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ABSTRACT
Tropical forests play a critical role in biodiversity, carbon sequestration, and climate regulation, but are increasingly affected by 
heatwaves and droughts. Vulnerability to warming may vary within and between species because of phenotypic divergence. Leaf 
trait variation can affect leaf operating temperatures—a phenomenon termed ‘limited homeothermy’ when it helps avoid heat 
damage in warmer conditions. However, evidence for this capacity and the relative roles of acclimation or adaptation remain 
limited. We measured photosynthetic heat tolerance and leaf thermal traits of three co-occurring rainforest tree species across 
a thermal gradient in the Australian Wet Tropics. Using a leaf energy balance model parameterised with field-measured traits, 
we predicted variation in leaf-to-air temperature differences (∆Ttrait) and resulting thermal safety margins. We combined this 
with individual-based genome-wide data to detect signals of adaptive divergence and validated findings in a glasshouse trial 
with provenances grown under contrasting temperature and humidity conditions. Intraspecific trait variation reduced ∆Ttrait 
and increased heat tolerance in warmer sites for Darlingia darlingiana and Elaeocarpus grandis, but not Cardwellia sublimis. 
As a result, thermal safety margins declined less steeply with increasing growth temperature in species capable of increased 
heat tolerance and avoidance, indicating these strategies can effectively buffer warming. All species showed genomic signals of 
selection, with associations to temperature and moisture variables. In E. grandis, glasshouse results confirmed a negative cline 
in ∆Ttrait with temperature of origin. Although contrasting growth temperature and humidity lead to acclimation of individual 
traits, their coordination maintained ∆Ttrait across the conditions imposed. Our findings provide evidence of limited homeo-
thermy and suggest climate gradients have selected for trait combinations that reduce leaf temperatures at warmer sites in some 
but not all species. Given the rapid pace of climate change, those species with limited capacity to adjust their thermal safety 
margins through acclimation or adaptation may be at greater risk of local extinction.
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1   |   Introduction

Global warming is rapidly increasing temperatures, raising con-
cerns about the ability of species to persist (IPCC 2022). Tropical 
forest trees, vital for biodiversity, carbon sequestration and water 
cycling (Mitchard 2018), may be particularly vulnerable because 
of their evolution under relatively stable thermal environments 
(Trew and Maclean 2021). However, populations across climate 
gradients may respond differently to environmental change be-
cause of plasticity and/or local adaptation (Barton et al. 2020; 
Halbritter et al. 2018; Leites and Garzón 2023). Although local 
adaptation can enhance fitness under stable conditions, it may 
inhibit future persistence if climate change creates a mismatch 
between the historic conditions a population is adapted to and 
the new environment (Jordan et  al.  2024). Therefore, under-
standing how tropical trees have adapted to temperature is 
crucial for evaluating their resilience to global warming and in-
forming effective management strategies.

Plants have evolved various mechanisms to cope with heat stress 
and maintain physiological function, such as altering leaf-level 
biochemistry to increase their photosynthetic heat tolerance 
(Geange et al. 2021; Middleby, Cheesman, and Cernusak 2024). 
Such adjustments help prevent leaf damage and maintain carbon 
uptake during heatwaves (Drake et al. 2018). However, recent 
studies indicate that this may be insufficient to preserve thermal 
safety margins—the difference between a leaf's thermal toler-
ance threshold and the temperatures it experiences—in warmer 
environments (Kitudom et al. 2022; Perez and Feeley 2020). As 
such, species or populations near their thermal limits, such as 
those in lowland tropical forests, may be particularly vulnera-
ble to even small temperature increases in the coming decades 
(Araujo et al. 2021; Doughty et al. 2023; Pau et al. 2018).

Plants can also cope with thermal stress by avoiding high tem-
peratures through morphological and physiological trait varia-
tions that influence leaf energy balance (Michaletz et al. 2015). 
Traits like leaf width, absorptance, leaf angle and stomatal 
conductance to water vapour (gs) interact with the canopy mi-
croclimate to influence the fluxes of sensible and latent heat 
and the interception of radiation (Campbell and Norman 1998; 
Jones  2013). This leads to significant differences between leaf 
and air temperatures (∆T = Tleaf − Tair), because of differences in 
water use (Fauset et al. 2018), leaf morphology (Leigh et al. 2017) 
and canopy architecture (Leuzinger and Korner  2007; Woods 
et  al.  2018). Given the importance of maintaining Tleaf within 
safe operating limits, it is hypothesized that traits influenc-
ing ∆T may undergo selection (Mahan and Upchurch  1988; 
Michaletz et  al.  2015). Although such thermoregulation has 
been noted across different ecosystems (Guo et  al.  2023; 
Kitudom et al. 2022), studies within species are limited (Kullberg 
et al. 2023; Kullberg and Feeley 2022), and few have explored 
the relative roles of phenotypic plasticity and ecotypic variation 
(Middleby, Cheesman, and Cernusak 2024; Posch et al. 2024).

Understanding whether intraspecific variation in leaf traits 
affecting ∆T results from plasticity or genetic differentiation 
is essential for predicting future vulnerability and for guiding 
revegetation efforts to match provenance with future site con-
ditions (Breed et  al.  2013; Jordan et  al.  2024). Although com-
mon garden and reciprocal transplant experiments are ideal 

for studying local adaptation, they are resource-intensive (Sork 
et al. 2013), especially in remote areas. Population and ecolog-
ical genomic methods, such as genotype–environment (GEA) 
and genotype–phenotype associations (GPA), offer complemen-
tary insights into adaptive potential without extensive field tri-
als (Arab et al. 2020; Breed et al. 2019; Shryock et al. 2021).

To assess whether tropical trees have the capacity to cope with 
future climate change, we examined the patterns and drivers 
of intraspecific variation in leaf traits affecting thermoregula-
tion. We define leaf thermoregulation as coordinated trait vari-
ation that alters the difference between leaf and air temperature 
(∆Ttrait) across a thermal gradient. Since leaves are typically 
warmer than air during the day because of solar radiation, ∆T 
values are generally positive. We use ∆Ttrait to represent the 
component of ∆T attributable to trait variation and interpret 
limited homeothermy as a negative slope of ∆Ttrait versus max-
imum temperature of the warmest month (MTWM) or MTWM 
of origin—indicating that leaves heat up less in warmer envi-
ronments because of trait adjustments. A flat slope would indi-
cate no thermoregulatory adjustment, whereas a positive slope 
would suggest increased leaf warming at warmer sites. By iso-
lating the effects of trait variation and focusing on the slope of 
∆Ttrait, this approach avoids confounding by environmental in-
fluences on Tleaf and circumvents the flawed assumption that 
limited homeothermy requires Tleaf to fall below Tair.

We hypothesized that traits associated with leaf cooling are 
under selection, specifically:

1.	 Within species, individuals from warmer climates of origin 
show coordination of leaf thermal traits that enhance leaf 
cooling relative to individuals from cooler climates.

2.	 Adaptive genetic variation associated with leaf traits is 
positively correlated with temperature gradients across 
species distributions.

3.	 Both plasticity and ecotypic differentiation will affect the 
observed patterns of leaf thermoregulation in E. grandis, 
grown under controlled thermal environments.

To test these predictions, we measured photosynthetic heat tol-
erance and leaf traits in populations of three tree species across 
a thermal gradient and predicted leaf temperatures with a leaf 
energy balance model. We also examined genome-wide single 
nucleotide polymorphisms (SNP), using GEA and GPA analyses 
to explore genome-wide signals of selection and identify the en-
vironmental drivers of adaptive variation in thermoregulation 
using generalized dissimilarity modeling. Finally, this approach 
was validated in E. grandis using a climate-controlled glass-
house trial with seedlings collected across a thermal gradient.

