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Research in behavioral biometrics, especially keystroke and mouse behavioral biometrics, has increased in recent
years, gaining traction in industry and academia across various fields, including the detection of emotion, age,
gender, fatigue, identity theft, and online assessment fraud. These methods are popular because they collect data
non-invasively and continuously authenticate users by analyzing unique keystroke or mouse behavior. However,
user behavior evolves over time due to several underlying factors. This can affect the performance of current
keystroke and mouse behavioral biometric-based user authentication systems. We comprehensively survey
current keystroke and mouse behavioral biometric approaches, exploring their use in user authentication and
other real-world applications while outlining trends and research gaps. In particular, we investigate whether
current approaches compensate for user behavior evolution. We find that current keystroke and mouse behav-
ioral biometrics approaches cannot adapt to user behavior evolution and suffer from limited efficacy. Our survey
highlights the need for new and improved keystroke and mouse behavioral biometrics approaches that can adapt
to user behavior evolution. This study will assist researchers in improving current research efforts toward
developing more secure, effective, sustainable, robust, adaptable, and privacy-preserving keystroke and mouse-

behavioral biometric-based authentication systems.

1. Introduction

Authentication is establishing the integrity of one’s identity before
accessing critical services, information, or resources to which one is
entitled. In other words, it is a fundamental system that ensures the
confidentiality, integrity, and accessibility of resources (Andrean et al.,
2020; Albalawi et al., 2022). Current user authentication systems use
passwords or a combination of factors to identify users, mainly during
log-in time (Andrean et al., 2020; Ometov et al., 2018; Lucia et al.,
2023). Using passwords with other authentication factors for user
authentication does not diminish the possibility of identity fraud, as the
user, once authenticated, may not be the one currently accessing the
system (Lucia et al., 2023). Continuous Authentication (CA) can over-
come this weakness by regularly verifying user identity during an active
session (Mondal and Bours, 2013). Research in keystroke and mouse
behavioral biometric-based authentication systems has gained traction
for this specific application (Siddiqui et al., 2021; Subash et al., 2023).
Furthermore, these systems can be realized effortlessly due to the ease of
data collection and minimalistic hardware requirements (Babich, 2012;
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Zheng et al., 2011).

The rising occurrence of phishing and identity theft underscores the
urgent need for enhanced cybersecurity measures (Deliema et al., 2020;
Guedes et al., 2023). This is particularly true for sophisticated and
cutting-edge authentication systems. The popularity of keystroke and
mouse behavioral biometrics comes when cybersecurity attacks, such as
phishing and identity theft, are rising. Identity theft is the intentional,
unauthorized, and unlawful use of a person’s identity for malicious ac-
tivities (Guedes et al., 2023). According to a recent report from Javelin
Strategy, total losses associated with identity theft amount to USD 43
billion. This figure includes losses due to traditional identity fraud and
scams orchestrated by criminals (Sando, 2024). Similarly, phishing at-
tacks have also become equally widespread. Such attacks deceive users
into revealing confidential information by posing as legitimate entities.
As per the Anti-Phishing Working Group (APWG) reports, the total
number of unique phishing attacks detected as of 2023 amounts to ~4.9
million attack instances. This figure has risen from ~2.8 million unique
phishing attacks detected in 2021. This represents a 75 % increase in
phishing attacks detected in just two years.
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Keystroke and mouse behavioral biometric-based authentication
methods can alleviate this problem by providing a more secure alter-
native to conventional password or one-time authentication methods.
This is due to their ability to effectively perform CA non-invasively
(Siddiqui et al., 2021; Subash et al., 2023). For example, a system an-
alyzes users’ keystroke and mouse behavioral patterns and creates
unique profiles for each user to continuously authenticate the users
during their interaction with the system (Albalawi et al., 2022). Since
authentication is performed based on user behavior, it becomes hard to
reproduce and spoof the system, thereby making it secure (Siddiqui
et al., 2021; Albalawi et al., 2022). However, studies have claimed that
user behavior evolves over time due to various underlying factors (Jain
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and Pankanti, 2006; Ceker and Upadhyaya, 2016; Mhenni et al., 2019a;
Subash and Song, 2021). Since current keystroke and mouse behavioral
biometric-based authentication systems analyze behavior, changes in
behavior can cause a rise in false positives, making the current ap-
proaches less effective.

Therefore, we comprehensively survey current keystroke and mouse
behavioral biometric approaches, exploring their use in user authenti-
cation and other real-world applications, such as online assessment
fraud detection, while outlining trends and research gaps. In particular,
we investigate their adaptability to user behavior evolution. As an
additional contribution, we will also compare our survey to previously
published surveys to show the comprehensive nature of our study.
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Fig. 1. PRISMA flow diagram illustrating keyword search and exclusion criterion.
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2. Preliminaries and initial concepts
2.1. Inclusion and exclusion criteria

The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram was employed to identify and screen
articles from databases and registers through a three-step process:

1. Identification: We meticulously analyzed 105 articles sourced from
major publishers, including IEEE, ACM, Elsevier, Wiley, arXiv, and
Springer (Fig. 1). Several articles published between 2009 and 2024,
including empirical research, surveys, and literature reviews
focusing on conventional authentication systems, physiological bio-
metrics, and behavioral biometrics, were selected for our analysis.

2. Screening: Out of the 105 articles identified, 24 articles were
excluded as they were found to be outside the scope of research,
related to topics such as physiological biometric modalities,
authentication protocols, user profile-based multimodal authentica-
tion systems, and conventional authentication systems. Furthermore,
duplicate survey papers were also excluded. The main objective of
this survey is to perform a comprehensive study of keystroke and
mouse behavioral biometrics and give a detailed review of trends,
research gaps, and future work in the field. In particular, we inves-
tigate the adaptability of current keystroke and mouse behavioral
biometric research methods toward user behavior evolution. This
survey article mainly includes empirical and qualitative research on
keystroke and mouse behavioral biometrics.

3. Final Selection: The remaining articles are evaluated based on their
relevance to the research topic, the data utilized for analysis, the
details of the experimental methodology, and the evaluation metrics
used by them. After a comprehensive evaluation, the 81 articles
screened were finally selected for further analysis.

2.1.1. Biometric-Based authentication systems

Biometric authentication systems rely on the unique physiological
and behavioral characteristics of individuals to verify their identity,
addressing the limitations of traditional knowledge-based (e.g., pass-
words/PINs) and ownership-based (e.g., key cards/ cryptographic keys)
authentication systems (Ometov et al., 2018; Zheng et al., 2011; Subash
and Song, 2021). Conventional authentication systems are widely
deployed but are susceptible to cybersecurity threats such as dictionary
attacks, rainbow table attacks, and social engineering (Wang and Wang,
2015; Deb Das et al., 2013; Heartfield and Loukas, 2016). Physical
authentication tokens, such as key cards, are also prone to being lost or
stolen, further exposing users to potential security breaches (Zheng
et al., 2011).

In contrast, biometric authentication systems leverage inherent and
immutable traits of users, such as fingerprints, facial features, or
behavioral patterns, making them a more secure alternative (Zheng
et al., 2011; Jain and Pankanti, 2006). Biometric authentication can be
classified into physiological and behavioral biometrics (Albalawi et al.,
2022; Babich, 2012; Subash and Song, 2021). Physiological biometrics
rely on physical traits, including fingerprints, facial recognition, and iris
scans, unique to each individual (Albalawi et al., 2022; Babich, 2012;
Jain et al., 2006). On the other hand, behavioral biometrics analyze
dynamic behavioral traits, such as typing rhythms, mouse movement
patterns, and touchscreen gestures, to identify users non-invasively and
continuously (Babich, 2012; Zheng et al., 2011; Jain et al., 2006). In
addition to the aforementioned modalities, behavioral biometrics also
analyzes voice, gait patterns, eye movement, and widget interaction for
user authentication (Fig. 2). Behavioral biometrics offers several ad-
vantages over physiological biometrics, including continuously veri-
fying user identity using commonly available input devices, such as
keyboards, mouse pointers, microphone sensors, and cameras, making it
more inexpensive, accessible, and practical (Zheng et al., 2011).
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Fig. 2. Categorization of biometric authentication methods and main focus.

3. Keystroke behavioral biometrics

Keystroke behavioral biometric-based systems analyze users’ typing
patterns on digital devices to create a unique signature for user
authentication (Albalawi et al., 2022). Over the years, there has been a
sharp increase in research in the field due to its ability to perform CA
non-invasively, specifically since the 1980s (Albalawi et al., 2022;
Kochegurova and Martynova, 2020). Gaines (1980) was the first to
propose the technology by developing the first automated keystroke
dynamic-based recognition system. Since then, significant advance-
ments have been made by implementing Machine Learning (ML) and
Deep Learning (DL) approaches (Subash et al., 2023; Maheshwary et al.,
2017).

Based on preliminary analysis, we confirm that keystroke behavioral
biometric-based authentication was performed for two primary pur-
poses: user authentication and identification (Messerman et al., 2010;
Banerjee and Woodard, 2012). User authentication involves extracting
sample keystroke features and comparing them with the features in a
database to perform a one-on-one match to confirm the subject’s iden-
tity. The process will verify whether the user is who they claim to be,
either approving or rejecting the claimed identity, i.e., classifying the
subject as an imposter (0) or genuine (1). On the other hand, user
identification is identifying a particular user from a list of given users.
This process looks through the entire database to find the user to whom
the keystroke belongs (Messerman et al., 2010; Banerjee and Woodard,
2012).

3.1. Types of keystroke behavioral biometric datasets

Keystroke behavioral biometric datasets generally fall under static
and dynamic datasets. Static datasets collect data by requesting users to
enter a predetermined text of fixed length, which can be the same or
different for each user. Analysis of static text is performed in systems
with no scope for further text entry, mainly during the log-in phase. On
the other hand, dynamic datasets collect free-form text that reflects real-
world scenarios and enables CA. This type of data collection does not
restrict the user on what is typed and is performed while users engage in
their daily activities without restriction (Messerman et al., 2010;
Banerjee and Woodard, 2012).

The description of several datasets implemented in keystroke
behavioral biometric analysis is described below:
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1) Public Datasets

A. CMU Benchmark Dataset: Collected keystroke data (Killourhy and
Maxion, 2009) from 51 subjects who typed a predetermined pass-
word 50 times each session. Data was collected over 8 sessions,
during which each subject provided 400 samples of keystroke data.
Keystroke behavior data were collected from 30 males and 21 fe-
males, of whom eight were left-handed and 43 were right-handed.
The median age group was 31-40, the youngest was 18-20, and
the oldest was 61-70. According to the author, each subject’s session
took between 1.25 and 11 min, with the median session time being 3
min (Killourhy and Maxion, 2009).

B. Teh dataset: Collected keystroke data from 150 subjects, of which
132 belong to the public, while the rest are from academia. Data
collection is facilitated using an Android application where subjects
entered one 16-digit (1379,666,624,680,852) and one 4-digit PIN
(5560). Specifically, they entered each PIN 10 times, contributing 20
samples each. Furthermore, subjects could choose which location to
perform the activity (Maiorana et al., 2019).

C. Antal Dataset: The author collected keystroke data from 54 sub-
jects who typed 3 different passwords, including easy, logically
strong, and strong passwords, in 3 sessions, providing 60 samples
each. Five of the 54 subjects were female, and 49 were male. Ac-
cording to the author, the subjects also participated in a de-
mographic and experience survey (Antal and Nemes, 2016).

D. Coakley Dataset: Collected keystroke data from 52 subjects. The
sample size is selected from a set of computer users, accounting for
two-thirds of the undergraduate population enrolled in introductory
computing courses and one-third of the working professionals. Each
subject typed a 10-digit string (9141,937,761) 30 times (Coakley
et al., 2016).

