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Abstract: Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are
vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and
sheep. This review summarizes the global distribution, genetic diversity, and key factors
driving their spread along with the existing knowledge gaps and recommendations to
mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and
are commonly reported in tropical and subtropical regions including North America, Asia,
Africa, Oceania, and some parts of Europe. The geographical distribution of these viruses,
encompassing 27 BTV and 7 EHDV serotypes, has shifted, particularly with the recent
invasion of BTV-3, 4, and 8 and EHDV-8 serotypes in Europe. Several factors contribute
to the recent spread of these viruses such as the distribution of virulent strains by the
movement of temperature-dependent Culicoides vectors into new areas due to rapid climate
change, the reassortment of viral strains during mixed infections, and unrestricted global
trade. These diseases cause significant economic impacts including morbidity, mortality,
reduced production, high management costs, and the disruption of international trade.
Effective prevention and control strategies are paramount and rely on vaccination, vector
control using insecticides, and the destruction of breeding sites, husbandry practices
including the isolation and quarantine of infected hosts, restriction of animal movement,
prompt diagnosis and identification of circulating strains, and effective surveillance and
monitoring plans such as the pre-export and post-import screening of semen used for
artificial insemination. However, challenges remain with intercontinental virus spread, live
vaccines, and the failure of inactivated vaccines to produce protective immunity against
dissimilar strains. Significant knowledge gaps highlight the need for a better scientific
understanding and a strategic plan to ensure healthy livestock and global food security.

Keywords: bluetongue virus (BTV); epizootic hemorrhagic disease virus (EHDV); climate
change; vectors; vaccination; biosecurity
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1. Introduction

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are non-
contagious, vector-borne viruses primarily affecting domestic and wild ruminants (Table 1).
Both viruses belong to the genus Orbivirus within the Reoviridae family [1], sharing a close
genetic relationship and significant diversity, with multiple serotypes and strains [2]. They
contain a segmented double-stranded RNA (dsRNA) genome enclosed in an icosahedral
capsid, consisting of ten genomic segments (seg-1 to seg-10) encoding seven structural
(VP1 to VP7), and four non-structural proteins (NS1, NS2, NS3/NS3a, and NS4), with
VP2 serving as the primary immuno-determinant for viral serotype identification [3-5].
Both viruses are listed by the World Organization for Animal Health (WOAH, formerly
known as OIE) as notifiable animal diseases due to their global impact [6,7]. To date, a total
of 36 BTV serotypes (BTV-1 to BTV-36) have been identified from livestock, among which
27 serotypes are notifiable. Seven EHDV serotypes (EHDV-1, 2, 4, 5, 6, 7, and 8) have been
identified from ruminant species [3-5,8], of which EHDV-2 known as Ibaraki virus, causes
sporadic outbreaks in cattle in Asia [9].

Geographical range and variation in host-vector distribution contribute to the epi-
demiological differences between these two viruses [2]. Blood-sucking Culicoides midges
transmit both viruses worldwide [10], with specific species dominating in different regions.
BTV is mainly transmitted by C. imicola in Africa, C. insignis in South America, C. sonorensis
in North America, C. brevitarsis, and C. wadai in Australia, and C. brevitarsis, C. wadai, and
C. fulvus in Asia and Indonesia [11]. On the other hand, C. obsoletus, C. oxystoma, C. imicola,
C. mohave, C. brevitarsis, and C. sonorensis are reported to act as vectors for EHDV [12-15].
BTV affects a wide range of ruminants, with sheep being the most severely impacted with
higher mortality, showing symptoms such as high fever (42 °C), ulcers, and necrosis of the
gums, cheeks, and tongue. Severe cases may lead to emaciation, cyanosis of the tongue,
coronary band hemorrhage, lameness, abortion, congenital malformation, occasionally
pneumonia, and death [16]. Other species like cattle, buffalo, and goats usually show sub-
clinical to mild infection. On the other hand, EHDV predominantly affects domestic and
wild ungulates, especially white-tailed deer (WTD) and cattle. EHDV causes similar clinical
symptoms as virulent BTV, including high fever, facial edema, difficulty in swallowing or
dysphagia, oral ulceration, severe respiratory distress, teat and udder redness, lameness,
and decreased milk production in cattle [17-22], with occasional abortions, stillbirths, and
death [23].

Disease outbreak is a complex and dynamic process involving a susceptible host,
virus, vector, human, and environmental factors. The introduction of new serotypes in
non-endemic regions is facilitated by inadequate immunization, the failure of the cross-
protection of emerging serotypes, improper biosecurity management, mixed farming
practices, global warming, vector competence, and illegal global trade [15,24,25]. Orbivirus
outbreaks lead to significant economic losses due to increased morbidity, mortality, abor-
tions, stillbirths, fetal abnormalities, reduction in milk, meat, and fleece yield, and restriction
of trade, including live animal export [26]. The effective prevention and control of both
viruses in livestock depends on a detailed understanding of the complex interaction among
host, pathogen, vector, and environment [2], alongside robust surveillance systems and
the development of cross-protective vaccines. However, it is challenging to control these
diseases due to multiple factors including the importation of live animals and germplasm
(such as semen or embryos) through both legal and illegal means, shared host popula-
tion, the airborne spread of vectors, and the use of inadequately attenuated modified live
vaccines [27-29]. There are notable knowledge gaps regarding the distribution of vectors
and their interaction and survivability with current climate changes, investigations into
recombinant vaccines to provide cross-protection against multiple strains of a virus, and
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effective surveillance and monitoring systems for tracking disease spread across countries.
Therefore, this review aims to highlight the global scenario of BTV and EHDV, and identify
their contributing factors, along with research gaps and recommendations to enhance

prevention and control efforts to reduce the current disease emergence.

Table 1. Summarizing the similarities and dissimilarities between BTV and EHDV.

Similarities

Dissimilarities

Family and Genus: Both BTV and EHDV are
belonged to the Reoviridae family and are classified
under the Orbivirus genus.

Genome structure: Both viruses have an
icosahedral capsid, double-stranded RNA
(dsRNA), and segmented genome (ten genomic
segments: seg-1 to seg-10), allowing genetic
reassortment between strains of the same virus.
Proteins: Viral genome encodes seven structural
(VP1 to VP7), and four non-structural (NS1, NS2,
NS3/NS3a, and NS4) proteins.

Outer capsid proteins: Both BTV and EHDV
encode the VP2, and VP5 outer capsid proteins,
which play a crucial role in virus attachment and
entry, serotype determination, antigenic
properties, and host immune recognition.
Non-contagious nature: None of the viruses
spread directly between animals.

Vector-borne: Both viruses are transmitted by
biting midges, primarily Culicoides species.
Clinical condition: BTV and EHDV cause similar
clinical signs in infected animals, such as fever,
hemorrhages, and edema.

Geographical distribution and impact: Both
viruses are endemic in tropical and subtropical
areas. However, the recent outbreak in Europe
highlighted the global climate change. Both
diseases cause significant economic losses due to
decreased productivity, mortality, and

trade restrictions.

Genetic diversity: BTV has greater genetic variability
with 36 serotypes identified globally, while EHDV has
7 serotypes.

Host:

BTV: Predominantly causing disease in sheep. The
virus can also infect cattle, goats, and deer.

EHDV: Primarily affects deer (mainly white-tailed
deer). The virus can also infect cattle, sheep,

and goats.

Vector: Both are transmitted by Culicoides midges, but
their species vary according to geographical locations.
Pathogenic potentiality: Several BTV serotypes cause
more severe disease across a range of species
compared to EHDV.

