
Differentiation of fish species based on O-acetylated N-glycan fragments 
using LC-IM-MS to combat seafood adulteration

Ian Walsh a,1, Thimo Ruethers b,c,d,1, Sim Lyn Chiin a, Gavin Teo a, Shi Jie Tay a, Corrine Wan a ,  
Kuin Tian Pang a , Sean Chia a, Andreas L. Lopata b,c,d,*, Beiying Qiu a,*

a Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Republic of 
Singapore
b Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Republic of Singapore
c Molecular Allergy Research Laboratory, Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, 1 James 
Cook Drive, Queensland 4811, Australia
d Biomolecular Sequence To Function Division (BSFD), Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, Singapore 
138671, Republic of Singapore

A R T I C L E  I N F O

Keywords:
Food identification and authentication
Liquid chromatography ion mobility-mass 
spectrometry
Food fraud
N-glycan fingerprinting
O-acetylated sialic acid
Glycomic biomarkers
Food safety

A B S T R A C T

Food fraud poses a serious safety risk and affects the economy, with seafood being particularly vulnerable due to 
high species diversity and complex global supply chains. Accurate fish species identification is crucial for sus
tainable fishery management, food safety and protecting consumers with species-specific fish allergies who are at 
risk of life-threatening anaphylaxis. While some methods such as DNA-based PCR are well-established, they have 
limitations for processed foods and are costly, complex and time-consuming. Glycan markers are highly stable 
and have recently emerged as a tool for food authentication due to their unique species-specific characteristics. 
This study introduces N-glycan profiling as a novel technique for fish species authentication and addresses the 
need for reliable methods applicable to processed seafood products. By employing liquid chromatography ion 
mobility-mass spectrometry analysis, we examined N-glycan profiles of raw and heated fish muscle tissues from 
three fish species, which represent widely consumed seabass and snapper as well as their potential counterfeit 
substitute, tilapia from markets and restaurants. N-glycan structures containing different degrees of O-acetylated 
sialic acids (O-Ac-Sias) were identified as species-specific markers and clustering based on their percentage 
abundance enabled species classification. This study provides the foundation for the development of a rapid, 
species-specific authentication tool, which could be employed throughout the seafood supply chain, from harvest 
to retail, improving traceability and reducing mislabeling in markets and restaurants.

1. Introduction

Seafood, including fish and shellfish, is one of the most widely traded 
and consumed foods globally. High demand (>24 kg per capita), intri
cate supply chains and species complexity contribute to an estimated 25 
% of catches being attributed to Illegal, Unreported, and Unregulated 
(IUU) fishing, which threatens ecosystems, industries and sustainability 
efforts (Agnew et al., 2009; Cawthorn et al., 2018; Romero, 2023). The 
absence of clear regulations and effective enforcement against mis
labeling poses a challenge to both markets and consumers (Kroetz et al., 

2020). Notably, seabasses (e.g., barramundi) and snappers are the most 
commonly mislabeled fish globally (Warner et al., 2019). The ramifi
cations of seafood fraud extend beyond potential health risks for con
sumers, particularly those with seafood allergies, to the erosion of 
consumer confidence in the integrity of the food supply chain and severe 
environmental impact (Fox et al., 2018). As allergy risks are 
species-specific to individuals, correct labeling is crucial for affected 
consumers to safely manage this life-threatening condition (Davis et al., 
2020; Ruethers et al., 2018). Fish is included in the European mandatory 
labeling legislation along with 13 other allergens due to its prevalence in 
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causing allergies (Rona et al., 2007; Taylor & Baumert, 2015). Although 
optimizing regulations, improving enforcement, and implementing 
stricter traceability systems are crucial measures for preventing fish 
mislabeling, more effective methods to differentiate fish species are 
urgently needed for combating fraud.