2   |   Methods

2.1   |   Study System: Rainforest Tree Species in 
the Wet Tropics of Queensland, Australia

The Wet Tropics of Queensland World Heritage Area com-
prises 8,945 km2 of mostly rainforest vegetation in northeast-
ern Queensland, Australia. Its mountainous terrain creates 
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geographic and spatial variation in climatic conditions across 
elevation over small distances. This presents an ideal oppor-
tunity for exploring patterns of intraspecific trait variation 
and local adaptation. The Wet Tropics of Queensland experi-
ences warm temperatures year-round, with high but seasonal 
rainfall and periodic cyclone disturbance (UNESCO World 
Heritage Centre  1988). We selected three tropical rainfor-
est species—Elaeocarpus grandis F. Muell. (Elaeocarpaceae), 
Cardwellia sublimis F. Muell. (Proteaceae) and Darlingia darlin-
giana F. Muell. L.A.S. Johnson (Proteaceae)—that are relatively 
abundant, upper canopy species occurring across a wide eleva-
tional range (0–1300 m). Both C. sublimis and D. darlingiana 
are endemic to the Wet Tropics of Queensland and have wind-
dispersed seeds, whereas E. grandis has a wider distribution ex-
tending into Southeast Asia and the Australian subtropics and 
has large fleshy fruits dispersed primarily by birds.

2.2   |   Field Sampling

During October 2021 to May 2022, we sampled trees from 16 
mature remnant forest sites from across the Wet Tropics of 
Queensland, spanning an elevation range of 1299 m a.s.l (5 to 
1304 m a.s.l), a mean annual temperature range of 7.1°C (18.6°C 
to 25.8°C) and a mean annual precipitation range of 2940 mm 
(1355 to 4295 mm). At each site, 3–10 individuals per population 
(median 6), spaced > 100 m apart, were selected, with the inten-
tion to avoid sampling closely related individuals. Sun-exposed 

branches from the upper canopy were sampled using a pole 
pruner or big shot, placed in large opaque, water-sprayed bags, 
and kept shaded during transport to the field lab (up to 4 h). At 
the lab, branches were recut underwater and rehydrated in the 
dark for trait measurements (c. 3 h for functional traits and 12 h 
for chlorophyll fluorescence). Leaf samples for genomic analysis 
were dried on silica beads. In total, we measured leaf traits on 
105 C. sublimis, 96 D. darlingiana, and 104 E. grandis individ-
uals, and generated genomic data for 98 C. sublimis, 96 D. dar-
lingiana, and 89 E. grandis individuals (Table 1). Additionally, 
seeds were collected from 11 E. grandis individuals from six sites 
for the glasshouse experiment (Figures 1 and S1, Table 1).

2.3   |   Leaf Traits

We measured leaf traits known to reflect trade-offs between 
resource acquisition and conservation strategies (Wright 
et  al.  2004) and those impacting leaf energy balance. These 
included leaf mass per area (LMA, g m−2), leaf dry matter con-
tent (LDMC, mg g−1), leaf thickness (μm), effective leaf width 
(cm), leaf reflectance spectra including absorptance (Abs, %) 
and reflectance (Ref, %) to shortwave radiation, leaf carbon iso-
tope composition (δ13C), leaf nitrogen (Nmass, %), and the mass 
ratio of carbon to nitrogen. We also measured stomatal density 
(stoma mm−2) and size (μm2) to calculate theoretical maximum 
conductance (gmax, mol m−2 s−1). Leaf traits were measured ac-
cording to standard techniques on fully expanded sun-exposed 

TABLE 1    |    Site coordinates and means for environmental variables. Sites are ordered by decreasing latitude, and numbers correspond to those in 
Figure 1. Sample size per population is given for trait measurements, and, where this differs, for the genetic dataset in brackets.

Population

Lat. Long. Elev MTWM PDM Sample size per population

(°) (°) (m) (°C) (mm) CS DD EG

1. Cedar Bay* −15.79 145.3 172 28.0 35 6 6 6

2. Daintree −16.16 145.44 43 28.1 69 6 (5) 6 6 (5)

3. Mt. Windsor* −16.26 145.05 1098 26.1 17 6 6 6 (5)

4. Mt. Lewis −16.55 145.28 1028 25.1 28 9 (8) 6 6

5. Kuranda* −16.66 145.49 450 26.8 31 6 6 6

6. Dinden −16.96 145.64 493 27.4 31 6 4 6

7. Mt. Edith −17.09 145.62 977 25.7 39 6 6 3

8. School for field studies* −17.19 145.65 770 26.5 61 10 (8) 9 10 (6)

9. Goldsborough −17.26 145.79 149 28.8 87 0 6 6

10. Mt. Baldy* −17.30 145.42 1162 25.8 30 7 6 5 (4)

11. Topaz −17.37 145.75 743 26.4 111 6 0 6

12. South Johnstone −17.64 145.73 540 27.9 109 8 (7) 8 8 (6)

13. Koombaloomba −17.72 145.53 870 26.9 59 6 6 6

14. Mission Beach* −17.88 146.07 28 28.7 90 10 (7) 7 10 (6)

15. Kirrama −18.21 145.8 677 27.1 51 6 6 6

16. Paluma Range −18.98 146.17 832 26.4 34 8 8 8 (6)

Note: Lat = latitude, Long = longitude, Elev = elevation (m a.s.l), MTWM = max temperature of the warmest month (Bio5, °C), PDM = precipitation of the driest month 
(Bio14, mm). CS = Cardwellia sublimis, DD = Darlingia darlingiana, and EG = Elaeocarpus grandis. Sites with an * had E. grandis seedings included in the glasshouse 
trial.

 13652486, 2025, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70461 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [07/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 18 Global Change Biology, 2025

leaves from each tree (Perez-Harguindeguy et al. 2013), with 10 
leaf replicates for leaf functional traits and three for absorptance 
and stomatal traits (for detailed measurement protocols, see 
Supporting Information, Methods S1).

2.4   |   Leaf Temperature (Tleaf) Modelling

We tested how covariation of leaf traits affects predicted leaf-to-
air temperature differences (∆T) across a thermal gradient and 

whether this helps maintain Tleaf within safe margins. Tleaf was 
predicted using a steady-state leaf energy balance model based 
on the Penman-Monteith equation (Jones  2013; Monteith and 
Unsworth 2013), requiring plant trait-based inputs (leaf width, 
absorptance to shortwave radiation, stomatal ratio, and conduc-
tance), and microclimate inputs (air temperature, vapour pres-
sure deficit, radiation, and wind speed).

Microclimate inputs were parameterized using the micro_
global function in ‘NicheMapr’ v.3.2.0 (Kearney and 

FIGURE 1    |    Map of study region. Map color shows the max temperature of the warmest month from 1981 to 2010 retrieved from the CHELSA 
database at 1 km resolution (Karger et al. 2017). The dashed black line indicates position of the Black Mountain Corridor, a putative geographic bar-
rier during glacial maxima (Schneider et al. 1998). Grey points labeled with numbers indicate the populations where genetic and trait samples were 
collected for each of the three species shown to the right (see Table 1 for further information on populations). Green points highlight populations 
where E. grandis seedlings were collected from in the subsequent glasshouse experiment. Map lines delineate study areas and do not necessarily de-
pict accepted national boundaries. Photos of D. darlingiana were provided by David Tng, C. sublimis by Mathew Borella, and E. grandis by Alexander 
Cheesman.
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Porter 2020) which uses the New et al. (2002) global monthly 
climate database at a 10 × 10 km grid centered on 1960 to 1990. 
Hourly estimates of Tair, VPD, and solar radiation (converted 
to photosynthetic photon flux density, PPFD) were obtained 
for the 15th of each month, using tree coordinates and ele-
vation, with solar radiation adjusted for terrain using the 
‘microclima’ setting (Maclean et al.  2019). From this typical 
monthly, diel data, daytime means (09:00 to 15:00) were calcu-
lated for each individual tree as well as an overall mean across 
all individuals and species.

To separate changes in ∆T due to microclimate from those due 
to leaf trait covariation, we used two microclimate parame-
terisations when running the leaf energy balance model. For 
∆T based solely on leaf traits (hereafter ∆Ttrait), microclimate 
inputs were set to the overall daytime means described above, 
with Tair = 24.8°C, VPD = 1.4 kPa, PPFD = 1403 μmol m2 s−1, 
and assuming calm conditions with a wind speed of 0.5 m s−1. 
For ∆T based on both traits and climate (∆Tclim), we used 
the tree-level daytime mean modelled microclimate de-
scribed above.

