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Abstract 

Single-cell isoform analysis enables high-resolution characterization of transcript 
expression, yet analytical frameworks to systematically measure transcriptomic com-
plexity are lacking. Here, we introduce ScIsoX, a computational framework that inte-
grates a novel hierarchical data structure, a suite of complexity metrics, and dedicated 
visualization tools for isoform-level analysis. ScIsoX supports systematic exploration 
of global and cell-type-specific isoform expression patterns arising from alternative 
splicing, revealing multidimensional complexity signatures across diverse datasets—
insights often missed by conventional gene-level approaches. We demonstrate the util-
ity of ScIsoX across multiple real-world single-cell isoform sequencing datasets, 
showcasing its potential as a general framework for transcriptomic complexity analysis.

Keywords:  Isoform-resolved transcriptomics, Single-cell isoform sequencing, 
Alternative splicing, Isoform analysis

Background
Alternative splicing dramatically expands the functional repertoire of eukaryotic cells by 
generating diverse transcript isoforms from a limited number of genes. Recent advances 
in single-cell isoform analysis have enabled comprehensive characterization of tran-
script diversity at unprecedented resolution. Two complementary approaches are now 
available: short-read methods, which offer high throughput but with limited isoform 
resolution, and long-read sequencing technologies, which provide full-length transcript 
characterization at lower throughput [1, 2]. However, analytical frameworks for measur-
ing and interpreting the multidimensional nature of transcriptomic complexity at single-
cell resolution do not exist for either platform. This represents a missed opportunity to 
leverage the additional layers of information provided by isoform-resolved data, which 
this study aims to address.

Current approaches for analyzing single-cell isoform data face three major challenges. 
First, conventional data structures present limitations for multidimensional complexity 
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analysis. Gene-by-cell count matrices inherently fail to capture the complexity and vari-
ability of isoform usage across genes, while transcript-by-cell matrices with gene IDs as 
metadata, though more popular and widely adopted in Nanopore and PacBio software, 
require repeated metadata lookups and data reorganization for within-gene complex-
ity operations to identify which transcripts belong to the same gene during analysis, 
causing computational inefficiency. Second, attempts to merge gene-level and isoform-
level count matrices into a “cell × gene × isoform” tensor necessitate extensive zero pad-
ding to accommodate gene-specific variability in isoform numbers, resulting in sparse 
3D tensors with excessive memory demands. Third, while existing analytical methods 
excel at isoform discovery and quantification [3, 4], they lack comprehensive metrics 
that address fundamental questions about the organizing principles governing isoform 
expression patterns across cells and cell types.

Results and discussion
To address the challenges in single-cell isoform analysis, we introduce ScIsoX, a 
computational framework that implements (i) a novel Single-Cell Hierarchical Tensor 
(SCHT) data structure, (ii) a comprehensive suite of analytical metrics, and (iii) visu-
alization tools for measuring transcriptomic complexity across multiple biological scales 
(Fig.  1a and Additional file  1: Fig. S1). At its core, the SCHT organizes isoform-level 
count data into gene-specific sub-tensors, where each gene is represented by an indi-
vidual count matrix containing isoform-by-cell expression values. This partition-based 
design preserves the intrinsic hierarchy without resorting to extensive zero padding, 
yielding a representation that is both biologically meaningful and computationally effi-
cient. When cell type information is integrated, the SCHT is extended to include cell 
types as an additional dimension. Each count matrix contains only the cells belonging 
to that particular cell type expressing the gene, creating a multi-level hierarchy that ele-
gantly captures gene-isoform-cell relationships.

Building upon this structure, ScIsoX conceptualizes transcriptomic complexity 
through seven core metrics, each capturing a distinct dimension of isoform expres-
sion patterns (Fig. 1a and Additional file 2: Table S1). The primary dimensions include 
(I) intra-cellular isoform diversity (i.e., the tendency for a gene to co-express multiple 
isoforms within individual cells), (II) inter-cellular isoform diversity (i.e., the diversity 
of isoforms expressed by a gene across the whole cell population), (III) intra-cell-type 
heterogeneity (i.e., cell-to-cell variation in isoform usage), and (IV) inter-cell-type speci-
ficity (i.e., measure of cell-type-specific isoform usage). Three additional higher-order 
metrics measure variability in these patterns to determine, (V) whether cellular hetero-
geneity is concentrated in specific cell types, (VI) whether cell-type-specific differences 
occur between particular lineages, and (VII) whether isoform co-expression patterns 
vary across cell types. To complement these core metrics, we provide additional char-
acterization metrics that capture specific aspects of isoform usage (Additional file  2: 
Table S2).

We have confirmed ScIsoX’s utility by analyzing three distinct single-cell isoform 
datasets surveying: (1) murine hematopoietic development via Nanopore sequencing 
[5], (2) murine and human brain development via Nanopore sequencing [6], and (3) 
human peripheral blood mononuclear cells (PBMCs) via PacBio’s Kinnex protocol [7]. 
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Fig. 1  ScIsoX overview and comparison of complexity landscapes across biological systems. a Core 
of the ScIsoX computational framework showing the interconnected components of data structure 
and analytical processing. Left: SCHT construction organizes isoform expression data into gene-specific 
sub-tensors; right: ScIsoX’s analytical pipeline progressing from complexity metrics to biological insights. 
Created with BioRender.com. b Complexity landscapes in mouse early blood development, human 
peripheral blood mononuclear cells, and mouse brain development datasets, illustrating the relationship 
between selected complexity dimensions. Top: the visualized complexity space reveals gene distribution 
across four quadrants, with annotated genes of interest that demonstrate characteristic complexity 
signatures; bottom: density contour maps revealing system-specific clustering patterns, demonstrating how 
complexity distributions vary across different biological contexts
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These datasets represent fundamentally different biological systems while also employ-
ing distinct technical approaches to isoform sequencing. This selection enabled compre-
hensive evaluation of our framework’s performance and broad applicability. All datasets 
included cell type annotations for analysis. Our analysis revealed markedly different 
transcriptomic complexity patterns in these systems, highlighting the biological insights 
uniquely accessible through our approach.

