL =
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xi2 − xi− 12) + (yi2 − yi− 12)

√

, where i = 2, .., n (14) 

L. Angular Velocity (AV): Angular velocity is defined as the rate of 
angular movement of the cursor over time. This feature is deter
mined using Eq. (15). 

AVi =
dθi

dti
, where i = 0, 1, 2,…..n. (15) 

M. Straightness (SR): The ratio between total distance traveled and 
trajectory length. This feature determines the straightness of the 
mouse path. If the path is straight, the ratio value is 1; otherwise, the 
ratio value is between 0 and 1. The straightness is measured using Eq. 
(16). 

SR =
TD
TL

. (16) 

N. Curvature (C): It is the ratio between the rate of change of angular 
movement and distance traveled. This feature is determined by Eq. 
(17). 

C =
dθi

TDi
, where i = 2, .., n. (17) 

Similarly, the rate of change of curvature is calculated using Eq. (18). 

Rate of Change of Curvature (RC) =
dCi

TDi
, where i = 2, .., n. (18) 

O. Sum of Angles (SOA): The cumulative angular movement values of 
an action. The feature is determined from Eq. (19). 

SOA =
∑n

i=1
θi Where i = 0, 1, .., n. (19) 

P. Number of Points (NOP): Refers to the number of data points in an 
action and is represented by NOP. This feature has been shown in Eq. 
(20). 

NOP = Ni, where i = 0, 1, .., n. (20) 

Q. Sharp Angles (SA): This feature represents instances where the 
mouse movement abruptly changes quickly during the cursor’s tra
jectory. It is typically obtained by observing whether the angular 
movement values are below a certain threshold (TH), indicating 
sharp direction changes, as shown in Eq. (21). 

SA = θi|θi < TH, where i = 0, 1, .., n.. (21) 
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R. Number of Critical Points (NOC): This feature is calculated from 
the curvature vector by searching for high curvature points. It is 
acquired by observing whether curvature values exceed a certain 
threshold (TH), as indicated in Eqs. (22) and 23. 

NOC =
∑n

i=1
zi, where i = 0, 1, .., n. (22) 

zi =

{
1, and dC > TH
0, and Otherwise (23) 

S. Acceleration During the Beginning (ABT): This feature illustrates 
the rate of change in velocity during mouse movement at the onset of 
movement. It measures the rate at which the mouse device acceler
ates from a stationary position to a higher acceleration rate in the 
initial stages of movement.
T. Largest Deviation (LD): The largest distance between the trajec
tory points and the segment between the two endpoints.
U. Aggregate Features: Through analysis, it was found that many 
research studies extract the average (avg), standard deviation (std), 
minimum (min), maximum (max), and range of features, including 
HV, VV, TA, TV, AV, D, t, and θ, for analysis. These features are 
typically calculated using a sequence of individual mouse events that 
make up an action.

Based on our investigation, we identified nearly 90 mouse behavioral 
features currently used in the field. Furthermore, we were also able to 
identify the most frequently used features, which include a combination 
of mean, min, max, std of HV, VV, TV, TA, AV, with mean J, min J, max J, 
elapsed time, and mean C.

We successfully represent all mouse behavior features pictorially by 
grouping them based on popularity. Specifically, we first identify the 
most popular features (features used in >50 % of studies), followed by 
features used by 33–50 % of studies, and the least popular features 
(Fig. 5).

4.4. AI approaches and evaluation metrics used in mouse behavioral 
biometrics

Like keystroke analysis, mouse behavioral biometrics relies on 
various ML or DL approaches. This section identifies the AI approaches 
implemented for analysis. Approaches like SVM (Zheng et al., 2011; Da 
Silva et al., 2016), RF (Siddiqui et al., 2021; Da Silva et al., 2016; 
Almalki et al., 2023; Antal and Egyed-Zsigmond, 2018; Antal and 
Denes-Fazakas, 2019; Wang et al., 2019; Feher et al., 2012), DT 
(Almalki et al., 2023), KNN (Da Silva et al., 2016; Almalki et al., 2023), 
and MLP (Da Silva et al., 2016) are commonly implemented for analysis.

