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This study combines fieldwork, remote sensing methods, petrographic, and detection radioactive prospective of
the Um Domi rocks to enhance the lithological characterization and deduce the possible harmful effects of ra-
diation exposure on human health. In addition to determine the amounts of 40K, 238U, and 2*?Th radiation
present in these rocks, a number of radiological risk factors are assessed in order to determine the possible
negative health effects of radiation exposure. Um Domi trachyte possesses an elevated concentrations of “°K
(1142.45 + 181.46 Bqkg 1), 28U (1196.60 + 323.52 Bgkg 1), and 2%2Th (755.08-444.32 Bgkg ! together with
the overall amount (avg. 1897.53 + 577.03 qug’l) employing the Nal (T1) spectrometer. These outcomes
surpass the accepted international norms. A number of radiological components have been used to evaluate the
hazard associated with these rocks, and they showed high values relative to the international norms, suggesting
substantial impact on the spontaneous gamma radiation released. Utilizing multispectral remote sensing data, it’s
observed that the clay and OH-bearing minerals are concentrated over granitic rocks, trachyte, and around Um
Domi, whereas the altered products of Fe minerals are distributed around the ring of Um Domi. Importantly, it is
noticed that the radioactive rich samples are located in the zone of moderate to high concentration of clay and Fe
minerals. Additionally, by integrating the potential source rock, high alteration zones, lineament density, major
faults, and rock samples containing radioactive mineralization, we can deduced that the radiation potential are
structurally controlled.

1. Introduction

Exposure to radiation is inevitable for humans, and naturally
generated radioactive elements play a major role. Human health is at
risk due to this generated radiation, which also pollutes the environ-
ment. Rock, soil, water, and air can all contain this type of radiation
(Akkurt & Giinoglu, 2014). The main radioactive fallout sources in
soil/rocks include U, Th, K, and related decay derivatives. Accumulation
and weathering are common activities that gradually increase radio-
nuclides, particularly in the later magmatic phases. Compared to

* Corresponding author.
E-mail address: elsacedlasheen@azhar.edu.eg (E.S.R. Lasheen).

https://doi.org/10.1016/j.jrras.2025.102007

igneous rock, sedimentary rocks have lowered radiation emissions. In
addition to natural radioactivity, humanity also contributes to earth’s
radioactivity, mostly via the widespread use of fertilizers made of
phosphates and waste from factories. Due to the regional variation in
external gamma dose rates, radionuclide spectra are essential for
monitoring natural radioactivity. The amount of radionuclides that
naturally exist in rocks determines these dosages (Abdul Sani et al.,
2022; Al-Hamarneh & Awadallah, 2009; Al-Trabulsy et al., 2011; Krebs
et al., 2019; Yildinnm & Giilmez, 2025). Soil-emitted radiation adds to
the overall dose absorbed by food, inhalation, and others. Long-term
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ingestion of U and Th, as well as through inhalation, may trigger a va-
riety of health issues, such as acute leukopenia, anemia, and chronic
lung diseases; and Th exposure can trigger leukemia, liver, and lung
cancers (Abdel-Aal et al., 2024; Kanmi et al., 2025; Qureshi et al., 2014;
Raghavendra et al., 2019; Saleh, Lasheen, et al., 2025; Ozden et al.,
2023). Numerous studies have been conducted all around the world to
ascertain the rocks’ total radiation quantity (Abdul Sani et al., 2022;
Al-Hamarneh & Awadallah, 2009; Al-Mur et al., 2025; Khaleal et al.,
2023; Lasheen et al., 2025; Li et al., 2024; Saleh, Lasheen, et al., 2025;
Shahrokhi et al., 2020; Shehzad et al., 2019; Ozden & Akozcan, 2021).

From the other hand, the Egyptian crystalline rocks cover the
northern sector of the ANS (Arabian Nubian Shield) (Saleh, Kamar,
et al., 2025). These rocks include ophiolites, arc-related, granitic suites,
and volcanic rocks. Furthermore, the bulk of these rocks survived the ore
mining; they can be utilized for building parts in cement as well as stones
for ornamentation due to their attractive forms and remarkable strength
(Lasheen et al., 2024; Rashwan et al., 2023). Volcanic activity in Egypt
spanned a long period and marked a change in tectonic setting from
ocean floor and subduction-related volcanics in the Precambrian to
intraplate volcanicity in the Phanerozoic. The influence of these com-
plex tectonic regimes is reflected in time-related changes in the
composition of the evolved rocks. During the Phanerozoic, continental
intraplate volcanic activity in Egypt was intermittent and resulted in the
extrusion of volcanic rocks of wide compositional variation, size, and
mode of eruption (M. M. A. Adam et al., 2022; Lasheen et al., 2024).
Geochronological studies on these Phanerozoic volcanics (Satir et al.,
1991; Ressetar et al., 1981) revealed three phases of activity in Egypt.
These are, Paleozoic (233-395 Ma), Mesozoic (74-191 Ma) and Tertiary
(15-48 Ma). The plugs are part of the tectono-magmatic events that had
affected the Eastern Desert of Egypt during the Mesozoic. Generally, the
origin of continental intraplate alkaline rock series ranging from mildly
alkaline or transitional basalts to peralkaline trachyte or rhyolites is a
complex process and has been a matter of considerable investigation
during the last two decades. Several evolutionary and petrogenetic
models have been considered, a) crystal fractionation of Mantle-derived
magma, b) interaction of mantle-derived magmas with crustal materials
to produce trachyte melts (Davidson & Wilson, 1989), ¢) a magma
mixing process (Gourgaud & Maury, 1984), and d) partial melting of the
lower crust induced by the injection of volatile-rich basic magma of
mantle origin. The alkaline volcanic rocks seem to host uranium are
more than sub-alkaline and calc-alkaline varieties (Maithani & Srini-
vasan, 2011).