E. Android Dataset: Collected static keystroke data from 42 subjects
using an Android application. Subjects were required to type a pre-
determined password 30 times during two sessions. Of the 42 sub-
jects, 24 were males, and 18 were females (Antal et al., 2015).

F. WEBGREYC Dataset: This is another publicly available keystroke
dataset collected by Giot et al. (2012) from 45 subjects who typed the
same password, SESAME.

G. Aalto University Dataset: This dataset contains two parts: 1) The
Dhakal et al. (2018) dataset that contains desktop keystroke data
collected from a sample size of 168,000 subjects, and 2) The Palin
et al. (2019) dataset comprising of mobile keystroke data collected
from a sample size of 260,000 subjects. The same data collection
procedure was implemented for both datasets, based on controlled
free text. The data acquisition procedure required subjects to
memorize English sentences and reproduce them as accurately as
possible. These sentences were chosen from 1525 sentences acquired
from Enron Mobile Email and Gigaword Newswire Corpus. Data
collection was conducted using a web application.

H. The Clarkson 2 Dataset: This dataset was collected by Murphy
etal. (2017) and contains free-form keystroke data from 103 subjects
typing on a desktop keyboard over a long period (2.5 years) in a
completely uncontrolled scenario.

1. Buffalo Dataset: Collected by Yan Sun et al. (2016), comprising
desktop keystroke data from 148 subjects. Subjects were required to
participate in 3 data collection sessions spanning 28 days. Each
session required the subjects to complete two tasks: transcribing a
pre-defined text and answering free-text questions. The dataset
contains two subsets of data: 1) baseline and 2) keyboard variation
data. In the baseline, subjects participated in 3 sessions using the
same keyboard and used 3 different types of keyboards while col-
lecting the keyboard variation data for 3 sessions.

J. HMOG Dataset: The hand movement, orientation, and grasp
(HMOG) dataset uses accelerometer, gyroscope, and magnetometer
readings to capture subtle hand micro-movements while participants
tap on a screen. Data was collected from 100 participants during
eight keystroke typing sessions. Participants were required to answer
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three questions per session by typing at least 250 characters for each
question. Participants were required to perform the task while sitting
and walking in a controlled environment. In addition to keystroke
data, the accelerometer, gyroscope, and magnetometer data were
also recorded for analysis (Senarath et al., 2023b; Sitova et al., 2016;
Acien et al., 2021).

K. HuMIdb Database: The Human Mobile Interaction Database
(HuMIdb) is a publicly accessible dataset comprising 5GB of data
recorded from various mobile sensors through an unsupervised data
collection approach. The dataset was gathered from 600 participants
as they performed eight distinct tasks designed to reflect everyday
mobile device interactions. These tasks included typing (name, sur-
name, and a predefined sentence), tapping (pressing a sequence of
buttons), swiping (upward and downward gestures), air movements
(drawing circle and cross gestures in the air), handwriting (writing
digits), and voice recording (speaking the sentence "I am not a
robot"). Data collection occurred over five sessions, with a one-day
interval between sessions (Sitova et al., 2016; Acien et al., 2021;
Nguyen et al., 2024). In addition to keystroke and touchscreen data,
the dataset includes sensor data from accelerometers, magnetome-
ters, gyroscopes, orientation sensors, proximity sensors, gravity
sensors, light sensors, GPS, WiFi, Bluetooth, and microphones. The
data collection process was uncontrolled, ensuring the dataset re-
flected natural usage scenarios (Sitova et al., 2016; Acien et al.,
2021; Nguyen et al., 2024).

L. FETA Dataset: The dataset was collected from 470 participants
over 31 sessions. Participants were recruited via Amazon Mechanical
Turk (MTurk), a crowdsourcing platform. An iOS application was
developed to facilitate data acquisition, which recorded touch and
sensor data as participants interacted with their mobile devices.
Participants performed two primary activities: social media and
image gallery tasks. The social media task aimed to simulate vertical
scrolling behavior typical of activities such as browsing social media
feeds or navigating through a list of news articles. This task was
designed to collect touch data reflecting everyday user interactions
with mobile devices. The image gallery task was implemented to
capture horizontal scrolling data. During this task, participants
browsed a horizontal list of images, with only one image visible at a
time. They were instructed to count specific objects as they swiped
through the gallery. This setup enabled the acquisition of detailed
horizontal scrolling behavior (Georgiev et al., 2023; Nguyen et al.,
2024).

2) Novel Datasets: According to our findings, several studies have
collected their own data for keystroke behavior biometric analysis.
The data collection strategy for such datasets has been described
below:

A. Epp et al. (2011) collected both static and free-form keystroke
data from 26 subjects in an uncontrolled manner. A specific appli-
cation was built to record keystroke data based on the subject’s
current activity. At regular intervals, the computer program prompts
the subject to review the keystroke text that was entered previously.
Subsequently, the subject was required to complete an emotional
state questionnaire and a static text task. Of 12 subjects, 10 were
male and 2 were female, with the average age being 28.5 years.

B. Tsimperidis et al. (2017, 2020, I. 2018) collect free-form keystroke
data using a developed free text keylogger called IRecU, which could
be installed on any portable smart device with any version of MS
Windows. In addition to keystroke data, subjects were also requested
to provide demographic (Tsimperidis et al., 2017), academic degree
information (Tsimperidis et al., 2020), and gender (I. Tsimperidis
et al., 2018) information. According to the study, the software was
distributed between 20/February/2014 and 27/December/2014.

C. Subash et al. (2023) collected free-form keystroke data for online
fraud detection. A website consisting of 4 assessment-like tasks was
developed for data collection. Recruited subjects were requested to
perform all tasks, which included 2 tasks of answering the questions
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and 2 tasks of copying the passage questions. Specifically, each
subject was asked to write at least 100 words to collect enough
volume of data. A sample size of 13 students was recruited for the
study. In addition to keystroke data, questionnaires requesting de-
mographic information, emotional state, and computer proficiency
were also distributed.

D. Ulinskas et al. (2018) collected keystroke behavior data from 4
subjects between the ages of 22 and 33. The data collection pro-
cedure lasted 2 weeks, during which the subjects were required to
participate in trials 3 times a day. During each trial, the subject
entered a predetermined paragraph that varied as the day
progressed.

E. Alshanketi et al. (2019) collected keystroke behavior data from
100 participants while they typed a variable one-time password
(OTP) and a fixed password composed of strings. Specifically, par-
ticipants were asked to enter the same fixed password followed by a
generated OTP 10 times across two sessions. Data acquisition was
facilitated through an Android mobile application installed on a Sony
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smartphone. Each participant was instructed to perform the tasks
using the same device throughout the study.

F. Bours (2012) collected free-form keystroke data from 35 subjects
recruited from Gjgvik University College (GUC), Norway. Subjects
were requested to run an application on their systems for 6 days. This
application records keystroke behavior data and sends it back for
analysis. According to the author, only 25 subjects provided suffi-
cient keystroke data for analysis.

G. Da Silva et al. (2016) collected keystroke and mouse data from 55
subjects playing the game League of Legends. All samples were ac-
quired from the same set of devices. All subjects were required to
play a match together. They were also free to decide which device
they wanted to play on and which avatar they wanted to play with.
Each subject had a different role in the game, which provided a
heterogeneous sample for analysis. According to the study, each
game lasted between 30 and 50 min. A background application was
developed using C# to collect the necessary information.

Table 1

Summary of the various datasets implemented in keystroke behavioral biometric analysis.

Dataset Name Implemented in Studies Publicly Sample Environment Type of Forgery Number of Sessions
Available Size Dataset Samples
CMU Andrean et al., 2020 Yes 51 Controlled Static No 8 (sessions separated ~1 day
Novel Dataset Subash et al., 2023 No 13 - Dynamic No 1 (only 1 session recorded)
GREYC Mhenni et al., 2019a Yes 100 Controlled Static No ~5 (sessions separated by ~1 week)
WEBGREY-C Yes 45 Uncontrolled Static Yes 5 (sessions separated by ~1 week)
CMU Yes 51 Controlled Static No 8 (sessions separated ~1 day
CMU Ceker and Upadhyaya, Yes 51 Controlled Static No
2016
CMU Subash and Song, 2021 Yes 51 Controlled Static No
CMU Maheshwary et al., 2017 Yes 51 Controlled Static No
CMU Killourhy and Maxion, Yes 51 Controlled Static No
2009
Teh Dataset Maiorana et al., 2019 Yes 150 Semi- Static No 1 (only 1 session recorded)
Controlled
Palin Dataset Senarath et al., 2023a Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
Palin Dataset Senarath et al., 2023b Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
HMOGdb Yes 99 Controlled Dynamic No 24 (time between sessions not defined
HuMIdb Yes 428 Uncontrolled Dynamic No 5 (sessions separated by 1 day)
HMOGdb Nguyen et al., 2024 Yes 99 Controlled Dynamic No 24 (time between sessions not defined
HuMIdb Yes 428 Uncontrolled Dynamic No 5 (sessions separated by 1 day)
Palin Dataset Yes 31,400 Uncontrolled Dynamic No 15 (time between sessions not defined
FETA Dataset Yes 347 Uncontrolled Dynamic No 31 (sessions separated by 1 day)
Novel Dataset Epp et al., 2011 No 12 Uncontrolled Dynamic/ No Continuous collection of keystroke data
static for ~4 weeks
Novel Dataset Tsimperidis et al., 2017 No - Uncontrolled Dynamic No Continuous collection of keystroke data
for 10 months
Novel Dataset Tsimperidis et al., 2020 Yes - Uncontrolled Dynamic No Continuous collection of keystroke data
for 10 months
Novel Dataset I. Tsimperidis et al., 2018  No 75 Uncontrolled Dynamic No Continuous collection of keystroke data
for 10 months
Novel Dataset Ulinskas et al., 2018 No 4 - Static No 14 (sessions separated by 1 day)
Novel Dataset Alshanketi et al., 2019 No 100 Controlled Static No 2 (time between sessions not defined)
Novel Dataset Bours, 2012 No 25 Uncontrolled Dynamic No Continuous collection of keystroke data
for ~6 days
Novel Dataset Da Silva Beserra et al., No 55 Controlled Dynamic No Sessions not specified (Data collected for
2016 ~4 months)
Novel Dataset Krishnamoorthy et al., No 77 Uncontrolled Static No ~5 (sessions separated by 1 day)
2018
CMU A. Mhenni et al., 2018 Yes 51 Controlled Static No 8 (sessions separated ~1 day
WEBGREY-C Yes 118 Uncontrolled Static No 5 (sessions separated by ~1 week)
Teh Dataset Kalita et al., 2020 Yes 150 Uncontrolled Static No 1 (only 1 session recorded)
Antal Dataset Yes 54 - Static No 3 (sessions separated by ~1 week)
Coakley Yes 52 Controlled Static No Session data not specified
Dataset
Android Daribay et al., 2019 Yes 42 Controlled Static No 2 (time between sessions not defined)
Dataset
Dhakal Dataset Acien et al., 2022 Yes 168,000 Uncontrolled Dynamic No 15 (time between sessions not defined
Palin Dataset Yes 60,000 Uncontrolled Dynamic No 15 (time between sessions not defined
Clarkson Yes 103 Uncontrolled Dynamic No Continuous collection of keystroke data
Dataset for ~2.5 years
Buffalo Dataset Yes 148 Controlled Dynamic No 3 (sessions separated by ~28 days)
Palin Dataset Stragapede et al., 2024 Yes 30,400 Uncontrolled Dynamic No 15 (time between sessions not defined
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H. Krishnamoorthy et al. (2018) collected static keystroke data from
94 subjects using an Android application. This application prompts
the subjects to type a pre-determined password (.tie5SRoanl) 30 times
over 5 days. Each subject provides 30 password entries. According to
the author, the data collection process lasted 4 to 6 weeks, as the
subjects could provide more entries in addition to the required 30
samples. Out of 94 subjects, only data supplied by 77 were valid after
pre-processing.