In addition to conventional ML approaches, studies have also applied 
DL approaches, such as CNN + RNN (Fu et al., 2020) and CNN (Antal 
and Fejér, 2020). These approaches deviate from traditional research 
studies by using a sequence of raw mouse events or images rather than 
extracting conventional features for user authentication (Fu et al., 2020; 
Hu et al., 2019; Antal and Fejér, 2020). Studies also feed conventional 
features into DL approaches (RNN-LSTM) and compare their perfor
mance to results achieved by traditional ML approaches (Subash et al., 
2024). Table 4 summarizes the identified AI approaches currently 
implemented in the field.

On further investigation, several studies have performed compre
hensive experiments to determine whether user identity can be defined 
in different environments. Specifically, they train the model with data 
collected from a desktop in the work environment and test it using data 
collected from a laptop in the home environment (Zheng et al., 2011). 
Furthermore, research also studies the effect of the number of clicks, 
inclusion of partial mouse movements (Zheng et al., 2011), varying 
numbers of mouse actions (Antal and Egyed-Zsigmond, 2018; Antal and 

Denes-Fazakas, 2019; Hu et al., 2019), different numbers of sequence 
information (Senarath et al., 2023a), and several types of mouse actions 
(Almalki et al., 2023; Antal and Egyed-Zsigmond, 2018), on perfor
mance. In addition to this, several models have also been compared. This 
includes comparing conventional ML and DL approaches (Fu et al., 
2020; Subash et al., 2024).

A comparison was also performed by training and testing models 
with different datasets. For example, Siddiqui et al. (2021) conducted 
experimentation in two scenarios: scenario 1) trained and tested RF 
exclusively with the training set, achieving a 92.73 % accuracy, and 
scenario 2) where RF was trained using the training set and tested using 
the test set, achieving a 61.60 % accuracy. This method was also seen in 
research done by Antal and Egyed-Zsigmond (2018). Comparison is also 
performed between pre-processing methods and models. For example, 
Antal and Fejér (2020) compared 2 segmentation methods and 3 
different DL models for authentication and identification scenarios. 
Specifically, the study compares a plain CNN model trained from scratch 
and 2 transfer models pre-trained using the DFL dataset. Among the 
transfer models, one has fixed weights, while the other updates weights 
using training data from the Balabit dataset. Furthermore, the compar
ison is also performed for balanced and unbalanced data scenarios.

Reliability analysis has also been performed to determine the us
ability of identified features. Specifically, Subash et al. (2024) proposes 
to evaluate DL models with a significantly larger publicly available 
dataset (Minecraft dataset) containing the same features as the ones 
identified in the study for online fraud detection. Specifically, the study 
compares the performance between newly collected data and the pub
licly available Minecraft dataset containing the same features (Subash 
et al., 2024). If the performance achieved in both scenarios is compa
rable, then the reliability of identified features is proven.

Some research also studies the effect of emotions on user identifi
cation (Wang et al., 2019). According to the study, the model’s perfor
mance under different emotions has mild variations but no significant 
impact on overall performance.

Studies also combine different modalities to create a more robust 
behavioral biometric authentication model. Da Silva et al. (2016)
combine keystroke and mouse behavioral biometrics modalities, 
proving that combining both modalities yields better performance than 
any one modality. According to the results, performance on keystroke 
data is inadequate, while performance using mouse behavior data yields 
satisfactory results, a maximum of 85 % through RF. Combining both 
modalities yields an increased performance of 90 % using RF.

Based on analysis (Table 5), it is evident that most studies rely on ML 
approaches despite the presence of state-of-the-art DL approaches. 
Further investigation revealed that RF is the most popular method 
among all conventional ML approaches.