We implemented the leaf energy balance model using 
the PhotosynEB function in ‘plantecophys’ v.1.4–6 
(Duursma  2015), which couples an energy balance model 
to the Farquhar, von Caemmerer, and Berry photosynthesis 
model (Farquhar et  al.  1980) and the optimality-based uni-
fied gs (USO) model (Medlyn et al. 2011), with Tleaf solved it-
eratively. The leaf traits that were ultimately involved in ∆T 
parameterization include effective leaf width, absorptance 
to shortwave radiation, Nmass, and δ13C. For methodological 
comparison, we also calculated gmax from stomatal anatomy 
(Supporting Information, Methods S1), this was not used for 
downstream genetic analysis. To convert estimated Tleaf to ∆T, 
we used the same Tair values used as inputs for each respective 
model (i.e., a common Tair = 24.8°C for ∆Ttrait and a tree-level 
Tair for ∆Tclim).

2.5   |   Stomatal Conductance Modelling

An assumption of the USO model used to predict gs is that 
plants maximize carbon gain while minimizing water loss. To 
obtain gs, traits that impact gas exchange are required, such 
as the maximum rate of carboxylation (Vcmax25) and light-
saturated rate of electron transport (Jmax25), as well as the 
slope parameter (g1) that describes the relationship between 
photosynthesis and stomatal conductance and responses to 
changes in VPD (Medlyn et  al.  2011). Since characterizing 
Vcmax25, Jmax25 and g1 in the field for each tree was not feasi-
ble, we varied these according to observed linear relationships 
with leaf Nmass (Vcmax25) determined during the glasshouse ex-
periment (Figure  S9), and as a ratio of Vcmax25 to Jmax25 and 
used thermal sensitivity of Vcmax and Jmax parameters deter-
mined in Australian tropical trees (Kelly  2014). The param-
eter g1 was calculated using the following equation (Medlyn 
et al. 2011):

where VPD is the tree-level mean daytime vapour pressure defi-
cit (kPa), and Ci/Ca is the ratio of intercellular to ambient CO2 
concentrations, estimated from leaf δ13C using the ‘isocalcr’ 
package in R (Mathias and Hudiburg 2022).

This model effectively captures dynamic gas exchange and 
produces realistic leaf temperature estimations under non-
stressful conditions (Guo et al. 2022; Kearney and Leigh 2024). 
However, evidence suggests that at higher temperatures, 
gs and photosynthesis decouple, with gs maintained or even 
increasing (De Kauwe et  al.  2019; Diao et  al.  2024; Drake 
et al. 2018; Marchin et al. 2023; Urban et al. 2017). This decou-
pling may reflect a strategy to enhance transpirational cool-
ing rather than optimizing carbon gain, especially under heat 
stress. Relying solely on the USO model could thus overlook 
plant responses aimed at maintaining Tleaf within a viable 
range. In addition, our parameterisation relies on a within-
species correlation between Vcmax25 and leaf Nmass that was 
only determined in E. grandis. To address these assumptions, 
we also calculated ∆Ttrait and ∆Tclim using theoretical gmax de-
termined from stomatal anatomy via the findTleaf function, 
which estimates Tleaf independently of photosynthesis. These 
are referred to as anatomical ∆Ttrait and anatomical ∆Tclim 
throughout the manuscript. By incorporating gmax, we aim 
to account for the upper limits of stomatal conductance that 
plants may employ in response to heat stress.

2.6   |   Photosynthetic Heat Tolerance

Photosynthetic heat tolerance was assessed by examining the 
decline in maximum photosynthetic efficiency of photosystem 
II with increasing incubation temperature. To do so, the ratio 
of variable fluorescence (Fv) to maximum fluorescence (Fm) 
was measured following an established protocol (Leon-Garcia 
and Lasso 2019) modified from Krause et al. (2013). For each 
tree, 15 to 20 rehydrated leaves were sampled, and six 9 mm 
leaf discs per leaf were pooled and randomly assigned to heat 
treatments. Discs were incubated for 30 min in water baths at 
36°C, 40°C, 42°C, 44°C, 46°C, 48°C, 50°C, 52°C, 54°C, and 
58°C, with an untreated control at ~24°C, then placed in petri 
dishes at 24°C for 24 h. Chlorophyll fluorescence was then 
measured on leaves that had been dark adapted for 30 min 
using a chlorophyll fluorometer (PAM-2000, Heinz Walz 
GmbH, Effeltrich, Germany). Five sites (and six for E. gran-
dis) at varying elevations were measured during October–
November 2021. Individuals showing photoinhibition (control 
Fv/Fm < 0.6) were excluded from analysis. A 4-parameter log-
logistic curve was fitted using ‘drc’ v.3.0–1 (Ritz et al. 2015), 
with the lower asymptote set to 0. The thermal tolerance met-
ric T50 (Tleaf at 50% decline in Fv/Fm) was obtained from the 
curves.

2.7   |   Thermal Safety Margins

To determine how intraspecific trait variation may influence 
thermal safety margins (TSM) across species distributions, 
TSMs were calculated as the difference between thermal toler-
ance (T50) and modeled Tleaf (∆T + Tair) as described above. We 
calculated TSMs using both ∆Ttrait and ∆Tclim, where ∆Ttrait 

g1 =

�

Ci
Ca

√

VPD
�

�

1 −
Ci
Ca

�
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assesses the contribution of trait variation to TSMs, and ∆Tclim 
assesses whether this variation offsets differences in local cli-
mate conditions across the species' range. Additionally, we cal-
culated anatomical TSMs using anatomical ∆T calculated from 
stomatal anatomical traits.

We were interested in assessing relative changes in TSM 
across a species distribution, as such our TSM estimates were 
calculated using daytime average (09:00 to 15:00) conditions 
and are likely higher than studies assessing instantaneous 
point measurements of Tleaf or those that use Tcrit (the tem-
perature at which photosystem II function first begins to de-
cline) as the upper threshold instead of T50. Canopy leaves 
of tropical forests already surpass Tcrit (Doughty et al. 2023), 
and although some photosynthetic function can recover after 
a single exposure, recovery is less likely after T50 exposure 
(Cook et al. 2024; Javad et al. 2025; Tarvainen et al. 2022) but 
see Javad et al. (2025). It is also important to note that heat tol-
erance itself can be dynamic and influenced by recent thermal 
exposure (Drake et al. 2018), which may introduce variability 
into TSM estimates.

2.8   |   Climate and Environmental Variables

To explore environmental drivers of trait and genomic vari-
ation, we retrieved gridded maps of bioclimatic variables, as 
well as wind speed and relative humidity for the Wet Tropics 
of Queensland from the CHELSA database at 1 km resolution, 
averaged for 1981–2010 (Brun et  al.  2022; Karger et  al.  2017). 
Gridded soil data products at 5–15 cm depth, 30 m resolution, 
for the period 1950–2013 were obtained from the Soil and 
Landscape Grid of Australia and resampled to 1 km resolution 
using ‘raster’ v.3.6–11 (Hijmans 2022) to match the bioclimatic 
data. To avoid multicollinearity and ensure interpretability, we 
selected uncorrelated variables (r < 0.7, calculated using val-
ues for the sampled sites) relevant to tropical tree functioning: 
maximum temperature of the warmest month (Bio5, °C), pre-
cipitation of the driest month (Bio14, mm), minimum relative 
humidity (RHmin, %), mean wind speed (Windmean, m s−1), soil 
pH (pH), and total soil phosphorus (P).

2.9   |   Genotyping

Dried leaf tissue samples were sent to Diversity Arrays 
Technology Australia Pty Ltd., Canberra, Australia for DNA 
extraction and genotyped using DArTseq, a reduced represen-
tation sequencing method (Sansaloni et al. 2010). Data quality 
and SNP filtering were performed using ‘RRtools’ v.0.1 (Bragg 
et  al.  2020; Rossetto et  al.  2019). SNPs with a reproducibility 
score below 0.96, over 20% missing data, or redundant loci were 
excluded. Individuals with 80% missing loci were also removed, 
and a minor allele frequency threshold of 0.05 was applied. The 
cleaned dataset comprised 8884 SNPs across 98 individuals 
from 15 populations for C. sublimis (6.48% missing data), 8009 
SNPs across 96 individuals from 15 populations for D. darlingi-
ana (8.15% missing data), and 4935 SNPs across 89 individuals 
from 16 populations for E. grandis (6.65% missing data).