Remote sensing technologies provide powerful tools for geological
mapping, offering rapid and cost-effective data acquisition and analysis
across extensive and often inaccessible terrains. Multispectral and
hyperspectral satellite data, particularly from platforms such as ASTER,
Landsat-8, and Sentinel-2 have been widely utilized for lithological,
structural, and mineralogical mapping in diverse geological settings
(Acker et al., 2008; Gupta, 2003; Khaleal et al., 2024; A. Pour et al.,
2019; A. B. Pour et al., 2018). These techniques are especially valuable
in overcoming the limitations of conventional field-based methods,
which can be logistically challenging and financially demanding over
large areas (Masoumi et al., 2017). Among the most impactful remote
sensing applications in mineral exploration are the detection of hydro-
thermal alteration minerals, lithological unit discrimination, and the
extraction of structural lineaments (A. B. Pour et al., 2018). Numerous
studies have demonstrated the effectiveness of Landsat-8 and ASTER
imagery in identifying lithological variations and hydrothermal alter-
ation zones that are indicative of potential mineralization sites
(Hamdani & Baali, 2019; Khaleal et al., 2024; A. Pour et al., 2019; Sadek
et al., 2020).

This study focuses on identify rock units through fieldwork and
petrography, and to analyze the radioactive potential of the Um Domi
rocks. Additionally, remote sensing datasets were used to enhance the
lithological characterization of the study area. This has been achieved
through the application of advanced Python-based remote sensing
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techniques in combination with petrographic analyses, providing a
comprehensive and modern approach to lithological mapping and
mineral exploration. Besides, measuring the concentrations of 232Th,
238U, and “°K radiation in these rocks, the possible harmful effects of
radiation exposure on human health are assessed using a variety of
radiological risk indicators.

2. Field geology

The Phanerozoic Um Domi trachyte exposure is situated in the
extreme southern part of Egypt’s South Eastern Desert (Fig. 1). This
trachyte plug, is semi-rounded in shape and covering approximately 0.8
km?, rises to an elevation of 780 m above sea level. It is positioned be-
tween two conjugate wrench fault systems trending N-S and NW-SE.
The region is extensively dissected by strike-slip faults oriented NE-SW,
NW-SE, and N-S, with prominent displacements observed along the
principal Wadis. The trachyte plug is fine-grained, fractured, intensely
sheared, particularly along its contact with the surrounding granitic,
metavolcanics, and gabbro that are intruded by quartz veins (Fig. 2a).
Visible sulfide mineralization is common. The dominant alteration
processes include hematitization, kaolinitization, and albitization.
Joints are the most prevalent secondary structures, notably within the
trachyte plug, with some joint sets (NW-SW, N-S and E-W) infilled by
secondary minerals such as limonite and hematite, especially in the
central portion of the plug. Small and unmapped volcanogenic sedi-
ments and mudstone can be recorded in the study area.

3. Methodology
3.1. Field and petrography

Over twenty-five samples were collected during a single field trip
from Um Domi outcrops. Fourteen thin slices were made in order to
identify the key minerals and their textures. (Fig. 3).

3.2. Mineralogy

The isolated minerals were examined by the environmental scanning
electron microscope (ESEM) supported by energy dispersive spectrom-
eter (EDS) unit.

3.3. Radioactive detection

To create radioactive equilibrium, ten rock samples (about 350 g
each) from the Um Domi outcrops were air-dried, sieved to less than 200
mesh, put in 200 mL containers made of plastic, and packed for a period
of at least 20 days (Fig. 3). Gamma-ray measurements were conducted
using a Bicron Nal(Tl) spectrometer equipped with a 76 x 76 mm
scintillation crystal and a photomultiplier tube housed in an aluminum
casing. Radioactivity was assessed across three energy windows: 1460.8
keV for %K, 238.6 keV corresponding to 2'2Pb for estimating 2*2Th, and
92.6 keV corresponding to 23*Th for estimating 2*®U. With counting
errors of 1-5 %, the minimum measurable concentrations are around
0.4 ppm U, 0.6 ppm Th, and 0.1 % K. Strict energy-calibration processes
that account for potential peak interferences preserve precision.

Apply the following formulas to assess the radiological effects of
samples: Hex & Hjj, exterior & internal indicators; H,, gamma index; Raeq,
radium equivalent; ELCR, excess life-time cancer; D, rate of absorbed
dose; AEDyy; & in, outdoor and indoor annual dosage. The designations
for 232Th, 4°K, 2%8U, and activity are Ry, Rk, and Ry, in that order.