Like keystroke, mouse behavioral biometric research analyzed in this 
study is also empirical. Analysis revealed that the evaluation metrics 
implemented in mouse behavioral biometrics research include FAR, 
FRR, and EER (Zheng et al., 2011). Additionally, accuracy (Acc), pre
cision (Pre), recall (Rec), Area Under the Curve (AUC), Receiver Oper
ating Characteristic (ROC) curve, and authentication time have also 
been used for model evaluation. The summary of the evaluation metrics 
utilized in mouse behavioral biometric research is depicted in Table 6.

4.5. Mouse behavioral biometrics research applications

On preliminary analysis, mouse behavioral biometrics have primar
ily been implemented for security-related applications, including user 
authentication and identification (Zheng et al., 2011). Table 7 gives a 
comprehensive idea of the research applications associated with mouse 
behavioral biometric research. Based on this analysis, it can be inferred 
that keystroke behavioral biometrics exhibit a significantly broader 
spectrum of research applications compared to mouse behavioral 
biometrics.
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Fig. 5. Mouse behavior features organized from most popular to least popular.
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5. Real-World applications for keystroke and mouse behavioral 
biometrics

Behavioral biometrics is employed in commercial solutions across 
various domains, including finance, enterprise security, and mobile 
authentication. These applications demonstrate the technology’s scal
ability and adaptability in addressing modern cybersecurity challenges.

Our analysis revealed the deployment of several keystroke behav
ioral biometric-based authentication systems primarily designed for 
mobile devices. These solutions include platforms such as MasterCard 
NuData, TwoSense.AI, BioSig ID, OneSpan, and Zighra (Progonov et al., 
2022). Many of these systems utilize a combination of behavioral fea
tures and sensor data for user authentication. For instance, MasterCard 
NuData analyses app usage, geolocation, keystroke patterns, wireless 
connections, and device orientation for verifying user identity 
(Progonov et al., 2022). Additionally, some systems employ multifactor 
authentication by combining multiple behavioral biometric modalities. 
For example, TwoSense. AI incorporates keystroke dynamics, gait pat
terns, touchscreen interactions, app usage, and geolocation data to 
enable continuous user authentication (Progonov et al., 2022). Simi
larly, OneSpan and Zighra leverage keystroke behavior, app usage, and 
sensor data, such as wireless connection information, for authentication. 
BioSig ID, conversely, employs a multifactor approach that combines 
knowledge-based authentication (e.g., PINs and passwords) with 
touch-screen-based gestures to verify users (Progonov et al., 2022).

Other systems, including Plurilock Defend (Plurilock Security, Inc 

2024), SecureAuth (SecureAuth 2025), and BioCatch Connect (BioCatch 
2025, similarly utilize the aforementioned features with mouse behavior 
for user authentication. The information regarding all the aforemen
tioned behavioral biometrics-based authentication systems has been 
consolidated and presented in Table 8. Based on our analysis, we find 
that Plurilock, BioCatch, and SecurAuth develop multiple solutions that 
target different endpoint devices, including smartphones, desktops, 
tablets, and laptops. To our knowledge, no other survey covers 
real-world applications of keystroke and mouse behavioral 
biometric-based authentication systems.

6. Adaptability of keystroke and mouse behavioral biometrics 
systems

It is already known that behavioral biometric modalities, especially 
keystroke and mouse behavioral biometrics, have gained significant 
popularity in recent years due to their capability to track user identity 
continuously and noninvasively. Secondly, these systems are more 
secure than conventional password-based authentication systems, as 
they rely on analyzing unique user behavior for user authentication and 
identification. These unique behaviors are more challenging to forge, 
forget, share, or distribute (Jain et al., 2006), making them better 
alternatives.

However, such modalities suffer from intraclass variability (Mhenni 
et al., 2019a, 2018). Keystroke behavior of a user is affected by several 
factors such as keyboard layout (QWERTY, QWERTZ, AZERTY), 
keyboard type (touch screen, virtual, physical), subject activeness, and 
several environmental factors (location and lighting) (Mhenni et al., 
2019a, 2018). Similarly, mouse behavior is also affected by a similar set 
of factors. Similarly, screen resolution (website window content reso
lution, monitor resolution), mouse pointer sensitivity, and types of 
mouse (trackpad, gaming mouse, regular mouse) are also known to 

Table 5 
Summary of AI approaches implemented for mouse behavioral biometric 
analysis.