Morbidity and mortality:

BTV: Morbidity is as high as 100%, and mortality
2-30% but can reach to 70%.

EHDV: Morbidity and mortality as high as 70% in
white-tailed deer.

Clinical signs:

BTV: Severe symptoms recorded in ruminant
livestock, especially in sheep.

EHDV: Severe symptoms found in deer, while cattle
show mild symptoms.

Vaccine:

TV: Different serotype specific as well as multivalent
commercial vaccines are available for BTV.

BEHDV: There is lack of widely used commercial
vaccine for EHDV except in Japan.

2. Global Burden of Orbiviruses in Livestock
2.1. Bluetongue Virus Infections in Different Geographical Locations

Current phylogenomic analysis illustrates that global BTV strains form two large
clades: a Western lineage, with the majority of strains circulating in Africa, the Caribbean,
Europe, and the Americas, and an Eastern lineage, circulating in Asia, Indonesia, China,
and Australia. BTV was initially confined to South Africa before the 1940s, where 22 of
the 27 known serotypes have been identified, and the disease is still endemic there [16].
Until the 1990s, it was mainly found in tropical and subtropical regions including southern
Europe [30], but it has since been detected on every continent except Antarctica [30-32].
BTV has significantly impacted livestock, with a devastating epidemic between 1956 and
1957 on the Iberian peninsula (Table 2), resulting in 180,000 sheep deaths and a 75%
mortality rate [33], and subsequently spread to the Middle East, Asia, North America, and
southern Europe [34,35]. BTV also infects water buffalo, with seroprevalence reaching up
to 92% in Egypt, Botswana, New Guinea, and India [34]. Various serotypes have been
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detected in North America and the southeastern United States (Table 3) since 1999 [32,35],
mostly confined to their areas of introduction.

In northern Australia including the northern region of Western Australia, BTV-1, 2, 3,
5,7,9,12,15, 16, 20, 21, and 23 serotypes are detected and serotypes 1, 2, 15, 21 are reported
in the eastern states of Queensland (QLD) and New South Wales (NSW) [36,37]. The higher
diversity of serotypes in northern Australia is attributed to the migration of Culicoides
midges from southeast Asia and nearby areas [38]. Genetic analysis of the serotypes
detected between 1979 and 1986 [5] (Table 2) revealed that these serotypes were circulating
within the Asian—Australasian region, indicating a stable eastern epi-system and possible
wind-borne transmission to Australia. Since 2007, four new serotypes (BTV-2, 5, 7, 12)
have emerged in Australia, with the last three showing high nucleotide sequence similarity
to earlier western topotype isolates [39]. The genome segments of the western genotype
of BTV has historically been linked to the European outbreak [31], hinting a potential
shift in the eastern epi-system and potential interactions with the northern Australian
BTV gene segments. BTV-16, which appeared sporadically from 1984 and re-emerged in
2001, continued to be detected infrequently. Surveillance conducted under the National
Arbovirus Monitoring Program (NAMP) revealed widespread BTV-16 transmission in
sentinel cattle and sheep with 40% infection rate (per flock), and a 20% mortality rate across
north and northwestern NSW in 2023 [40], and by 2024, the strain spread to the south
coast and southern tablelands of NSW [41]. Rising temperatures due to climate change in
NSW could expand the range of C. brevitarsis [42], increasing the risk of BT in livestock and
potentially accelerating BTV spread in livestock from the northern to southern zone.

Between 1998 and 2006, BTV primarily affected only part of southern European and
the Mediterranean Basin, where its main vector C. imicola was prevalent [43], causing
over 1.5 million sheep deaths [44,45]. Serotypes 1, 4, 9, and 16 spread into eastern Europe
from the Middle East and serotypes 1, 2, 4, and 16 into the western Mediterranean basin
from North Africa [43]. Unexpectedly in August 2006, BTV-8 was first documented in
the Netherlands [46], marking a significant northward spread (over 900 km). In northern
Europe, over 2000 ruminant cases were recorded in the first year of the outbreak, followed
by 60,000 and 27,000 cases in consecutive years [47]. This outbreak occurred in regions
where the main vector C. imicola is rare, suggesting spread by unidentified indigenous
European midges like C. obsoletus, C. scoticus, and C. dewulfi [48]. This strain was confirmed
to have originated from sub-Saharan Africa [5], with climate change and shifting wind
direction affecting vector distribution [49]. The incursion of BTV-8 in France in 2008 was
speculated to have derived from the attenuated African vaccine [50]. Simultaneously, ge-
netically similar strains like BTV-6 and BTV-11 were detected in Germany, the Netherlands,
and Belgium [51,52] (Table 2), likely introduced to Europe through the illegal use of live
attenuated vaccines [32]. These events indicate the expansion of vector range, capacity to
distribute the virus in new regions as well as improper and illegal use of live virus vaccines.

In the Netherlands, within-farm transmission of BTV-8 occurred in dairy and sheep
flocks during vector season [53], while in France, host movement between distant pastures
contributed to the BTV-8 spread in disease-free areas [54]. This serotype caused marked
clinical signs and transplacental transmission in cattle and goats [55]. By 2010, an extensive
vaccination campaign controlled the outbreak in France [46], although ‘silent circulation’ of
the strain continued [56,57], with re-emergence in 2015 [57]. During 2016-2017, the outbreak
spread eastward from France, and by 2019, it reached northeast to Switzerland, Germany,
and Belgium [58] through movement of infected livestock and Culicoides midges [54]. This
clearly demonstrates the risk of BTV for global trade, as importing animals from endemic
areas without monitoring and improper quarantine can endanger livestock industries.
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Recently, BTV-8 was again detected in France in August 2023 and identified as a ‘new strain’
causing severe symptoms and mortality [59].

In 2021, BTV were identified in dogs living on a farm in South Africa containing
sheep with BT disease [60]. BTV was isolated from cattle and goats in Tunisia in 2022, and
in the same year, BTV-4 was reported in mixed sheep and goat herd in Cyprus, which
indicates the virus’s wide host diversity. These outbreaks proved that mixed farming,
sharing pastures with infected animals, and inadequate husbandry practices could sustain
disease circulation, even after vaccination.