D (nGy h™1) =0.430 Ry+0.666 Rrh+ 0.042Rg (European Commission,
1999) 1)
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Fig. 1. Um Domi area geologic map, south Eastern Desert, Egypt (EGSMA, 1996; Saleh et al., 2023). Inset location map and geologic cross section.
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Fig. 2. Field photo shows: a) Net of faulted quartz veins intruding trachyte plug; and microscopic micrographs reveal: b-c) Phenocrystal and laths of oligoclase
forming trachytic texture.
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3.4. Remote sensing data

A structured image processing workflow was adopted to enhance
lithological discrimination in the study area using the Digital Elevation
Model (DEM) and multi-spectral Sentinel-2 imagery from Sentinel hub
site (https://dataspace.copernicus.eu/analyse/apis/sentinel-hub)
(Fig. 3). The remotely sensed data analysis included many techniques:
Digital Elevation Model (DEM), Optimum Index Factor (OIF) computa-
tion, spectral band ratio generation, Principal Component Analysis
(PCA), Minimum Noise Fraction (MNF) Decorrelation Strech (DS), su-
pervised and unsupervised classification. All processing steps were
performed using the Python programming language, which provides a
flexible, reproducible, and open-source environment for advanced
geospatial analysis (Gorelick et al., 2017). A DEM with a spatial reso-
lution of 30 m was downloaded from the open topography platform
(https://opentopography.org/) to support the geomorphological and
structural analysis of the Gebel Um Domi area, South Eastern Desert of
Egypt. OIF was computed to identify the most suitable RGB band com-
binations that maximize spectral variability and minimize redundancy.
The OIF was calculated for all possible three-band combinations using
the following formula (Jensen, 2005):

OIF = (oi + 0 + o) / (pi| + |pi| + pi])

Where: i, 0j, ox: Standard deviation of bands B, Bj, and By respectively.
Pij, Pik» Pik: Pearson correlation coefficients between bands Bi & Bj, Bi & By,
and Bj & By. |p|: Absolute value of the correlation coefficient, indicating
the degree of redundancy. Python’s numpy and itertools libraries were
used to implement the automated analysis. The B5-B6-B7 combination
exhibited the highest OIF value, suggesting superior suitability for
lithological interpretation in RGB display, which agrees with findings by
Nafigin et al. (2022) and Pour and Hashim (2012).

Several spectral band ratios were calculated to enhance lithological
contrasts based on known reflectance characteristics: B7/B5 of Sentinel-
2 highlights felsic intrusive rocks (trachyte plugs); B6/B7 of Landsat-8
which sensitive to clay-altered volcanic rocks and B4/B2 of Landsat-8
enhances ferruginous materials. These ratios were implemented using
rasterio and numpy, and then saved as Geo TIFFs. Similar band ratio
approaches have been validated in geological remote sensing studies
(Pour & Hashim, 2012; Sabins, 1999).

To reduce data dimensionality and emphasize major spectral vari-
ance, PCA was applied to bands B2, B4, B5, B6, and B7 of Sentinal-2 and
bands B1 to B7 of Landsat-8. The analysis was conducted using the PCA
module from Python’s scikit-learn package. The first three components
were retained, capturing most of the spectral variability. These com-
ponents proved useful for enhancing structural and lithological bound-
aries (Kasperek & Podpora, 2024). An unsupervised K-Means clustering
algorithm was applied directly to six Sentinel-2 bands (B2, B3, B4, BS,
B11, and B12), after resampling the 20-m resolution bands (B11 and
B12) to 10-m resolution to ensure spatial consistency. The classification
was executed using the K-Means implementation from scikit-learn,
resulting in four spectral clusters that capture lithological variability
across the scene. This direct use of multi-band reflectance values as input
to clustering follows methodologies established in Pour et al. (2018) and
Pour and Hashim (2012). In addition to refining the lithological
discrimination two supervised classification techniques, the maximum
likelihood classification (MLC) and the support vector machine (SVM)
were performed to the Landsat-8 data. The alteration zone and altered
minerals were paid attention due to their high potential of radioactive
contents.

The entire processing chain was executed using Python, offering key
benefits: Open-source: Free and community-supported tools (rasterio,
numpy, scikit-learn); Automation: Scripting allows repeatability and
customization; Integration: Seamless combination of analysis, visuali-
zation, and machine learning; Cloud-ready: Executed via Google Colab
for accessibility and performance (Gorelick et al., 2017). Python is
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increasingly adopted in remote sensing research due to its scalability
and scientific robustness (Chen et al., 2022; Farahbakhsh et al., 2025).

4. Results
4.1. Petrography

Mineralogical and textural investigations of the Gabal Um Domi
trachyte plug reveal that it is fine-grained and exhibits pinkish-grey to
brown coloration. The rock is primarily composed of quartz, plagioclase,
alkali amphiboles, alkali feldspars, and alkali pyroxene, set within a
fine-grained groundmass characterized by a distinct trachytic texture
(Fig. 2b—c). Accessory minerals include kasolite, uranothorite, zircon,
apatite, and opaque phases. Quartz appears as small subhedral to
anhedral grains within the groundmass and frequently hosts inclusions
of zircon and apatite. Feldspars are mainly represented by subhedral
sanidine and orthoclase perthite. Oligoclase occurs as euhedral to sub-
hedral phenocrysts and laths, displaying lamellar twinning and zoning.
Alteration features include sericitization and kaolinitization, often along
the core or crystal margins. Alkali amphiboles are dominated by rie-
beckite, with minor arfvedsonite crystals. Aegirine commonly rims arf-
vedsonite, forming characteristic snowball textures. Apatite is observed
as fine prismatic or acicular crystals, while zircon appears as slender
prisms in the groundmass and as inclusions in quartz. Opaque minerals
form anhedral grains, occasionally clustering around feldspar crystals or
forming aggregates.