ML DL Statistical Models Author

RF No No Siddiqui et al., 2021
SVM-RBF No No Zheng et al., 2011
RF, KNN, 

SVM
MLP No Da Silva Beserra et al., 

2016
RF, DT, 

KNN
No No Almalki et al., 2023

No CNN +
RNN

No Fu et al., 2020

RF No No Antal and 
Egyed-Zsigmond, 2018

RF No No Antal and 
Denes-Fazakas, 2019

No RNN- 
LSTM

No Subash et al., 2024

SVM No No Shen et al., 2013
RF No No Wang et al., 2019
No No Parzen density estimation, 

Unimodal distribution.
Gamboa and Fred, 2004

RF No No Feher et al., 2012
No CNN No Hu et al., 2019
No CNN No Antal and Fejér, 2020

Table 6 
Evaluation metrics used in mouse behavioral biometrics.

Author EER FAR FRR Acc PRE REC ROC AUC Others

Siddiqui et al., 2021 Yes Yes Yes Yes No No No No No
Zheng et al., 2011 Yes Yes Yes No No No Yes No No
Da Silva Beserra et al., 2016 No No No Yes No No No No No
Almalki et al., 2023 Yes Yes Yes Yes No No Yes Yes No
Fu et al., 2020 Yes No No No No No Yes Yes No
Antal and Egyed-Zsigmond, 2018 Yes Yes Yes Yes No No Yes Yes No
Antal and Denes-Fazakas, 2019 No No No No No No Yes Yes No
Subash et al., 2024 No No No Yes Yes Yes No No No
Shen et al., 2013 Yes Yes Yes No No No No No Yes
Wang et al., 2019 No No No Yes No No No No No
Gamboa and Fred, 2004 Yes No No No No No No No No
Feher et al., 2012 Yes Yes Yes No No No Yes Yes Yes
Hu et al., 2019 No Yes Yes No No No No No No
Antal and Fejér, 2020 No No No Yes No No No Yes No

Table 7 
Summary of research application of mouse behavioral biometric analysis.

Author Security Online Assessment Fraud Detection

Siddiqui et al., 2021 Yes No
Zheng et al., 2011 Yes No
Da Silva Beserra et al., 2016 Yes No
Almalki et al., 2023 Yes No
Fu et al., 2020 Yes No
Antal and Egyed-Zsigmond, 2018 Yes No
Antal and Denes-Fazakas, 2019 Yes No
Subash et al., 2024 Yes Yes
Shen et al., 2013 Yes No
Wang et al., 2019 Yes No
Gamboa and Fred, 2004 Yes No
Feher et al., 2012 Yes No
Hu et al., 2019 Yes No
Antal and Fejér, 2020 Yes No
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affect mouse behavior (Zheng et al., 2011). Specifically, features such as 
velocity and acceleration of mouse movements become poor comparison 
metrics between subjects.

Further investigation shows that user behavior could evolve 
(change) over time (Mhenni et al., 2019a). Specifically, the user 
behavior recorded during the initial analysis phases may not represent 
the user behavior several months or years later (Mhenni et al., 2019a). 
According to research studies, several factors contribute to user 
behavior evolution (changes in user behavior) (Mhenni et al., 2019a; 
Pisani et al., 2019). Through frequent interaction with keyboard and 
mouse devices, subjects’ behavior may vary. In other words, as the 
subject becomes more familiar with the devices, it becomes easier for the 
subject to use them. This causes variations in the subject’s profile 
compared to the initial profile. For example, the subject may become 
faster at typing or more proficient with the mouse than when he first 
started. Similarly, keystroke and mouse behavior can also be affected by 
illnesses, aging, emotions, and injuries (Pisani et al., 2019). Since such 
changes in user behavior occur over time due to these several factors, the 
chances of genuine subjects getting rejected by the behavioral biometric 
authentication system become higher, thereby increasing false rejection 
rates (FRR). Therefore, it is imperative to investigate current research in 
behavioral biometrics and identify if and how they factor in user 
behavior evolution. Table 8 summarizes research studies implementing 
adaptive strategies to tackle user behavior evolution.