From 2018 to 2020, the most affected country in the Middle East was Israel, with the
detection of nine distinct serotypes [61] (Table 2). BTV-3 reappeared after 60 years in the
Mediterranean Basin including Cyprus and Italy [9], likely due to vector transmission or
illegal animal movement from North Africa, particularly Tunisia [62,63]. Although BTV-3
showed limited classical signs in sheep in Israel between 2013 and 2017, it emerged as the
dominant strain in cattle, sheep, and goat in 2018, attributed to its increased infectivity
and adaptability to local vectors. Genome sequencing revealed that Israeli BTV-3 strains
(seg-2 and 4) were closely identical to BTV-3 Zarzis/TUN2016 strains from Tunisia [64].
Additionally, Segments 2, 5, 6, 7, and 8 of the Israeli strain were derived from common
ancestors, indicating the strain has been circulating in the Mediterranean region since
2013 [64]. In 2021-2022, multiple BTV serotypes were reported in cattle and sheep in
Tunisia (Table 2), with heavy rainfall and favorable temperature contributing to vector
expansion and outbreaks since 2020 [65]. BTV-3, 4, and 8 were detected in Italy from
2023 to 2024 [66], with BT V-3 likely introduced to Sardinia and Sicily via an infected vector
through long-distance wind dispersal from Tunisia [67]. BTV-3 was reported for the first
time in continental Europe through an outbreak in the Netherlands in 2023, affecting
over 5000 livestock farms, 5996 confirmed cases, and 30-50% mortality rate [68]. The
strain spread quickly to Belgium and Germany [66], and by 2024, outbreaks occurred in
sheep in France [69], in cattle, sheep, and goats in Luxembourg, in cattle and sheep in
Denmark [70], and in cattle and sheep in Germany [71]. Genomic analysis of the VP2 gene
of BTV-3 from the Netherlands (BTV-3/NET2023) indicated its origin from the western
topotype (Africa, the Mediterranean Basin, and North America), and close relationship
with seg-2 BTV-3 isolates from Italy and Tunisia [72]. The quick spread of BTV indicated
that indigenous Culicoides spp. (although the species has not been identified yet) in the
Netherlands effectively transmitted BTV-3/NET2023 [72]. A BTV-4 outbreak in Spain,
genetically originated from North Africa [66], continued despite vaccination efforts, with
new cases in a previously unaffected area in Spain in 2024 [66]. The sudden emergence of
these three strains (BT V-3, 4, and 8) (Table 3) raised concerns about rapid virus transmission
in previously unaffected areas from endemic regions, primarily through the short-distance
dispersal of Culicoides midges and livestock transport within the EU countries. The global
outbreak of BTV is shown in Figure 1.
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Figure 1. Global outbreak of bluetongue virus (BTV) in livestock from 1876 to 2024.
Table 2. Historical evidence of BTV infections in diverse species in different countries.
Year Country/Region Host Serotype References

1876 South Africa Sheep Undetected [73]
1906 South Africa Sheep 4 [74]

1943, 1969 Cyprus Sheep 3,4 [26,75]

1943-1944 Israel Sheep Undetected [76,77]
1950, 1963-1966, 1972-1973 Israel Cattle, sheep 2,4,10,6,16 [77]
1948 USA Sheep 10 [78]
1955, 1962, 1967 USA Cattle 11,17,13 [78]

1956-1957 Iberian Peninsula (Portugal, Spain) Sheep 10 [26,74]
1959 Pakistan Sheep 16 [33]
1964, 1967-2000 India Sheep, goats 1,2,3,4,6,9,16,17,18,23 [79]
1975 Australia Culicoides sp. 20 [80]
1977-1986 Australia Cattle 1,3,9,15,16,20,21,23 [81]
1978 Brazil Domestic ruminants N/A1l [76]
1979 China N/A 1 N/A 1 [82]
1979-2011 Australia Cattle 1 [37]
1981 Indonesia Sheep N/A1 [26]

1982 USA Cattle 2 [83,84]

2%225%2}13(’ t121(1)26£>331177,) Australia Cattle, sheep 16 [41,85]
1996 South Africa Cattle 2,3,6,8 [74]
1998-1999 o Y ONIENCBTO Cattle, sheep, goat 1,2,4,9,16 [86]
2000 Tunisia, Aéifggi:[gli‘gicl;o, Corsica, Cattle 5 187]

Greece, Croatia, Albania, Bosnia,

2001-2002 Bulgaria, Republic of Macedonia, Cattle, sheep, goat 1,4,9 [76]

Kosovo, Serbia, Yugoslavia
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Year Country/Region Host Serotype References
2003-2005 Spain, Portugal, Corsica Cattle 4 [87]
2004 USA White-tailed deer 1 [78]
2006-2015 Australia Cattle 2,5,7,12 [39]
The Netherlands, Belgium, France,
2006-2007 Luxem%g:;;fgéf;e;fgvt;& fand,  Cattle sheep, goat 8,6 [88-90]
the Czech Republic
2008 The Netherlands, Germany, Belgium Cattle, sheep, goat 6,11 [87,88]
2011 Italy (North Sardinia) Sheep 8 [88]
2011 Russia Cattle 14 [91]
2012-2014 Poland Cattle 14 [91]
2012 Spain, Portugal, Estonia, Russia, Italy Sheep 1,2,4,8,9,14,16 [48,92]
2013 Russia, Turkey, Jordania Sheep 14 [48]
2013-2017 Italy Sheep 1,4 [88,93]
Balkan countries (Croatia, Greece,
2014 Bulgaria, Romania, Slovenia), Cattle, sheep, goat 4 [88]
Portugal, Spain
2015 Australia Cattle 5,12 [85,94]
2013, 2016-2020 Israel Sheep 1,2,3,4,6,8,9,12,15 [61]
2014 France Goats 27 [95]
Balkan countries (Croatia, Greece,
2014 Bulgaria, Romania, Slovenia), Cattle, sheep 4 [88]
Portugal, Spain
2015-2019 France Cattle, sheep, goat 8 [54,96]
2016-2017 France, Sardinia Cattle 4 [56,88]
2016-2022 Italy Sheep 3 [62,63,67]
2016-2020 Australia Cattle, sheep 1 [85]
2017 Greece Sheep 16 [88]
2017 France, Italy, Spain, Portugal Sheep 1 [88]
2017-2019 Germany, Belgium, Switzerland Sheep 8 [88]
2017-2018 France, Italy, Spain, Portugal Sheep 1 [88]
fne Lenbous bgm gy ; 9
Croe Norh Moo s ey ; 9
2018-2020 Israel Cattle, sheep, goat, 1,6,9 [61,97]
wild ruminant
2019-2020 Lsuwxft‘;ebr‘l‘arﬁfs‘;:;if%"e fg‘;‘r‘f Cattle, sheep 8 [88,96]
Greece, Italy, Romania, Tunisia,
gepublicr ot Marodons, - Catlshoe s : 6559
Italy, Tunisia, Morocco
2020-2021 Italy, France Cattle 1 [88]
2020-2022 Tunisia Cattle, goat, sheep 1,2,3,4,26 [98]
2023-2024 (till June) France Cattle, sheep 8 [59]
2023-2024 (tll August) Th&fﬂ:ﬁ;"{j‘gsﬁ:ﬁ?& England, Cattle, sheep, goat 3 [66,69,71,72,95]
2023-2024 (till March) Italy (Sardinia, Sicily, the mainland) Cattle 3,4,8 [66]
2023-2024 (till March) Spain Cattle 4 [66]

N/A1 = data not available.
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Table 3. Distribution of BTV serotypes and host ranges in different geographical locations.

Regions

Serotype Detected

Host Species

References

African continent (South Africa,
Egypt, Algeria, Libya, Morocco,
Tunisia and Nigeria)

1,2,3,4,5,6,7,8,9,10,11,12, 13, 14,
15,16, 17, 18,19, 20, 22, 24, 26

Cattle, buffalo, sheep, goat, alpaca

[74,87,99,100]

European continent (France, the
Netherlands, Germany, Italy, Belgium,
Spain, Portugal, Switzerland, Ireland,

Luxemburg, Denmark)

1,2,3,4,6,8,9,10,11, 14, 16, 25, 27

Cattle, sheep, goat, red deer, mouflons,
roe deer, fallow deer, Alps

[87,99,101,102]

North American continent (USA,
Mexico, Canada)

1,2,3,5,6,9,10,11,12,13,14,17,18,1
9,22,24

Cattle, white-tailed deer, bighorn
sheep, mule deer, black-tailed deer,
elk, pronghorn, alpaca, mountain goat,
bison, blackbuck antelope

[10,16,99,103,104]

South American continent (Brazil,
French Guiana, Argentina, Chile,
Colombia, Peru, Suriname, Guiana,
Venezuela and Ecuador)