Our investigation confirms that the data needed for keystroke anal-
ysis varies depending on the application device, whether desktop or
mobile. If keystroke analysis is performed on mobile devices, additional
raw data collected includes pressure (pre), area of touch (AOT),
keyboard layout, touch coordinates (TC), and sensor data (accelerom-
eter and gyroscope) (Kalita et al., 2020). Some studies also collect var-
iable data; for example, Alshanketi et al. (2019) collected variable OTP
and fixed password keystroke behavior data. After data collection, raw
data, such as key press time, release time, unique key codes, name of the
key, and timestamp of event occurrence (Andrean et al., 2020; Subash
et al., 2023; Maiorana et al., 2019; Epp et al., 2011; Tsimperidis et al.,
2017, 2020; Bours, 2012), are acquired for feature extraction.

Table 1 (Moved to Appendix) shows that most studies rely on pub-
licly available datasets for keystroke behavioral biometric analysis, with
over half utilizing such datasets. Among these, static datasets are
commonly used despite the growing availability of dynamic datasets.
This finding suggests that studies have a continued preference for static
datasets in specific research contexts, potentially due to their avail-
ability, structured nature, and ease of implementation. Approximately
40 % of the analyzed studies collect novel datasets for particular ap-
plications, including user authentication on mobile devices (smart-
phones) and one-time password (OTP) authentication (Alshanketi et al.,
2019). Notably, some of these novel datasets are static, indicating their
use in applications that require authentication during login times. In
some cases, static datasets have been collected for specific applications.
For example, Ulinskas et al. (2018) collected static data for human fa-
tigue analysis. In contrast, the majority of novel datasets are dynamic
datasets designed for CA across several devices, such as desktops, lap-
tops, and mobile platforms. In addition to security-related applications,
some novel datasets have been collected for demography (age, gender),
physiology (fatigue), and psychology (emotion detection)-related
recognition, making them highly application-oriented. Recently pub-
lished datasets, such as the BehavePass database, offer new opportu-
nities for analysis (Stragapede et al., 2022), as it is one of the few
datasets that have collected skilled forgery samples.

Further analysis shows that most novel datasets are not publicly
accessible. This is because some datasets contain user-specific infor-
mation, and making them accessible may raise privacy concerns and
make them prone to misuse. Furthermore, stringent privacy laws, such
as the General Data Protection Regulation (GDPR) in Europe, restrict
data sharing that can potentially identify individuals.

3.2. Keystroke behavior features

In this section, we describe the features implemented for keystroke
analysis. Based on our comprehensive review (Fig. 4), we find that
several features, such as Hold time (HT), down-down time (DD), and up-
down time (UD), were extracted from the raw data mentioned in Section
3.1 (Andrean et al., 2020; Subash and Song, 2021; Maheshwary et al.,
2017; Epp et al., 2011; Tsimperidis et al., 2017). The description of the
primary raw data and extracted features is shown below:

1) Basic Raw Data

A. Key Press Time (PT): the time taken to press a key. Denoted by PT;,
wherei=0,1,2, 3...n.

B. Key Release Time (RT): the time taken to release a key. Denoted by
RT;, wherei=0,1,2, 3...n.
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C. Screen Touch Data: This feature includes features generated when
the subject’s finger touches the screen. Basic features such as finger
Pressure (P), finger size (FS) or area of touch (AoT), and touch co-
ordinates (TC) are collected. These features can only be collected
from touchscreen-based devices like mobile devices.

D. Motion Data: Basic features under this category include acceler-
ometer and gyroscope data. These features can be collected from
sensors integrated into mobile touchscreen devices, like tablets and
smartphones. The accelerometer and gyroscope data depict how
subjects move and hold the mobile device. In addition to the accel-
erometer and gyroscope data, other sensor data, such as magne-
tometer data, have also been used in analysis.

2) Extracted Features

A. Hold Time (HT): Hold time is the time difference between a single
key’s press and release time. Normally denoted as HT;, where i =
0,1,2, 3..n.

B. Down-down Time (DD): Like HT, DD time is the time difference
between the press time of one key and the press time of the subse-
quent key. Normally denoted by DD;, where i = 0,1,2, 3...., n.

C. Up-down Time (UD): This feature is keystroke latency or flight
time. It can be defined as the time difference between the key’s
release time and the subsequent key’s press time. Unlike other at-
tributes, the value of this feature can be negative. It is denoted by
UD;, wherei = 0,1,2, 3...., n.

D. Down-up Time (DU): This feature can be defined as the time dif-
ference between the press time of one key and the release time of the
subsequent key. It is denoted by DU;, where i = 0,1,2, 3...., n.

E. Up-Up Time (UU): The time difference between the key’s release
time and the subsequent key’s release time. It is denoted by UU;,
wherei=0,1,2, 3.... n.

F. Aggregate Data (Agg): These features include aggregate informa-
tion such as mean (mean), minimum (min), maximum (max), and
standard deviation (std) of UD, PT, HT, P, and AOT.

Few studies have also analyzed and detected the most frequently
used digraphs among the recruited subjects and used specifically
developed programs to extract relevant keystroke behavior features
(Tsimperidis et al., 2017; Bours, 2012). For example, Tsimperidis et al.
(2017) developed the ISqueeze application, which reads raw keystroke
log files collected using the IReCU keylogging application and extracts
average keystroke latency time. Similarly, Bours (2012) chose specific
keys and key combinations for user profile creation.

Fig. 3 lists several behavioral features currently used in keystroke
behavioral biometric research. Based on our analysis, the most
frequently used features include a combination of HT, DD, and UD times.
Several other features such as cumulants, touch coordinates (TC),
interquartile range (IQR), key codes (KC), accelerometer sensor data
(ASD), swipe information, gyroscope sensor data (GSD), GPS informa-
tion, wireless connection data (WiFi Sensor), gravity sensor data, rota-
tion sensor data, proximity sensor data, magnetometer sensor data, press
speed, content-based attributes, and several other unique features,
including the combination of statistical and information-theoretic
measures were also used for keystroke behavioral biometric analysis.

3.3. Al approach and evaluation metrics used in keystroke behavioral
biometrics

According to analysis, we find that ML approaches, such as Multi-
Layer Perceptron (MLP) (Andrean et al., 2020; Maheshwary et al.,
2017; Tsimperidis et al., 2017; I. 2018), Decision Trees (DT) (Epp et al.,
2011), Support Vector Machines (SVM) (Ceker and Upadhyaya, 2016;
Ulinskas et al., 2018), Gaussian mixture Models (GMM) (Kalita et al.,
2020), Random Forest (RF), Naive Bayesian (NB) (Alshanketi et al.,
2019; Daribay et al., 2019), Radial Basis Function Network (RBFN) (.
Tsimperidis et al., 2018), XGBoost (Daribay et al., 2019), K-Nearest
Neighbor (KNN) (Mhenni et al., 2019a), Linear Regression (LR) (Daribay
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et al., 2019), and Random Radial Basis Function Network (R’BFN)
(Tsimperidis et al., 2020) have been implemented for keystroke
behavioral biometric-based authentication. In addition to ML ap-
proaches, DL approaches, and distance-based anomaly detection
methods (DBAD) have also been used for classification. These include
Convolutional Neural Networks (CNNs) (Subash et al., 2023; Subash and
Song, 2021; Maiorana et al., 2019), Recurrent Neural Networks (RNNs)
(Subash et al., 2023; Daribay et al., 2019), and transformers (Subash
et al,, 2023), along with anomaly detection techniques leveraging
Euclidean, Mahalanobis, and Manhattan distance metrics (Killourhy and
Mazxion, 2009).

Researchers also use sampling, data condensation (data reduction),
and feature selection methods before feeding extracted features into the
ML or DL approaches. Some methods implemented include correlation-
based feature subset attribute selection (Epp et al., 2011), information
gain (IG) (I. Tsimperidis et al., 2018), minimum redundancy maximum
relevance (mRMR) (Krishnamoorthy et al., 2018), under-sampling (Epp
etal., 2011), GLDA-TRA (Ulinskas et al., 2018), and filter-based random
sub-field data condensation method (Tsimperidis et al., 2020).
Furthermore, specific pre-processing methods, such as segmentation,
are also used to prepare the data for analysis. For example, Subash et al.
(2023) implemented this process to generate logical blocks of attributes
to create session data. Specifically, keystroke data is converted into
5-character length records to simulate session-like data.

Our analysis (Table 2) shows that only a few research studies
implemented distance-based anomaly detectors and fuzzy logic for
keystroke analysis. Statistically, most of the studies analyzed relied on
state-of-the-art (SOTA) DL approaches for classification. Further inves-
tigation shows that MLP and transformer-based DL architectures are the
most popular approaches implemented for keystroke behavioral bio-
metric analysis. It is important to note that this statistic also includes
research studies that conduct comparative analyses between
approaches.

Most studies analyzed in this paper fall under empirical research,
which is evaluated using several evaluation metrics. These include equal
error rate (EER) (Andrean et al., 2020; Maheshwary et al., 2017), ac-
curacy (Acc) (Andrean et al., 2020; Maheshwary et al., 2017; Maiorana
et al., 2019; Epp et al., 2011; Tsimperidis et al., 2017; Kalita et al.,
2020), precision (PRE), recall (REC), kappa statistics (KS), area under
curve (AUC), receiver operating characteristic (ROC) curve (Andrean
et al., 2020; Ceker and Upadhyaya, 2016; Kalita et al., 2020), root mean
square error (MSE), and mean absolute error (MAE) (Andrean et al.,
2020; Ceker and Upadhyaya, 2016; Kalita et al., 2020). Other evaluation
metrics, such as time complexity (TBM), false rejection rate (FRR), false
acceptance rate (FAR), and stability (Tsimperidis et al., 2020; I. 2018),

have also been used for evaluation. The summary of the evaluation
metrics utilized in research studies is depicted in Table 3.

We also confirm that different techniques were used for evaluation,
including cross-validation (Maheshwary et al., 2017; Epp et al., 2011;
Tsimperidis et al., 2017, 2020) and a hold-out approach (Subash et al.,
2023; Subash and Song, 2021; Daribay et al., 2019). Furthermore,
comprehensive experimentations are performed by comparing perfor-
mance achieved using different numbers of classes (I. Tsimperidis et al.,
2018), classification approaches (Subash et al., 2023; Ceker and Upad-
hyaya, 2016; Maheshwary et al., 2017; Tsimperidis et al., 2020; L. 2018),
model architectures (Maiorana et al, 2019), model parameters
(Learning rate and momentum), varied number of hidden layer neurons
(Tsimperidis et al., 2017), different number of features (I. Tsimperidis
et al., 2018; Krishnamoorthy et al., 2018; Kalita et al., 2020), and
pre-processing methods (Kalita et al., 2020). We also confirm that a few
studies develop their evaluation categorization based on already
established evaluation metrics, such as True Positives (TP) and False
Positives (FP) (Epp et al., 2011).