Our investigation shows that only a few studies implement adaptive 
strategies to counter intra-class variability and user behavior evolution. 
Subash & Song (2021) propose an RBBIS (Real-time Behavioral Bio
metric Information Security) adaptive framework that non-invasively 
builds behavioral profiles using DL approaches. This framework per
forms trajectory analysis to investigate and predict how user behavior 
evolves over time. According to the author, this framework can detect 
users after long periods during which there is an expected change in user 
behavior.

Studies also focus on tackling intra-class variability (Mhenni et al., 
2019a, 2018). A. Mhenni et al. (2018) first classify users into categories 
according to the Doddington Zoo classification and apply specific 
adaptive techniques to each category. Specifically, three adaptive ap
proaches are implemented: growing window, sliding window, and the 
least frequently used technique. Similarly, Mhenni et al. (2019a) pro
pose an adaptive method that uses only one sample as a reference. After 
this, the reference is updated using a double serial adaptation strategy 
for each correctly classified sample. Specifically, two thresholds are 
implemented as a criterion for adaptation. First, the global score is used 
to determine the authenticity of the subject (using the first threshold), 

and then it is compared with the second threshold. Each reference is 
added as a profile based on the growing window technique until it 
reaches a specific size (10), after which a sliding window is imple
mented. Therefore, each sample successfully recognized as the subject’s 
is considered a potential reference. Finally, Ceker and Upadhyaya 
(2016) investigate the use of transfer learning to update the classifiers 
affected by environmental factors with minimal re-training. According 
to the study, it is feasible to identify users at different times by acquiring 
only a few samples from another session, obtaining 13 % higher 
accuracy.

Our investigation found that most adaptation techniques were 
implemented, keeping keystroke behavioral biometrics in mind. To our 
knowledge, adaptation techniques have yet to be implemented in mouse 
behavioral biometrics (Table 9).

7. Research gaps and discussion

In the preceding section, we extensively reviewed the current trend 
within keystroke and mouse behavioral biometrics. Our investigation 
has encompassed various facets, such as the compilation of datasets, 
utilization of features, deployment of artificial intelligence methodolo
gies, computation of evaluation metrics, and exploration of research 
applications about keystroke and mouse behavioral biometrics. Despite 
the popularity of these methods, there are several research gaps.

Our analysis shows that some keystroke and mouse behavioral 
biometric-based research suffers from performance issues. Specifically, 
trained models cannot accurately classify new samples (Siddiqui et al., 
2021; Da Silva Beserra et al., 2016; Subash et al., 2024; Subash and 
Song, 2021). Although a substantial number of studies exist in both 
fields, challenges related to performance and long-term reliability 
remain areas that require further investigation. On further analysis, it 
was found that only a few existing studies and surveys on keystroke and 
mouse behavioral biometrics address the adaptability of current 
research to user behavior evolution. It is already mentioned that 
keystroke and mouse behavior suffer from high intra-class variability 
(Mhenni et al., 2019a,2018). Furthermore, many studies have claimed 
that user behavior evolves over time due to various factors, including 
age, fatigue, emotion, familiarity, and illnesses (Mhenni et al., 2019a, 
2018; Subash and Song, 2021; Pisani et al., 2019). This change in user 
behavior can affect the performance of current keystroke and mouse 
behavior biometric-based authentication systems. Specifically, genuine 
users can be classified as imposters, thereby increasing FRR and 
affecting system usability.

To overcome the issues, several studies have used techniques that 

Table 8 
Comparison of Real-World Applications for Keystroke and Mouse Behavioral Biometrics.