4.2. Mineralogy

The isolated and detected minerals using ESEM and EDS are kasolite,
uranothorite, zircon, and galena minerals.

Kasolite [Pb(UO2)(SiO4)*H20] is a secondary mineral that results
from uranite oxidation. Kasolite is characterized by its stout prismatic,
greasy luster, and color variation from yellow to brownish yellow,
amber brown, lemon yellow, green, or reddish orange. The ESEM
techniques certified that kasolites consist essentially of U and Pb
(Fig. 4a).

Uranothorite [(Th, U, Ce) SiO4] exhibits dark brown and brownish to
pale-brownish color. The SEM data of examined uranothorite shows that
the presence of Th, U, and Si as the main constituents (Fig. 4b).

Zircon [Zr(SiO4)] varies from short prismatic crystals to euhedral
dull edges. Deer et al., 1992) concluded that zircon sometimes gives rise
to pleochroic haloes due to its content of radioactive elements. The SEM
data (Fig. 4c) shows that it consists essentially of Zr and Si.

Galena (PbS) shows a dark grey color and has a metallic luster and
dark grey streak and is sometimes altered to hematite and goethite. The
SEM data of galena shows that the Pb and S are the main components
(Fig. 4d).

4.3. Radionuclides abundance

For ten samples obtained from the Um Domi region, the amounts and
concentrations of the radioactive elements “°K, 238U, and 2*2Th have
been established (Table 1). These samples’ average + SD findings are
higher above the nationwide record level. As shown above (Table 1), the
samples taken from the Um Domi region actually show a development of
their level of activity: The minerals that contain potash and are associ-
ated with greater K activity are 40K > 238y > 232Th (Abdel-Aal et al.,
2024; Li et al., 2024; Ramola et al., 2011; Shahrokhi et al., 2020; Zakaly
et al., 2024). The rocks under examination have 2381 (1196.60 + 323.52
Bgkg™1), 22Th (755.08 + 444.32 Bgkg 1), and *°K (1142.45 + 181.46
Bqkg 1) that are above the worldwide monitoring limit, according to the
Nal (T1) analyzer. The presence of radioactive minerals including zircon,
uranothorite, kasolite, and titanite, which contain radionuclides in their
framework, may be the cause of these elevated amounts (European
Commission, 1999; Kanmi et al., 2025; Li et al., 2024; Pavlidou et al.,
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2006; Sahoo et al., 2011; Sivakumar et al., 2018; Yu et al., 1992).
Table 1 shows that the greatest Th/K (average 0.64), over the global
limit of 0.07, is found in the Um Domi trachyte rocks. This might be
explained by the high potassium content caused by K-metasomatism in
these rocks. While the global average is 3.94, their Th/U ratio is low
(avg. 0.63). The smallest results show U migration in proportion to Th in
these rocks, as they are associated with a high U quantity relative to Th
in the analyzed samples. This results from the deposition of secondary U
during hydrothermal process (Kanmi et al., 2025; Khandaker et al.,
2025; Qureshi et al., 2014; UNSCEAR, 2000).

The distribution histogram of 238U, 232Th, and *°K activity concen-
trations is revealed in Fig. 5. The distribution frequency is seen as
normal for 238U, while 23°Th, and “°K described the multi-modality
degree. This multi-modality property is due to different minerals;
zircon, kasolite, and uranothorite. However, the higher concentrations
of uranium are attributed to the presence of radioactive minerals that
deposited as a result of hydrothermal processes causing remobilizing of
uranium minerals. Box plots of concentrations and radiological norms
were created for the assessed rocks as given in Fig. 6, where the data
group’s lowest and highest values are indicated by the two ends of the
boxes. The median, which separates the data so that 50 % of the values
are below and 50 % are above it, is indicated by the line inside box. 233U
reveals a wide variation relative to “°K and 232Th. Although 232Th has
the lowest variation, there is one sample (no UD9) plot outliers due to
high content of 22Th ~2000 Bqkg !, due to enrichment of uranothorite
minerals.

A popular statistical technique for figuring out whether a dataset has
a normal distribution is the Shapiro-Wilk test (Kanmi et al., 2025). The
results of the Shapiro-Wilk test are corroborated by the normal proba-
bility map in Fig. 7. The 2°®U data points resemble a straight line,
indicating that these characteristics have a normal distribution. On the
other hand, the *°K and 232Th points show a non-normal distribution, as
they diverge from a straight line.

The results of this investigation (40K, 232Th, and 238U) are compared
to global standards in Table 2. The concentrations that have been
assessed are higher than UNSCEAR (2010) legal limit, as well as those of
Sapin granites (Guillén et al., 2014), Rize Province (Yuan et al., 1995),

Yelagiri Hills (Wais et al., 2023), Jeddah coastline (Al-Mur et al., 2025),
Oyun of Nigeria (Kanmi et al., 2025), Sharm El Luli coastline (Saleh,
Lasheen, et al., 2025), granitic rocks (Sharaf & Hamideen, 2013), Ire-
podun rocks (Kanmi et al., 2025), Wadi El- Gemal sediments (Khaleal
et al., 2023), West coast sediment (Malain et al., 2010), and rock ma-
terials (Senthilkumar et al., 2014). In contrast, these concentrations are
close to those of Kuzmanovic et al. (2024), and Tuo et al. (2020), which
are higher than the legal limit of UNSCEAR (2010).