2.10   |   Population Genetic Diversity and Structure

We assessed population genetic diversity by estimating allelic 
richness, expected heterozygosity (He), observed heterozygos-
ity (Ho) and the inbreeding coefficient (FIS) using ‘diveRsity’ 
v1.9.90 (Keenan et al. 2013), with 1000 bootstrap replicates for 
confidence intervals. Genetic similarity was evaluated through 
Principal Component Analysis (PCA) using ‘adegenet’ v2.1.8 
(Jombart  2008). Overall FST, a measure of genetic differentia-
tion based on allele frequency variation at neutral loci, was es-
timated for each species using analysis of molecular variance 
on all SNPs with the ‘poppr’ package and converted into a  
χ2 distribution. Ancestry coefficients were estimated via dis-
criminant analysis of principal components (DAPC) and sparse 
non-negative matrix factorization (sNMF). For both methods, we 
tested1 to 16 genetic clusters (K). DAPC was performed with K-
means clustering on PCA-transformed genotypes, selecting the 
optimal K via the Bayesian information criterion and retaining 
10 principal component axes using cross-validation. For sNMF, 
‘LEA’ v.3.8.0 (Frichot and François 2015) was used, selecting the 
optimal K based on the stabilization of cross-entropy values and 
choosing the best replicate with the lowest cross-entropy.

2.11   |   Signals of Selection

To detect potentially adaptive loci, we used FST outlier analysis, 
GEA, and GPA. Association analyses were performed using latent 
factor mixed modeling (LFMM) and partial redundancy analysis 
(pRDA). This approach combined univariate and multivariate 
methods to detect both single-locus and multilocus signatures of 
selection with high power and low false-positive rates (Forester 
et al. 2018). For GPA, we tested two trait sets: (1) ∆Ttrait as an inte-
grative trait, and (2) a suite of leaf traits (LMA, thickness, width, 
Absorptance, Nmass, and g1) selected for their relevance to leaf en-
ergy balance, low intercorrelation (r < 0.7), and evidence of pop-
ulation differentiation. For C. sublimis, g1 was included despite 
population effects being only marginally significant (p = 0.0731).

To ensure complete SNP datasets, missing values were imputed 
with the most common allele across individuals. Given multi-
ple potential K values identified in prior population structure 
analyses, we conducted analyses for K = 1–3, treating all signif-
icant SNPs as putatively adaptive. FST outlier analysis was done 
using ‘pcadapt’ v.4.3.3 (Luu et al. 2017) using default parame-
ters, with SNPs considered putatively adaptive if the qvalue was 
< 0.05. LFMM was run for both GPA and GEA analyses with a 
lasso penalty using ‘lfmm’ v.1.1 (Caye et al. 2019) testing mul-
tiple latent factors. Z scores were calibrated for genomic infla-
tion before being converted into p-values. Candidate SNPs were 
identified using a false discovery threshold of q < 0.1. The pRDA 
analyses in both GPA and GEA were conducted using ‘vegan’ 
v.2.6–4 (Oksanen et al. 2022), with two principal components for 
genetic structure (see previous section) as conditional variables. 
For GPA, elevation was also included as a conditional variable to 
account for non-genetic variation in leaf traits. SNPs associated 
with phenotypes (GPA), or environments (GEA) were identified 
by extreme loadings, defined as 3 standard deviations along 
pRDA axes.
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2.12   |   Generalized Dissimilarity Modelling

We employed generalized dissimilarity modeling (GDM) to fur-
ther investigate nonlinear GEA and GPA and identify potential 
environmental drivers of variation. In contrast to LFMM and 
pRDA, this approach assesses multivariate, nonlinear patterns 
of genomic or trait turnover along environmental gradients, 
while accounting for isolation by distance (Ferrier et al. 2007; 
Mokany et al. 2022). GDM is useful for evaluating the relative 
importance of environmental predictors (via the sum of I-spline 
coefficients) and for identifying where the steepest gradients of 
change occur (by observing the change in slope).

For the genomic data, we ran GDMs on three SNP datasets. 
First, we used the putatively adaptive SNPs identified through 
trait associations (GPA analysis by both LFMM and pRDA). The 
second dataset included SNPs identified as genomic outliers (FST 
outlier analysis) and through association with the environment 
(GEA analysis). We explored both GEA and GPA datasets be-
cause GPA was not measured in a common garden; thus, GEA 
helps determine if the environmental variables linked to trait 
variation also drive adaptive variation. Although the environ-
mental drivers of genomic variation are already inherently as-
sessed within the GEA analyses, we performed GDM on this 
SNP set to allow direct comparison of driver relative importance 
across the different genomic GDMs. The third dataset inves-
tigated whole genome variation across environmental space, 
using the original cleaned SNP set that includes both adaptive 
and neutral SNPs. For all three analyses, we used a population-
level pairwise FST distance matrix generated with ‘SNPRelate’ 
v.1.30.1 (Zheng et al. 2012) using the relative beta estimator in 
Weir and Hill (2002).

Additionally, we conducted two trait GDMs to assess the ex-
tent to which temperature or other environmental factors 
explained variation in ∆Ttrait and leaf trait variation. We calcu-
lated population-level means for ∆Ttrait and other leaf traits (the 
uncorrelated suite described above). For the leaf trait GDM, we 
reduced variables to two principal component axes using the 
princomp function. Euclidean distance matrices were computed 
for each dataset using the dist function.

All five GDMs were fit using ‘gdm’ v.1.5.9–9.1 (Ferrier et al. 2007; 
Mokany et al. 2022). Predictor significance was tested with ma-
trix permutation (n = 50 permutations) using the gdm.varImp 
function, with predictor significance defined by increases in 
explained deviance. Variables with the highest sum of I-Spline 
Coefficients were considered most important. We estimated 
model sensitivity with bootstrapping (n = 1000 iterations), re-
taining 90% of populations (Shryock et al. 2015).

2.13   |   Glasshouse Experiment

Our goal in the glasshouse experiment was to assess how the 
climate of origin and growth environment influences intraspe-
cific variation in leaf thermoregulation. Specifically, we tested 
whether plants from warmer climates, or grown under warmer 
conditions, exhibited lower predicted ΔTtrait than those from 
cooler climates or grown under cooler conditions. To do this, we 
grew E. grandis seedlings collected from multiple mother trees 

across a temperature gradient under controlled cool-humid, 
warm-humid, and warm-dry chamber treatments.

The glasshouse experiment included 59 naturally germinated E. 
grandis seedlings collected from the base of 11 likely mother trees 
across six sites, and grown in pots at James Cook University's 
Environmental Research Complex in Cairns (Figures 1, 2, and 
S1). The number of mother trees per site ranged from one to 
three. Seedlings originated from sites spanning a mean annual 
temperature range of 18.8°C to 24.9°C.

To test the effects of climate of origin and growth environment 
on leaf traits, we allocated seedlings to one of three climate-
controlled chambers: a cool-humid chamber (26°C, 1 kPa VPD), 
a warm-humid chamber (32°C, 1 kPa VPD), and a warm-dry 
chamber (32°C, 2 kPa VPD). These treatments simulated typical 
summer conditions in the uplands (cool-humid) and lowlands 
(warm-dry), with the warm-humid chamber used to isolate the 
effects of VPD from temperature (Table S1).

In August 2022, one to two seedlings per mother tree were 
randomly assigned across the chambers. Two seedlings in the 
cool-humid treatment died, leaving 57 surviving seedlings while 
maintaining representation across all mother trees. After 2 
months, leaf-level gas exchange and functional traits were mea-
sured on new, fully expanded sun leaves. These trait data were 
used to calculate ∆Ttrait following the same approach as for field 
measured traits. Detailed measurement protocols are described 
in Supporting Information, Methods S2.

2.14   |   Analysis

Our goal was to assess if coordinated variation in leaf traits 
across tropical tree distributions reflects adaptation to tem-
perature through increased heat avoidance or tolerance at 
warmer sites.

We first quantified overall intraspecific variation, population 
differentiation, and the association of trait variation with ther-
mal gradients. Traits included leaf functional traits (e.g., LMA, 
LDMC, leaf thickness, and δ13C) or thermal parameters (e.g., 
T50, ∆Ttrait, and TSM). Intraspecific variation was assessed 
using the quartile coefficient of variation to account for issues 
with standard CV (Botta-Dukát  2023). Population differen-
tiation in leaf traits was measured using PST, the phenotypic 
analogue of FST, which quantifies the proportion of total trait 
variance attributable to differences among populations. If the 
95% confidence intervals for PST exceed FST, this can indicate 
trait divergence beyond neutral expectations. We also used R2 
from a linear model with population identity as the predictor to 
estimate trait differentiation, analogous to PST but without as-
suming trait heritability. Finally, linear regression was used to 
test for associations between leaf traits and the max temperature 
of the warmest month (MTWM).