Studies also propose using different evaluation metrics to evaluate
keystroke-based authentication methods. For example, according to
Bours (2012), continuous keystroke behavioral biometric systems have
better reflections than EER systems. Alternatively, the speed at which an
imposter is detected, i.e., the number of keystrokes the imposter can use
before the system’s trust falls below a specified threshold, is a better
indication of performance. To accomplish this, the study develops a
continuous keystroke dynamic (CKD) authentication system that im-
plements a penalty and reward function that adapts the trust level of the
system. Similarly, studies performed by (Senarath et al., 2023a, Senar-
ath et al., 2023b) also propose unique evaluation metrics, such as us-
ability, time to correct reject (TCR), false reject worse interval (FRWI),
and false acceptance worse interval (FAWI) for performance evaluation.

Some studies also conduct reliability analysis to determine if the
identified features result in effective keystroke behavior biometric-
based authentication. For example, Subash et al. (2023) propose to
evaluate DL models with a significantly larger publicly available dataset
(CMU benchmark) containing the same features as the ones identified in
the study. Specifically, the study compares its novel data with a publicly
available (CMU benchmark dataset) dataset containing the same fea-
tures (Subash et al., 2023).

Only some studies evaluate different fusion approaches. Alshanketi
et al. (2019) propose a multimodal keystroke-based authentication
scheme that combines keystroke behavior obtained from OTP and fixed
passwords. Furthermore, two fusion models were built and compared:
matching decision and feature-level fusion methods.

Comparisons are also conducted between different loss functions. For
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Table 2
Summary of Al approaches implemented for keystroke behavioral biometrics.
ML DL Distance-based Author
Anomaly Detection
No MLP No Andrean et al.,
2020
No CNN, No Subash et al.,
Transformers, 2023
LSTM
GA-KNN No No Mhenni et al.,
(Euclidean, 2019a
Manbhattan,
Mahalanobis,
Hamming,
Statistical)
A-SVM, DA-SVM, No No Ceker and
PMT-SVM Upadhyaya, 2016
No CNN No Subash and Song,
2021
No MLP No Maheshwary
et al., 2017
SVM, K-means NN Manhattan, Killourhy and
Euclidean, Maxion, 2009
Mahalanobis,
Nearest Neighbor
(Mahalanobis),
Fuzzy Logic, Outlier
Score
No CNN No Maiorana et al.,
2019
RF, KNN, GBC TypeNet, No Senarath et al.,
TypeFormer 2023a
(Transformer),
HuMINet
X BehaveFormer No Senarath et al.,
(Transformer) 2023b
X STDAT-based No Nguyen et al.,
BehaveFormer 2024
DT No No Epp et al., 2011
No MLP No Tsimperidis et al.,
2017
No R?BFN No Tsimperidis et al.,
2020
SVM, RF, NB MLP, RBFN No 1. Tsimperidis
et al., 2018
SVM No No Ulinskas et al.,
2018
RF No No Alshanketi et al.,
2019
No No Distance-Based Bours, 2012
Anomaly Detection
+ Trust System
KNN, SVM, RF MLP No Da silva et al.,
2016
SVM-linear, No No Krishnamoorthy
SVM-RBF, RF et al., 2018
KNN No No A. Mhenni et al.,
2018
GMM No No Kalita et al., 2020
LR, XGBoost, MLP, LSTM, GRU No Daribay et al.,
GNB 2019
No RNN-TypeNet No Acien et al., 2022
Architecture
X Transformer No Stragapede et al.,

2024

example, Acien et al. (2022) propose TypeNet, an RNN-LSTM architec-
ture for keystroke biometric authentication for large-scale free-form text
scenarios. Different models were trained using 3 different loss functions,
namely softmax, triplet, and contrastive loss, and then compared.
Furthermore, a comparison between 1) different numbers of training
samples and lengths of keystroke sequences, 2) conventional statistical
models and deep learning architectures, and 3) types of device datasets
collected from touchscreen and physical keyboard datasets was also
performed.
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3.4. Keystroke behavioral biometrics research applications

Keystroke behavioral biometric research is implemented for several
real-world applications, including identity theft detection, which covers
user authentication and identification (Maheshwary et al., 2017). In
addition to security-related applications, researchers have used
keystroke behavioral biometrics to determine a user’s age, educational
level, online assessment fraud, fatigue, and emotion (Epp et al., 2011).

Recently, studies have also focused on predicting user characteristics
based on keystroke behavior analysis (Tsimperidis et al., 2017). Spe-
cifically, research performed by Tsimperidis et al. (2017) and I. Tsim-
peridis et al. (2018) has expanded keystroke behavioral biometrics
toward identifying user characteristics such as age, gender, and opera-
tion handedness. In addition, researchers can also determine the edu-
cation level of the person behind the keyboard (Tsimperidis et al., 2020).

Keystroke behavioral biometrics is also used to detect user fatigue
levels. For example, Ulinskas et al. (2018) gathered data at different
times of the day based on the assumption that users become more tired
as the day progresses. Keystrokes entered by a subject in the morning are
believed to reflect those of a non-fatigued user. As the day goes on, the
user is assumed to become moderately or fully fatigued. Consequently,
the study classifies high, medium, and low fatigue levels. Additionally,
the study employs unique features, including a combination of statistical
and information-theoretic measures for classification.

Keystroke behavioral biometric-based research has found its way
into the medical field, specifically for the early detection and monitoring
of Parkinson’s disease (PD) (Iakovakis et al., 2018). The research mainly
uses touchscreen keystroke behavior to estimate the severity of motor
impairment in PD patients. This is accomplished by analyzing keystroke
behavior recorded in clinical settings and everyday use of smartphones.
According to the author, results indicated that the models can accurately
estimate motor symptoms, making it a promising method for PD
detection and monitoring. Similarly, researchers also investigate using
keystroke behavioral biometrics as early warning signals to monitor
disease activity in Multiple Sclerosis (MS) patients (Twose et al., 2020).

Another interesting application of keystroke behavioral biometrics is
identifying users in the mobile domain (Maiorana et al., 2019; Kalita
et al., 2020). The research makes use of a combination of keystroke
behavior features with pressure (Maiorana et al., 2019; Kalita et al.,
2020), touch data (swiping, gesture), sensor data (accelerometer, gy-
roscope, gravity, light, magnetometer, WiFi connections, Bluetooth,
location (GPS) (Kalita et al., 2020) for user authentication and identi-
fication. Furthermore, studies have also focused on adapting current
keystroke behavioral biometric methods to long-term and short-term
user behavior changes (Mhenni et al., 2019a, 2018; Ceker and Upad-
hyaya, 2016; Subash and Song, 2021). However, there are very few
studies that focus on this. The adaptability of behavioral biometric
modalities has been explained in detail in future sections. Fig. 4 shows
the summary of the research applications of keystroke behavioral
biometrics.

Based on our investigation, we confirm that most keystroke-based
behavioral biometric research is implemented for security-based appli-
cations, including user identification and authentication (Fig. 4). It is
also noticed that a small proportion of studies also focus on other
research applications, including online assessment fraud detection,
emotion recognition, fatigue recognition, adaptability, user character-
istics (age, operation handedness, and gender prediction) recognition,
and disease monitoring and prediction (Fig. 4).

4. Mouse behavioral biometrics

Another alternate approach to keystroke behavioral biometrics is
mouse behavioral biometrics, which verifies user identity by analyzing
observable mouse actions (Zheng et al., 2011). Studies show that
behavioral biometrics first acquired popularity with research on
keystroke behavioral biometrics. Later, research in mouse behavioral
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Table 3
Evaluation metrics used in keystroke behavioral biometrics.
Author AUC FAR FRR Acc MAE/MSE ROC EER Pre/Rec/F Measure Others
Andrean et al., 2020 No Yes Yes Yes Yes Yes Yes Yes Yes
Subash et al., 2023 No No No Yes No No No Yes Yes
Mhenni et al., 2019a Yes Yes Yes Yes No Yes Yes No No
Ceker and Upadhyaya, 2016 Yes No No No No Yes No No No
Subash and Song, 2021 No No No Yes No No No Yes No
Maheshwary et al., 2017 No No No Yes No Yes Yes No Yes
Killourhy and Maxion, 2009 No No No No No Yes Yes No Yes
Maiorana et al., 2019 No No No Yes No No Yes No Yes
Senarath et al., 2023a No No No No No No Yes No Yes
Senarath et al., 2023b No No No No No No Yes No Yes
Nguyen et al., 2024 No No No No No No Yes No Yes
Epp et al.,, 2011 No No No Yes No No No No Yes
Tsimperidis et al., 2017 No No No No No No Yes Yes No
Tsimperidis et al., 2020 No No No Yes No Yes No No Yes
I. Tsimperidis et al., 2018 Yes No No Yes No No No No Yes
Ulinskas et al., 2018 No No No Yes No No No No No
Alshanketi et al., 2019 No Yes Yes No No Yes Yes No No
Bours, 2012 No No No No No No No No Yes
Da silva et al., 2016 No No No Yes No No No No No
Krishnamoorthy et al., 2018 No No No Yes No No No No Yes
A. Mhenni et al., 2018 Yes No No No No Yes Yes No No
Kalita et al., 2020 No No No No No Yes Yes No No
Daribay et al., 2019 Yes Yes Yes Yes No Yes No No No
Acien et al., 2022 No No No No No Yes Yes No No
Stragapede et al., 2024 No Yes Yes No No No Yes No No
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Fig. 4. Keystroke behavioral biometrics research applications.

biometrics gained traction with several articles, including Ahmed and
Traore (2005).

Like keystroke, mouse behavioral biometric authentication also falls
under user authentication and identification scenarios (Almalki et al.,
2023).

4.1. Type of mouse behavioral biometric datasets

Like keystrokes, mouse behavioral biometrics-based research data-
sets are also of two types: static and dynamic datasets. 1) Static datasets
collect mouse behavior data from subjects while they perform a specific
mouse operation task using specifically designed web applications,
while 2) Free-form datasets collect data during continuous monitoring of
subjects’ daily activities using background mouse logging applications
(Fu et al., 2020).

This section provides a detailed overview of the datasets currently
used in mouse behavioral biometric analysis (Table 4—Moved to

appendix).

1) Public Datasets

A. Minecraft Dataset: This dataset collected (Siddiqui et al., 2021)
mouse behavior data from 10 subjects who played a Minecraft game
on a desktop computer for 20 min. According to the author, data
collection was conducted in a controlled setting. Furthermore, a
Python program was implemented for data collection.

B. Balabit Dataset: This publicly available dataset collected mouse
behavior data from 10 subjects while they worked over remote
desktop clients connected to remote servers. The data collected is
divided into two folders: training and testing (Almalki et al., 2023;
Antal and Egyed-Zsigmond, 2018).