1,2,3,4,6,7,8,9,10,12,13, 14,17, 18,
19, 20,21, 22, 24, 26

Cattle, buffalo, sheep, goat, collared
peccaries, marsh deer, pampas deer,
tapir, guanaco, vicuna

[99,105-109]

Central America and Caribbean
region (Guatemala, Honduras, Costa
Rica, Panama, Barbados, Trinidad and

1,2,3,4,6,8,10,11,12,13, 14,17, 18,

Tobago, Barbados, Jamaica, 19, 22,24 Cattle, sheep, goat, 99,1091
Dominican Republic and Martinique,
and Guadeloupe)
Australian continent 1,2,3,4,5,7,9,12, 15, 16, 20, 21, 23, 24 Cattle, sheep, Culicoides sp. [87,99]

South Asia (India, Pakistan, Sri Lanka,
Bangladesh, Afghanistan, Bhutan)

1,2,3,4,5,6,7,8,9,10,11,12, 13, 14,
15,16, 17,18,19, 20, 21, 23, 24

Cattle, buffalo, sheep, goat, camel,
mithun or gayal (Bos frontalis)

[34,79,100,110-112]

East Asia (China, Japan, and Taiwan,
South Korea)

1,2,3,4,5,6,7,8,9,10,11,12, 13, 15,
16, 20, 21, 23,24

Cattle, sheep, goat

[82,100,113]

Southeast Asia (Indonesia and

[0
Malaysia) 1,2,3,5,6,7,9,12,15,16,20, 21,23 Sheep [99,113]
Western Asia (Turkey, Cyprus, Syria,
Lebanon, Israel, Jordan, Oman, 1,2,3,4,5,6,8,9,10,12,15, 16,24, 26 Cattle, sheep, goat [61,87,114]

Kuwait, Saudi Arabia)

2.2. Epizootic Hemorrhagic Disease Virus Infections in Different Geographical Locations

EHDV infection has been detected across various continents, including Australia,
Africa, North and South America, Asia, and the Middle East, predominantly in tropical and
subtropical regions [115]. A new reassortment strain, EHDV-6 (Indiana) was identified in
the USA in 2006, combining segments from both Australian EHDV-6 and North American
EHDV-2 strains [116], suggesting originated from Australia, and was transmitted through
cattle movement. This strain was later found in asymptomatic cattle imported to Trinidad
from the USA in 2013. The virus’s ability to reassort and spread via trade highlights its
global transmission potential.

The history of EHDV in the ‘Old World” started in 2003 with the identification of
EHDV-6 on Reunion Island (Table 4), though its exact introduction route remains unclear.
The virus spreads across several countries, indicating its potential for long distances trans-
mission under favorable conditions. In the USA, EHDV primarily affects farmed WTD;
however, a devastating multi-serotype outbreak in 2012 affected cattle across 15 states [24].
EHDV-6 was also isolated from aborted fetuses of cattle, sheep, and goats in Turkey in
2012 and 2017 [117]. Moreover, an outbreak in cattle and sheep was observed in western
Turkey, which was postulated to be transmitted by Culicoides sp. [117]. In Asia, EHDV-7
caused disease in China [118] and EHDV-1, 2, 7, and 10 affected cattle in Japan (Ibaraki
strain, serotype 2) [119], underlining the potential for huge economic losses in the livestock
sector and global animal food crisis. Moreover, asymptomatic cases were reported in cattle
in several areas: EHDV-6 and 2 in the Caribbean (Martinique, Guadeloupe Islands, and
French Guiana), EHDV-1 in French Guiana [120], in Mayotte in 2016 [121], and in western
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Kenya among local calves from 2007 to 2010 [122] (Table 5). Asymptomatic cases complicate
disease diagnosis and control, as infected hosts may act as carriers, facilitating disease
transmission in the marketplace and cross-border disease spread.

Recent studies indicated changes in EHDV distribution and epidemiology. The detec-
tion of EHDV-2 in WTD and cattle in east-central Canada suggests a possible northward
spread of the virus in North America [123-126]. The host jump and spill-over between
species is yet to be fully explained. During the 2021-2022 outbreak, over 200 cases of
EHDV-8 were detected in cattle in Tunisia during the vector season [23]. This strain was
genetically similar to one previously identified in Australia in 1982 [23]. Notably, BTV
outbreak was reported in cattle and sheep in Tunisia in the same year, and both virus
outbreaks were attributed to the same vector, C. imicola. Current climate change, especially
global warming, and the combination of high temperature and rain might have caused
vector proliferation to transmit both diseases in the livestock population.

In Europe, EHDV was first reported in deer in Sardinia, Italy in 2022 [127], followed
by a second outbreak of EHDV-8 in cattle in Sardinia and Sicily, Italy [127]. The proximity
of Sardinia and Sicily to Tunisia (180 km and 140 km, respectively) suggests a potential
entry route of the disease into the EU via vectors. The third European territory that suffered
from EHDV in cattle was Andalusia, Spain [128], which is located only a few km from
Morocco across the Strait of Gibraltar. The serotypes involved in the outbreaks in 2022 in
Tunisia, Sardinia, and Andalusia remain unconfirmed. Recent EHDV-8 outbreaks in Spain
and Italy followed previous BTV-4 and BTV-3 outbreaks in these countries (Table 5), both
believed to have been introduced to Europe by airborne vectors from the Maghreb region
(western and central North Africa), with the EHDV-8 genome identical to the strains
detected in Tunisia in 2021 [127]. Until November 2023, Spain had reported 125 outbreaks
across seven regions affecting cattle and deer [129]. C. obsoletus is a significant vector for
EHD transmission in Spain [130], and recent outbreaks could be linked to peak Culicoides
populations, typically seen from mid-summer to late autumn [131]. The disease spread
north through the Iberian Peninsula to southern France by 2023 [25], with 3527 outbreaks by
November. Interestingly, the first EHDV-positive red deer in France was found dead near a
confirmed EHD-infected cattle premises [130]. Exotic hoofed animals like deer and cattle
are commonly kept together on hunting reserves [132]. This could increase infection risk
due to high animal density, stress, or the presence of non-naive animals that could amplify
the virus, leading to interspecies disease transmission and posing a threat to livestock,
trade, and the food supply chain. The global outbreak of EHDV is shown in Figure 2.

Table 4. Historical evidence of EHDV infections in diverse species in different countries.

Year Country/Region Host Serotype Ref
1955 Us White-tailed deer 1 [133,134]
1959-1960, 1997 Japan Cattle 2 (Ibaraki strain) [135]

1962, 1987-1988,

White-tailed deer, cattle, California

1999 Canada bighorn sheep 2 [136-138]
1967-2970 Nigeria Culicoides sp. 3,4 [138]
1991 Indonesia Cattle, Buffalo, Sheep 5 [138]
1992 Australia Cattle 1,2,5,7,8 [138]
1993 USA White-tailed deer 2 [138]
1980-2002 USA White-tailed deer, mule deer, Beef 12 [138]

cattle, pronghorn
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Table 4. Cont.

Year Country/Region Host Serotype Ref
Reunion Island, Morocco, Algeria,
2003 Tunisia, Turkey, France, the USA, Japan, Cattle 6 [9,19,21,120,139-141]
Trinidad, French Guiana, Maghreb
2006-2007 USA, Tunisia, Turkey Cattle, WTD 6 [116]
2007-2009 USA White-tailed deer 3 [2]
2012, 2017 Turkey Cattle, sheep, goat 6 [117]
2013 Trinidad Cattle 6 [116]
2015, i(());g/ 2020, Israel Cattle 1,6,7,8 [142]
2021-2022 Tunisia Cattle 8 [23]
2022 Italy (Sardinia) Deer Not detected [127]
2022 Italy (Sardinia, Sicily) Cattle 8 [127]
2022-2023 Spain Cattle, deer Not detected [128,129]
2023 France Cattle, deer 3 [25]
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Figure 2. Global outbreak of epizootic hemorrhagic disease virus (EHDV) from 1955 to 2024.