4.4. Remotely sensed data analysis

4.4.1. Lineaments and structural features extraction

This dataset provided high-quality elevation information that
enabled detailed surface analysis. Using the DEM, surface lineaments
and structural features were extracted through a combination of visual
interpretation and GIS-based techniques. The orientation of these fea-
tures was further analyzed using rose diagrams, which indicated three
predominant structural trends: NE-SW, NW-SE, N-S, and E-W. These
trends reflect the tectonic framework influencing the region and align
with previously reported structural patterns in the ANS (Fig. 8a and b).
The concentration and the intersection of these linear fractures help
greatly in the formation of the alteration zone in turn in the concen-
tration of the radioactive materials.

4.4.2. Band combination and Optimum Index Factor (OIF)

The OIF was computed for all possible 3-band combinations among
bands B2 to B7 of Sentinal-2. The combination B5-B6-B7 achieved the
highest OIF value (5061.44) (Table 3, Fig. 9a), indicating the greatest
spectral variability and the lowest correlation among its bands. This
suggests that it is the most informative combination for RGB display and
initial lithological interpretation. Other high-performing combinations
included B4-B5-B6 (Fig. 9b), supporting the significance of shortwave
infrared bands in geological mapping. These results were used to
construct an RGB composite image using bands B5 (Red), B6 (Green),
and B7 (Blue) to enhance lithological contrast in further interpretation
and classification stages (Fig. 9a). High contrast and informative band
combination of B7, B5, B3 of Landsat-8 was performed (Fig. 9c). This
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Table 1

Activity concentrations and radiological health norms for the assessed rocks.

Raeq ELCR

AEDj, (mSv/y)

AEDgy (mSv/y)

ex

Hin

2321 /238y D nGy/h

232Th /40K

232Th (qug41) 40K (qu341) 238U+232Th+40K

28y (Bqkg 1)

Samples

5.01
4.58

2602.64

5.73
5.23
4.30
4.56
4.73
3.86
4.25
3.37
10.36

1.43
1.31
1.07
1.14
1.18
0.96
1.06
0.84

8.94
8.17
6.70
7.11
7.39
6.02
6.61
5.26
16.06

7.03
6.43

11.05
10.12

1167.23
1067.10

0.53
0.61
0.59
0.44
0.59
0.48
0.62
0.50
1.39
0.67
0.44
1.39
0.64
0.27

0.53
0.61
0.59
0.44
0.59
0.48
0.62
0.50
1.39
0.67
0.44
1.39
0.64
0.27

2052.90
1718.68
1642.94
2034.70

1345.90
1064.20
1032.90
1408.50

707.00

1488.00
1364.00

UD1
UD2
UD3
UD4
UD5

UD

2381.85

654.48

3.76
3.99

1943.89
2057.92

5.25
5.56
5.82
4.73
5.16
4.10
12.54

7.93
8.41
9.24

7.38

876.23

610.04

992.00
1054.00
1264.80

929.43

626.20

4.14
3.37
3.72

2.

2154.10
1749.99
1910.52
1518.47
4644.58

964.00

1539.94
1486.40
1774.22
1506.60
3439.60

970.30

1001.60

569.64

786.17

484.80

979.60

6

7.47
6.05
17.07
11.49

865.95

1095.50
1001.60

678.72

855.60

uUD7
UD8

95

687.65
2112.16
1198.10

505.00
1999.80

719.20
1674.00
1574.80

9.07

2.59
1.47
0.84

1439.80
1064.20

9
UD10

5.14
2.95
9.07
4.57

2679.31

5.88
3.37
10.36

9.18
5.26
16.06

7.24
4.10
12.54

1779.28
1486.40
3439.60

715.08

1518.47
4644.58

6.05
17.07

687.65
2112.16
1065.40

970.30
1439.80
1142.45

484.80
1999.80

719.20
1674.00
1196.60

2.59
1.31
0.49

Max.
Avg.
SD

2364.33

5.23
1.97

8.14
3.04

6.39

2.38

9.62
3.

1897.53

755.08

1.72

880.00
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323.52
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Fig. 5. Frequency distribution of: a) 238y, b) 232Th, and c) *°K.

combination successfully differentiates between the different rock units
in the study area. Where the highly foliated metavolcanics appear strike
at NW and offer different light and dark colors which represent the
heterogeny of moderate to basic metavolcanics. Granitic rocks appear as
dark brown pixels. The ring complex of Jabal Mansuri-Um Domi is
discriminated fantastically in four components of synogabbro in dark
pixels, quartz-syenite in light brown pixels, trachyte in dark green pixels
and calcite-brucite in yellowish green pixels (Fig. 9c).

4.4.3. Band ratios (BR)

Several targeted band ratios were generated to enhance specific
lithological and mineralogical features: BR of B7/B5 of Sentinal-2
emphasized felsic and altered intrusive rocks such as ring complex
(Fig. 9d); BR of B6/B7 of Sentinal-2 highlighted alteration materials
(clay/calcite rich areas) in bright pixels (Fig. 9e). Where the BR of B6/B2
of Sentinal-2 enhanced ferruginous, and siliceous zones. The BR ratio of
7/5, 6/7 and 6/2 in RGB of Sentinal-2 discriminates the lithological
units in high contrast colors. The metavolcanics appear in reddish green
pixels, granitic rocks in reddish orange colors and the four components
of the ring complex appear good in their oval shape. Synogabbro
enhanced in reddish green, quartz-syenite in red pixels, trachyte in dark
green pixels where calcite-brucite in bright green pixels (Fig. 9f).
Moreover, three band ratio of Landsat-8 were generated. These ratios
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are 6/7-6/2-4/2 in RGB, 6/7-6/5-4/2 in RGB, and 7/5-54/-6/7 in RGB
(Fig. 10a, b, and c, respectively). The three band ratios discriminate the
lithologic units successfully with sharp contacts and distinctive colors.
Especially the four components of the ring complex are separated with
bright and colorful pixels.