C. DFL Dataset: This publicly available dataset collects mouse
behavior data from 21 subjects using specific data collection soft-
ware installed in their systems to record data while they perform
their daily activities. Data is also collected from different devices,
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Table 4

Summary of the various datasets implemented in mouse behavioral biometric analysis.
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Dataset Name Author Publicly Sample Environment  Type of Forgery Number of Sessions
Available Size Dataset Samples
Novel Dataset Siddiqui et al., 2021 Yes 10 Controlled Dynamic No Session data not specified
(Minecraft Dataset)
Novel Dataset Zheng et al., 2011 No 30 Controlled Dynamic No Session data not specified
Novel Dataset No 1000 Uncontrolled  Dynamic No Continuous collection of mouse
behavior data
Novel Dataset Da Silva Beserra et al., No 55 Controlled Dynamic No Sessions not specified (Data
2016 collected for ~4 months)
Balabit Dataset Almalki et al., 2023 Yes 10 Uncontrolled  Dynamic No Continuous collection of mouse
behavior data
Novel Dataset Fu et al., 2020 No 15 Controlled Static No Session data not specified
Balabit Dataset Antal and Yes 10 Uncontrolled ~ Dynamic No Continuous collection of mouse
Egyed-Zsigmond, 2018 behavior data
Balabit Dataset Antal and Denes-Fazakas, Yes 10 Uncontrolled  Dynamic No Continuous collection of mouse
2019 behavior data
Choa Shen Dataset Yes 28 Controlled Dynamic No 30 (sessions separated by ~1 day)
DFL Dataset Yes 21 Uncontrolled  Dynamic No Continuous collection of mouse
behavior data
Novel Dataset Subash et al., 2024 No 10 - Static No 1 (only 1 session recorded)
Novel Dataset Shen et al., 2013 Yes 37 Controlled Static No 15 - 60 (sessions separated by ~1
day)
Novel Dataset Wang et al., 2019 No 18 Controlled Dynamic No 4 (sessions separated by 1 day)
Novel Dataset Gamboa and Fred, 2004 No 50 - Static No Session data not specified
Novel Dataset Feher et al., 2012 No 25 Controlled - Yes Session data not specified
Balabit Dataset Hu et al., 2019 Yes 10 Uncontrolled  Dynamic No Continuous collection of mouse
behavior data
Balabit Dataset Antal and Fejér, 2020 Yes 10 Uncontrolled ~ Dynamic No Continuous collection of mouse
behavior data
DFL Dataset Yes 21 Uncontrolled  Dynamic No Continuous collection of mouse

behavior data

such as desktops, laptops, and mouse devices (external mouse and
touch pads) (Antal and Denes-Fazakas, 2019).

D. Choa Shen Dataset: This publicly available dataset collects (Shen
et al., 2012) mouse behavior data from 28 subjects using a back-
ground monitoring application. Specifically, this application records
mouse behavior data while subjects perform daily activities. Ac-
cording to the study, each subject performs 30 sessions over 2
months, each containing 30 min of mouse behavior data.

2) Newly Collected (Novel) Datasets:

A. Zheng et al. (2011) performed a measure-based study by collect-
ing two types of mouse behavior data. 1) Controlled Set: 30 subjects
participated in the data collection process in a standard environ-
ment. Subjects belong to different ages, occupations, and educational
backgrounds. RUI logging tool records mouse behavior data while
subjects perform their routine activities. Activities include word
processing, surfing the net, programming, online chatting, and
playing games. 2) Uncontrolled set (field set): Collects mouse
behavior data from 1000 unique users using JavaScript.

B. Fu et al. (2020) evaluated their proposed approach using a dataset
provided by Xi’an Jiaotong University of China. Mouse behavior data
were collected from 15 subjects while they performed a specific
authentication task. It is important to note that the subjects had
different ages, educational backgrounds, and occupations. In this
task, subjects were required to find and click targets prompted by the
data collection program. The study collected all the data on an HP
workstation with a 17-inch LCD monitor and Windows operating
system.

C. Subash et al. (2024) collected application-oriented mouse
behavior data from 10 subjects while they performed specific online
assessment-like tasks. Subjects participated in 3 tasks, which
included clicking the target, multiple-choice questions (MCQ), and
matching tasks. The main objective was to collect many varieties of
mouse events and large amounts of data for effective online fraud
detection. Furthermore, a website application was developed for

D. Shen et al. (2013) collected mouse behavior data from 37 subjects
in a controlled setting. The author develops a Windows application
that prompts subjects to perform a specific task. According to the
author, the application displays the tasks on a full screen and records
data while they perform them. The task includes 16 mouse move-
ments and 8 single and double-click events. Each subject performs
the task 20 times over 2 rounds. According to the study, each subject
takes 15 to 60 days to complete the data collection process.

E. Wang et al. (2019) collected mouse behavior data from 18 sub-
jects. The data collection procedure requires subjects to perform 2
tasks after their emotions are aroused. Several videos are used for
this purpose. Specifically, 3 videos are used to stimulate positive,
negative, and neutral emotions. Furthermore, a face reader is also
used to detect emotional changes. A well-structured academic web-
site is developed for data collection. Subjects were required to
perform 2 tasks immediately after they watched the video.

F. Gamboa and Fred (2004) used a developed web application to
collect mouse behavior data from 50 subjects. Subjects were required
to participate in a memory game that spanned 10-15 min. The study
collected and created an interaction repository containing 10 h of
mouse behavior data.

G. Siddiqui et al. (2021) collected mouse behavior data from 10
subjects while they played Minecraft on a desktop computer. Each
subject was required to play the game on the same desktop system. A
Python program ran in the background for 20 min and recorded the
necessary mouse behavior data.

H. Feher et al. (2012) collected mouse behavior data from 25 subjects
from different groups: 1) Internal and 2) External subjects. According
to the author, the systems used for data collection were chosen from
various brands and hardware configurations. Furthermore, one or
more internal subjects are authorized to interact with a particular
system, while the rest are not.

From Table 4 (moved to appendix), we conclude that most studies

data collection. The author gathered subjects from the Sanjay Gandhi
College of Education, India.

rely on novel datasets for mouse behavioral biometric analysis, as most
publicly available datasets are dynamic. However, despite the

10
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availability of dynamic mouse behavior data, static datasets are still
being implemented in research due to the need for specific datasets for
user authentication. Since most mouse behavioral biometric-based
research is focused on security-related applications, dynamic datasets
are commonly used (Table 4 — moved to appendix) as these datasets
better reflect user behavior in real-world scenarios. However, if studies
focus on CA in specific scenarios, such as online education platforms
(Subash et al., 2024), specific behavior data is required for analysis. In
this example, the collected data must emulate user behavior on online
education platforms, after which, utilizing this data for user authenti-
cation will enhance the validity and reliability of the results. Further-
more, some studies also collected static data as they focused on static
authentication, mainly simulating user authentication during log-in
time.

After data collection, researchers are left with raw mouse behavior
data. They include the following: action type (Siddiqui et al., 2021; Fu
et al., 2020; Subash et al., 2024), coordinates (Siddiqui et al., 2021; Fu
et al., 2020; Subash et al., 2024), timestamp (ms) (Siddiqui et al., 2021;
Fu et al., 2020; Subash et al., 2024), screen height (Subash et al., 2024),
screen width (Subash et al., 2024), button state (Siddiqui et al., 2021),
rtime (Siddiqui et al., 2021), and ctime (Siddiqui et al., 2021). This raw
data is taken, pre-processed, and then sent for feature extraction.

4.2. Segmentation and pre-processing for mouse behavioral biometrics

Segmentation is a process that divides mouse behavior data into
meaningful and logical blocks of information. It is a pre-processing step
implemented to extract aggregate features that help in profiling users for
effective user authentication and identification. In this section, we
present our unique taxonomy for classifying various segmentation
methods into two main categories: event-based and image-based seg-
mentation methodologies.

4.2.1. Event-Based segmentation methodology

Event-based segmentation methodology involves identifying logical
sequences of data by analyzing basic mouse events present in mouse
behavior data. Specifically, data is examined to detect various event
types (mouse move, mouse click, drag, and dragend), which serve as the
basis for segmentation. According to our analysis, the following seg-
mentation methods fall under this category:

4.2.1.1. Point-and-Click (PC) segmentation.

e A point-and-click segment is a series of continuous mouse-move
events that end with a click event, which in some cases includes a
mouse press and release event. Continuous mouse-move events can
be further defined as a series of mouse-move events with little to no
pause between each adjacent event. It is important to note that
multiple PC actions are extracted for mouse behavioral biometric
analysis (Zheng et al., 2011). For example, let j be the total number of
point-and-click actions. Each j-th action will be composed of i mouse
movement events denoted by <mouse move;, x;y;, timestamp;>;.

4.2.1.2. Mouse-Move (MM) segmentation.

e An alternative segmentation method involves using a sequence of
mouse move-move (MM) events as a segment for mouse behavioral
biometric analysis. Specifically, studies use a fixed number of MM
events to generate a single action. According to our analysis, the
number of MM events used for segmentation varies. For example,
Subash et al. (2024) used 3 MM events per segment, while Siddiqui
et al. (2021) used 10 MM events per segment.

e In addition to using a fixed number of MM events to segment the
data, another approach involves identifying partial mouse
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movement (PMM) segments. This segment consists of MM events
that do not end in a click event. Specifically, it represents a general
MM action type that describes movement behavior between two
points on a screen (Almalki et al., 2023; Antal and Egyed-Zsigmond,
2018). PMM actions are usually isolated using the timestamp field
(Antal and Egyed-Zsigmond, 2018).

4.2.1.3. Drag-Drop (DD) segments.

e In addition to PC and PMM segments, drag-and-drop (DD) seg-
ments (Almalki et al., 2023; Antal and Egyed-Zsigmond, 2018) have
also been extracted. These DD segments contain a series of events
starting with a mousedown event, followed by multiple drag events,
and concluding with a mouse release event.

4.2.1.3. Click segments.

e Another alternative segment type consists only of a click event
without any mouse movements before it. This type of segment is
known as Pause-and-Click. It occurs when users pause for a certain
amount of time before clicking (Zheng et al., 2011).

4.2.2. Image-Based segmentation methodology

e Image-based segmentation methodology aims to uniquely map raw
mouse behavior data into images to preserve all user data for reliable
user authentication. Our analysis indicates that this innovative pre-
processing technique was initially observed in the research per-
formed by Hu et al. (2019). According to the study, unlike
conventional feature extraction methods, this approach preserves all
information regarding an individual’s mouse behavior by mapping
basic mouse events into graphs, which are subsequently converted
into images. Various image sets are created based on different
numbers of basic mouse events (n = 25, 50, 100, 500, 1000). Data
augmentation is then employed to expand the dataset, and finally, a
7-layer CNN architecture is implemented for classification.

4.3. Mouse behavioral biometric features

After segmentation, several mouse behavior features are extracted
and implemented for analysis. These features have been extracted using
the raw mouse behavior data mentioned in Section 4.1. The description
of basic and extracted features has been illustrated below:

1) Basic Features

A. Screen Coordinates (Crd): Describes the location or screen coor-
dinate at which the mouse event is performed. This attribute repre-
sents a 2D coordinate system with x and y coordinates.

B. Timestamp (t): This represents the time the mouse event is per-
formed. It is usually measured in milliseconds (ms).

C. Action Type (AT): This represents the mouse event performed.
These events include mouse move, mouse click, drag and drop, and
scroll.

D. Screen height and Screen Width (SH, SW): Represents the screen
height and width of the web browser component that renders web-
site content. The subject’s slight changes in screen height and width
are noticed and recorded.

2) Extracted Features

A. Angle of Curvature (AOC): For any 3 recorded points A, B, and C,
the angle of curvature is defined as the angle ABC, the angle between
the line AB and BC.

B. Curvature Distance (CD): For three recorded points, A, B, and C,
the curvature distance can be defined as the ratio between the length
of line AC and the perpendicular distance of point B to the line AC.
Specifically, this ratio is between two distances.
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C. Speed (S): This feature is usually calculated between each point-
and-click action. It is defined as the ratio between the traveled dis-
tance for that action and the time taken to complete that action.

D. Pause-and-Click (PauC): This attribute represents the time dif-
ference between the end of the movement and the click event. Spe-
cifically, it is the duration between the amount of time pausing and
clicking the target.

E. Velocity: This feature represents the velocity measurement be-
tween mouse events. Velocity is divided into directional velocities
measured in x (HV;), y-axis (VV;), and tangential velocity (TV;). The
formula to calculate all 3 types of velocity is shown in Egs. (1), 2, and
3.