Solution Authentication Method Used Modalities Sensor Data Non-Invasive 
Authentication

MasterCard Nu 
Data

Behavior-Based Apps Usage, Keystroke Behavioral Biometrics, Geolocation, Device 
Orientation, Wireless Connections

Motions Sensors, touchscreen, 
GPS, Wireless Adaptors

Yes

TwoSense.AI Continuous 
Authentication, 
Multifactor

Keystroke Behavioral Biometrics, Touchscreen, App Usage, 
Geolocation, gait behavioral biometrics

Touchscreen, Motion sensors, 
front-facing camera, GPS

Yes

BioSigID Multifactor Passwords/PIN, Touchscreen Gestures Touchscreen No
OneSpan Multifactor App Usage, Keystroke Behavioral Biometrics, Wireless Connections Touchscreen, Wireless Adapter Yes
Zighra Continuous 

Authentication, 
Multifactor

App Usage, Keystroke Behavioral Biometrics, Wireless Connections Touchscreen, Wireless Adapter Yes

Plurilock 
Defend

Continuous 
Authentication, 
Multifactor

Keystroke Behavioral Biometrics, Mouse Behavioral Biometrics Keyboard Device, Pointer Device Yes

BioCatch 
Connect

Continuous 
Authentication, 
Multifactor

Keystroke behavioral biometrics, mouse behavioral biometrics Keyboard Device, Pointer Device Yes

SecureAuth Multifactor Keystroke behavioral biometrics, mouse behavioral biometrics, Touch 
screen, Geolocation, User device, Wireless connection, Browser 
information

Keyboard Device, Pointer 
Device, Touchscreen, GPS, Wi-Fi

Yes
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overcome the problem of intra-class variability by proposing reference 
template adjustment techniques such as growing window, sliding win
dow, and least frequently used reference mechanisms (Mhenni et al., 
2019a, 2018; Ceker and Upadhyaya, 2016). However, these complex 
methods require more computation and storage, making them unsus
tainable solutions. This is also the case when DL approaches are used 
(Lucia et al., 2023). Furthermore, these approaches can only detect 
slight changes in user reference based on environmental conditions, 
emotions, fatigue, and hardware-related factors. Additionally, no 
studies focus on tackling user behavior evolution over long periods due 
to age, familiarity, and illnesses. It is also important to note that research 
studies have only given a general hypothesis that user behavior evolves 
over time due to the aforementioned factors. However, no experimental 
studies have analyzed and proved that user behavior and its properties 
actually evolve. Furthermore, no public datasets are available for 
analyzing short and long-term user behavior evolution. This is because 

data needs to be collected in different environments and devices over 
several sessions, separated by a certain amount of time. Our investiga
tion shows that public and novel datasets used for mouse and keystroke 
behavioral biometrics collect data in sessions, but do so with small time 
gaps. According to our analysis (Tables 1 and 4), the maximum time gap 
between sessions is ~28 days (Acien et al., 2022). Other studies collect 
behavioral data in sessions separated by approximately one day or one 
week. However, such intervals may not adequately capture long-term 
changes in user behavior. In some cases, datasets are continuously 
collected over large time frames ranging from 4 months to >2 years 
using logging tools. However, these studies do not perform adaptive 
analysis to understand user behavior evolution. The absence of public 
datasets makes it very difficult to evaluate adaptive behavioral bio
metric systems (Pisani et al., 2019) or predict user behavior evolution 
over time. Furthermore, the survey articles analyzed in this paper do not 
report on adaptive strategies used in behavioral biometric research 
studies or their drawbacks. Current behavioral biometric systems are 
also susceptible to attacks, including zero-effort, playback, and 
poisoning attacks (Jain et al., 2006; Pisani et al., 2019; Mhenni et al., 
2019b). Generally, these areas of research remain unexplored.