The transcriptomic complexity analysis implemented in ScIsoX can, for example, 
assess distinct isoform expression patterns (Fig.  1b). These patterns were non-ran-
domly distributed, with murine hematopoietic development exhibiting a bimodal pat-
tern dominated by low isoform diversity and low cell type specificity (Q3: 52.89%) with 
fewer genes showing cell-type-specific expression (Q1 + Q2: 32.85%) (Fig.  1b). The 
mouse brain development dataset exhibited a similar bimodal pattern, also demonstrat-
ing substantial diversity across quadrants with notable clusters. In contrast, the human 
PBMC dataset exhibited a strikingly different distribution compared to the two develop-
ment datasets, showing a remarkably strong positive correlation between inter-cellular 
isoform diversity and inter-cell-type specificity (Fig. 1b). This tight correlation suggests 
that in specialized immune cells, isoform diversity is closely linked to cell-type-specific 
functions. Both developmental datasets showed a greater range of specificity/diversity 
relationships than PBMCs, reflecting greater transcriptomic heterogeneity in develop-
ment compared to specialized immune cells, which require specific isoform-switching 
events for state transitions and to respond to cellular signals. Our framework uniquely 
identifies genes with interesting complexity profiles that may be overlooked by conven-
tional single-cell data analysis. For instance, the vast majority of genes in all datasets 
exhibit higher inter-cellular diversity compared to intra-cellular diversity, demonstrating 
a fundamental principle: genes tend to express cell-type-specific isoforms rather than 
multiple isoforms in each cell type (Fig. 2a). However, a subset of genes with intra-cel-
lular diversity that is higher than their inter-cellular diversity can be identified, suggest-
ing coordinated co-expression of multiple isoforms within individual cells rather than 
cell-specific isoform selection. These genes may require specific interdependent isoform 
relationships for proper function, representing a distinct regulatory mechanism for fur-
ther study. For example, while the role of Sox17 in endothelial-to-hematopoietic transi-
tion is well-established [8, 9], the specific significance of its multiple transcript isoforms 
remains largely unexplored. Our analysis suggests that Sox17 may utilize coordinated 
expression of multiple isoforms to achieve its diverse regulatory functions during early 
hematopoietic development (Additional file 1: Fig. S2).

Co-expression analysis reveals distinct patterns of coordinated isoform expres-
sion. For instance, in murine hematopoietic development, the transcription factor 
Irf8, a key interferon regulatory factor critical for myeloid lineage determination and 
immune cell differentiation [10], shows multiple clusters of co-expressed isoforms 
(Fig. 2b). A deeper analysis of the co-expression patterns in Irf8 reveals that these pat-
terns represent multiple, distinct modes of dynamic regulation. We identified one iso-
form pair (ENSMUST00000160388:Irf8-202 vs ENSMUST00000162001:Irf8-205) 
that exhibits a significant pattern of stage-specific co-expression between a canoni-
cal protein-coding transcript and a intron-retaining variant. In contrast, another pair 
(ENSMUST00000047737:Irf8-201 vs ENSMUST00000160943:Irf8-204) displays a 
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mixed regulatory relationship, corresponding to a cell-type-specific switch between a 
full-length and a truncated protein-coding isoform. Together, these findings highlight 
a complex, multi-layered strategy for controlling this master transcription factor, likely 

Fig. 2  Multidimensional transcriptomic complexity analysis reveals isoform expression patterns. a 
Intra-cellular versus inter-cellular diversity analysis across three datasets. Highlighted are genes that fall 
below the diagonal line (i.e., where intra-cellular diversity exceeds inter-cellular diversity). b Irf8 isoform 
co-expression correlation analysis, showing both positive and negative expression correlations between 
different isoforms, suggesting complex regulatory relationships. c Alt1 isoform proportion transitions during 
mouse hematopoietic development. d MS4A1 isoform usage profiles across different immune cell types in 
PBMCs. e Comparison of IKZF2 complexity profiles across different immune cell types in PBMCs. f Heatmap of 
intra-cellular isoform diversity across brain postnatal developmental stages (days 14, 21, 28, and 56)
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involving both post-transcriptional buffering by the non-coding RNA and functional 
fine-tuning via protein isoform switching (see Additional file  3: Supplementary Note 
for the detailed case study). ScIsoX also enables tracking proportions of expressed 
isoforms across cell types, further highlighting dynamic changes in isoform usage, e.g., 
across lineages or developmental stages (Fig. 2c). In addition, ScIsoX facilitates detailed 
examination of genes’ cell-type-specific complexity profiles. For example, the gene 
MS4A1 (encoding B-lymphocyte antigen CD20) exhibits distinctive isoform expres-
sion patterns across human PBMCs, with different immune cell types showing distinct 
isoform co-expression profiles (Fig. 2d). Notably, MS4A1 falls below the diagonal in the 
diversity analysis (Fig. 2a), with multiple isoforms consistently co-expressed across most 
PBMC cell types (Fig. 2d), suggesting its function depends on the orchestrated interplay 
of specific isoform combinations across diverse immune cell types.