Table 5. Distribution of EHDV serotypes and host ranges in different geographical locations.

Regions (Country) Serotype Host species Reference
. . 1,2,5,6,7,8,
East Asia (China, Japan) 10 Cattle, buffalo, sheep [15,19,24,118,143,144]
Western Asia (the territory of Bahrain, . .

Oman, Israel, Turkey) 1,2,6 Cattle, sheep, goat, wild mountain gazelle [15,145-149]

Australia 1,2,5,6,7,8 Cattle, sheep [15,150,151]
Cattle, white-tailed deer, mule deer,
North America and Canada 1,2,6 black-tailed deer, elk, yak, pronghorn, [10,15,104,152-156]

bighorn sheep, bison, blackbuck antelope
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Table 5. Cont.
Regions (Country) Serotype Host species Reference
South America (Brazil, Colombia, French
Guiana, Guiana, Ecuador, Trinidad) 1,6,7 Cattle, buffalo, sheep, goat, deer [15,105,120,157,158]
North Africa (Egypt, Tunisia, Maghreb,
West Indies, Libya, Morocco, Algeria) g
East Africa (Mayotte), 1,6,8,4 Cattle, sheep, goat, deer [22,141,152,159-161]
West Africa (Nigeria)
Europe (Italy, Spain, Portugal, France) 6,8 Cattle, White-tailed deer [15,22,127]

EHDYV and BTV co-infection have been observed in many regions. In 2003, Reunion
Island experienced a severe outbreak of both EHDYV in cattle [161] and BTV in Merino
sheep [162]. A similar co-infection of BTV-2 and EHDV-6 was detected in cattle on Reunion
Island in 2009 [139]. In Egypt, BTV-3 and EHDV-1 were isolated from cattle in 2016-17,
which were living within the proximity of BTV-positive sheep and goats [148]. In Kenya,
seropositive BTV and EHDV cases were found in 51-week-old calves, marking the first
detection of EHDV in East African cattle [122]. BTV-9, 13, and 18, and EHDV-1 have
been isolated from asymptomatic cattle from farms and slaughter houses in Ecuador [157].
French Guiana identified BTV-1, 2, 6, 10, 12, 13, 17, and 24, and EHDV-1 and 6 in cattle and
newly imported sheep and goats in 2011 [120]. The co-circulation of BTV and EHDV reflects
a shared epidemiological ecosystem, as both viruses are transmitted by similar Culicoides
vectors and cause similar symptoms, making the diagnosis of co-exposure challenging. Co-
infection raises the risk of genomic reassortment, posing a serious threat to livestock [163].
Favorable climate conditions for vectors, overlapping host populations, and unsafe trade
and transportation may lead to co-infection. The circulation of multiple serotypes highlights
the need for coordinated monitoring and effective animal movement control.

3. Phylogenetic Analysis of BTV and EHDV Sequence

A total of 174 complete genome sequences of BTV available in the National Center for
Biotechnology Information (NCBI) were analyzed to assess the genetic diversity and evolu-
tionary relationships among various isolates or strains obtained from different countries
(Figure 3). Most of the sequences clustered closely within the same clades, which generally
correspond to their respective countries or geographical regions of origin (Figure 3). In
the case of EHDV, only seven complete genome sequences were available in the NCBI
database, submitted from four different countries: the United Kingdom, the United States,
China, and Japan (Figure 4). Interestingly, the phylogenetic analysis revealed that EHDV
sequences from each country formed distinct clades, except the Chinese EDHV sequence
nested within the Japanese clade (Figure 4). Our study revealed the regional dominance of
certain serotypes: BTV-1 in Australia and Italy, BTV-1 and 16 in India, BTV-11 in the USA
and Belgium, and BTV-2 in UK. The roles of viral genetics and proteins at the interface of
host susceptibility and the vector in the dynamics of current outbreaks is important. Both
BTV and EHDV have a segmented RNA genome, enabling genetic reassortment when
multiple strains or serotypes of a virus infect the same host cell or vector that contribute
to the emergence of new serotypes or genotypes, enhance the virulence properties, and
increase host susceptibility. It is important to note that there is no evidence to support
reassortment between two distinct viruses, such as BTV and EHDV. The outer capsid pro-
teins, such as VP2 and VP5, play a critical role in determining host infection. Particularly,
VP2 mediates attachment to the host cell receptors, while VP5 facilitates viral entry through
host cell membrane penetration. High mutations of the gene and subsequent variations in
VP2 among BTV serotypes could increase the affinity of host cell binding and viral entry,
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thus increasing host susceptibility [151]. Moreover, VP7 interacts with the host’s immune
response and provides structural stability that helps the viruses to evade immune response.
Additionally, the non-structural proteins like NS3 and NS3A facilitate virus release from
infected cells and are subsequently received by Culicoides vectors, which impacts viral
transmission in susceptible host populations and contributes to new outbreak [164]. It is
important to detail sequence and analyze the VP2, VP5, or VP7 genes to understand the
mechanism of recent outbreaks of both the viruses. However, it is beyond the scope of this
study as we reviewed the burden including genetic relatedness among available genome
sequences and vaccines.
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Figure 3. The Bayesian phylogenetic tree of the bluetongue virus (BTV) inferred from 174 BTV
genomes that were publicly available in the National Center for Biotechnology Information as
of 05 August 2024. The tree branch tips were suffixed with the corresponding country code.
AU, Australia; UK, the United Kingdom, USA, the United States; IN, India; ZA, South Africa
(Pretoria); CH, Switzerland; TW, Taiwan; DE, Germany; CN, China; HU, Hungary; BR, Brazil;
FR, France; BE, Belgium; IT, Italy; IL, Israel. The tree was built using the MrBayes v3.2 [165] program
that implemented the ‘invgamma’ model and visualized using the FigTree v1.4.4 [166] software. The
colors of the branches represent the posterior probability percentages as indicated in the legend keys.
The details of the genomes can be found in Supplementary Table S1.
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Figure 4. The Bayesian phylogenetic tree of epizootic hemorrhagic disease virus (EHDV) inferred from
7 EHDV genomes that were publicly available in the National Center for Biotechnology Information
as of 11 August 2024. The tree branch tips were colored and suffixed with the corresponding country
code: UK, the United Kingdom; USA, the United States; CN, China; JP, Japan. The tree was built
using the MrBayes v3.2 [165] program that implemented the ‘invgamma’ model and visualized using
the FigTree v1.4.4 [166] software. The numbers on the branches represent the posterior probability
percentages. The details of the genomes can be found in the Supplementary Table S2.

