Sediment Melts at Sub-arc Depths: an experimental study

Hermann, Joerg, and Spandler, Carl J. (2008) Sediment Melts at Sub-arc Depths: an experimental study. Journal of Petrology, 49 (4). pp. 717-740.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website:


The phase and melting relations in subducted pelites have been investigated experimentally at conditions relevant for slabs at sub-arc depths (T¼600^10508C, P¼25^45 GPa). The fluid-present experiments produced a dominant paragenesis consisting of garnet-phengite-clinopyroxene-coesite-kyanite that coexists with a fluid phase at run conditions. Garnet contains detectable amounts of Na2O (up to 05 wt%), P2O5 (up to 056 wt%), and TiO2 (up to 09 wt%) in all experiments. Phengite is stable up to 10008C at 45 GPa and is characterized by high TiO2 contents of up to 2 wt%. The solidus has been determined at 7008C, 25 GPa and is situated between 700 and 7508C at 35GPa. At 8008C, 45 GPa glass was present in the experiments, indicating that at such conditions a hydrous melt is stable. In contrast, at 7008C, 35 and 45 GPa, a solute-rich, non-quenchable aqueous fluid was present.This indicates that the solidus is steeply sloping in P^Tspace. Fluid-present (vapour undersaturated) partial melting of the pelites occurs according to a generalized reaction phengite + omphacite + coesite + fluid = melt + garnet. The H2O content of the produced melt decreases with increasing temperature. The K2O content of the melt is buffered by phengite and increases with increasing temperature from 25 to 10 wt%, whereas Na2O decreases from 7 to 23 wt%. Hence, the melt compositions change from trondhjemitic to granitic with increasing temperature. The K2O/H2O increases strongly as a function of temperature and nature of the fluid phase. It is 00004-0002 in the aqueous fluid, and then increases gradually from about 1 at 750-8008C to about 1 at 1000C in the hydrous melt. This provides evidence that hydrous melts are needed for efficient extraction of K and other large ion lithophile elements from subducted sediments. Primitive subduction-related magmas typically have K2O/H2O of 01^04, indicating that hydrous melts rather than aqueous fluids are responsible for large ion lithophile element transfer in subduction zones and that top-slab temperatures at sub-arc depths are likely to be 700-9008C.

Item ID: 8925
Item Type: Article (Research - C1)
ISSN: 1460-2415
Keywords: experimental petrology; pelite; subduction; UHP metamorphism; fluid; LILE
Funders: Australian Research Council
Date Deposited: 10 Mar 2010 05:39
FoR Codes: 04 EARTH SCIENCES > 0403 Geology > 040304 Igneous and Metamorphic Petrology @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970104 Expanding Knowledge in the Earth Sciences @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page