Unlike existing approaches that treat isoform diversity as a single dimension, ScIsoX 
provides both a multifaceted view of transcriptomic complexity (Fig. 2e and Additional 
file  1: Figs. S3 and S4) and enables researchers to generate testable hypotheses about 
the functional significance of alternative splicing, such as across developmental time-
points or anatomical regions. For example, ScIsoX reveals distinct patterns of intra-
cellular isoform diversity across postnatal developmental stages, with clear gene clusters 
exhibiting stage-specific isoform expression profiles. The heatmap in Fig. 2f illustrates 
how certain gene groups maintain consistently high diversity (dark purple) throughout 
development, while others show stage-specific diversity patterns. Additionally, ScIsoX 
reveals distinct patterns of inter-cellular isoform diversity and inter-cell-type specific-
ity that evolve dynamically throughout brain development and differ markedly between 
brain regions (Additional file 1: Figs. S5 and S6).

The structured organization of complexity metrics and hierarchical tensor format facil-
itates integration with complementary single-cell analysis approaches. The quantitative 
metrics can be correlated with differential expression patterns to identify relationships 
between expression levels and isoform regulation mechanisms, allowing researchers 
to relate changes in transcriptomic complexity with expression level alterations across 
conditions. The transcriptomic complexity signatures can also be correlated with DNA 
binding motif enrichment patterns to identify potential regulatory elements driving spe-
cific complexity profiles. Moreover, the framework’s cell type-resolved metrics can be 
mapped onto trajectory inference results, e.g., to characterize dynamic changes in iso-
form usage mechanisms during cellular differentiation processes. The classification sys-
tem enables the incorporation of complexity dimensions into gene regulatory network 
analyses, potentially revealing how splicing regulators influence network topology and 
dynamics. Furthermore, these metrics support cross-species comparisons to investigate 
evolutionary conservation of isoform regulation patterns.

Of particular interest is the complementary relationship with differential transcript 
usage (DTU) methods such as DTUrtle [11] and Sierra [12]. While these established 
DTU approaches excel at comparative analysis, identifying statistically significant 
changes in transcript proportions between experimental conditions, ScIsoX addresses 
a fundamentally different analytical question through systematic characterization of 
inherent transcriptomic complexity patterns. Rather than asking “which genes show 
differential isoform usage between conditions?”, our framework asks “what complexity 
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patterns characterize isoform expression within datasets?” This creates opportunities 
for enhanced analytical workflows where ScIsoX complexity profiles can serve as prior 
information to guide DTU study design, directing comparative analysis toward genes 
with appropriate complexity characteristics (e.g., focusing on genes with multi-isoform 
expression rather than binary switches), while DTU results gain deeper biological con-
text when interpreted through ScIsoX’s complexity landscapes.

While these opportunities highlight the framework’s potential, several important fac-
tors should be considered when applying and interpreting results from ScIsoX. First 
and foremost, the validity of ScIsoX’s metrics is contingent upon the quality of the 
upstream data. A rigorous workflow before using ScIsoX is essential for reliable results. 
We recommend that users perform isoform quantification and filtering using estab-
lished, platform-appropriate tools, and apply batch correction where the experimental 
design requires it. While ScIsoX includes internal filtering steps, these are intended to 
mitigate residual noise and do not replace the need for robust upstream quality control.

Second, the accuracy of several metrics depends on high-quality cell type annota-
tions. While the framework is compatible with any popular single-cell clustering and 
annotation method, the quality of cell type definitions will affect the accuracy of spe-
cific metrics, particularly those based on cell type comparisons. In cases where cell type 
boundaries are ambiguous or annotations uncertain, users should exercise caution when 
interpreting results or focus on metrics that do not depend on cell type information.

Third, ScIsoX primarily provides descriptive metrics and exploratory visualiza-
tions for transcriptomic complexity patterns. While the co-expression analysis module 
include statistical tests (FDR correction, bootstrap stability), the core complexity metrics 
do not include p values for comparing across conditions. For formal statistical compari-
sons across conditions, we recommend exporting the complexity metrics and applying 
appropriate statistical tests tailored to the specific experimental design and biological 
questions.

Fourth, users should be aware that the analysis workflow is designed to focus on genes 
with detectable multi-isoform expression. Consequently, genes found to express only a 
single isoform after quality control are excluded from complexity analyses. This filtering 
step is essential for meaningful interpretation but may reduce the final number of genes 
under consideration. Improved sequencing quality and depth can significantly mitigate 
this issue by enabling more comprehensive isoform detection. If users wish to maximize 
the number of genes in subsequent analyses, they can increase the nhvg parameter during 
SCHT creation, though this value cannot exceed the total number of genes present in 
the dataset.

Finally, while the hierarchical data structure offers computational advantages for typi-
cal single-cell datasets, extremely large datasets may still require additional optimization 
strategies. The framework includes options for batch-wise processing and memory-effi-
cient data handling to address these scenarios.