4. Factors Influencing the High Incidences of BTV and EHDV

Orbiviruses follow seasonal patterns in subtropical and temperate regions, with peak
occurrences typically in late summer [167] due to the temperature-dependent activity
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of the adult Culicoides vector. For example, the spread of BTV into northern Europe
followed an unusually warm summer in 2006 [43,45]. The distribution of vectors and
their coordination with climate determine the disease’s geographic span. The recent
introduction of multiple BTV serotypes from the east via Turkey and from the southwest
via Africa/Morocco [49,168], which caused an outbreak in previously unaffected areas,
was driven by both long-term and short-term climatic changes, expanding the geographic
range of Culicoides sp. [43,168-170]. Alongside ambient temperature, humidity, seasonal
rainfall, drought, and wind speed influence the distribution, survival, and breeding of
Culicoides vectors [171], which thrive in warm, humid, and swampy areas near animal
sheds rich in organic matter [26]. For instance, C. obsoletus proliferates in wet decaying
leaves, water-filled tree cavities, or manure heaps, while C. dewulfi breed in the manure
heaps of cattle and horses [76]. The combination of severe drought and unusually high
temperatures caused significant orbivirus outbreaks during summer of 2012 in USA [126]
and BTV infection in big horn sheep in Canada in 2022 [155]. Therefore, a global effort
towards the deep sequencing of the isolates and the study of the extensive distribution and
survivability of Culicoides midges are necessary to understand the transmission dynamics
of both viruses.

Recent years have seen significant changes in the global spread of BTV and EHDV
due to the reintroduction of infected midges or viremic vertebrate hosts [172]. Culicoides
can travel up to 5 km or be transported passively over 100 km, particularly over water
bodies, aiding in rapid virus spread even in non-endemic regions [26]. BT outbreaks in
the Mediterranean, North Africa, Australia, and northern Europe and EHDV dispersal in
Israel have been linked to such means [173,174]. The movement of infected livestock, either
through legal or illegal ways, increases the risk of virus spread, as evidenced by EHDV-8-
and BTV-positive cases in calves imported to Israel from Portugal in 2023 [142].

Global warming is a major driver of BTV and EHDV outbreaks, altering the distribu-
tion, behavior, and abundance of the insect vector. Since 1981, global temperatures have
risen by over 1 °C, with warming rates exceeding 0.32 °F (0.18 °C) per decade [131,175],
prolonging vector survival and extending the transmission period of vector-borne dis-
eases [176]. During BTV-8 and BTV-3 outbreaks in the Netherlands in 2006 and 2023,
respectively, temperatures were approximately 2-3 °C higher than the previous 30-year
average [68]. Milder winters and overall warming have expanded the range of Culicoides
midges into previously unsuitable regions in Europe [43]. Previously, EHDV infection
was confined to tropical and subtropical regions, and has recently spread to other EU
countries. Similarly, summer floods on Australia’s east coast have led to increased recent
BTV cases [40]. For example, Australia is one of the leading countries in monitoring BTV
through NAMP [41]. The NAMP reports showed that BTV usually circulates in the northern
territory, northern western Australia, Queensland, and northern NSW. However, due to
global warming and unusual climatic conditions, vectors are spreading south, posing an
imminent threat to the sheep industry, located in South Australia, Victoria, and southern
western Australia. Nevertheless, detailed studies involving weather parameters, environ-
mental factors, and vector-host dynamics are necessary to better understand the current
higher incidences of BTV and EHDV outbreaks. Moreover, wild ruminants, especially WTD
and wildebeest, act as important reservoirs for these viruses, often harboring them without
visible clinical signs and facilitating transmission through vectors [2]. These reservoirs
are key to the persistence and spread of both viruses among domestic animals and in
new herd environments, contributing to seasonal outbreaks during periods of high vector
activity (Figure 5).
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Figure 5. Factors influencing the risk of BTV and EHDV outbreaks.

5. Economic Impact on Livestock Production and Trade

Determining the economic impact of viral diseases is crucial for planning control
strategies. Economic losses can be categorized as direct (production losses) and indirect
(expenditure and loss of revenue) [177]. Direct losses include visible impacts like reduced
milk production, increased morbidity and mortality, weight loss, decreased fertility, still-
births, abortion, fetal abnormalities, and reduced meat production efficacy [76]. Indirect
losses involve expenditure in disease control and surveillance, diagnostic procedures, vac-
cination, vector monitoring and control, treatment, and foregone revenue due to trade
restrictions [177-179]. The overall global agricultural losses due to BTV has been estimated
to be approximately 3 billion USD in 1996 [11,74,178]. Livestock mortality rates due to BT
and EHD can range from 0 to 100%, impacting regional and national economies depending
on outbreak severity [2]. The economic losses reported from various parts of the world are
summarized in Table 6.

Table 6. Economic impact of BTV and EHDV in different countries.

Types of Animal Causes of Economic Loss (Variable .
Country Year Herd/Flock Measured) Estimated Loss (Amount) References
USA Yearly Cattle, sheep, goat Trade restriction, diagnosis 144 million USD/year [177]
(Average) ! ’ ’
France 2007 Dairy cattle Milk yield reduction 111-249 kg /lactation period [180]
Reduced production, mortality, e
Germany 2006-2018 Dairy, beef cattle, sheep veterinary service, animal export, 157-203 mqhgn Euros (mean [179]
. L 180 million Euros)
disease control, vector monitoring
Milk yield reduction, weight loss,
abortion, infertility, mortality, meat
Scotland 2009-2013 Dairy, beef cattle, sheep and wool loss, veterinary service, 144 million USD [178]

vaccination, carcass disposal,
movement restriction, labor cost,
surveillance, diagnosis
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Table 6. Cont.
Types of Animal Causes of Economic Loss (Variable .
Country Year Herd/Flock Measured) Estimated Loss (Amount) References
Milk yield reduction, mortality, early
culling, weight loss, postponed gestation, a1
- . o In 2006: 32.4 million EUR
TheNetherlands 20062007 Cattle, sheep, goat no gestation, ab'ortlons, stillbirth, In 2007: 164-175 million EUR [177]
decreased fertility of ram, lower
birth weight
Israel 2006 Dairy cattle Milk yield reduction, mortality, 2,491,000 USD [181]
involuntary culling
Tunisia 2020 Cattle and sheep 11K yield reduction, mortality, morbidity, 37 g1 1, 717 46 million EUR [65]
veterinary service, weight loss
6. Vaccination Against Orbiviruses
Vaccination serves as a pivotal tool in the prevention and management of infection.
Since BT vaccines target specific serotypes [182], it is crucial to consider the prevalent
serotypes before vaccination in a particular area. Currently, two vaccine types are available
against BT, such as live attenuated and inactivated vaccines, while EHDV vaccines have
been developed for the countries where the virus has caused significant economic impact.
6.1. Vaccines for Bluetongue Virus Disease
Live attenuated vaccines (LAVs) for specific BTV serotypes are used in several coun-
tries including the United States, Turkey, South Africa, India, and Israel [78] (Table 7). They
are comparatively potent, cost-effective, and offer sufficient protection with a single dose
for at least a year. However, LAVs should be administered when vector populations are
low to prevent the integration of their genetic material into field BTV strains [183,184].
Since BTV entered Mediterranean Europe, authorities in Spain, France, Italy, and Portugal
conducted mandatory vaccination campaigns using modified live attenuated vaccines
(MLVs) tailored to the local BTV serotypes from 2000 onwards [183]. Interestingly, MLV
vaccines induced strong immunity compared to inactivated vaccines, with trials showing
that BTV-2 MLV vaccination prevented viremia in over 90% of cattle for seven months [185].
In field studies, over 80% of vaccinated cattle and sheep maintained detectable levels of
BTV antibodies for months [185-187], and calves born to vaccinated dams retained colostral
antibodies for about 39 days [185]. Following LAV vaccination campaigns in the Balearic
Islands in 2000-2003, no outbreaks were reported after December 2003.
Table 7. List of bluetongue virus (BTV) vaccines used globally.
Available
. Type of Target Age .. . Company
Vaccine (Trade Vaccine Country Serotype Species (Months) Dose and Administration Name
Name)
Sheep: 3m Sheep: 2 mL S/C, booster yearly
Syvazul BTV Killed EU 1,4,8 Cattle, sheep p: Cattle: 4 mL I/M, two doses at 3 weeks Syva
Cattle: 2m
apart, booster yearly
Sheep: 2 mL S/C (for serotype 1 and 4,
. . Sheep: 2.5 m single dose; for serotype 8, double dose)
BLUEVAC Killed Spain 1,4,8 Cattle, sheep Cattle: 2 m Cattle: 4 mL S/C, two doses at 3—4 CZVACCINES
weeks apart
At weaning
time, 3
. COLORADO
OIONGUE  Live  USA 10 Sheep,goat ok PriOr 2mLS/Cor I/M SERUM
. COMPANY
ing/after
lambing
BTV PUR Killed France 4,8 Cattle, sheep 1m 1 mL S/C, booster after 2/4 weeks Boehringer