To examine if trait variation across sites was an adaptation to 
thermal gradients across species distributions, we identified sig-
nals of selection using association analysis and compared the 
relative importance of environmental predictors in genomic 
versus trait generalized dissimilarity modeling. To complement 
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association analyses and explicitly test the contribution of gen-
otype and environment to intraspecific variation in leaf traits 
and ∆Ttrait for E. grandis saplings grown in the glasshouse, we 
used mixed effects models to test the influence of mean annual 
temperature of origin (continuous) and treatment (cool-humid, 
warm-humid, warm-dry) on leaf traits and ∆Ttrait, including 
‘mother tree’ as a random effect nested within ‘site’. We then re-
moved non-significant variables and presented estimated mar-
ginal means for the final models.

3   |   Results

3.1   |   Extent of Intraspecific Leaf Trait Variation in 
Natural Populations

In most cases, intraspecific trait variation (defined as the quar-
tile coefficient of variation, CV) for each trait was similar across 
the three species (Figure 2a). Traits with the lowest quartile CV 
(< 0.05) included LDMC, Absorptance, Reflectance, δ13C, and 
T50. The trait g1, which is calculated from δ13C (but accounts 
for some influence of the environment), had the highest vari-
ation and showed the greatest differences in CV across species, 
with CV = 0.14, 0.28, and 0.21 in C. sublimis, D. darlingiana, 
and E. grandis, respectively. For most traits, population effects 
on trait variation were significant (p < 0.05), except for leaf C/N 
ratio, δ13C, g1, and T50 in C. sublimis; stomatal density and T50 in  
D. darlingiana; and stomatal density and theoretical gmax in  

E. grandis (Figure 2a, Table S2). Where significant population 
effects on trait variation were observed, population explained 
between 23% and 85% of trait variation across all species and 
traits, with the strongest effects observed for leaf thickness 
(Figure 2a, Table S2). Population differentiation for most traits 
was stronger than expected because of genetic drift (PST > FST), 
except for leaf elemental concentrations or T50 in C. sublimis 
(Figure S2).

3.2   |   Relationship Between Leaf Traits 
and Maximum Temperature of the Warmest Month

We observed differences in the relationship between traits and 
max temperature of the warmest month (MTWM) across the three 
target species, although the explained variance was relatively low 
for many of these traits (Figures 2b and S3, Table S3). Across all 
species, g1 increased with MTWM, suggesting a decline in in-
trinsic water use efficiency potentially driven by higher stoma-
tal conductance at warmer growth temperatures. Leaf thickness 
also consistently decreased with increasing MTWM across all 
species, indicating the development of thinner leaves in warmer 
climates. In C. sublimis, LDMC and leaf width increased with 
MTWM, and reflectance decreased (Figures 2b and S3, Table S3). 
For D. darlingiana, as MTWM increased, LMA, Absorptance, and 
δ13C all decreased, whereas leaf width increased (Figures 2b and 
S3, Table S3). In E. grandis, as MTWM increased, width, reflec-
tance, and stomatal size decreased, whereas LDMC and stomatal 

FIGURE 2    |    Comparison of regression results for the effect of population or max temperature of the warmest month (MTWM) on trait variation 
for each species. Tiles are colored by R2, with transparent tiles indicating non-significant (p > 0.05) results. Values within tiles for panel a) show the 
quartile coefficient of variation, and symbols in panel b) show the sign of the slope estimate for the linear regression. For more information on model 
results, see Tables S2 and S3.
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density increased (Figures  2b and S3, Table  S3). For D. darlin-
giana and E. grandis, the covariation between stomatal density 
and size resulted in no significant change in theoretical gmax with 
MTWM (Figures 2b and S3, Table S3).

3.3   |   Implications of Intraspecific Trait Variation 
on Leaf Thermoregulation

The consequences of intraspecific trait trade-offs for leaf ther-
moregulation were investigated through the prediction of trait-
based leaf-to-air temperature differences (∆Ttrait) and how these 
vary with MTWM. Note that ∆Ttrait is calculated using a single 
set of microclimate parameters and thus represents the influ-
ence of traits only. Mean ∆Ttrait was 6.0°C, 5.1°C, and 4.2°C in C. 
sublimis, D. darlingiana, and E. grandis, respectively (Table S2). 
Intraspecific variation in ∆Ttrait was similar across the three spe-
cies, with quartile CV = 0.06 to 0.08 (Figure 2a). Population was 
a significant predictor of ∆Ttrait for all species, although the pro-
portion explained was slightly higher for D. darlingiana and E. 
grandis than for C. sublimis (Figure 2a and Table S2). We found 
evidence of leaf thermoregulation for two of the three species, 
with ∆Ttrait decreasing with increasing MTWM for D. darlingi-
ana (R2 = 0.22, p < 0.001) and E. grandis (R2 = 0.2, p < 0.001) but 
not for C. sublimis (Figures 2b and 3, Table S3). This represented 
a 0.26°C (95% CI: 0.16-0.36) and a 0.19°C (95% CI: 0.12-0.27) de-
crease in ∆Ttrait per 1°C increase in MTWM for D. darlingiana 

and E. grandis, respectively (Table S3). In other words, in these 
two species, leaf traits varied with climate in such a way that 
modeled leaf temperatures were closer to air temperatures 
under common conditions, and populations from warmer sites 
were predicted to experience less leaf heating relative to air tem-
perature than those from cooler sites.

Unsurprisingly, using theoretical gmax from stomatal anatomy 
to calculate trait-based leaf-to-air temperature differences 
(anatomical ∆Ttrait) led to substantially lower values of ∆Ttrait 
(Figure S4). Mean anatomical ∆Ttrait was equal to −0.6°C for D. 
darlingiana and −1.8°C for E. grandis (with negative values indi-
cating Tleaf cooler than Tair). Levels of intraspecific variation for 
anatomical ∆Ttrait in D. darlingiana and E. grandis were differ-
ent, with a quartile CV = −0.31 for D. darlingiana and −0.07 for 
E. grandis (Figure 2a). Population was only a significant predic-
tor of anatomical ∆Ttrait for E. grandis, with R2 = 0.45, p = 0.014 
(Figure 2a and Table S2). This time we found evidence of ther-
moregulation only for E. grandis (R2 = 0.17, p = 0.00495) where 
anatomical ∆Ttrait decreased 0.09°C (95% CI: 0.03-0.15) per 1°C 
increase in MTWM (Figures 2b and S4, Table S3).

3.4   |   Intraspecific Variation in Thermal Tolerance

Thermal tolerance metrics were similar for all three species, 
with species-mean T50 ranging from 49.5°C to 49.8°C (Table S2). 

FIGURE 3    |    Variation in daytime mean leaf-to-air temperature differences (∆Ttrait, a), thermal tolerance metrics (T50, b), and thermal safety mar-
gins (TSM; c, d) with max temperature of the warmest month across the distribution of three tropical tree species. Note in a and c ∆T is only based on 
leaf trait variation, with the same microclimate inputs for all trees, whereas in d, both traits and microclimate inputs vary with each individual tree 
(TSMclim). Microclimate inputs are derived from NicheMapR and not from max temp of the warmest month. Each point represents an individual-tree 
level average. Significant correlations with max temperature of the warmest month are denoted by solid regression lines, whereas non-significant 
correlations are dotted. The shaded region represents standard errors.
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Intraspecific variation was low relative to other traits, and popu-
lation differences were only significant in E. grandis (Figure 2a 
and Table S2). We observed significant positive relationships be-
tween T50 and MTWM for both D. darlingiana and E. grandis, 
but not C. sublimis (Figures 2b and 3, Table S3). T50 increased by 
0.48°C per 1°C rise in MTWM for both D. darlingiana (R2 = 0.26, 
p = 0.044) and E. grandis (R2 = 0.40, p < 0.001, Figure 3).