Conclusions
In summary, ScIsoX establishes the first comprehensive framework for systematic 
measurement and visualization of isoform-level transcriptomic complexity in single-cell 
sequencing data across platforms. Through its novel hierarchical data structure, ScIsoX 
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captures distinct dimensions of complexity at the gene, cell type, and cell population 
levels, generating isoform-level insights into transcriptome regulation often missed by 
conventional gene-level analyses. ScIsoX’s multidimensional complexity metrics and 
intuitive visualizations provide a foundation for investigating the functional roles of 
alternative splicing, e.g., in cell differentiation, development, and disease contexts across 
diverse biological systems. By using standard R objects for its core data structures and 
metrics, ScIsoX creates opportunities for future integration with other omics layers 
and analytical methods, positioning the framework as a valuable addition to the single-
cell analysis ecosystem. The framework processes isoform count matrices from diverse 
sequencing platforms, making multidimensional complexity analysis broadly accessible, 
though users should consider platform-specific limitations when interpreting complex-
ity metrics and other key factors.

Methods
Single‑cell hierarchical tensor creation

ScIsoX introduces a novel hierarchical data structure that efficiently represents the 
three-dimensional relationship between genes, isoforms, and cells. Unlike conventional 
approaches that use either separate gene/transcript matrices, our approach organ-
izes isoform-level data into gene-specific sub-tensors. Each gene is represented by an 
individual matrix containing isoform-by-cell expression values, preserving the intrin-
sic hierarchy without extensive zero padding. While we refer to our data structure as 
a “hierarchical tensor,” we intentionally diverge from the strict mathematical definition, 
instead adopting a biologically oriented representation specifically tailored to single-
cell isoform data. This data structure emphasizes functional utility and simplicity while 
facilitating scalable analysis at the isoform level to directly confront the intricacy of tran-
scriptomic complexity.

Quality control and normalization

Quality control and normalization are performed in ScIsoX. It requires the following 
inputs: (i) a gene count matrix, (ii) an isoform count matrix, (iii) a transcript annotation 
file, and (iv) cell metadata (optional). The framework supports both raw count matrices 
and pre-normalized count matrices through the input_type parameter, which can be 
set to either “raw_counts” or “normalised.”

For the example datasets, genes were filtered that were detected in fewer than pmin 
proportion of cells (default: 0.02) and with mean expression counts below ε (default: 
1× 10−4 ). All transcripts belonging to retained genes were kept to preserve complete 
isoform diversity information. At the cell level, we employed a data-adaptive approach to 
identify and exclude low-quality cells and potential doublets based on the distribution of 
detected genes using the plot_genes_per_cell_distribution() and recom-
mend_qc_parameters() functions. Cells with fewer than nmin genes (default: 200) 
or more than nmax genes (default: 20,000) were excluded.

For normalization, when input_type = ”raw_counts”, retained count 
data were normalized using counts per million (CPM) with subsequent logarithmic 
transformation:
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where cgi represents the raw count for feature g in cell i, and G being the total number 
of features (genes or transcripts). When input_type = ”normalised”, the input 
count matrices are assumed to be already pre-normalized (e.g., TPM or FPKM), and 
only logarithmic transformation is applied:

where cgi represents the raw count for feature g in cell i.

Identification of highly variable genes

To prioritize computational resources on genes exhibiting biologically meaningful varia-
tion, we implemented a dispersion-based selection of highly variable genes (HVGs). For 
each gene g, ScIsoX calculates the variance-to-mean ratio based on their normalized 
expression counts. Genes are ranked by their dispersion values, and the top nHVG genes 
(default: 3000) are selected for subsequent analysis. This approach effectively identifies 
genes with significant biological variability while excluding stably expressed housekeep-
ing genes and technical noise. If a greater number of genes is desired for inclusion, nHVG 
can be increased up to the total number of genes in the dataset.

Mathematical formulation of the SCHT data structure

We developed a hierarchical structure to represent single-cell isoform data. Let 
C = {c1, c2, . . . , cn} be the set of all cells after quality control and filtering, and 
G = {g1, g2, . . . , gm} be the set of HVGs. For each HVG g ∈ G with Ig isoforms measured 
across n cells, we define a gene-specific expression matrix:

where each element xij ∈ Xg represents the normalized expression of isoform i of gene g 
in cell j (see Fig. 1a for visual representation of this hierarchical structure). Note that Ig 
represents the total number of isoforms for gene g, and different genes may have differ-
ent numbers of isoforms. The standard SCHT data structure is defined as the collection 
T = {(g ,Xg ) | g ∈ G} . Cell-type-specific sub-tensors are created when cell type informa-
tion is available. We partition the filtered cell set C into K non-overlapping cell types 
S = {S1,S2, . . . ,SK } . Note that not all genes are expressed in every cell type. For each 
HVG g [Sk ] ∈ G that is expressed in cell type Sk ∈ S , where k = 1, 2, · · · ,K  , we denote 
I
[Sk ]
g  as the number of isoforms of gene g that are expressed in cell type Sk . We then 

define a cell-type-specific expression matrix X(k)
g ∈ R

I
[Sk ]
g ×|Sk |

+  containing columns cor-
responding to cells of type Sk . The integrated SCHT data structure with cell-type-spe-
cific structure is then defined as follows,

This hierarchical representation facilitates comprehensive analysis of transcriptomic 
complexity.

(1)xgi = log2
cgi
G
j=1 cgj

× 106 + 1 ,

(2)xgi = log2(cgi + 1),

(3)Xg ∈ R
Ig×n
+ ,

(4)Tintegrated = {(g ,Xg , {X
(1)
g ,X(2)

g , . . . ,X(K )
g }) | g ∈ G}.
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Multi‑dimensional transcriptomic complexity framework

We developed a comprehensive transcriptomic complexity analysis framework that quanti-
fies key aspects of transcriptomic complexity, focusing on a core set of metrics that capture 
the essential dimensions of isoform expression patterns (Additional file 2: Table S1).