It is imperative to develop reliable and rapid high-throughput 
methods for seafood authentication to counteract seafood mislabeling 
and adulteration throughout the supply chain. Traditional methods, 
such as identifying species based on morphological and morphometric 
features, are often inadequate, particularly for processed seafood where 
distinguishing anatomical features are removed or altered during pro
cessing. More state-of-the-art methods involve DNA barcoding, a 

technique leveraging genetically variable DNA sequences to discern 
between species (ISO17174, 2024; Kotsanopoulos et al., 2021). This 
molecular approach relies on a unique mitochondrial COI DNA sequence 
of approximately 650 base pairs (bp) that is amplified for each biological 
species by using a universal set of polymerase chain reaction (PCR) 
primers. Following Sanger sequencing, this DNA sequence is matched 
against a DNA barcode database to determine the biological identity of 
the sample (Bemis et al., 2023). Authentication is then confirmed by 
comparing the identified species from the barcoded DNA sequence with 
the label on the sample. However, several limitations constrain the 
widespread application of DNA barcoding in commercial seafood 
testing. The technique is inherently time-consuming, typically requiring 

Fig. 1. Glycomics-based workflow for fish authentication of raw fish muscle tissue. Proteins were first extracted from raw tissue followed by the release of N-linked 
glycans. N-linked glycans were labeled by RFMS and characterized via LC-IM-MS.

Fig. 2. Diagnostic ion, GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1), was observed in both low energy (A) and high energy (B) mass spectrometry channel. : GlcNAc; : 
galactose; : Neu5NAc (sialic acid); Ac: O-acetylation.
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2–3 days from sample preparation to final identification, and the 
effectiveness of fish species identification through barcoding depends 
critically on the completeness and accuracy of DNA reference libraries 
(Delrieu-Trottin et al., 2019; Silva & Hellberg, 2021). While public 
sequence databases such as the Barcode of Life Database (http://www. 
boldsystems.org/index.php) and GenBank (https://www.ncbi.nlm.nih. 
gov) are widely used resources for DNA barcoding, misidentified se
quences have been reported, creating potential for false identifications 
(Mulcahy et al., 2022; Phillips et al., 2022). Moreover, this method is 
only well-established for raw and unprocessed fish, as DNA degradation 
during thermal processing, canning, or fermentation can compromise 
amplification success and sequence quality. Additionally, the cost per 
sample and requirement for specialized laboratory infrastructure limit 
its scalability for routine industry use. Alternative molecular ap
proaches, including lipidomic, metabolomic and proteomic methods for 
fish authentication have shown promising results. However, their 
implementation in routine testing protocols is hindered by significant 
cost and time constraints, often requiring even more specialized 
equipment and expertise than DNA barcoding (Braconi et al., 2021). 
Consequently, there remains an urgent need for rapid, cost-effective, 
and field-deployable authentication methods that can complement or 
potentially replace current approaches while maintaining high accuracy 
across diverse seafood products and processing states.

Among emerging omics approaches for species authentication, gly
comics represents a promising method with analytical advantages 
(Wang et al., 2025). Glycomics focuses particularly on sugar chains 
covalently linked to asparagine residues in peptide chains known as 
N-glycans. Glycans exhibit diverse structural combinations that play 
multiple biological roles in species-specific glycoproteins (Schjoldager 
et al., 2020). N-glycans are composed of various monosaccharides that 
serve as essential molecular building blocks and exhibit complex 
branched structures attached to membranes and secreted glycoproteins 
and glycolipids (Marth, 2008). Protein N-glycosylation is controlled by 
diverse glyco-enzymes, including glycosidases and glycotransferases, 
within organisms, creating species-specific enzymatic fingerprints. The 
activity of these enzymes depends on multiple factors, such as envi
ronment, tissues, organs, and, notably, species, resulting in reproducible 
glycosylation patterns that can serve as taxonomic markers. Therefore, 
N-glycans have emerged as promising novel markers for species iden
tification (Solorzano et al., 2009) and may even be able to detect envi
ronmental cues from farming or wild-reared specimens, offering 
potential advantages over DNA-based methods in terms of information 
content. Previously, N-glycans have been identified as biomarkers for 
meat and milk authentication and showed potential for high-throughput 
applications (Chia et al., 2022; Liu et al., 2023). In seafood, unique 
N-glycan structures containing O-Ac-Sias have been reported in various 

Fig. 3. Representative extracted ion chromatogram (EIC) of the diagnostic ion: 
GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1). A: raw barramundi; B: raw red snapper; C: 
raw red tilapia.