As an additional contribution to this paper, we compile and visualize 
comprehensively the contributions of previously published surveys and 
compare them to our survey (Table 10). Comparison is performed on 
several aspects, including the reports on modalities (MD), datasets (DS), 
data collection procedures (DCP), pre-processing methods (PM), AI ap
proaches (MU), evaluation metrics (EC), adaptability (AD), and research 
applications (RA). Table 10 also shows that our survey gives a more 
comprehensive outlook on keystroke and mouse behavioral biometrics 
compared to previously published work.

While theoretical advancements in behavioral biometrics have 
demonstrated promising results in controlled settings, the real-world 
deployment of these systems introduces additional challenges. For 
instance, maintaining high accuracy and consistency across diverse user 
populations and varying environments remains difficult. Systems 
trained on data from a specific device or setting often experience per
formance degradation when applied to different hardware, network 
conditions, or user contexts. Factors such as hardware inconsistencies (e. 
g., different keyboards or mice), changes in user behavior due to stress, 
fatigue, learning factors, emotion, or multitasking, and variations in 
posture or interaction patterns can significantly affect model 
performance.

Moreover, scalability becomes a concern as systems move from 
small-scale evaluations to broader deployments involving large and 
heterogeneous user bases. Ensuring robustness and generalization 
across time and conditions is crucial, yet many existing approaches 
struggle to maintain long-term performance without frequent retraining 
or fine-tuning. These real-world constraints highlight the gap between 
controlled experimental results and practical applicability, underscoring 
the need for further research into adaptable, context-aware, and 
privacy-conscious biometric systems.

8. Privacy challenges and ethical considerations in behavioral 
biometric systems

Behavioral Biometrics, such as keystroke and mouse dynamics, offer 
valuable benefits for non-invasive and continuous user authentication. 
However, their deployment raises important ethical and privacy con
siderations. A major concern is user consent, as user behavioral 
biometric-based systems collect user behavior data passively in the 
background, often while the users are not fully aware of what is being 
collected, how it is being processed, used, or who has access to it. This 
lack of transparency challenges the fundamental principles of informed 
consent.

Secondly, user behavior information is sensitive and rich in contex
tual information, which can reveal users’ traits and behaviors. Specif
ically, user behavior, such as typing speed and mouse movement 

Table 9 
Summary of adaptive techniques used in quantitative studies analyzed.

Author Modality Adaptive Mechanism Used

Andrean et al. 2020 Keystroke No
Siddiqui et al., 2021 Mouse No
Subash et al., 2023 Keystroke No
Zheng et al., 2011 Mouse No
Mhenni et al., 2019a Keystroke Sliding window, Growing Window, and 

least frequently used mechanism, with 
Doddington Classification

Ceker and Upadhyaya, 
2016

Keystroke Transfer learning

Subash and Song, 2021 Keystroke RBBIS framework that performs 
trajectory analysis for user behavior 
change over time

Maheshwary et al., 
2017

Keystroke No

Killourhy and Maxion, 
2009

Keystroke No

Maiorana et al., 2019 Keystroke No
Senarath et al., 2023a Keystroke No
Senarath et al., 2023b Keystroke No
Nguyen et al., 2024 Keystroke No
Epp et al., 2011 Keystroke No
Tsimperidis et al., 2017 Keystroke No
Tsimperidis et al., 2020 Keystroke No
I. Tsimperidis et al., 

2018
Keystroke No

Ulinskas et al., 2018 Keystroke No
Alshanketi et al., 2019 Keystroke No
Bours, 2012 Keystroke No
Da Silva Beserra et al., 

2016
Keystroke +
Mouse

No

Krishnamoorthy et al., 
2018

Keystroke No

A. Mhenni et al., 2018 Keystroke Double serial adaptation strategy with 
sliding window or growing window 
techniques

Kalita et al., 2020 Keystroke No
Daribay et al., 2019 Keystroke No
Acien et al., 2022 Keystroke No
Stragapede et al., 2024 Keystroke No
Almalki et al., 2023 Mouse No
Fu et al., 2020 Mouse No
Antal and 