I: intra‑cellular isoform diversity

To quantify isoform diversity within individual cells, ScIsoX computes a weighted 
Shannon entropy measure for each gene. For cell cj ∈ C expressing gene g ∈ G , the nor-
malized Shannon entropy is defined as

where pij = xij/
∑Ig

k=1 xkj represents the proportion of gene expression attributed to iso-
form i in cell cj , and nj is the number of isoforms detected in that cell. To account for 
expression magnitude, we compute a weighted mean across cells as intra-celluar isoform 
diversity,

where wj =
∑Ig

i=1 xij is the total expression of gene g in cell cj . This metric measures the 
tendency for genes to co-express multiple isoforms within individual cells.

II: inter‑cellular isoform diversity

To assess isoform diversity at the cell population level, ScIsoX computes the Shannon 
entropy of the mean isoform expression proportions across all cells, normalized by the 
maximum possible entropy as

where p̄i = x̄i/
∑Ig

k=1 x̄k , and x̄i = 1
n

∑n
j=1 xij is the mean expression of isoform i across 

all cells. This metric quantifies the overall diversity of isoforms used across the entire cell 
population.

III: intra‑cell‑type heterogeneity

To quantify cell-to-cell variation in isoform usage within a given cell type, ScIsoX com-
putes the average Jensen-Shannon distance between cells. For a gene g ∈ G expressed in 
cell type Sk ∈ S with nk cells, intra-cell-type heterogeneity is defined as

where pi and pj are the isoform proportion vectors for cells ci ∈ C and cj ∈ C in the cell 
type Sk , mij is their average distribution, and DKL is the Kullback-Leibler divergence. The 
overall intra-cell-type heterogeneity is calculated as the mean across all cell types where 

(5)Hj =
−
∑Ig

i=1 pij log2(pij)

log2(nj)
,

(6)IDIintra(g) =

∑n
j=1 wjHj

∑n
j=1 wj

,

(7)IDIinter(g) =
−
∑Ig

i=1 p̄i log2(p̄i)

log2(Ig )
,

(8)Hetk(g) =
2

nk(nk − 1)

nk−1
∑

i=1

nk
∑

j=i+1

√

1

2
DKL(pi||mij)+

1

2
DKL(pj||mij),
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the gene is expressed. This metric measures cell-to-cell variation in isoform usage within 
each cell type. It reveals whether cells of the same type use isoforms consistently.

IV: inter‑cell‑type specificity

To assess how distinctly a gene deploys its isoforms across different cell types, ScIsoX 
computes the average Jensen-Shannon distance between cell-type-specific isoform profiles. 
For a gene g ∈ G expressed in S cell types, inter-cell-type specificity is defined as

where p̄i and p̄j are the vectors of mean isoform proportions for cell types Si ∈ S and 
Sj ∈ S . Higher values indicate cell-type-specific isoform usage patterns, suggesting spe-
cialized functional roles across different cell populations.

V: intra‑cell‑type heterogeneity variability

To determine whether cellular heterogeneity is concentrated in specific cell types, ScIsoX 
computes the coefficient of variation (CV) of intra-cell-type heterogeneity values across cell 
types. For a gene g ∈ G expressed in S cell types, this variability is defined as

where σ and µ represent the standard deviation and mean, respectively. High values 
indicate that some cell types have higher internal heterogeneity than others, suggesting 
targeted subpopulation structure or regulatory plasticity within specific lineages.

VI: inter‑cell‑type difference variability

To assess whether isoform usage differences are concentrated between specific cell type 
pairs, ScIsoX computes the CV of pairwise Jensen-Shannon distances. For a gene g ∈ G 
expressed in S cell types, this variability is defined as

where JSi,j is the Jensen-Shannon distance between cell types i and j. High values indicate 
that certain cell type pairs exhibit particularly divergent isoform usage patterns, suggest-
ing lineage-specific splicing regulation or functional specialization between specific cell 
populations.

VII: cell‑type‑specific co‑expression variability

To evaluate whether a gene is subject to different co-expression patterns across cell types, 
ScIsoX computes the CV of mean intra-cellular diversity across cell types. For a gene 
g ∈ G expressed in S cell types, this variability is defined as

(9)Spec(g) =
2

S(S − 1)

S−1
∑

i=1

S
∑

j=i+1

√

1

2
DKL(p̄i||mij)+

1

2
DKL(p̄j||mij),

(10)HetVar(g) =
σ({Het1(g), Het2(g), . . . , HetS(g)})

µ({Het1(g), Het2(g), . . . , HetS(g)})
,

(11)DiffVar(g) =
σ({JS1,2, JS1,3, . . . , JSS−1,S})

µ({JS1,2, JS1,3, . . . , JSS−1,S})
,

(12)CoExpVar(g) =
σ({IDIintra1(g), IDIintra2(g), . . . , IDIintraS (g)})

µ({IDIintra1(g), IDIintra2(g), . . . , IDIintraS (g)})
,
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where IDIintrak (g) is the mean intra-cellular isoform diversity of gene g in cell type Sk (i.e., 
the tendency for genes to co-express multiple isoforms across cell type Sk ). High values 
indicate that a gene exhibits dramatically different co-expression patterns in different 
cellular contexts, suggesting context-dependent regulation of isoform co-expression.