Fig. 4. The relative abundance of N-glycan containing various numbers of O-acetylated sialic acid in raw fish samples. A. N-glycan with one O-Ac-Sia (OAc1). B. N- 
glycan with two O-Ac-Sias (OAc2). C. N-glycan with three O-Ac-Sias (OAc3). D. N-glycan with four O-Ac-Sias (OAc4). One-way ANOVA followed by Tukey’s post hoc 
test, multiple comparisons were performed among barramundi, red snapper, and red tilapia, n = 5; * p < 0.05; ** p < 0.01; *** p < 0.001.
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organs including serum, muscle, intestine and skin Aamelfot et al. 
(2014); Liu et al. (2008); Wu et al. (2017); Ylönen et al. (2001); Zhao 
et al. (2024). In the serum of Atlantic salmon (Salmo salar), mono-
O-acetylated sialic acids accounted for up to 83 % of total sialic acids, 
with patterns that shifted under long-term handling stress which in
dicates environmentally driven modulation (Liu et al., 2008). While 
meats from common livestock such as beef, pork, and chicken have not 
been reported to contain significant levels of O-acetylated sialic acids 
(Chia et al., 2022), their presence in seafood suggests that O-Ac Sias 
could serve as unique biomarkers for seafood authentication.

In this study, we aimed to explore the utility of O-Ac Sia abundances 
for fish species authentication. An analytical process utilizing N-glycan 
structures containing O-Ac Sias was developed to identify and differ
entiate widely consumed seabass, snapper and their potential counter
feit cheaper substitute, tilapia. Raw and heated fish muscle tissue (meat) 
was analyzed, which represent fish fillets from markets and restaurants 
for which authentication by morphology is impossible. The N-glycan 
profiles of all samples were analyzed by a Waters SYNAPT XS Liquid 
chromatography–ion mobility mass spectrometer (LC-IM-MS) of which 

unique N-glycan structures containing O-Ac-Sias were identified. Addi
tionally, LC-IM-MS analyses revealed differential abundances of O-Ac- 
Sias, which could be used as markers to distinguish fish species.

2. Methods

The workflow of sample preparation and analyses is illustrated in 
Fig. 1.

2.1. Fish sample collection

Five whole, deceased specimens of each species, barramundi (Asian 
seabass, Lates calcarifer), red snapper (Lutjanus malabaricus) and red 
tilapia (Oreochromis sp.), were procured from aquaculture farms in 
Singapore. Standardized fish muscle tissue samples were collected from 
the center of each fillet and stored at − 80 ◦C as described previously 
(Ruethers et al., 2020).

2.2. Protein extractions from fish muscle

Raw fish samples were generated by first homogenizing the tissue 
using a pestle and mortar under liquid nitrogen. Proteins were then 
extracted in 800 µL of T-PER tissue protein extraction reagent (Ther
moFisher, UK), supplemented with freshly added protease and phos
phatase inhibitor (1:100, ThermoFisher, UK). The protein lysates 
underwent six cycles of sonication, each consisting of 10 s of sonication 
followed by a 10-second interval. Subsequently, the protein lysates were 
centrifuged at 13,000 rcf for 15 min, and the supernatant was subjected 
to buffer exchange into 50 mM HEPES (pH 8.0). To mimic cooked fish, 
raw tissue samples were first heated at 95–100 ◦C in T-PER reagent for 
20 min and the proteins were extracted as described above (Ruethers 
et al., 2021). The protein concentration of all extracts was determined 
using the Pierce™ BCA Protein Assay Kit (Thermo Scientific, MA, USA), 
with bovine serum albumin as the standard. Fish protein was dried using 
a centrifuge vacuum concentrator (Labconco, MO, USA).

2.3. N-glycan release and labeling

Dried fish protein (15 µg) was reconstituted in 22.8 µL of LC-MS- 
grade water (Merck, NJ, USA) and 6 µL of a 5 % RapiGest solution 
(Waters Corporation, MA, USA). Protein denaturation was achieved 
through incubation at 95 ◦C for 5 min. Subsequently, 600 U of recom
binant PNGase F (Waters Corporation, MA, USA) was added, to facilitate 
the enzymatic release of N-glycans into the solution during a 10-minute 
incubation at 50 ◦C. The liberated glycans were then labeled using 12 µL 
of RapiFluor-MS’s (RFMS) solution (Waters Corporation, MA, USA) at 
room temperature for 10 min. RFMS-labeled glycans were subjected to 
purification using a GlycoWorks HILIC µElution plate (Waters Corpo
ration, MA, USA). The isolated N-glycans were dried for subsequent 
analysis. For reconstitution, the dried samples were mixed in 9 µL of LC- 
MS-grade water, 10 µL of dimethylformamide, and 21 µL of acetonitrile 
before transferring into a glass vial. The injection volume for each run 
was set at 10 µL.