Ingelheim
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Table 7. Cont.
Available
Vaccine (Trade Type' of Country Serotype Targ.e t Age (Months) D(‘)s.e and. Company
Vaccine Species Administration Name
Name)
France, UK, .
Bovilis BTV8 Killed the 8 (sj;ttele’ 2}:;811; : ? rvr\ieeks, N/A1 Intervet
Netherlands P ’
1 mL, 2nd dose-3
Czech weeks later,
BioBos BTV 8 Killed R . 8 Cattle, sheep 1m Booster yearly Cattle: Bioveta, a. s.
epublic /M
Sheep: S/C
Sheep, goats,
: . . 1,2,10,16, buffalo, deer, Vea Impex (I)
RAKSHA-BLU Killed India 23 dromedaries, 3m 2mL S/C, booster yearly Put. Ltd.
antelope)
1,2,3,4,5, .
BLU-VAX Killed  South Africa 7, 12,13, Sheep  N/A1 8/, booster at 3-4 Design
16,17, 24 weeks, then yearly Biologix
BLUETONGUE 1 ?geigg i?tdlfooossi:r_‘l Onderstepoort
VACCINE FOR Live South Africa N/A1 Sheep 6m v, 2 HE) m’h For Biological
SHEEP yearty, & MOWS Priotto  pr,qycts (OBP)
outbreak season
Sheep: 1 mL S/C, single
The Sheep: 1 m dose Boehringer
BULTAVO 3 Killed Netherlands, 3 Cattle, sheep Cattle: 1 m Cattle: 1 mL I/M, two Ingelheim
UK
doses at 2 weeks apart
Sheep: 3 m heep:2 nélgsi/C, Single Spanish phar-
Syvazul BTV 3 Killed EU 3 Cattle, sheep Cattle: 2 m Cattle: 4 mL I/M, two Coﬁac:;ltlgalva
doses at 3 weeks interval pany sy
Sheep: 2mL S/C, two Celjllzaﬁﬁlir;lal
. . Sheep:2 m doses at 3 weeks apart .
BLUEVAC-3 Killed Spain, UK 3 Cattle, sheep Cattie: 2 m Cattle: 4 mL S/C, two paljtnershlp
with CZV
doses at 3 weeks apart VACCINES

N/A ! = data not available.

Although LAVs are currently used in South Africa and other countries [182] (Table 7),
severe side effects have been reported in rams vaccinated with BTV-2 strain produced
by South Africa [162]. Vaccination failure with LAVs may occur at temperature above
35 °C and may not protect against other BTV serotypes [176]. Concerns are growing
regarding commercial attenuated BTV vaccines due to their adverse effects, such as abortion,
reduced milk production, temporary decrease of semen quality in rams [162,188], and
fetal malformations in vaccinated pregnant ewes [176,182]. To mitigate these risks, it is
recommended to vaccinate ewes 9 to 15 weeks before mating and rams after mating [182],
with a minimum of six weeks before the next mating period [188]. There is also concern
about potential vaccine reversion to virulence, as observed with BTV-16 MLV [188,189],
which can spread disease across continents through reassortment with a field strain [50].
LAVs fail to eradicate the disease where multiple BTV serotypes co-exist. Therefore, EU
countries transitioned from attenuated to inactivated vaccines after 1998 due to concerns
over animal welfare and transmission through vectors.

Inactivated vaccines, though more costly, offer long-lasting protection against specific
serotypes after one or two doses, helping control epidemics, mitigate direct economic
losses, and facilitate safe animal trade [182]. After the 1998 BT outbreaks in southern
Europe, monovalent inactivated vaccines were developed for BTV-2 and BTV-4, later
followed by bivalent versions [188] (Table 7). Initial weak humoral responses to BTV-2 or
BTV-4 vaccines necessities multiple doses, but subsequent doses provide robust and stable
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protection [190]. After the 2006-2007 BTV-8 outbreak in Europe, a commercial inactivated
BTV-8 vaccine was developed (Table 7), offering good efficacy and reducing clinical signs
despite requiring multiple doses [191,192]. Moreover, these vaccines prevent both vector
and transplacental transmission [191,193,194]. Following the recent BTV-3 outbreak in the
Netherlands, Belgium, and Germany, a new inactivated BTV vaccine has been licensed in
the Netherlands for emergency use to prevent clinical signs and mortality (Table 7). The
field efficacy of inactivated BTV vaccines was demonstrated when over 40,000 vaccinated
Spanish cattle tested negative after being in a BT V-affected area [195]. While inactivated
vaccines theoretically allow for the differentiation of infected and vaccinated animals
(DIVA), this capability has yet to be realized, unlike attenuated live vaccines, which are not
suitable for the DIVA test.

It is worth mentioning that inactivated vaccines have inherent significant drawbacks,
such as high production costs, the necessity of a large antigenic mass during formulation,
slow onset of immunity, and often multiple booster shots [196]. Complex formulations may
delay vaccine development and availability [183]. Despite inducing weaker, shorter-lasting
immunity than LAVs, inactivated vaccines do not carry the risk of reversion to virulence,
gene reassortment with field viruses, or teratogenic effects by crossing the placenta [197].

Currently, novel vaccine types like recombinant vector and subunit vaccines are in
development, offering benefits such as eliminating virus transmission risk, rapid immune
response, and potential for polyvalent vaccines [182,188]. Recombinant vaccines may
provide cross-protection against multiple BTV serotypes, enhancing vaccination strategies.
While promising in experimental settings, large-scale field trials are necessary before
commercialization [182], which has been limited, possibly due to cost constraints.