Additional complexity metrics

ScIsoX computes a range of supplementary metrics to further characterize isoform 
expression pattern. These additional metrics are detailed in Additional file 2: Table S2.

Optimal threshold determination for complexity classification

The ScIsoX framework implements an advanced multi-stage statistical pipeline to 
determine optimal classification thresholds for each complexity dimension. This meth-
odology addresses the challenges of analyzing heterogeneous distribution patterns 
observed in transcriptomic complexity metrics.

Distribution‑aware preprocessing

For each complexity metric, we first apply distribution-aware preprocessing to identify 
the underlying distribution characteristics. This preprocessing phase employs multiple 
statistical approaches: 

1.	 Distribution classification: Each metric’s distribution is classified into one of several 
categories: multimodal, zero-inflated, extremely skewed, moderately skewed, or uni-
modal using a comprehensive multi-method approach. For multimodality detection, 
we employ three complementary methods, namely Hartigan’s dip test for statistical 
significance, kernel density estimation with adaptive bandwidth selection for peak/
valley analysis, and Gaussian mixture modeling with Bayesian Information Criterion 
for component separation. Skewness is assessed using moment-based calculations 
with distinct thresholds for moderate and extreme cases.

2.	 Zero-inflation detection: An adaptive histogram-based approach is used to iden-
tify zero-inflated distributions. This method calculates a data-dependent near-zero 
threshold (based on range and interquartile range), determines optimal bin width 
using the Freedman-Diaconis rule, and analyzes the ratio between first and second 
bins to detect significant zero-inflation. For identified zero-inflated distributions, we 
further characterize the non-zero component, testing for multimodality and skew-
ness to determine appropriate transformation strategies.

3.	 Transformation application: When necessary, Yeo-Johnson transformations are 
applied with optimized parameters to normalize extremely skewed distributions 
while preserving their essential characteristics for threshold determination.

Distribution‑specific threshold algorithms

Based on the identified distribution type, specialized algorithms are employed to deter-
mine optimal thresholds, with a hierarchical fallback strategy to ensure robust results 
(Additional file 1: Figs. S7 and S8): 
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1.	 For multimodal distributions: our algorithm first attempts to identify inflection 
points in the density curve, followed by mixture model-based component separation 
if needed. For distributions with clear valleys between modes, it calculates the opti-
mal separation threshold based on relative depths and positions of these valleys.

2.	 For extremely skewed distributions: our algorithm avoids extreme tails by focusing 
on the central mass of the distribution, using inflection point and curvature analysis 
to identify natural separation points.

3.	 For zero-inflated distributions: the non-zero component is extracted and analyzed 
separately, using either gap detection (for significant discontinuities), mixture mod-
eling (for multimodal non-zero components), or adaptive percentiles based on the 
skewness of the non-zero component.

4.	 For moderately skewed and unimodal distributions: our algorithm employs a 
combination of density curve analysis, distribution moments, and weighted mixtures 
of normal distributions to identify optimal decision boundaries.

Each method includes reliability assessment, with automatic fallback to simpler tech-
niques when necessary. This adaptive approach ensures robust threshold determination 
across diverse distribution patterns encountered in complexity metrics.

Statistical validation framework

The reliability of determined thresholds is assessed through a comprehensive validation 
framework: 

1.	 Bootstrap stability assessment: ScIsoX performs 100 (adjustable) bootstrap itera-
tions, recalculating the threshold for each resampled dataset. This provides confi-
dence intervals, standard deviations, and coefficients of variation that inform reliabil-
ity scores, with higher weight given to stable thresholds.

2.	 K-fold cross-validation: For datasets with sufficient samples, ScIsoX performs 
stratified k-fold cross-validation to assess threshold consistency across different sub-
sets of the data. The cross-validation coefficient of variation is integrated into the 
final reliability assessment.

3.	 Distribution-specific reliability adjustment: Initial reliability scores derived from 
the primary threshold method are adjusted based on distribution characteristics, 
with higher penalties for problematic distributions and distributions with limited 
supporting data.

4.	 Sanity checking: Final thresholds undergo verification against the data distribution’s 
quantiles to ensure they are reasonable, with automated adjustments applied when 
necessary to prevent threshold placement in extreme distribution tails.

Classification system

Based on the seven core metrics, we developed a multi-dimensional classification system 
that categorizes genes according to their complexity profiles (Additional file 2: Table S3). 
For each dimension, genes are classified into biologically meaningful categories based on 
the thresholds derived from our distribution-specific threshold algorithms: 
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1.	 Intra-cellular isoform diversity is classified as “Strong Isoform Co-expression” or 
“Weak Isoform Co-expression”

2.	 Inter-cellular isoform diversity is classified as “High Isoform Diversity” or “Low Iso-
form Diversity” (see, for example, in Fig. 1b)

3.	 Intra-cell-type heterogeneity is classified as “High Cellular Heterogeneity” or “Low 
Cellular Heterogeneity”

4.	 Inter-cell-type specificity is classified as “Cell-Type-Specific Isoform Expression” or 
“Cell-Type-Independent Isoform Expression” (see, for example, in Fig. 1b)

5.	 Intra-cell-type heterogeneity variability is classified as “Variable Heterogeneity 
Across Cell Types” or “Consistent Heterogeneity Across Cell Types”

6.	 Inter-cell-type difference variability is classified as “High Cell-Type Distinctions” or 
“Low Cell-Type Distinctions”

7.	 Cell-type-specific co-expression variability is classified as “Cell-Type-Adaptive Co-
expression” or “Cell-Type-Consistent Co-expression”

The integrated classification system enables systematic comparison of transcriptomic 
complexity patterns across genes and facilitates the identification of genes with inter-
esting or unusual complexity profiles (see example in Additional file 2: Table S4). Addi-
tionally, NA values are preserved throughout this process, as they are generated when 
biologically meaningful conditions (such as single-isoform genes or single-cell-type 
expression) render certain metrics mathematically undefined (see Additional file  2: 
Table S5).