3.5   |   Isolating Trait-Mediated Effects on Thermal 
Safety Margins

The combined variation in T50 and ∆Ttrait was assessed 
through calculation of trait-based thermal safety margins 
(TSMtrait = T50 − Tleaf °C), using common microclimate inputs 
across all individuals. Because environmental conditions are 
held constant, all variation in TSMtrait reflects the effects of 
either T50 or trait-mediated cooling. We observed a significant 
increase in TSMtrait with MTWM for D. darlingiana and E. 
grandis, with TSMtrait increasing by 0.93°C per 1°C increase in 
MTWM for D. darlingiana (95% CI: 0.53–1.32), and by 0.69°C 
for E. grandis (95% CI: 0.42–0.95). No significant relationship 
was found for C. sublimis (Figures 2b and 3, Table S3). This 
pattern reflects coordinated variation in both thermal toler-
ance and trait-mediated leaf cooling, with thermal tolerance 
contributing approximately twice as much to the increase 
in thermal safety margins across the temperature gradient. 
When calculating trait-based thermal safety margins using 
stomatal anatomical traits (anatomical TSMtrait), we only ob-
served a relationship with MTWM in E. grandis (R2 = 0.74, 
p < 0.0001), representing an increase in TSMtrait of 0.83°C (95% 
CI: 0.55-1.11) per 1°C increase in MTWM (Figures 2b and S4, 
Table S3).

3.6   |   Variation in Operational Thermal Safety 
Margins

To demonstrate the effect of this intraspecific variation on 
operational TSMs, we plot TSM calculated with individual 
tree-level variation in both traits and modeled microclimate 
(daytime mean radiation, humidity, wind speed, and air tem-
perature) (Figure  3). Tleaf is still higher in warmer climates, 
but for E. grandis and D. darlingiana, this is to a lesser ex-
tent than would have been if they exhibited no trait variation 
across the thermal gradient. As a result, TSMclim declined 
significantly more slowly with MTWM in D. darlingiana and 
E. grandis (slopes = −0.89 and −0.86, respectively) than in C. 
sublimis (slope = −1.74), indicating a stronger buffering capac-
ity in species that exhibit trait-based thermoregulation and 
adjustments in heat tolerance.

3.7   |   Genetic Diversity and Population Structure

Genetic diversity was relatively low in our study species. 
Expected heterozygosity across all populations was 0.19 (±0.012 
SD) in C. sublimis, 0.19 (±0.011 SD) in D. darlingiana, and 0.23 
(±0.013 SD) in E. grandis (Table S4). Observed heterozygosity 
was less than expected heterozygosity for all populations of all 
species and was 0.15 (±0.014 SD) in C. sublimis, 0.12 (±0.010 SD) 

in D. darlingiana, and 0.18 (±0.016 SD) in E. grandis (Table S4). 
All three species showed strong isolation by distance, with man-
tel tests showing R2 of 0.86 (p = 0.001) in C. sublimis (Figure S5), 
R2 of 0.77 (p = 0.001) in D. darlingiana (Figure  S6), and R2 of 
0.51 (p = 0.011) in E. grandis (Figure S7). Ancestry analysis in-
dicated the presence of 1, 2, or 3 genetic clusters across the sam-
pled range, supported by PCA analysis. The main break for all 
species corresponds to the Black Mountain Corridor, a biogeo-
graphic barrier for multiple taxa coinciding with a break in the 
Great Dividing Range (Figures S4–S6) (Schneider et al. 1998).

3.8   |   Genomic Signals of Adaptation

We identified genomic signals of adaptation in all three species 
using multiple complementary methods (Figure  4). These in-
cluded FST outlier detection, GPA, and GEA, applied using both 
univariate (LFMM) and multivariate (pRDA) approaches.

LFMM identified relatively few candidate SNP overall 
(Table S5), reflecting its conservative detection of strong single-
locus signals. D. darlingiana exhibited the clearest LFMM sig-
nal, particularly with Nmass (25 SNPs) and g1 (11 SNPs)—traits 
tied to photosynthesis and stomatal behavior. In contrast, few or 
no SNPs were detected in E. grandis and C. sublimis for ∆Ttrait 
or leaf traits. D. darlingiana also showed broader environmen-
tal associations, particularly with RHmin, MTWM, and soil 
phosphorus.

Multivariate pRDA identified more candidate SNPs than LFMM 
across all species (Table S6), highlighting its greater sensitivity 
to polygenic patterns and small-effect loci that may be missed by 
univariate approaches. Trait-based pRDAs yielded 28 to 69 SNPs 
per species, and environment-based pRDAs identified between 
31 and 74 SNPs. In trait-based pRDA, RDA loadings were most 
strongly influenced by thickness and LMA (C. sublimis), absorp-
tance and g1 (D. darlingiana), and thickness and Nmass (E. gran-
dis) (Figure  S8). In environmental pRDAs, Bio14, RHmin, and 
MTWM consistently explained the most variation (Figure S8), 
aligning with LFMM results. The explanatory power of these 
pRDAs was low (Adjusted R2 values all < 0.01) but within the 
expected range for genome scans, where most genetic variation 
is neutral. Explanatory power was higher for the environment 
pRDAs (0.0063–0.0177) than for trait pRDAs (0.0019–0.0031), 
suggesting that some key traits under selection may not have 
been captured.

PCAdapt identified the largest number of candidate SNPs, es-
pecially in C. sublimis (243 SNPs), which also exhibited the 
strongest isolation by distance. Although this may indicate ad-
aptation, it could also reflect underlying neutral structure, as 
PCAdapt is sensitive to demographic effects.

Despite the large number of SNPs identified, overlap across all 
three methods within each species was limited (Figure 4), with 
only one SNP in C. sublimis shared across GPA, GEA, and out-
lier analyses. However, all species showed overlap between at 
least two methods, including between GPA and GEA, providing 
stronger evidence that phenotypic variation is shaped by envi-
ronmental selection. This partial concordance reflects the dif-
ferent selection signals captured by each method and suggests a 
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polygenic basis of adaptation involving many small-effect loci. 
Together, these findings highlight the value of combining mul-
tiple approaches to detect complementary signals of selection in 
natural populations.

3.9   |   Genotypic and Trait Turnover Across 
Environmental Gradients

We used generalized dissimilarity modeling to investigate 
the relative importance of environmental predictors in ex-
plaining deviance in the spatial patterns of genetic turnover 
based on (1) GPA SNPs, (2) GEA and outlier SNPs, and (3) all 
SNPs, as well as phenotypic turnover in (4) ∆Ttrait, and (5) 
leaf functional traits-PCA values. Genetic turnover refers to 
differences in allele frequencies among populations, whereas 
phenotypic turnover refers to differences in population-mean 
trait values across the landscape. Across all three species, the 
generalized dissimilarity models based on SNP datasets had 
generally high explained deviance (28.8% to 76.8%) and low 
intercepts (0 to 0.07), indicating the included predictors had 
good explanatory power. The generalized dissimilarity mod-
els based on ∆Ttrait or the leaf trait PCA values explained less 
variance in the response variables (explained deviance 7.2 to 
36.3%, intercepts 0.04 to 0.35) (Table S7).

For SNP-based GDMs, geographic distance, maximum tempera-
ture of the warmest month, and precipitation of the driest month 
(Bio14) consistently emerged among the strongest predictors of 
allele frequency turnover across all three species GDMs, though 
their relative importance differs (Figure  5 and Table  S7). For 
the two Proteaceae species, C. sublimis and D. darlingiana, soil 
pH was also influential, whereas minimum relative humidity 
(RHmin) was influential for E. grandis.

Trait-based GDM analyses differed somewhat from SNP-based 
GDMs, with geographic distance no longer a consistent key 
predictor of trait variation (Figure 5 and Table S7). Instead, en-
vironmental factors were primary drivers, although their rela-
tive importance varied among species. Notably, environmental 
predictors identified by trait-based GDMs strongly overlapped 
with those identified by SNP-based GDMs for C. sublimis and D. 
darlingiana but differed slightly for E. grandis. Specifically, for 
C. sublimis, both maximum temperature of the warmest month 
and moisture-related (RHmin, or Bio14) and soil-related (soil pH 
or soil phosphorus) variables were important predictors. In D. 
darlingiana, the maximum temperature of the warmest month 
and Bio14 were again the dominant predictors of population 
variation in ∆Ttrait and trait PCA values. By contrast, in E. gran-
dis, the maximum temperature of the warmest month, followed 
by minimum relative humidity, overwhelmingly explained vari-
ation in both ∆Ttrait and trait PCA analyses, with Bio14, import-
ant in SNP-based analyses, playing minimal to no role.