HY, =575 herei—2,..n @
t—tig

v =Y " Y herei—2,..n (2)
ti— tia

TV; = \/HV? + VV;?, wherei=2,..,n 3

F. Coordinate difference (dx, dy): The difference between the x, and y
coordinates, respectively. The formula for calculations is shown in
Egs. (4) and 5.

dx; = x; — xi_,, wherei=2,..,n. (€©))

dy; =yi —Yi-1, wherei=2,...n. %)

G. Acceleration (A): Is the velocity change in unit time, which is
represented as TA. Like velocity, acceleration is also divided into
directional accelerations, measured on the x-axis (Ax) and y-axis
(Ay), and tangential acceleration (TA), which is acceleration across
the mouse plane. The formulas are shown in Egs. (6), 7, and 8.

HV; —HV;_
Ax; = M, where i = 2,..,n. (6)
t—ti,
VvV, - VV._
Ay =— El Wherei=2,..n. @)
ti - tl—l
TA; = \/Ax?2 + Ay, wherei=2,...n. ®

H. Jerk (J): Is the change in acceleration per unit time. Like accel-
eration and velocity, jerk can also be measured directionally. Jerk is
on the x-axis (Jx), y-axis (Jy), and along the mouse plane (TJ). The
formulas for jerk are mentioned in Egs. (9), 10, and 11.

Ax; — Ax;_
Jx; = M, wherei=2,..,n. 9)
ti—tia
Ay, — Ay;_
Jyi = M, Wwherei=2,..,n (10)
ti—tia
TJ; = /JIx? + Jy;2, wherei=2,.,n. 11

I. Angular Movement (¢;): This feature represents the path angle
between mouse movement and the screen’s horizontal axis. It is
measured using the atan or arctan function on the differential of x
and y coordinates. The formula is shown in Eq. (12).

6, = %? wherei=2,..,n. 12)

12

Rate of Change of Curvature (RC) = dC,»7 wherei=2,..,n.
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J. Travelled Distance (TD) or Distance end-to-end (DE): Is the dis-
tance between the first and last data points in a mouse action. This
feature is determined using Eq. (13).

D = \/(xn2 — X 2)+ (Yu2 — ¥i?), wherei=2,..,n 13)

K. Trajectory Length (TL): The sum of the distance between all data
points in a mouse action. This feature is determined by Eq. (14).

TL = Z \/(xiz — Xi-12) + (2 — Yi-1?), wherei=2,..,n (14)
i=1

L. Angular Velocity (AV): Angular velocity is defined as the rate of
angular movement of the cursor over time. This feature is deter-
mined using Eq. (15).

do;
AV; = _l’ wherei=0, 1, 2,....n.

dt; (15)

M. Straightness (SR): The ratio between total distance traveled and
trajectory length. This feature determines the straightness of the
mouse path. If the path is straight, the ratio value is 1; otherwise, the
ratio value is between 0 and 1. The straightness is measured using Eq.
(16).

TD

SR = R (16)

N. Curvature (C): It is the ratio between the rate of change of angular
movement and distance traveled. This feature is determined by Eq.
7).

dH,-" wherei=2,..,n. a7)

i

C=

Similarly, the rate of change of curvature is calculated using Eq. (18).

18

TD;

O. Sum of Angles (SOA): The cumulative angular movement values of

an action. The feature is determined from Eq. (19).
n

SOA = Y 6, Wherei=0, 1,..n. 19)

i=1

P. Number of Points (NOP): Refers to the number of data points in an
action and is represented by NOP. This feature has been shown in Eq.
(20).

NOP = N;, wherei=0, 1,..,n. (20)

Q. Sharp Angles (SA): This feature represents instances where the
mouse movement abruptly changes quickly during the cursor’s tra-
jectory. It is typically obtained by observing whether the angular
movement values are below a certain threshold (TH), indicating
sharp direction changes, as shown in Eq. (21).

SA = 60;|0; < TH, wherei=0, 1,..,n.. 21)
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R. Number of Critical Points (NOC): This feature is calculated from
the curvature vector by searching for high curvature points. It is
acquired by observing whether curvature values exceed a certain
threshold (TH), as indicated in Egs. (22) and 23.

NOC = ) zi, wherei=0,1,..n. (22)
i=1
1, and dC > TH
%= {0, and Otherwise 23)

S. Acceleration During the Beginning (ABT): This feature illustrates
the rate of change in velocity during mouse movement at the onset of
movement. It measures the rate at which the mouse device acceler-
ates from a stationary position to a higher acceleration rate in the
initial stages of movement.

T. Largest Deviation (LD): The largest distance between the trajec-
tory points and the segment between the two endpoints.

U. Aggregate Features: Through analysis, it was found that many
research studies extract the average (avg), standard deviation (std),
minimum (min), maximum (max), and range of features, including
HV, VV, TA, TV, AV, D, t, and 6, for analysis. These features are
typically calculated using a sequence of individual mouse events that
make up an action.

Based on our investigation, we identified nearly 90 mouse behavioral
features currently used in the field. Furthermore, we were also able to
identify the most frequently used features, which include a combination
of mean, min, max, std of HV, VV, TV, TA, AV, with mean J, min J, max J,
elapsed time, and mean C.

We successfully represent all mouse behavior features pictorially by
grouping them based on popularity. Specifically, we first identify the
most popular features (features used in >50 % of studies), followed by
features used by 33-50 % of studies, and the least popular features
(Fig. 5).

4.4. Al approaches and evaluation metrics used in mouse behavioral
biometrics

Like keystroke analysis, mouse behavioral biometrics relies on
various ML or DL approaches. This section identifies the Al approaches
implemented for analysis. Approaches like SVM (Zheng et al., 2011; Da
Silva et al., 2016), RF (Siddiqui et al., 2021; Da Silva et al., 2016;
Almalki et al.,, 2023; Antal and Egyed-Zsigmond, 2018; Antal and
Denes-Fazakas, 2019; Wang et al., 2019; Feher et al.,, 2012), DT
(Almalki et al., 2023), KNN (Da Silva et al., 2016; Almalki et al., 2023),
and MLP (Da Silva et al., 2016) are commonly implemented for analysis.

In addition to conventional ML approaches, studies have also applied
DL approaches, such as CNN + RNN (Fu et al., 2020) and CNN (Antal
and Fejér, 2020). These approaches deviate from traditional research
studies by using a sequence of raw mouse events or images rather than
extracting conventional features for user authentication (Fu et al., 2020;
Hu et al., 2019; Antal and Fejér, 2020). Studies also feed conventional
features into DL approaches (RNN-LSTM) and compare their perfor-
mance to results achieved by traditional ML approaches (Subash et al.,
2024). Table 4 summarizes the identified AI approaches currently
implemented in the field.

On further investigation, several studies have performed compre-
hensive experiments to determine whether user identity can be defined
in different environments. Specifically, they train the model with data
collected from a desktop in the work environment and test it using data
collected from a laptop in the home environment (Zheng et al., 2011).
Furthermore, research also studies the effect of the number of clicks,
inclusion of partial mouse movements (Zheng et al., 2011), varying
numbers of mouse actions (Antal and Egyed-Zsigmond, 2018; Antal and
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Denes-Fazakas, 2019; Hu et al., 2019), different numbers of sequence
information (Senarath et al., 2023a), and several types of mouse actions
(Almalki et al., 2023; Antal and Egyed-Zsigmond, 2018), on perfor-
mance. In addition to this, several models have also been compared. This
includes comparing conventional ML and DL approaches (Fu et al.,
2020; Subash et al., 2024).

A comparison was also performed by training and testing models
with different datasets. For example, Siddiqui et al. (2021) conducted
experimentation in two scenarios: scenario 1) trained and tested RF
exclusively with the training set, achieving a 92.73 % accuracy, and
scenario 2) where RF was trained using the training set and tested using
the test set, achieving a 61.60 % accuracy. This method was also seen in
research done by Antal and Egyed-Zsigmond (2018). Comparison is also
performed between pre-processing methods and models. For example,
Antal and Fejér (2020) compared 2 segmentation methods and 3
different DL models for authentication and identification scenarios.
Specifically, the study compares a plain CNN model trained from scratch
and 2 transfer models pre-trained using the DFL dataset. Among the
transfer models, one has fixed weights, while the other updates weights
using training data from the Balabit dataset. Furthermore, the compar-
ison is also performed for balanced and unbalanced data scenarios.

Reliability analysis has also been performed to determine the us-
ability of identified features. Specifically, Subash et al. (2024) proposes
to evaluate DL models with a significantly larger publicly available
dataset (Minecraft dataset) containing the same features as the ones
identified in the study for online fraud detection. Specifically, the study
compares the performance between newly collected data and the pub-
licly available Minecraft dataset containing the same features (Subash
et al., 2024). If the performance achieved in both scenarios is compa-
rable, then the reliability of identified features is proven.

Some research also studies the effect of emotions on user identifi-
cation (Wang et al., 2019). According to the study, the model’s perfor-
mance under different emotions has mild variations but no significant
impact on overall performance.

Studies also combine different modalities to create a more robust
behavioral biometric authentication model. Da Silva et al. (2016)
combine keystroke and mouse behavioral biometrics modalities,
proving that combining both modalities yields better performance than
any one modality. According to the results, performance on keystroke
data is inadequate, while performance using mouse behavior data yields
satisfactory results, a maximum of 85 % through RF. Combining both
modalities yields an increased performance of 90 % using RF.

Based on analysis (Table 5), it is evident that most studies rely on ML
approaches despite the presence of state-of-the-art DL approaches.
Further investigation revealed that RF is the most popular method
among all conventional ML approaches.

Like keystroke, mouse behavioral biometric research analyzed in this
study is also empirical. Analysis revealed that the evaluation metrics
implemented in mouse behavioral biometrics research include FAR,
FRR, and EER (Zheng et al., 2011). Additionally, accuracy (Acc), pre-
cision (Pre), recall (Rec), Area Under the Curve (AUC), Receiver Oper-
ating Characteristic (ROC) curve, and authentication time have also
been used for model evaluation. The summary of the evaluation metrics
utilized in mouse behavioral biometric research is depicted in Table 6.

4.5. Mouse behavioral biometrics research applications

On preliminary analysis, mouse behavioral biometrics have primar-
ily been implemented for security-related applications, including user
authentication and identification (Zheng et al., 2011). Table 7 gives a
comprehensive idea of the research applications associated with mouse
behavioral biometric research. Based on this analysis, it can be inferred
that keystroke behavioral biometrics exhibit a significantly broader
spectrum of research applications compared to mouse behavioral
biometrics.
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Table 5
Summary of Al approaches implemented for mouse behavioral biometric
analysis.

ML DL Statistical Models Author
RF No No Siddiqui et al., 2021
SVM-RBF No No Zheng et al., 2011
RF, KNN, MLP No Da Silva Beserra et al.,
SVM 2016
RF, DT, No No Almalki et al., 2023
KNN
No CNN + No Fu et al., 2020
RNN
RF No No Antal and
Egyed-Zsigmond, 2018
RF No No Antal and
Denes-Fazakas, 2019
No RNN- No Subash et al., 2024
LSTM
SVM No No Shen et al., 2013
RF No No Wang et al., 2019
No No Parzen density estimation, Gamboa and Fred, 2004
Unimodal distribution.
RF No No Feher et al., 2012
No CNN No Hu et al., 2019
No CNN No Antal and Fejér, 2020

5. Real-World applications for keystroke and mouse behavioral
biometrics

Behavioral biometrics is employed in commercial solutions across
various domains, including finance, enterprise security, and mobile
authentication. These applications demonstrate the technology’s scal-
ability and adaptability in addressing modern cybersecurity challenges.