6.2. Vaccines for Epizootic Hemorrhagic Disease

In Japan, two vaccines for EHDV-2 are available: a monovalent live attenuated vaccine
(MLV) and an inactivated bivalent vaccine (Table 8). The EHDV-2 MLV showed high im-
munogenicity and efficacy [198]. In the USA, where EHDV-1, and EHDV-6 cause recurring
outbreaks, autogenous vaccines (Table 8) using inactivated BTV and EHDYV antigens are
commonly used in sheep and captive cervids [15]. LAVs are not recommended in the EU
due to the risk of virus spread through midges or contact transmission [15]. A commercial
autogenous killed virus vaccine containing EHDV-1, 2, 6, and 7 strains was administered in
a population of captive WTD in the USA, which failed to induce robust antibody response,
whereas BTV autogenous vaccines can produce protective antibodies in sheep [199]. The US
Department of Agriculture (USDA) has approved bivalent vaccine for EHDV-2 and EHDV-6
for deer in the USA (Table 8). To date, a promising recombinant VP2 subunit vaccine for
EHDV-2 [200] has shown strong immunogenicity and protection in WTD [15], inducing
high levels of homologous neutralizing antibodies (nAbs) and preventing both disease in
host animal and virus transmission to insect vectors. This vaccine is currently undergoing
field trials in the USA [15]. Novel vaccines against BTV such as subunit vaccines and viral
vector-based vaccines [201] should be explored for developing new EHDYV vaccines. The
recent EHDV-8 outbreak in the EU is prompting research into next-generation vaccines,
emphasizing the need for multi-serotype vaccine approaches due to EHDV’s unpredictable
epidemiology. However, the first inactivated EHDV-8 vaccine (vEHDV8-IZSAM) was de-
veloped through a study [202], which proved to be safe, immunogenic, and highly effective
against the current EHDV-8 strain circulating in Europe in cattle. Collaborative efforts
between public veterinary institutions and private pharmaceutical companies are essential
for increasing EHDV-8 vaccine production [202].
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Table 8. List of epizootic hemorrhagic disease virus (EHDV) vaccines used globally.

Name of the Vaccine Type of Vaccine Country Serotype
EHDV-2 Monovalent live attenuated vaccine Japan EHDV-2
EHDV-2 Inactivated bivalent vaccine Japan EHDV-2 and bovine ephemeral fever virus (BEFV)

EHDYV vaccine Autogenous inactivated vaccine USA EHDV-1, 2, 6, and BTV-17
EHDV vaccine (CHeRI Lab, .
University of Florida) Killed USA 2,6

7. Biosecurity and Control Measures

In addition to vaccination, effective control measures are essential for reducing vector-
borne orbivirus diseases. While completely eradicating Culicoides midges from their natural
habitats is challenging, their population can be controlled by stabling susceptible animals
overnight, as midges are nocturnal feeders and require blood meals for ovary maturation
and egg production [2]. To manage adult midges, measures such as applying approved
insecticides, including synthetic pyrethroids (effective for 3-5 weeks) around or inside
stables [203], using insecticide-impregnated ear tags, or topical ‘pour on’ treatment, and
washing animals with synthetic pyrethroids or organophosphorus (OP) compounds during
peak vector seasons are necessary. Aerial pesticide spraying targets adult midges, but
treating large areas and free-roaming animals remains challenging. A study in Louisiana
revealed higher EHDV /BTYV infection rates in cattle rotating through open pastures com-
pared to WTD kept in fenced enclosure [204]. Enhancing stable protection with fine mesh
or coarse fabric nets or with synthetic pyrethroid-treated nets further reduces risks [205],
while light traps can capture adult midges [26]. For instance, a UV light trap in a sheep
pen in 2021 in South Africa successfully captured parous C. imicola, the causal vector to
transmit BTV between dogs and sheep [60]. In Australia, it was evident that green LED
traps significantly attracted the common vectors, especially C. brevitarsis, and also newly
emerged Culicoides sp. affecting livestock [206]. Species like C. imicola, C. obsoletus, and
C. pulicaris breed in moist, organic-rich soils that can be drained and dried to eliminate
breeding sites of adult midges. Their larval stages can be controlled by draining wastewater
lagoons, marshlands, and stagnant water pools, as well as repairing leaks, and shutting off
taps to maintain dry conditions [207].

Modifying animal husbandry practices, such as separating affected animals from
healthy ones, cleaning stable straws and dung heaps weekly or more frequently [26], and
avoiding overcrowding during peak vector activity, can reduce vector exposure. Systemic
ivermectin can reduce BT and EHD incidence, while larvicides target midge breeding
sites [208]. Insect repellents, such as diethyl toluamide (DEET) ensure protection for
up to four hours [176]. Proper insecticide application is crucial to avoid environmental
and animal health risks, as high imidacloprid concentration may cause developmental
abnormalities in wild deer fawns [209].

Control and prevention programs aim to prevent the virus spread to previously un-
affected regions. Veterinary officers, authorities, and livestock farmers must collaborate
quickly during outbreaks to prevent further establishments [184,210]. During an outbreak,
reliable diagnostic tests like RT-PCR and viral genomic analysis are essential to identify the
circulating serotype and infected animals in the herd, which should be promptly managed.
However, controlling these infections is challenging by culling due to continuous vector
activities and subclinical infection in both domestic and wild ruminants [26]. Affected
animals should be retested 7-10 days later to detect any new infections [139]. The move-
ment of susceptible animals should be restricted, and surrounding farms should undergo
epidemiological investigations to assess the spread of infection. Strengthening surveillance
at borders such as pre-export and post-import monitoring along with screening semen for
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artificial insemination can reduce the risk of virus introduction. The movement of midges
between vaccinated livestock and susceptible wild ruminants could lead to viral evolution
and reduce vaccine effectiveness [211]. C. sonorensis often feeds on large mammals, and
can act as a bridge vector between livestock and wildlife [212]. A survey was conducted
for BTV-8 in livestock among five European countries (Denmark, France, the Netherlands,
Sweden, and the UK) between 2008 and 2012 [213]. It summarized that detecting emerging
diseases is highly region-specific, so active surveillance must incorporate local epidemi-
ological, ecological, and entomological data. Moreover, effective surveillance combining
wild ruminants, livestock, and vectors is challenging but crucial to completely eradicate
the virus from an endemic region.

8. Knowledge Gap and Recommendations

Despite these two important orbiviruses circulating in livestock for decades, there is
still limited information about host-pathogen interactions. Understanding disease patterns,
global distribution and serotype diversity is of the utmost importance, as is knowledge
of the epidemiological zones for studying viral ecology and disease spread. Integrating
data on ruminant hosts and Culicoides vectors can help predict the expansion of BTV- and
EHDV-affected areas. However, viral ecology and evolution present challenges due to
the limited availability of genomic and meta-data. Genetic variations in viral genome
segments impact their virulence and transmission potential, leading to strain diversity.
Further research is needed to understand the evolutionary and molecular processes that
enable viruses to infect diverse hosts, and identifying the virulent genetic components and
antigenic properties that enhance vector adaptation and facilitate rapid spread is crucial.

Moreover, live animal importation, particularly asymptomatically infected animals
from BTV- and EHDV-endemic countries, might act as a potential source of disease out-
breaks in naive populations. Although advanced diagnostic methods make early detection
feasible [214], applying these measures during epidemics remains challenging.

The introduction of new virus strains and the rapid evolution of virus serotypes compli-
cates control measures and immunization, as vaccines may lack cross-protection. Therefore,
research should focus on developing improved vaccine formulations with broader protec-
tion, including recombinant vaccines, which require large-scale field trials to verify safety,
efficacy, and cost-effectiveness. Additionally, understanding host immune response to BTV
and EHDV infection can aid in the development of vaccines and therapeutic interventions.

BTV and EHDV in wild ruminants are often neglected; they serve as reservoir hosts
and can transmit the infection to domestic livestock through vectors under favorable condi-
tions. Research on the movement of Culicoides between farms and adjacent wildlife habitats,
and interactions between livestock and wildlife can shed light on viral ecology. Integrated
surveillance combining sentinel animal studies, serological surveys, and vector monitoring
is needed to assess transmission risks of viral serotypes from wild ruminants to livestock
and monitor transboundary disease spread. Finally, ongoing monitoring combined with
genomic insights into viruses and strong collaboration among livestock producers, animal
health researchers, epidemiologists, and decision-makers are highly recommended.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/v17010020/s1, Table S1: Meta-data of the publicly available
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disease virus (EHDV) genome.
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