4.4.4. Decorrelation stretching (DS)

To reduce the cross correlation between spectral bands while
maintaining the quality of pixel brightness. This technique is used
mostly in the areas of heterogeneity and has high spectral similarity
between rock units. The combination bands of 7,5,3 of Landsat-8 was
selected to decorrelated and its bright and high contrast multi-color
image is produced (Fig. 10d). Um Domi ring complex components
were successfully separated. The synogabbro attains dark green colo,
quartz-syenite attains remarkable purple color, trachyte exhibits olive
green, and the altered calcite attains bright green color. This image
offered excellent rock units discrimination especially for the Um Domi
rock units.

4.4.5. Principal Component Analysis (PCA)

The PCA was applied to bands B2, B4, B5, B6, and B7 of sentinel-2.
The first three components captured the majority of spectral variance
(PC1 ~ 67 %, PC2 ~ 20 %). The PCA-321 in RGB of sentinel-2 (Fig. 10e)
and PCA-321 in RGB of Landsat-8 (Fig. 10f) provided enhanced sepa-
ration between rock units of the Um Domi ring complex and they were
particularly effective in defining contact zones and faulted structures.

The PCA results indicate that PC1 explains ~98.8 % of the spectral
variance (Table 4), mainly reflecting overall albedo contrasts and
effectively distinguishing the granitoid bodies from the surrounding
metavolcanic and metasedimentary units. PC2, although accounting for
only ~1.1 % of the variance, introduces subtle but critical spectral
contrasts that support the discrimination of lithological units with
comparable brightness, such as differentiating metavolcanics from
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metasediments and highlighting alteration zones. The PC1-PC2 scatter
plot (Fig. 11a) demonstrates the dominance of PC1 as the main axis of
spectral separation, while PC2 refines the clustering and enhances the
recognition of lithological variability. To strengthen the PCA outcomes
and ensure a more advanced and reproducible analysis, we further in-
tegrated the PCA results with an unsupervised KMeans clustering
approach. This combined PCA-KMeans workflow produced clear and
objective lithological groupings (Fig. 11b), effectively delineating
granitoids, metavolcanics, and metasedimentary rocks, and highlighting
mineralized or altered zones. This demonstrates the methodological
advancement of the Python-based implementation compared to con-
ventional software tools.

4.4.6. Minimum noise fraction (MNF)

This technique is one of most effective techniques in lithological
discrimination because it decreases and isolates noise data to produce
high colorful spectral image (Boardman and Kruse 1994). In this work,
the Landsat-8 data was subjected to MNF technique and MNF-432 in
RGB has been produced (Fig. 12a). It shows fantastic discrimination of
trachyte in orange color, synogabbro in greenish yellow, quartz-syenite
in bright green and the altered calcite in bright purple color. Distinctive
separation to granite and metavolcanics. Moreover, the incision of the
fractures can be observed and detected.
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Table 2

Comparison of 228U, 4°K, and 2*2Th concentrations of the Um Domi rocks.
Location 238U (Bakg ™) 226Th (Bqkg ™) 4K (Bqkg™1) Reference
Jeddah shoreline 13.14 5.05 139.09 Al-Mur et al. (2025)
Saudi Arabia 28.82 34.83 665.08 AlZahrani et al. (2011)
Spain 84 42 1138 Guillén et al. (2014)
Nigeria, Irepodun 5.42 3.07 735.24 Kanmi et al. (2025)
El Gemal Island 12.49 12.63 325.13 Khaleal et al. (2023)
Serbia 200 77 1280 Kuzmanovic et al. (2024)
West coast sediments 2.7-23.5 3.0-31.2 10.7-654.3 Malain et al. (2010)
Yelagiri Hills 19.16 48.56 1146.88 Ravisankar et al. (2015)
Sharm El Luli, Egypt 24.57 23.32 241.83 Saleh et al. (2025b)
Rock materials 25.88 42.82 560.60 Senthilkumar et al. (2014)
Egypt 137.00 82.00 1082.00 Sharaf and Hamideen (2013)
China 356 318 1636 Tuo et al. (2020)
Rize Province 24.5 51.8 334.9 Yuan et al. (1995)
Um Domi area, Egypt 1196.60 755.08 1142.45 The present study

4.4.7. Image classification

4.4.7.1. Unsupervised classification. Using the three PCA components as
input, a K-Means clustering algorithm (with 4 clusters) was applied. The
resulting classified map showed four different rock units which include,
metavolcanics, trachyte plugs, and Wadi deposits, (Fig. 12b). It seems
that the unsupervised classification offers low accuracy in lithological
mapping of the study area and unable to differentiate between the eight
rock units in the study area. Therefore, the present study adopted two
types of supervised algorithms to make advanced geological mapping to
the study area. They will be discussed in the following section.