2.4. LC-IM-MS analysis of RFMS-Labeled N-Glycan

The analysis of released N-glycans was performed as described pre
viously (Chia et al., 2022; Pang et al., 2021). Initially, 10 µL of the 
reconstituted N-glycans was injected into an ACQUITY H–Class UPLC 
system paired with a SYNAPT XS mass spectrometer (both from Waters 
Corporation, Milford, MA, USA). Samples underwent separation using 
an ACQUITY UPLC Glycan BEH amide column (Waters Corporation, MA, 
USA) at 60 ◦C with a flow rate of 400 µL/min, using a 40-minute 
gradient from 25 % to 49 % of 50 mM ammonium formate (mobile 
phase A). Mobile phase B consisted of 100 % acetonitrile. RFMS-labeled 
glycans were excited at 265 nm and their emission was recorded at 425 

Fig. 5. Extracted ion chromatogram (EIC) of a diagnostic ion: GlcNAc(1)Gal(1) 
Neu5Ac(1)OAc(1). A: heated barramundi; B: heated red snapper; C: heated 
red tilapia.
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nm using an ACQUITY UPLC FLR detector. The mass spectrometer 
conducted MS profile scans from m/z 400 to 2000 in positive mode at a 
rate of 1 Hz. The instrument settings included an electrospray ionization 
capillary voltage of 1.8 kV, cone voltage of 30 V, desolvation gas flow of 
850 L/h, and ion source and desolvation temperatures maintained at 
120 ◦C and 350 ◦C, respectively. Leucine enkephalin served as the 
LockSpray compound for real-time mass accuracy, and a RapiFluor-MS 
dextran calibration ladder was used to calibrate the retention times of 
the sample peaks. LC-MS retention times were subsequently normalized 
to glucose units (GU) using the dextran calibration curve. Data was ac
quired with MassLynx (Version 4.2, Waters Corporation, MA, USA).

2.5. Determination of the relative abundance of O-Ac-Sia-containing N- 
glycans in different fish species

Released N-glycans were analyzed using the UNIFI Scientific Infor
mation System (Version 1.8, Waters Corporation, MA, USA). Fluores
cence peaks were manually integrated within the same system, and their 
relative quantity was determined by area-under-curve measures, which 
were normalized to the total area. N-glycan composition was deter
mined from the neutral mass and where possible matching the N-glycan 
database in the UNIFI software. Fragmented O-Ac-Sia-containing diag
nostic ions were determined using the SYNAPT XS high-voltage MSe 

capabilities and low energy in-source. O-Ac-Sia-containing N-glycans 
were annotated through extracted ion chromatogram by O-Ac-Sia 
diagnostic ion.

2.6. Distribution of collision cross section (CCS) value of diagnostic ion 
across different fish species by script

The diagnostic ion, GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1), with an m/z 
value of 699.24 was extracted across each sample replicate. Drift time 
and collision cross section (CCS) values were determined by IM-MS. CCS 
of O-Ac-Sia diagnostic ion observed between 200 and 300 Å2 were 
binned into 50 CCS windows. That is, 200–202 Å2: bin 1, 202–204 Å2: 
bin 2, .., 298–300 Å2:bin 50. Each observed CCS intensity (normalized 
between 0–100 %) was averaged in each bin for each species.

2.7. Statistical analysis

Data are presented as mean ± standard error of mean (SEM). Sta
tistical analysis was performed using a two-tailed, unpaired student’s t- 
test or analysis of variance (ANOVA) followed by a Tukey post-hoc 
analysis as appropriate, using Prism 9 (GraphPad Software Inc., La 
Jolla, CA, USA) (*P < 0.05; **P < 0.01; ***P < 0.001). The relative 
abundance of structures containing O-Ac-Sia was analyzed using prin
cipal component analysis (PCA).

3. Results

3.1. Distinct glycan signatures in different fish species

N-glycan distribution in raw fish fillets from three fish species was 

Fig. 6. The relative abundance of N-glycan containing various numbers of O-acetylated sialic acid in heated fish samples. A. N-glycan with one O-Ac-Sia (OAc1). B. 
N-glycan with two O-Ac-Sias (OAc2). C. N-glycan with three O-Ac-Sias (OAc3). D. N-glycan with four O-Ac-Sias (OAc4). One-way ANOVA followed by Tukey’s post 
hoc test, multiple comparisons were performed among Barramundi, Red Snapper, and Red Tilapia, n = 5; * p < 0.05; ** p < 0.01; *** p < 0.001, **** p < 0.0001.