3.10   |   Effects of Climate of Origin and Growth 
Environment on Leaf Traits in E. grandis

In the climate-controlled glasshouse experiment, E. grandis 
showed trait variation resulting from both plastic responses to 
treatment conditions and adaptation to mean annual tempera-
ture of origin, but not their interaction (Figure 6 and Table S8). 
Leaf width had a negative correlation with MAT of origin and 
had significant effects of treatment, exhibiting narrower leaves 
when grown under warmer conditions. We observed a signifi-
cant positive correlation between g1 and MAT of origin, but no 
effect of treatment. Variation in Nmass (a proxy for Vcmax25) was 
not associated with MAT of origin, but was influenced by treat-
ment, with plants grown under cool-humid conditions having 

FIGURE 4    |    Overlap of candidate SNPs identified using FST outlier analysis, and genotype phenotype (GPA) and genotype environment (GEA) 
association analyses for three tropical tree species. Numbers indicate the total number of overlapping SNPs across analyses. Candidate SNPs identi-
fied from GPA and GEA include all SNPs identified using either latent factor mixed modeling (LFMM) or partial redundancy analysis (pRDA). For 
GPA analyses, candidate SNPs were identified using two different sets of response variables: modeled leaf-to-air temperature differences (ΔTtrait), 
and the principal component axes derived from a suite of leaf traits (Trait PCA). Intersections are colored by the total number of SNPs, with gray 
panels indicating no shared SNPs detected.
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a higher Nmass than plants grown under both warm-humid and 
warm-dry conditions.

When these traits were input into a leaf energy balance model 
parameterised with standard microclimate to determine ∆Ttrait, 
we found evidence of adaptation to MAT of origin but no appar-
ent effect of treatment (Figure 6 and Table S8). Seedlings from 
warm-origin provenances exhibited lower ∆Ttrait than seedlings 
from cool-origin provenances, meaning that their traits acted to 
reduce leaf temperatures more effectively under common condi-
tions. This supports the idea that intraspecific variation in leaf 
traits can offset the effect of higher air temperatures in warmer 
climates, contributing to enhanced evaporative cooling. These 
patterns were driven by intraspecific variation in both leaf width 
and g1. The decline in ∆Ttrait with increasing MAT of origin is 
likely due to the combined effects of narrower leaves and higher 
g1 (indicating lower water use efficiency), both of which reduce 
Tleaf under common conditions and thus decrease ∆Ttrait. The 
lack of a clear treatment effect on ∆Ttrait likely arises from op-
posing responses of individual traits to treatments. Specifically, 
wider leaves observed in the cool treatment increase the bound-
ary layer resistance, which decreases leaf total conductance 
compared to narrower leaves in the warm treatment. However, 

cool treatment leaves also show increased Nmass, which the sto-
matal model translates into higher stomatal conductance (for 
leaves with common g1). These trait responses effectively cancel 
each other out, so whereas trait acclimation did affect ∆Ttrait, the 
outcome was a maintenance of ∆Ttrait across treatments.

4   |   Discussion

Globally increasing temperatures threaten to push tropical 
rainforest plants beyond their physiological limits. However, 
populations adapted to contrasting climates may exhibit phe-
notypic divergence because of local adaptation in trait means, 
phenotypic plasticity, or both, that affect their capacity to cope 
with warming. Intraspecific variation of leaf traits across spe-
cies distributions can enhance leaf cooling, thereby avoid-
ing lethal temperatures in warmer regions. Yet, evidence of 
this thermoregulatory ability and the roles of acclimation or 
adaptation remain limited despite it being key information 
to assess population resilience. Here we show how leaf en-
ergy balance modeling combined with landscape genomics 
can assess patterns and drivers of variation in thermoregu-
latory traits in mature tropical rainforest trees. We found 

FIGURE 5    |    Relative importance of predictors in generalized dissimilarity models (GDM) for three tropical tree species. Relative importance is 
calculated as the sum of I-Spline coefficients for that predictor in the model. Panels present results for a) Cardwellia sublimis, b) Darlingia darlingi-
ana, and c) Elaeocarpus grandis. For each species, there are five separate analyses presented, with the response variable a population-level pairwise 
FST matrix on SNPs identified by GPA analyses (GPA SNPs), the SNPs identified from GEA or FST outlier analyses (GEA and Outlier SNPs), or the en-
tire suite of neutral and non-neutral SNPs (All SNPs). For the last two columns, the response variable was a Euclidean distance matrix based on either 
population-mean ∆Ttrait or principal component axes on a suite of leaf traits (Trait PCA). Model performance metrics can be found in Table S7. For 
the predictor variables, Geographic = geographic distance, MTWM = max temperature of the warmest month, RHmin = minimum relative humidity, 
Bio14 = precipitation of the driest month, Windmean = mean wind speed.

 13652486, 2025, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.70461 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [07/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 of 18

intraspecific variation of field-measured leaf traits associated 
with enhanced leaf cooling and partial maintenance of mod-
eled thermal safety margins in warmer sites for two of the 
three species, providing partial support for our first hypothe-
sis. Signals of selection were detected in all species; however, 
contrary to our second hypothesis, adaptive genomic variation 
associated with predicted ∆Ttrait was best explained by geo-
graphic distance and moisture-related variables rather than 
temperature alone. Finally, our glasshouse trial of E. grandis 
seedlings supported our third hypothesis: clines in ∆Ttrait with 
MAT of origin were a result of both phenotypic plasticity and 
adaptation.

4.1   |   Intraspecific Trait Variation Leads to 
Enhanced Leaf Cooling in Warmer Climates

Our expectation that leaf trait variation would enhance leaf 
cooling in plants from warmer sites was observed in two of 
the three species. This is consistent with the limited homeo-
thermy hypothesis (Mahan and Upchurch  1988; Michaletz 
et al. 2015), which suggests that trait-based regulation of leaf 
temperatures may help maintain carbon uptake in subopti-
mal environments. Although evidence for this phenomenon 
varies across biomes and species (Blonder et al. 2020; Fauset 
et  al.  2018; Guo et  al.  2023; Helliker et  al.  2018; Liancourt 
et  al.  2020; Still et  al.  2022; Zhou et  al.  2023), the theory is 

debated because of inconsistencies in its definition and testing 
(Garen et  al.  2023; Still et  al.  2023). By using a leaf energy 
balance model parameterized with observed leaf trait varia-
tions and common microclimate inputs, we isolate ∆T vari-
ations resulting from leaf trait covariation, excluding passive 
changes because of radiation, humidity, wind speed, and air 
temperature.

We found that traits varied significantly with MTWM in E. gran-
dis and D. darlingiana, but their responses differed: leaf width 
increased with MTWM for D. darlingiana and decreased for E. 
grandis. Wider leaves have lower boundary layer conductance, 
leading to higher leaf temperatures (Leigh et  al.  2017; Wright 
et al. 2017). Despite this, both species showed similar declines in 
∆Ttrait with increasing MAT. This suggests that variables associ-
ated with stomatal conductance (gs) played crucial roles in off-
setting the heating effect of wider leaves in D. darlingiana. When 
comparing predicted ∆Ttrait using the coupled photosynthesis-
stomatal conductance model with predictions based on theo-
retical maximum conductance, the ∆Ttrait trends aligned for E. 
grandis but not for D. darlingiana. Given the impact of gs model-
ing on our results, it is crucial to develop approaches that accu-
rately account for how gs varies with temperature.