Our analysis revealed the deployment of several keystroke behav-
ioral biometric-based authentication systems primarily designed for
mobile devices. These solutions include platforms such as MasterCard
NuData, TwoSense.Al, BioSig ID, OneSpan, and Zighra (Progonov et al.,
2022). Many of these systems utilize a combination of behavioral fea-
tures and sensor data for user authentication. For instance, MasterCard

Computers & Security 160 (2026) 104731

2024), SecureAuth (SecureAuth 2025), and BioCatch Connect (BioCatch
2025, similarly utilize the aforementioned features with mouse behavior
for user authentication. The information regarding all the aforemen-
tioned behavioral biometrics-based authentication systems has been
consolidated and presented in Table 8. Based on our analysis, we find
that Plurilock, BioCatch, and SecurAuth develop multiple solutions that
target different endpoint devices, including smartphones, desktops,
tablets, and laptops. To our knowledge, no other survey covers
real-world applications of keystroke and mouse behavioral
biometric-based authentication systems.

6. Adaptability of keystroke and mouse behavioral biometrics
systems

It is already known that behavioral biometric modalities, especially
keystroke and mouse behavioral biometrics, have gained significant
popularity in recent years due to their capability to track user identity
continuously and noninvasively. Secondly, these systems are more
secure than conventional password-based authentication systems, as
they rely on analyzing unique user behavior for user authentication and
identification. These unique behaviors are more challenging to forge,
forget, share, or distribute (Jain et al., 2006), making them better
alternatives.

However, such modalities suffer from intraclass variability (Mhenni
et al., 2019a, 2018). Keystroke behavior of a user is affected by several
factors such as keyboard layout (QWERTY, QWERTZ, AZERTY),
keyboard type (touch screen, virtual, physical), subject activeness, and
several environmental factors (location and lighting) (Mhenni et al.,
2019a, 2018). Similarly, mouse behavior is also affected by a similar set
of factors. Similarly, screen resolution (website window content reso-
lution, monitor resolution), mouse pointer sensitivity, and types of
mouse (trackpad, gaming mouse, regular mouse) are also known to

Table 7
Summary of research application of mouse behavioral biometric analysis.

Author Security  Online Assessment Fraud Detection

NuD nal ! ion, k rok rns, wirel
u ata.a alyses app u§age, g.eo ocgt on, keyst 9 e. patterns, . e (.:ss Siddiqui et al,, 2021 Yes No

connections, and device orientation for verifying user identity Zheng et al., 2011 Yes No

(Progonov et al., 2022). Additionally, some systems employ multifactor Da Silva Beserra et al., 2016 Yes No

authentication by combining multiple behavioral biometric modalities. Almalki et al., 2023 Yes No

For example, TwoSense. Al incorporates keystroke dynamics, gait pat- Fuetal,2020 Yes No

h . . d 1 . d Antal and Egyed-Zsigmond, 2018 Yes No

terns, touc .screen 1nteract10ns,. apP usage, and geolocation atz? tlo Antal and Denes-Fazakas, 2019 Yes No

enable continuous user authentication (Progonov et al., 2022). Simi- Subash et al., 2024 Yes Yes

larly, OneSpan and Zighra leverage keystroke behavior, app usage, and Shen et al., 2013 Yes No

sensor data, such as wireless connection information, for authentication. Wang et al., 2019 Yes No
. o . . Gamboa and Fred, 2004 Yes No

BioSig ID, conversely, employs a multifactor approach that combines Feher of al. 2019 Yes No

knowledge-based authentication (e.g., PINs and passwords) with Hu et al., 2019 Yes No

touch-screen-based gestures to verify users (Progonov et al., 2022). Antal and Fejér, 2020 Yes No

Other systems, including Plurilock Defend (Plurilock Security, Inc

Table 6

Evaluation metrics used in mouse behavioral biometrics.
Author EER FAR FRR Acc PRE REC ROC AUC Others
Siddiqui et al., 2021 Yes Yes Yes Yes No No No No No
Zheng et al., 2011 Yes Yes Yes No No No Yes No No
Da Silva Beserra et al., 2016 No No No Yes No No No No No
Almalki et al., 2023 Yes Yes Yes Yes No No Yes Yes No
Fu et al., 2020 Yes No No No No No Yes Yes No
Antal and Egyed-Zsigmond, 2018 Yes Yes Yes Yes No No Yes Yes No
Antal and Denes-Fazakas, 2019 No No No No No No Yes Yes No
Subash et al., 2024 No No No Yes Yes Yes No No No
Shen et al., 2013 Yes Yes Yes No No No No No Yes
Wang et al., 2019 No No No Yes No No No No No
Gamboa and Fred, 2004 Yes No No No No No No No No
Feher et al., 2012 Yes Yes Yes No No No Yes Yes Yes
Hu et al., 2019 No Yes Yes No No No No No No
Antal and Fejér, 2020 No No No Yes No No No Yes No
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Table 8

Computers & Security 160 (2026) 104731

Comparison of Real-World Applications for Keystroke and Mouse Behavioral Biometrics.

Solution Authentication Method Used Modalities Sensor Data Non-Invasive
Authentication
MasterCard Nu Behavior-Based Apps Usage, Keystroke Behavioral Biometrics, Geolocation, Device Motions Sensors, touchscreen, Yes
Data Orientation, Wireless Connections GPS, Wireless Adaptors
TwoSense.Al Continuous Keystroke Behavioral Biometrics, Touchscreen, App Usage, Touchscreen, Motion sensors, Yes
Authentication, Geolocation, gait behavioral biometrics front-facing camera, GPS
Multifactor
BioSigID Multifactor Passwords/PIN, Touchscreen Gestures Touchscreen No
OneSpan Multifactor App Usage, Keystroke Behavioral Biometrics, Wireless Connections Touchscreen, Wireless Adapter Yes
Zighra Continuous App Usage, Keystroke Behavioral Biometrics, Wireless Connections Touchscreen, Wireless Adapter Yes
Authentication,
Multifactor
Plurilock Continuous Keystroke Behavioral Biometrics, Mouse Behavioral Biometrics Keyboard Device, Pointer Device  Yes
Defend Authentication,
Multifactor
BioCatch Continuous Keystroke behavioral biometrics, mouse behavioral biometrics Keyboard Device, Pointer Device  Yes
Connect Authentication,
Multifactor
SecureAuth Multifactor Keystroke behavioral biometrics, mouse behavioral biometrics, Touch Keyboard Device, Pointer Yes

screen, Geolocation, User device, Wireless connection, Browser

information

Device, Touchscreen, GPS, Wi-Fi

affect mouse behavior (Zheng et al., 2011). Specifically, features such as
velocity and acceleration of mouse movements become poor comparison
metrics between subjects.

Further investigation shows that user behavior could evolve
(change) over time (Mhenni et al., 2019a). Specifically, the user
behavior recorded during the initial analysis phases may not represent
the user behavior several months or years later (Mhenni et al., 2019a).
According to research studies, several factors contribute to user
behavior evolution (changes in user behavior) (Mhenni et al., 2019a;
Pisani et al., 2019). Through frequent interaction with keyboard and
mouse devices, subjects’ behavior may vary. In other words, as the
subject becomes more familiar with the devices, it becomes easier for the
subject to use them. This causes variations in the subject’s profile
compared to the initial profile. For example, the subject may become
faster at typing or more proficient with the mouse than when he first
started. Similarly, keystroke and mouse behavior can also be affected by
illnesses, aging, emotions, and injuries (Pisani et al., 2019). Since such
changes in user behavior occur over time due to these several factors, the
chances of genuine subjects getting rejected by the behavioral biometric
authentication system become higher, thereby increasing false rejection
rates (FRR). Therefore, it is imperative to investigate current research in
behavioral biometrics and identify if and how they factor in user
behavior evolution. Table 8 summarizes research studies implementing
adaptive strategies to tackle user behavior evolution.

Our investigation shows that only a few studies implement adaptive
strategies to counter intra-class variability and user behavior evolution.
Subash & Song (2021) propose an RBBIS (Real-time Behavioral Bio-
metric Information Security) adaptive framework that non-invasively
builds behavioral profiles using DL approaches. This framework per-
forms trajectory analysis to investigate and predict how user behavior
evolves over time. According to the author, this framework can detect
users after long periods during which there is an expected change in user
behavior.

Studies also focus on tackling intra-class variability (Mhenni et al.,
2019a, 2018). A. Mhenni et al. (2018) first classify users into categories
according to the Doddington Zoo classification and apply specific
adaptive techniques to each category. Specifically, three adaptive ap-
proaches are implemented: growing window, sliding window, and the
least frequently used technique. Similarly, Mhenni et al. (2019a) pro-
pose an adaptive method that uses only one sample as a reference. After
this, the reference is updated using a double serial adaptation strategy
for each correctly classified sample. Specifically, two thresholds are
implemented as a criterion for adaptation. First, the global score is used
to determine the authenticity of the subject (using the first threshold),
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and then it is compared with the second threshold. Each reference is
added as a profile based on the growing window technique until it
reaches a specific size (10), after which a sliding window is imple-
mented. Therefore, each sample successfully recognized as the subject’s
is considered a potential reference. Finally, Ceker and Upadhyaya
(2016) investigate the use of transfer learning to update the classifiers
affected by environmental factors with minimal re-training. According
to the study, it is feasible to identify users at different times by acquiring
only a few samples from another session, obtaining 13 % higher
accuracy.

Our investigation found that most adaptation techniques were
implemented, keeping keystroke behavioral biometrics in mind. To our
knowledge, adaptation techniques have yet to be implemented in mouse
behavioral biometrics (Table 9).

7. Research gaps and discussion

In the preceding section, we extensively reviewed the current trend
within keystroke and mouse behavioral biometrics. Our investigation
has encompassed various facets, such as the compilation of datasets,
utilization of features, deployment of artificial intelligence methodolo-
gies, computation of evaluation metrics, and exploration of research
applications about keystroke and mouse behavioral biometrics. Despite
the popularity of these methods, there are several research gaps.

Our analysis shows that some keystroke and mouse behavioral
biometric-based research suffers from performance issues. Specifically,
trained models cannot accurately classify new samples (Siddiqui et al.,
2021; Da Silva Beserra et al., 2016; Subash et al., 2024; Subash and
Song, 2021). Although a substantial number of studies exist in both
fields, challenges related to performance and long-term reliability
remain areas that require further investigation. On further analysis, it
was found that only a few existing studies and surveys on keystroke and
mouse behavioral biometrics address the adaptability of current
research to user behavior evolution. It is already mentioned that
keystroke and mouse behavior suffer from high intra-class variability
(Mhenni et al., 20192a,2018). Furthermore, many studies have claimed
that user behavior evolves over time due to various factors, including
age, fatigue, emotion, familiarity, and illnesses (Mhenni et al., 2019a,
2018; Subash and Song, 2021; Pisani et al., 2019). This change in user
behavior can affect the performance of current keystroke and mouse
behavior biometric-based authentication systems. Specifically, genuine
users can be classified as imposters, thereby increasing FRR and
affecting system usability.

To overcome the issues, several studies have used techniques that
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Table 9
Summary of adaptive techniques used in quantitative studies analyzed.