Visualization and analysis features

The ScIsoX framework implements a comprehensive suite of visualization and analy-
sis tools designed to explore and interpret multidimensional transcriptomic complex-
ity patterns. The framework’s data structure facilitates efficient analytical workflows that 
enable researchers to gain biological insights from complex isoform expression patterns.

Core data structures and organization

The framework organizes isoform complexity data into two complementary object struc-
tures that support diverse analytical approaches. The IntegratedSCHT object encap-
sulates gene-level isoform expression matrices in a hierarchical structure, with both 
global and cell-type-specific expression patterns stored efficiently in a list-based format. 
The transcriptomic_complexity object contains a data frame of complexity 
metrics (metrics), cell-type-specific measurements (cell_type_metrics), classi-
fication thresholds, and statistical metadata. These data structures, combined with the 
S3 method system for object manipulation in R, enable sophisticated data exploration.

Analytical tools

 

1.	 SCHT Structure Creation via create_scht() transforms single-cell isoform 
expression matrices into SCHT structures, with supporting functions create_
transcript_info() for GTF processing, and generate_gene_counts() 
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for gene-level aggregation if only transcript count matrices are available. The SCHT 
structure efficiently organizes expression data by gene while preserving cell-specific 
isoform information.

2.	 Complexity Metrics Calculation through calculate_isoform_complexity_
metrics() computes the seven core metrics: (i) intra-cellular isoform diversity, (ii) 
inter-cellular isoform diversity, (iii) intra-cell-type heterogeneity, (iv) inter-cell-type 
specificity, (v) intra-cell-type heterogeneity variability, (vi) inter-cell-type difference 
variability, and (vii) cell-type co-expression variability.

3.	 Cell-Type-Specific Complexity Analysis is automatically performed when calcu-
late_isoform_complexity_metrics() is applied to an Integrated-
SCHT object, calculating and comparing complexity metrics independently for each 
cell type, enabling the identification of cell types with distinctive isoform regulation 
patterns.

4.	 Complexity Pattern Filtering identifies genes matching specific combinations of 
complexity classifications across multiple dimensions using the find_complex-
ity_pattern() function. This enables targeted discovery of genes with precise 
complexity signatures of interest.

5.	 Gene Selection Tool extracts genes with specific complexity characteristics using the 
select_genes_of_interest() function with customizable filtering criteria.

6.	 Complexity Metric Comparison extracts and compares transcriptomic complexity 
metrics across multiple genes using the compare_gene_metrics() function for 
custom visualizations or statistical analyses.

7.	 Co-expression Analysis Suite provides comprehensive isoform co-expression 
analysis through multiple integrated functions. Core analytical functions include (i) 
calculate_isoform_coexpression() for computing correlation matrices 
between isoforms for the whole dataset; (ii) calculate_gene_coexpression_
all_celltypes() for systematic analysis of co-expression patterns across differ-
ent cell types; (iii) analyse_coexpression_conservation() for identify-
ing conserved versus cell-type-specific co-expression patterns. The related statistical 
validation including bootstrap stability testing (100 iterations) and false discovery 
rate correction is available through the interactive Shiny application; (iv) detect_
isoform_switching() for identifying antagonistic isoform relationships; and 
(v) calculate_coexpression_stats() for comprehensive statistical sum-
maries. The suite is able to handle mixed conservation patterns where isoform pairs 
show opposing correlations across cell types, preventing misinterpretation of overall 
statistics (Additional file 1: Fig. S9).

8.	 Comprehensive Quality Control Reporting creates comprehensive HTML or Mark-
down reports documenting the complete analysis workflow using the generate_
qc_report() function. This report automatically summarizes key statistics from 
each stage of the create_scht() pipeline, including (i) initial data characteristics 
(e.g., number of cells, genes, and cell type distribution); (ii) the effects of QC filter-
ing, detailing the number of features removed at each step; (iii) a summary of highly 
variable gene selection, including the number of genes removed due to single isoform 
expression; and (iv) a detailed computational performance and memory efficiency 
analysis, comparing the SCHT structure to other data representations (as shown 
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in Additional files 4–6). Reports can be customized with dataset-specific naming 
through the dataset_name parameter. This automated reporting provides users 
with critical insights to build confidence in their data quality and analysis results.

Visualization capabilities

 

	 1.	 Quality Control Visualizations via plot_genes_per_cell_distribu-

tion() display the distribution of genes per cell with automatic threshold recom-
mendations using the recommend_qc_parameters() function, helping users 
make informed decisions about quality control parameters.

	 2.	 Distribution Threshold Fitting Plots via plot_threshold_visualisa-

tions() visualize the distributions of complexity metrics across multiple cell types 
with optimal threshold determined by the algorithm (Additional file 1: Figs. S7 and 
S8).

	 3.	 Complexity Landscape Visualizations via plot_tc_landscape() generate 
bivariate scatter plots that position genes across two complexity dimensions with 
integrated marginal distributions. These plots incorporate quadrant statistics and 
threshold lines to identify genes with exceptional complexity profiles (Fig. 1b top). 
Interactive highlighting capabilities facilitate the identification of notable genes.