Fig. 7. Principal component (PC) analysis was performed on relative abundances of N-glycans containing O-Ac-Sias of raw fish samples (A) and heated fish samples 
(B) from barramundi, red snapper and red tilapia. Distinct separation was observed between different species. Blue inverted triangle: barramundi; yellow diamond: 
red snapper; pink circle: red tilapia.
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investigated after N-glycan release by PNGase F and labeling with RFMS, 
followed by LC-IM-MS N-glycan analysis (Fig. 1). N-glycan structures 
containing O-Ac-Sias were observed and can be characterized through a 
diagnostic ion fragment with a m/z of 699.24 in both low and high 
energy MS channels (Fig. 2A-B). As our protocol consists of PNGase F 
release of N-glycans, it is known that this fragment consists of O-acet
ylated sialic acid (O-Ac-Sia) bonded to galactose and then to N-Acetyl
glucosamine monosaccharides (GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1)) 
(Varki et al., 2015). Extracted ion chromatograms (EICs) of each fish 
species, obtained using the diagnostic ion, and the observed m/z of the 
parent N-glycan enabled annotation of the number of O-Ac-Sias (Fig. S1 
and Fig. 3A-C). For example, m/z values of 1310.00 correspond to the 
[M + 2H]+2 ions of the intact N-glycan GlcNAc(4)Hex(5)Neu5Ac(2)OAc 
(2) and therefore must have only 2 O-Ac-Sia’s (Fig S1). O-Ac-Sias were 
then grouped according to their degree and subsequently quantified 
using their parent N-glycan abundance based on RFMS fluorescence 
intensity in LC (Fig. S1). Significant differences in the relative abun
dance were observed among species (Fig. 4A-D). For instance, four 
O-Ac-Sias were observed in both barramundi and red snapper, but it was 
absent in red tilapia. The statistically different O-Ac Sia abundances 
shown in Fig. 4A-D demonstrate the feasibility of using O-Ac-Sia glycan 
profiles for fish authentication. The EICs of samples from each species 
showed excellent reproducible across biological replicates, supporting 
the potential of specific O-Ac-Sia structures as biomarkers for fish 
authentication (Fig. S2A-S2C). Furthermore, given O-Ac-Sias known 
abundance in fish (Aamelfot et al., 2014; Liu et al., 2008; Wu et al., 
2017; Ylönen et al., 2001; Zhao et al., 2024) extracting their EIC avoids 
the very complex full N-glycan characterization of each fish sample.

It is also crucial for customers to know which fish they consume after 
cooking, e.g., in restaurant settings. Therefore, the same workflow with 

minor modification was used to determine the N-glycan profiles of 
heated fish, representing cooked products (Fig. S3). Small pieces of raw 
fish muscle tissue were heated for 20 min at 95–100 ◦C before protein 
extraction. EICs were plotted based on same diagnostic ion indicating 
the unique distribution of O-Ac-Sia-containing N-glycan structures 
(Fig. 5A-C). As with the raw samples, the profiles were reproducible in 
all biological replicates (Fig. S4A-S4C). Although the percentages of O- 
Ac-Sia changed between raw and heated samples, possibly due to pro
tein degradation (Fig. S5A-S5C), the O-Ac-Sia levels are reproducible 
between biological replicates and significant differences between spe
cies were observed (Fig. 6A-D and Fig. S4A-S4C). All three fish species 
exhibited a high abundance of O-Ac-Sia-containing N-glycans. O-Ac-Sia 
structures accounted for 40–60 % of the total N-glycan structures in raw 
fish meat and 60–70 % in heated fish meat (Fig. S6A and S6B).

3.2. Species classification

PCA was conducted to examine data variability and determine if the 
raw fish samples could be differentiated from one another (Fig 7A). The 
PCA clusters were determined based on the percentage abundance of O- 
Ac-Sias in different species of fish (i.e. the features used in the PCA were 
the percentages in Fig. 4). Barramundi, red snapper and red tilapia were 
clearly differentiated in the PCA plot, with no crossover or overlap 
among samples of different species and relatively concentrated sample 
distributions within the same species. In the heated samples, PCA based 
on the relative abundance of O-Ac-Sias (Fig. 6) revealed distinct clus
tering patterns, indicating that the three species can still be effectively 
differentiated even after cooking (Fig. 7B). In summary, despite species- 
specific changes in O-Ac-Sia after heating compared to that in raw fish 
samples, the quantification was still reproducible within the same 

Fig. 8. Isomeric GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1) CCS distribution of three fish species. Each dot represents one CCS bin of width (e.g. most intensities fell into the 
bin 256–258 in barramundi and snapper). A. raw fish samples. B. heated fish samples. Black line: barramundi; Red line: red snapper; Blue line: red tilapia.
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species after heating. Therefore O-Ac-Sia quantification can also 
potentially be used to classify species from cooked seafood.