Author Modality Adaptive Mechanism Used
Andrean et al. 2020 Keystroke No
Siddiqui et al., 2021 Mouse No
Subash et al., 2023 Keystroke No
Zheng et al., 2011 Mouse No
Mhenni et al., 2019a Keystroke Sliding window, Growing Window, and
least frequently used mechanism, with
Doddington Classification
Ceker and Upadhyaya, Keystroke Transfer learning
2016
Subash and Song, 2021 Keystroke RBBIS framework that performs
trajectory analysis for user behavior
change over time
Maheshwary et al., Keystroke No
2017
Killourhy and Maxion, Keystroke No
2009
Maiorana et al., 2019 Keystroke No
Senarath et al., 2023a Keystroke No
Senarath et al., 2023b Keystroke No
Nguyen et al., 2024 Keystroke No
Epp et al., 2011 Keystroke No
Tsimperidis et al., 2017 Keystroke No
Tsimperidis et al., 2020 Keystroke No
I. Tsimperidis et al., Keystroke No
2018
Ulinskas et al., 2018 Keystroke No
Alshanketi et al., 2019 Keystroke No
Bours, 2012 Keystroke No
Da Silva Beserra et al., Keystroke + No
2016 Mouse
Krishnamoorthy et al., Keystroke No
2018
A. Mhenni et al., 2018 Keystroke Double serial adaptation strategy with
sliding window or growing window
techniques
Kalita et al., 2020 Keystroke No
Daribay et al., 2019 Keystroke No
Acien et al., 2022 Keystroke No
Stragapede et al., 2024 Keystroke No
Almalki et al., 2023 Mouse No
Fu et al., 2020 Mouse No
Antal and Mouse No
Egyed-Zsigmond,
2018
Antal and Mouse No
Denes-Fazakas, 2019
Subash et al., 2024 Mouse No
Shen et al., 2013 Mouse No
Wang et al., 2019 Mouse No
Gamboa and Fred, Mouse No
2004
Feher et al., 2012 Mouse No
Hu et al., 2019 Mouse No
Antal and Fejér, 2020 Mouse No

overcome the problem of intra-class variability by proposing reference
template adjustment techniques such as growing window, sliding win-
dow, and least frequently used reference mechanisms (Mhenni et al.,
2019a, 2018; Ceker and Upadhyaya, 2016). However, these complex
methods require more computation and storage, making them unsus-
tainable solutions. This is also the case when DL approaches are used
(Lucia et al., 2023). Furthermore, these approaches can only detect
slight changes in user reference based on environmental conditions,
emotions, fatigue, and hardware-related factors. Additionally, no
studies focus on tackling user behavior evolution over long periods due
to age, familiarity, and illnesses. It is also important to note that research
studies have only given a general hypothesis that user behavior evolves
over time due to the aforementioned factors. However, no experimental
studies have analyzed and proved that user behavior and its properties
actually evolve. Furthermore, no public datasets are available for
analyzing short and long-term user behavior evolution. This is because
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data needs to be collected in different environments and devices over
several sessions, separated by a certain amount of time. Our investiga-
tion shows that public and novel datasets used for mouse and keystroke
behavioral biometrics collect data in sessions, but do so with small time
gaps. According to our analysis (Tables 1 and 4), the maximum time gap
between sessions is ~28 days (Acien et al., 2022). Other studies collect
behavioral data in sessions separated by approximately one day or one
week. However, such intervals may not adequately capture long-term
changes in user behavior. In some cases, datasets are continuously
collected over large time frames ranging from 4 months to >2 years
using logging tools. However, these studies do not perform adaptive
analysis to understand user behavior evolution. The absence of public
datasets makes it very difficult to evaluate adaptive behavioral bio-
metric systems (Pisani et al., 2019) or predict user behavior evolution
over time. Furthermore, the survey articles analyzed in this paper do not
report on adaptive strategies used in behavioral biometric research
studies or their drawbacks. Current behavioral biometric systems are
also susceptible to attacks, including zero-effort, playback, and
poisoning attacks (Jain et al., 2006; Pisani et al., 2019; Mhenni et al.,
2019b). Generally, these areas of research remain unexplored.

As an additional contribution to this paper, we compile and visualize
comprehensively the contributions of previously published surveys and
compare them to our survey (Table 10). Comparison is performed on
several aspects, including the reports on modalities (MD), datasets (DS),
data collection procedures (DCP), pre-processing methods (PM), Al ap-
proaches (MU), evaluation metrics (EC), adaptability (AD), and research
applications (RA). Table 10 also shows that our survey gives a more
comprehensive outlook on keystroke and mouse behavioral biometrics
compared to previously published work.

While theoretical advancements in behavioral biometrics have
demonstrated promising results in controlled settings, the real-world
deployment of these systems introduces additional challenges. For
instance, maintaining high accuracy and consistency across diverse user
populations and varying environments remains difficult. Systems
trained on data from a specific device or setting often experience per-
formance degradation when applied to different hardware, network
conditions, or user contexts. Factors such as hardware inconsistencies (e.
g., different keyboards or mice), changes in user behavior due to stress,
fatigue, learning factors, emotion, or multitasking, and variations in
posture or interaction patterns can significantly affect model
performance.

Moreover, scalability becomes a concern as systems move from
small-scale evaluations to broader deployments involving large and
heterogeneous user bases. Ensuring robustness and generalization
across time and conditions is crucial, yet many existing approaches
struggle to maintain long-term performance without frequent retraining
or fine-tuning. These real-world constraints highlight the gap between
controlled experimental results and practical applicability, underscoring
the need for further research into adaptable, context-aware, and
privacy-conscious biometric systems.

8. Privacy challenges and ethical considerations in behavioral
biometric systems

Behavioral Biometrics, such as keystroke and mouse dynamics, offer
valuable benefits for non-invasive and continuous user authentication.
However, their deployment raises important ethical and privacy con-
siderations. A major concern is user consent, as user behavioral
biometric-based systems collect user behavior data passively in the
background, often while the users are not fully aware of what is being
collected, how it is being processed, used, or who has access to it. This
lack of transparency challenges the fundamental principles of informed
consent.

Secondly, user behavior information is sensitive and rich in contex-
tual information, which can reveal users’ traits and behaviors. Specif-
ically, user behavior, such as typing speed and mouse movement
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Table 10
Representation of survey reports and their primary area of focus.
Author MD DS DCP PM FE MU EC AD RA
Albalawi et al., 2022 Fingerprint, Face, Iris/Retina, Keystroke, Signature, and Voice Recognition No No Yes Yes Yes No No No
Ometov et al., 2018 Conventional Authentication Systems, Voice, Face, Iris, Hand Geometry, Vein, Fingerprint, No No No No Yes Yes No Yes
Geographical Location, Thermal Image, Beam Forming Techniques, Occupant Classification
System, ECG, EEG, and DNA Recognition
Lucia et al., 2023 BMI, Face, Fingerprint, Hand Vein, Iris, Blood Pressure, ECG, EEG, Galvanic skin response, Heat ~ Yes Yes No No Yes Yes No Yes
Rate, Respiration Rate, Skin Temperature, Eye Movements, Facial Dynamics, Keystroke,
Signature, Voice, Posture Pattern, and Pressure Distributions
Babich, 2012 Fingerprint, Face, DNA, Palmprint, Hand Geometry, Iris, Odor/Scent, Keystroke, Gait, Voice No Yes Yes Yes No No No Yes
Jain et al., 2006 Fingerprint, Face, Iris, Hand Geometry, Voice, Keystroke, Signature No No No Yes Yes Yes No Yes
Banerjee, and Keystroke Behavioral Biometrics Yes No No Yes Yes Yes No Yes
Woodard, 2012
Pisani et al., 2019 Fingerprint, Face, Iris, Voice, Accelerometer Biometrics, Keystroke behavioral Biometrics, Yes No No No Yes Yes Yes No
Ocular Biometrics
Khan et al., 2024 Mouse Behavioral Biometrics and Widget Interactions Yes  Yes Yes Yes  Yes Yes No No
Sadikan et al., 2019 Conventional Authentication Systems, Profile-based Authentication, Keystroke behavioral Yes Yes No Yes  Yes Yes No Yes
biometrics
Maiorana et al., Keystroke Behavioral Biometrics Yes  Yes No Yes  Yes Yes No No
2021
Ayeswarya, and Fingerprint, Face, Ocular, Keystroke Behavioral Biometrics, Gait Behavior, Mouse behavioral Yes No No Yes  Yes Yes No No
Singh, 2024 Biometrics, Touch-Based Behavioral Biometrics, Sensor-Based Behavioral Biometrics, Context
Aware-Based Authentication Systems
Tural and Ozmen, Keystroke Behavioral Biometrics No No No No Yes No No No
2024
Our Survey Keystroke and Mouse behavioral biometrics Yes  Yes Yes Yes Yes Yes Yes Yes

behavior, can be influenced by the users’ mood, fatigue levels, and
stress, potentially providing much more information and insight than
the user intends to. Furthermore, such data can also reveal the users’
age, gender, cognitive state, health conditions, and possible disabilities.
If not strictly protected, this data can be misused for unauthorized
profiling, discrimination, and surveillance, particularly in schools, on-
line education platforms, workplaces, and public systems.

Deploying user behavioral biometric systems at scale would also
have broader societal implications. The widespread use of this tech-
nology could lead to the pervasive monitoring of users, thereby under-
mining privacy in digital spaces. Without proper regulation and
oversight, such technologies may be exploited by governments or cor-
porations to track individuals, eroding civil liberties. Even in legitimate
applications, ensuring the responsible use of this data is important for
maintaining user trust. It is also essential to consider how systems can
remain robust to misuse or accidental disclosure of user behavior data,
particularly given the long-term and often continuous nature of data
collection in behavioral biometrics.

Lastly, to address the aforementioned challenges, behavioral bio-
metric system design should incorporate privacy-aware approaches,
such as data minimization, transparency in model behavior, and clear
opt-in or opt-out mechanisms for users. Exploring on-device processing,
anonymization techniques, and secure data handling can also help
ensure responsible use. As behavioral biometric technologies continue
to develop, a balanced consideration of their technical capabilities and
ethical implications will be key to supporting their adoption in a trust-
worthy manner.

9. Conclusion and future work

In conclusion, our survey has provided a comprehensive overview of
the current landscape of keystroke and mouse behavioral biometrics.
Through our exploration, we have identified several noteworthy trends
and insights. The findings underscore the importance of the adaptability
of current keystroke and mouse behavioral biometric-based research,
which may have significant implications for performance and user
authentication over long periods. Moving forward, we suggest that there
is a need to analyze, visualize, and identify what properties of behavior
evolve (change), how they evolve, and what factors bring about the
evolution of user behavior. Therefore, future research should focus on
making such systems more adaptable to user behavior evolution. Since
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user behavior can evolve over time due to several factors (mentioned in
Section 7), it is essential to factor in this evolution to prevent an increase
in FRR rates. This involves collecting user behavior and demographic
data for an extended period of time and analyzing the data for specific
trends. It is also essential to develop more sustainable approaches,
methodologies, and frameworks relevant to current policies and stan-
dards established by several world governments. Making such systems
adaptive and sustainable will help build more state-of-the-art, secure,
and robust behavioral biometric authentication systems. Secondly,
future work should also focus on securing keystroke and mouse behav-
ioral authentication systems against poisoning, playback, and zero-
effort attacks. Thirdly, future research could explore the integration of
additional behavioral modalities, such as gait, voice, and touchscreen
interactions, to develop more robust and comprehensive multimodal
biometric systems. Furthermore, to address the challenges of scalability
and generalization in real-world deployments, future research should
focus on developing adaptive behavioral biometric models that can
maintain performance across diverse users, devices, and environments
without frequent retraining. This includes exploring continual learning
techniques, domain adaptation, and context-aware modelling strategies.
Additionally, efforts should be directed toward designing privacy-
preserving architectures that ensure user data protection while sup-
porting large-scale, long-term biometric authentication systems. Future
research could also explore adaptive machine learning techniques from
other domains to enhance the long-term robustness of behavioral bio-
metric systems. Integrating cross-domain adaptation and continual
learning approaches may help address evolving user behavior more
effectively. This survey contributes valuable insights into keystroke and
mouse behavioral biometrics, laying a foundation for continued inno-
vation and research.
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