We examined whether variation in leaf traits and thermal tol-
erance helps maintain thermal safety margins across a wide 
thermal gradient. Thermal tolerance increased with MTWM, 

FIGURE 6    |    Results from the glasshouse experiment showing significant effects (p < 0.05) of both treatment conditions and mean annual tem-
perature of origin for mother trees in E. grandis. Panels show (a) response of predicted leaf-to-air temperature differences based on leaf traits (∆Ttrait), 
(b) g1 calculated from leaf δ13C plotted as log10 transformed values, note that g1 is inversely proportional to intrinsic water use efficiency, (c) effective 
leaf width, and (d) leaf Nmass (a proxy for Vcmax25). Points represent observed plant-level averages, and lines and shaded regions show the estimated 
marginal means and 95% confidence intervals. Letters in panel (d) show significant differences.
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whereas predicted ∆Ttrait decreased for two of the three spe-
cies. These adjustments worked together to increase both heat 
tolerance and avoidance in mature trees at warmer sites. When 
accounting for observed microclimate, this trait variation was 
not sufficient to perfectly maintain thermal safety margins 
but did lead to a shallower decrease in thermal safety margin 
with MTWM than for C. sublimis, which showed no variation 
in either ∆Ttrait or thermal tolerance. This supports other stud-
ies showing that trait variation (both intra- and inter-specific) 
increases thermal safety margins in plants grown under warm 
environments compared to cooler environments (Kitudom 
et al. 2022; Kullberg et al. 2023; Perez and Feeley 2020). Notably, 
the species that exhibited thermoregulation were also those that 
showed increased thermal tolerance with MTWM, suggesting 
that avoidance and tolerance strategies can co-occur. In con-
trast, the species that showed no evidence of either trait-based 
cooling or increased thermal tolerance (C. sublimis) may be 
more vulnerable to climate change or rely on alternative mech-
anisms, such as leaf shedding, to mitigate heat stress. Failure 
to consider intraspecific trait variation in trait-based thermal 
safety margins may bias assessment of species vulnerability to 
climate change.

4.2   |   Environmental Drivers of Adaptive Genomic 
and Phenotypic Divergence

Population differentiation for most traits was stronger than ex-
pected because of genetic drift (PST > FST), indicating phenotypic 
plasticity, divergent selection, or both in natural populations. We 
detected evidence of selection in all three species, with both GEA 
and GPA analyses identifying SNPs associated with climate and 
leaf traits. Moisture-related variables, particularly precipitation 
of the driest month and relative humidity, were the most con-
sistent selective drivers, though the maximum temperature of 
the warmest month also contributed. SNPs shared across GEA 
and GPA approaches in all species suggest that trait variation is 
shaped by environmental selection. This was further supported 
by GDM results, which revealed similar environmental predic-
tors of genomic turnover for both traits and climate, highlighting 
the role of climatic selection in driving adaptive differentiation. 
Moisture availability and temperature are well-established driv-
ers of mortality (Aleixo et al. 2019; Bauman, Fortunel, Delhaye, 
et al. 2022), growth (Bauman, Fortunel, Cernusak, et al. 2022), 
regeneration (Comita and Engelbrecht 2017) and thereby species 
distributions (Gaviria et al. 2017) in tropical trees. Interestingly, 
the importance of edaphic variables such as soil pH was also 
reflected in our GDM for the two Proteaceae species. This is 
likely related to their formation of proteoid roots (Cheesman 
et  al.  2018), an adaptation that enhances phosphorus avail-
ability in nutrient-poor and acidic soils (Griebenow et al. 2022; 
Lamont 2003).

Geographic distance emerged as a stronger driver of genomic 
variation than any single environmental variable across all 
species. This correlation highlights the need for caution in in-
terpreting our results, as the adaptive signal may in part reflect 
neutral population structure. This aligns with evidence that 
functional genetic variation might be influenced by neutral pro-
cesses rather than selection alone (Kardos et al. 2021; Mathur 
et  al.  2023). Alternatively, it could indicate that loci under 

selection, which contribute to trait clines, may be associated 
with other environmental variables not explored here that cor-
relate with geographic distance, or they may not form monotonic 
allele frequency clines in response to environmental gradients 
(Lotterhos 2023). This does not negate the presence of adaptive 
signals but highlights the complexity of adaptation, driven by 
intricate genetic systems. Thus, our findings, while pointing 
to potential adaptive significance, also reflect the challenges 
in distinguishing selection and drift in natural populations. To 
address this, we complemented our field-based analyses with a 
genotype × environment study using climate-controlled glass-
house chambers.

4.3   |   Local Adaptation Drives Leaf 
Thermoregulation in E. grandis

The implications of local adaptation from the genomic anal-
ysis were supported by the climate-controlled experiment for 
E. grandis seedlings. We found that local adaptation to the 
climate of origin was likely responsible for the decline in pre-
dicted ∆Ttrait with temperature across the species distribution. 
This was despite the acclimation of some traits to temperature 
or VPD. Essentially, although leaf Nmass (a proxy for photosyn-
thetic capacity) and leaf width showed plasticity to growth con-
ditions, the net effect of this trait variation on predicted ∆Ttrait 
cancelled out. As a result, the variation in predicted ∆Ttrait was 
primarily driven by ecotypic variation in leaf width and water 
use efficiency. This does not mean that plasticity is unlikely to 
contribute to patterns of ∆Ttrait with temperature, as sensitivities 
to covarying environmental factors may differ across species 
and lead to different plastic and adaptive responses (Middleby, 
Cheesman, Hopkinson, et  al.  2024). Interestingly, trait-based 
GDMs indicated that temperature had a greater relative impor-
tance for predicting phenotypic variation in ∆Ttrait than it did 
for underlying genetic variation, suggesting that acclimation 
may have contributed to trait differences in the field. However, 
in the glasshouse experiment, although individual traits showed 
plastic responses to temperature and humidity, there was no 
significant treatment effect on ∆Ttrait itself. This may reflect 
differences between the acclimation capacity of seedlings and 
mature trees.

Interestingly, we observed that g1 increased with MAT of ori-
gin in the glasshouse experiment for E. grandis and in the field 
measurements for all three species, indicating a decline in in-
trinsic water use efficiency and increased evaporative cool-
ing in warmer-origin populations. Although temperature and 
VPD were positively correlated across our field sites, declining 
iWUE with increasing VPD would be unexpected under typi-
cal drought adaptation scenarios, where reduced stomatal con-
ductance is generally favored to conserve water. However, in 
the Wet Tropics of Queensland, warmer areas tend to be wetter, 
as coastal lowlands receive higher annual rainfall than upland 
sites in the rain shadow. In this context, lower iWUE may re-
flect an adaptation to warm-wet conditions, where prioritizing 
transpirational cooling and carbon uptake is increased in the 
lowlands compared to the cooler but drier uplands. Our results 
suggest that temperature and/or soil moisture, rather than at-
mospheric dryness per se, may be the dominant selective force 
shaping ecotypic differences in stomatal behavior in E. grandis.
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Moreover, the generalized dissimilarity modeling on outlier 
SNPs identified using GPA indicated that precipitation of the 
driest month was a more important explanatory variable than 
MAT. It is possible then that ecotypic variation observed in the 
glasshouse was driven by changes in precipitation rather than 
temperature. However, because precipitation of origin was posi-
tively correlated with temperature of origin in our sampled prov-
enances, it is difficult to disentangle their individual effects.

4.4   |   Conclusions and Recommendations 
for Future Research

We found that across some of the species tested, local adaptation 
to climate significantly influences variation in leaf thermoregu-
latory traits. However, it remains unclear whether observed eco-
typic variation is a response to thermal or moisture gradients, 
and whether leaf thermoregulation itself is under selection or if 
this is just a byproduct of adaptive variation to maintain carbon 
uptake or avoid water stress. Our findings indicate that limited 
homeothermy is present in some, but not all, tropical tree spe-
cies, supporting growing evidence that although some species 
exhibit acclimation and/or adaptation in leaf thermal traits, 
patterns of intraspecific variation differ across species (Blonder 
et al. 2020; Kullberg and Feeley 2022; Middleby, Cheesman, and 
Cernusak 2024; Middleby, Cheesman, Hopkinson, et al.  2024; 
Tarvainen et al. 2022). As climate change continues to rapidly 
alter local temperature and moisture regimes, species that can 
increase their heat tolerance and/or heat avoidance may be less 
vulnerable to heat stress and better able to maintain carbon 
uptake and growth. Conversely, species lacking such strategies 
may face a heightened risk of decline or shifts in distribution 
(Fortier et al. 2024). This underscores the importance of consid-
ering intraspecific variation when assessing forest vulnerability 
to future climate change.

Future research should focus on expanding studies of plant ther-
moregulation by leveraging existing trait and genetic datasets 
to better understand the range of responses of tropical rainfor-
est trees. Incorporating additional traits such as leaf angle and 
canopy architecture and accounting for dynamic rather than 
steady-state responses to fluctuating environments will also be 
important steps forward to more fully capture the processes in-
fluencing leaf thermal regulation strategies.
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