3.3. Different isomeric O-Ac-Sia structures’ distribution across fish species

In both raw and heated fish samples, multiple N-glycan isomers were 
observed (results not shown). To understand this isomerism better, we 
investigated the CCS attributes derived from ion mobility of the O-Ac-Sia 
diagnostic ion GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1) which was also re
ported in Vos’s study (Vos et al., 2023). Observed CCS values of the 
699.24 fragments were binned and used to analyze and visualize the 
distribution of the diagnostic ion across three different fish species. This 
allowed us to comparatively assess structural isoform presence and 
average CCS intensity among the samples. (Fig. 8A and B). The results 
revealed the presence of four isomeric forms of this specific fragment, 
with notable variation in their relative intensities across the samples. 
The four regions were identified from the mean observed CCS and a 2 % 
error margin (Song et al., 2022). In raw flesh Type 1 (mean CCS 210 Å2), 
type 2 (mean CCS 236 Å2) and type 3 (mean 254 Å2) isoforms of GlcNAc 
(1)Gal(1)Neu5Ac(1)OAc(1) were observed in all species. Interestingly, 
Tilapia has a unique fourth type of GlcNAc(1)Gal(1)Neu5Ac(1)OAc(1) 
with a mean CCS of 277 Å2 in the raw samples. The same four CCS peaks 
were observed in heated tissue (Fig 8B) albeit with slightly different 
mean CCS (type 1: 211 Å2, type 2: 236 Å2, type 3: 255 Å2, and type 4: 
279 Å2).

4. Discussion

Food fraud is one of the most persistent issues that affect consumer 
confidence and is a potential public health concern globally. Adultera
tion and mislabeling of fish have become increasingly common due to 
economic interests. Currently, several techniques can be used to 
authenticate fish species based on DNA, proteins, lipid and other com
ponents, but they all involve complicated procedures, resulting in 
lengthy analysis methods (Chien et al., 2022; Naaum et al., 2021; Shen 
et al., 2022). DNA-based methods can produce false positive or false 
negative results due to issues with cross-reactivity or sensitivity and are 
highly dependent on reference libraries and processing state. To over
come these shortcomings, more precise, reliable, cost-effective, high-
throughput analytical methods are urgently needed.

N-glycosylation is the most extensive post-translational modification 
of proteins in nature (Reily et al., 2019). They are highly specific and 
unique to each species, and they are more stable under heat and pressure 
compared to DNA, proteins, and fatty acids (Shi et al., 2019). Although 
N-glycans are composed of similar monosaccharides, the glycomes of 
different species differ greatly from each other because of the complex 
glycosylation pathways in the Golgi, resulting in multiple combinations 
of monosaccharides and linkages. Consequently, N-glycans are widely 
used as biomarkers for predicting hallmarks of human health and dis
eases (Kuzmanov et al., 2013). Food-glycomics has been implemented in 
recent years as a new strategy for controlling food quality and safety 
(Tang et al., 2022). Milk from different sources can be differentiated 
through structural differences in N-glycans (Liu et al., 2023; Wang et al., 
2017) and successful meat authentication has been achieved by 
comparing N-glycan profiles among different meats, demonstrating the 
utility of N-glycan profiling in the food industry (Chia et al., 2022; Shi 
et al., 2019). These reports have highlighted the potential for sea
food/fish authentication through N-glycans.