Egyed-Zsigmond, 
2018

Mouse No

Antal and 
Denes-Fazakas, 2019

Mouse No

Subash et al., 2024 Mouse No
Shen et al., 2013 Mouse No
Wang et al., 2019 Mouse No
Gamboa and Fred, 

2004
Mouse No

Feher et al., 2012 Mouse No
Hu et al., 2019 Mouse No
Antal and Fejér, 2020 Mouse No
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behavior, can be influenced by the users’ mood, fatigue levels, and 
stress, potentially providing much more information and insight than 
the user intends to. Furthermore, such data can also reveal the users’ 
age, gender, cognitive state, health conditions, and possible disabilities. 
If not strictly protected, this data can be misused for unauthorized 
profiling, discrimination, and surveillance, particularly in schools, on
line education platforms, workplaces, and public systems.

Deploying user behavioral biometric systems at scale would also 
have broader societal implications. The widespread use of this tech
nology could lead to the pervasive monitoring of users, thereby under
mining privacy in digital spaces. Without proper regulation and 
oversight, such technologies may be exploited by governments or cor
porations to track individuals, eroding civil liberties. Even in legitimate 
applications, ensuring the responsible use of this data is important for 
maintaining user trust. It is also essential to consider how systems can 
remain robust to misuse or accidental disclosure of user behavior data, 
particularly given the long-term and often continuous nature of data 
collection in behavioral biometrics.

Lastly, to address the aforementioned challenges, behavioral bio
metric system design should incorporate privacy-aware approaches, 
such as data minimization, transparency in model behavior, and clear 
opt-in or opt-out mechanisms for users. Exploring on-device processing, 
anonymization techniques, and secure data handling can also help 
ensure responsible use. As behavioral biometric technologies continue 
to develop, a balanced consideration of their technical capabilities and 
ethical implications will be key to supporting their adoption in a trust
worthy manner.

9. Conclusion and future work

In conclusion, our survey has provided a comprehensive overview of 
the current landscape of keystroke and mouse behavioral biometrics. 
Through our exploration, we have identified several noteworthy trends 
and insights. The findings underscore the importance of the adaptability 
of current keystroke and mouse behavioral biometric-based research, 
which may have significant implications for performance and user 
authentication over long periods. Moving forward, we suggest that there 
is a need to analyze, visualize, and identify what properties of behavior 
evolve (change), how they evolve, and what factors bring about the 
evolution of user behavior. Therefore, future research should focus on 
making such systems more adaptable to user behavior evolution. Since 

user behavior can evolve over time due to several factors (mentioned in 
Section 7), it is essential to factor in this evolution to prevent an increase 
in FRR rates. This involves collecting user behavior and demographic 
data for an extended period of time and analyzing the data for specific 
trends. It is also essential to develop more sustainable approaches, 
methodologies, and frameworks relevant to current policies and stan
dards established by several world governments. Making such systems 
adaptive and sustainable will help build more state-of-the-art, secure, 
and robust behavioral biometric authentication systems. Secondly, 
future work should also focus on securing keystroke and mouse behav
ioral authentication systems against poisoning, playback, and zero- 
effort attacks. Thirdly, future research could explore the integration of 
additional behavioral modalities, such as gait, voice, and touchscreen 
interactions, to develop more robust and comprehensive multimodal 
biometric systems. Furthermore, to address the challenges of scalability 
and generalization in real-world deployments, future research should 
focus on developing adaptive behavioral biometric models that can 
maintain performance across diverse users, devices, and environments 
without frequent retraining. This includes exploring continual learning 
techniques, domain adaptation, and context-aware modelling strategies. 
Additionally, efforts should be directed toward designing privacy- 
preserving architectures that ensure user data protection while sup
porting large-scale, long-term biometric authentication systems. Future 
research could also explore adaptive machine learning techniques from 
other domains to enhance the long-term robustness of behavioral bio
metric systems. Integrating cross-domain adaptation and continual 
learning approaches may help address evolving user behavior more 
effectively. This survey contributes valuable insights into keystroke and 
mouse behavioral biometrics, laying a foundation for continued inno
vation and research.
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