4.4.7.2. Supervised classification. The cornerstone to produce a super-
vised classification map is the spectral signature file. The choice of the
different classes in this spectral signature file is based on the results of
the above-mentioned image processing techniques and the skill of the
operator to perform this classification. The present study adopted two
algorithms: the maximum likelihood classification (MLC) and the sup-
port vector machine (SVM). These two algorithms are widely applied for
lithological mapping in arid and semi-arid regions as the Eastern Desert
of Egypt. (e.g. (Abd El-Wahed et al., 2023). The high spectral probability
is the base of MLC technique to discriminate the different rock units
(Scott & Symons, 1971). Where SVM classifying various rock units based
on the spatial extent of similar types in the training classes (Vapnik,
2000). The previous geologic maps (at scale 1:250,000) and field work
are used as guides in generating spectral signature files. Eight training

classes for the different lithological units were in the study area have
been delineated. The resultant classified geologic maps of the study area
using MLC and SVM, are presented in Fig. 12c and d. The accuracy
assessment of the two produced classified maps was performed based on
the stratified random sampling method. The overall accuracy of the MLC
classified map was 86.06 % with 0.836 Kappa Coefficient but the overall
accuracy of SVM classified map was 86.47 % with 0.838 Kappa Coeffi-
cient. The two classification algorithms ring complex rock units with
high accuracy. The final generated geologic map (Fig. 1) is verified by
fieldwork, rock samples, and petrography.

4.5. Discussion

4.5.1. Radioactive minerals and -bearing rocks mapping
Remotely sensed data has proven to be powerful in detection of the
radioactive minerals bearing rocks. The successful detection of the

Table 3
The top five band combinations ranked by OIF of Sentinal-2 band combination.
Rank Band Combination OIF Value
1 BS5, B6, B7 5061.44
2 B4, B5, B6 4969.77
3 B4, B6, B7 4903.37
4 B4, B5, B7 4689.45
5 B3, B5, B6 4587.73

33°37'0"E

22°6'0"N

22°0'0"N

Fig. 8. a) Surface structures extracted from the DEM with 30 m spatial resolution; and b) Rose diagram displays the major structures trends.
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band ratio of 7/5, 6/7, 6/2 in RGB highlights the rock units in high contrast. Note: the green points on (c) are the geographic location of radioactive rich samples in

Table (1). For abbreviations, please see Fig. (1).

alteration minerals such as illite, chlorite, kaolinite, hematite and ser-
icite is the important clues in identifying the zone of radioactive
mineralization and hydrothermal alterations (Ahmed et al., 2025;
El-Qassas et al., 2023). Therefore, the abundance of the alteration
minerals ex. clay, kaolinite, illite, and chlorite provides a great indicator
for the uranium mineralization zones. The present study adopted the
band ratio of B6/B7 of Landsat-8 (Fig. 13a) to detect clay and
OH-bearing minerals and B4/B2 of Landsat-8 (Fig. 13b) to detect the Fe
minerals. The two ratios are widely used and effectively detect the

10

alteration zones. The high abundance of the alteration minerals is pre-
sented as bright pixels in the grey scale images, but we prefer to offer it
here by pseudo color to enhance the high abundance of the target
mineral (s) by the red color. Figure 13a shows that the clay and
OH-bearing minerals are concentrated over granitic rocks, trachyte,
calcite-brucite and around J. Um Domi. Whereas the altered products of
Fe minerals are distributed around the Um Domi ring complex
(Fig. 13b). Importantly, it is noticed that the radioactive rich samples are
located in the zone of moderate to high concentration of clay and Fe
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Fig. 10. Landsat-8 band ratios of 6/7-6/2-4/2 in RGB: a), 6/7-6/5-4/2 in RGB; b), and 7/5-54/-6/7 in RGB; c-d) Decorrelation stretching of bands 753 of Landsat-8,
PCA-321 of Sentinal-2; e) and Landsat-8 (f). For abbreviations, please see Fig. (1).

Table 4

Explained variance ratio of the first three principal components derived

from Sentinel-2 bands.

Principal Component

Explained Variance Ratio

PC1
PC2
PC3

0.988052
0.01096
0.000443

11

minerals (Fig. 13a and b).

Structurally, Um Domi is located at the end of the active shear zone
of Allaqi-Heini. The detected structural features (normal faults and
strike slip faults) are trending mostly in NW-SE, NE-SW, E-W and N-S
(Figs. 1 and 13c). The complexity of the structural setting of the study
area reflects that it was subjected to successive tectonic events from
Precambrian to recent. Fractures and faults play as pathways for the
radioactive bearing solution and mineralization. Um Domi ring complex
is dissected by the dextral strike slip faults (Figs. 1 and 13c). In Egypt
many authors (ex. (Sherif, 1997) recorded high radiometric anomalies
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Fig. 11. PC1-PC2 of Sentinal-2 scatter plots: (a) pixel distribution showing PC1 dominance with minor contribution from PC2; (b) integration with K-Means

clustering highlighting distinct lithological groups.
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Fig. 12. a) The MNF-432 in RGB of Landsat-8; b) The classified map using unsupervised algorithms; ¢) the classified maps using MLC; and d) the classified map using

SVM algorithm.

along NE-SW and NW-SE directions (Rabie & Ammer, 1988). considered
NE-SW faults as an important trend for high radiometric anomalies.