In this study, a simple and efficient workflow was developed to 
authenticate fish species through N-glycan signatures. Consistent O-Ac- 
Sia-containing N-glycan profiles in biological replicates and unique 
abundance distribution of O-Ac-Sia-containing N-glycans among 
different species were observed and well characterized with established 
fluorescent labeling techniques, mass spectrometry, and ion-mobility. 
All N-glycans containing O-Ac-Sias were extracted by using its diag
nostic ion and grouped according to the degree of O-Ac-Sias. This 

approach greatly simplifies the analysis for separating fish species by the 
percentage of N-glycans containing different numbers of O-Ac-Sias. 
Concentrating solely on O-Ac-Sia significantly reduces analysis time, 
which is indispensable for platform development. In contrast, intact O- 
acetylated N-glycans are difficult to separate and identify unambigu
ously (Vreeker & Wuhrer, 2017), hampering the development of gly
comic species detection assays, particularly when including many more 
fish species.

Sialic acid can be modified by acetyl esters at the 4-, 7-, 8-, and/or 9- 
position which results in various structures (Visser et al., 2021). Addi
tionally, sialic acid can have different linkages to its neighboring 
galactose, thus multiple isomers of N-glycans containing O-Ac-Sias are 
possible. We extracted the O-Ac-Sia diagnostic ion distribution across 
different fish species and each species O-Ac-Sia profile was found to be 
substantially different in each species (Fig 3). This perhaps suggests that 
specific glycoenzymes, especially enzymes for O-Ac modification and 
sialylation, are involved in N-glycan synthesis among different fish 
species. Given that O-Ac modifications are associated with health status 
and various diseases in humans (Cavdarli et al., 2019; Visser et al., 
2021), it will be interesting to further investigate their potential nutri
tional value and even their effects on human allergies.

IM-MS has emerged as a powerful analytical separation technique 
and its applicability has expanded beyond traditional uses and is now 
widely employed for the characterization of biomolecules, including 
proteins, glycans, and lipids (Ben Faleh et al., 2022). Here, IM-MS pro
vided deeper insights, enabling us to determine four O-Ac-Sia isoforms 
present in the three species (Fig. 8A-B). Notably, the four detected iso
forms remained intact upon heating (Fig. 8B), suggesting that despite 
undergoing some abundance changes between raw and heated fish 
samples (Fig. S5), the O-Ac-Sias retain their structure and capacity to 
differentiate between the fish species (Fig. 7). This criterion is important 
because fish mislabeling occurs throughout the entire supply chain, 
including markets and restaurants. A limitation of the IM-MS analysis 
was the inability to determine the exact structure of the four O-Ac-Sias. 
Utilizing standards of O-Ac-Sia isomers into the analysis would facilitate 
more accurate structural annotation in the future.

For the first time, we report an approach using LC-IM-MS to differ
entiate fish species based on N-glycans O-acetylated fragment. The 
consistency of the O-Ac-Sia-containing N-glycan structures found in raw 
or heated fish muscle tissue, allows this method to be used at various 
stages of the supply chain, from harvesting to consumer sales either from 
markets or restaurants. This study highlights the application of glyco
mics as a robust alternative to DNA barcoding for food authentication. 
While DNA templates are often degraded during cooking or processing, 
N-glycan markers remain stable and species-specific, enabling reliable 
identification even in heat-treated samples. The refined workflow em
ploys food glycomics as an alternative method to authenticate fish 
species. The study is a proof-of-concept and it can be further developed 
for the identification of other seafood species by identifying and quan
titating O-Ac-Sias. To this end, we hope to expand our platform to a wide 
range of species, different cooking methods, and compare them with 
PCR and other established identification methods. Additionally, we can 
investigate the changes on N-glycan O-Ac modifications in wild and 
farmed seafood – potentially even discriminating among these food 
products. Future work will focus on these areas, and we will aim to 
develop a high throughput and robust workflow with lower costs.

5. Conclusions

LC-IM-MS analysis was performed on raw and heated muscle tissues 
from three fish species. O-Ac-Sia signatures were identified for each fish 
species in both raw and heated samples. Clustering effectively separated 
different fish species based on the percentage of N-glycans containing 
varying numbers of O-Ac-Sias. Overall, four O-Ac-Sia isoforms and the 
degree of O-Ac-Sia on N-glycans are biomarker candidates for fish 
authentication, potentially reducing ambiguous and inaccurate labeling 
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of fish in the markets and restaurants. This study is the first to demon
strate that glycomics can be applied for fish species authentication using 
N-glycan profiling via LC-IM-MS. We show that species-specific O- 
acetylated sialic acid markers remain stable and distinct even after heat 
treatment, overcoming the limitations of DNA barcoding in processed 
foods. Our work establishes glycomics as a robust and complementary 
approach for food authentication beyond conventional genetic methods.
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