To enhance the role of geology, structure and alteration in concen-
tration of the radioactive mineralization. A geospatial model was pro-
duced by integrating potential source rock (ring complex), high
alteration zones (clay and Fe minerals), lineament density, major faults,

12

and rock samples containing radioactive mineralization (Fig. 13c). This
figure 13c shows that the ring complex and alteration zones are struc-
turally controlled. The measured rock samples containing high radiation
level fall into the high lineament density areas, into moderate to high
abundance alteration zones and along with major faults. Consequently,
lithology, alteration and structural controls play an important role in the
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distribution of radioactive mineralization in the study area.

4.5.2. Radiation risk impact

The radioactivity of Um Domi trachyte has been evaluated using a
range of metrics, including the D, Hey, Hin, AED oyt & in, ELCR, Raeq, and
Iy (Table 1).

Box plot of the radiological norms (Hex, Hin, AED oyt & in, ELCR, and
Iy) for the assessed trachyte samples reveals that the Hex exhibit a wide
variation relative to other parameters. There is one sample (no UD9) plot
outliers for all the radiological norms due to high content of 2*Th 238y,
and “K (Fig. 6).

As noted by Kumar et al. (2024) and UNSCEAR (2000), the D index is
a crucial metric for assessing the strength of terrestrial gamma radiation
at elevations above 1 m. The D values of the examined samples ranged
from 687.65 to 2112.16 nGyh™!. Their marked radiation impact was
highlighted by their highly higher D values, which are exceeding the
UNSCEAR (2010) acknowledged worldwide acceptable level of 59
rleh’1 (Table 1).

A common tool for evaluating possible threats to human health is the
Hj, and Hex hazard factors. The predicted mean Hex and Hj, results for
the rocks under examination are 6.39 + 2.38 and 9.62 + 3.13, respec-
tively, which are exceeding the globally advised safety level and indicate
serious radiological hazards (Attallah et al., 2018; European Commis-
sion, 1999; Shahrokhi et al., 2020; Wais et al., 2023; Ozden et al., 2023).

The yearly dose effective for both outdoor (AED,,) and indoor
(AEDj,) exposure conditions was estimated using the D findings, a dose
conversion factor of 0.7 SvGy, and occupancy coefficients of 0.2 for
outdoor and 0.8 for interior conditions. The average AED, values of the
rocks under examination were 1.31 + 0.49 mSvy !, which is higher
than the globally advised level (UNSCEAR, 2010). Comparing the assed
rocks’ AEDin readings (av. 5.23 + 1.97 mSvy 1) to the globally advised
level reveals a similar pattern (O’Brien & Sanna, 1976; UNSCEAR,
2000).

With an average Iy value of 8.14 + 3.04, the assessed rocks are over
the globally advised level of unity (Qureshi et al., 2014). Therefore,
exposure to gamma-rays affects both inner and outer alpha releases as
well as the Raeq. The estimated mean Raeq values for the assed rocks
show a mean of 2364.33 + 880 Bqkg ™!, which is significantly higher
than the globally acceptable values listed by (Hanfi et al., 2022;
UNSCEAR, 2010), which range from 1518.47 to 4644.58 Bgkg™'.

The evaluated rocks’ expected ELCR values are 4.57 & 1.72 x 1073,
which is much higher than the permitted level. According to these re-
sults, those who are exposed to Um Domi trachyte for an extended length
of time through intimate contact may be at higher risk of developing
cancer (O’Brien & Sanna, 1976; Qureshi et al., 2014; UNSCEAR, 2000).

The degree of cooperation between the radioactive components is
determined by the Pearson correlation of radioactive metrics in the Um
Domi trachyte rocks, which is displayed in Table 5. According to
Tanaskovic et al. (2012), the correlation frequency was separated into
four groups: weak (0.00-0.19), moderate (0.2-0.39), high (0.4-0.79),
and very strong (0.8-1.0). Table 5 demonstrates a strong positive cor-
relation (R2 = 0.609 & 0.46), between 238 and 232Th & 40K, respec-
tively. This table shows that, in comparison to 2>2Th, there is a moderate
link between 28U and “°K activity. The simultaneous presence of these
radionuclides in nature explains this (A. M. A. Adam & Eltayeb, 2012).
Additionally, there is a significant and positive correlation between the
238y and 2%2Th and the radiological risk indicators. This is because
radiological factors are linked to radionuclides, which are known to be
primarily gamma-ray generating elements in nature.

5. Conclusions

By integrating field observations and laboratory results, the study’s
main goal is to create an accurate lithological map that can aid future
mineral development initiatives. On top of that, using a Nal detector, the
natural radioactivity levels of volcanic rocks from Um Domi were
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Table 5
Pearson’s correlation of the activity concentrations and hazard parameters.
238y 2321 40K Hi, Hex Iy AED,y AEDy, Raeq

2321 0.609

i 0.464 0.636

Hi, 0.898 0.896 0.620

Hex 0.815 0.956 0.646 0.987

Iy 0.808 0.959 0.649 0.985 1.000

AED, ¢ 0.806 0.960 0.650 0.984 1.000 1.000

AED;, 0.805 0.961 0.649 0.984 1.000 1.000 1.000

Raeq 0.815 0.956 0.646 0.987 1.000 1.000 1.000 1.000

ELCR 0.804 0.961 0.649 0.984 1.000 1.000 1.000 1.000 1.000
investigated. Since zircon, uranothorite, and kasolite are examples of References

radioactive accessory minerals that have radionuclides in their crystal
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within the study area. Consequently, lithology, alteration and structural
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