	 4.	 Density Contour Maps via plot_tc_density()overlay kernel density estima-
tion contours on complexity landscapes to reveal clustering patterns and high-den-
sity regions in the complexity space (Fig. 1b bottom). Density contour maps employ 
adaptive bandwidth algorithms that accommodate varying data densities and high-
light regions of biological significance through smooth visualization of gene concen-
tration hotspots.

	 5.	 Ridge Plots via plot_complexity_ridges() visualize the distribution of 
complexity metrics through overlapping density curves (Additional file 1: Fig. S3). 
The implementation supports both global complexity comparisons across metrics 
and cell-type-specific analyses, offering a compact way to compare multiple distribu-
tions simultaneously.

	 6.	 Complexity Radar Charts via plot_complexity_radar() visualize the com-
plete seven-dimensional complexity signature of individual genes or comparative 
profiles across multiple genes (Fig. 2e and Additional file 1: Fig. S4a). The implemen-
tation supports various normalization methods and custom axis configurations for 
effective comparison of complexity profiles.

	 7.	 Multi-gene Cell-Type-specific Radar Charts via plot_single_gene_radar_
cell_type() and plot_compare_multiple_genes_radar_cell_

type() facilitate the comparison of complexity profiles across multiple genes and 
cell types in a structured grid layout, enabling the identification of cell-type-specific 
regulatory patterns (Additional file 1: Fig. S4b). The implementation includes options 
for global or per-cell type scaling.
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	 8.	 Dual Diversity Plots via plot_diversity_comparison() are scatter plots for 
intra-cellular and inter-cellular diversity metrics with diagonal reference lines indi-
cating the theoretical equality boundary (Fig. 2a). This visualization specifically high-
lights genes exhibiting unusual diversity patterns, which may indicate specialized 
regulatory mechanisms.

	 9.	 Co-expression Visualizations encompass multiple complementary approaches for 
exploring isoform relationships. (i) Correlation heatmaps (Fig. 2b) are generated via 
plot_isoform_coexpression() using the ComplexHeatmap package [13], 
featuring hierarchical clustering to automatically detect modules of coordinated or 
mutually exclusive isoform usage. Users can select among multiple correlation meth-
ods (Pearson, Spearman, and Kendall) to accommodate different data distributions, 
with options to display correlation values directly. (ii) Cell-type-specific dynamics 
are visualized through plot_coexpression_across_celltypes(), which 
creates line plots revealing correlation changes across different cell populations. (iii) 
Conservation summaries via plot_conservation_summary() use bar charts 
to display the distribution of conserved, cell-type-specific, and mixed patterns. (iv) 
An interactive Shiny application via launch_coexpression_app() (Addi-
tional file 1: Fig. S9) provides real-time exploration with parameter adjustment, sta-
tistical testing results, and downloadable reports, with all heatmaps also generated 
using ComplexHeatmap package. Together, these visualizations facilitate discov-
ery of complex regulatory patterns and hypothesis generation.

	10.	 Isoform Usage Profile Plots via plot_isoform_profile() are stacked bar 
charts that display proportions of expressed isoform usage across cell types, devel-
opmental stages, or experimental conditions (Fig. 2c). These plots include automatic 
minor isoform grouping and customizable cell type ordering, facilitating the identifi-
cation of cell-type-specific isoform preferences.

	11.	 Isoform Transition Plots via plot_isoform_transitions() visualize 
dynamic changes in isoform usage across ordered cell types, time points, or develop-
mental stages (Fig. 2d). This approach is particularly effective for revealing isoform 
switching events during differentiation processes or disease progression.

	12.	 Complexity Metric Heatmaps via plot_compare_tc_complexity_heat-
map() provide a comprehensive view of multiple complexity metrics across differ-
ent groups or conditions (Fig. 2f ). These heatmaps can be configured to show abso-
lute values or changes between consecutive conditions, with gene selection based on 
variance, magnitude of change, or custom gene lists. These heatmaps are generated 
using the ComplexHeatmap package [13].

	13.	 Group Comparison Density Difference Maps via plot_compare_tc_den-
sity_difference() calculate and visualize the density differences of genes in 2D 
metric space between different experimental groups or conditions (Additional file 1: 
Figs. S5 and S6). These visualizations help identify regions where gene distributions 
shift across conditions, revealing patterns of coordinated complexity changes in 
response to experimental manipulations.
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All analysis and visualization functions support comprehensive parameterization 
while maintaining computational efficiency for large-scale datasets.

Computational performance

To provide quantitative evidence of our approach’s efficiency, we performed comprehen-
sive sparsity analyses across three diverse datasets (see Additional file  2: Table  S6). A 
naive 3D tensor implementation would require extensive zero-padding to accommodate 
the maximum number of isoforms for every gene, resulting in >98% sparsity and sub-
stantial memory waste. In contrast, our SCHT structure achieves more efficient memory 
utilization by maintaining variable-sized matrices for each gene, eliminating unneces-
sary zero-padding. This adaptive structure reduces memory requirements compared to 
naive tensor approaches while preserving all hierarchical information. Notably, SCHT 
maintains complete fidelity with filtered isoform matrices, as verified by matched non-
zero element counts, demonstrating that our compression introduces no data loss while 
achieving substantial computational efficiency.

To evaluate the computational efficiency of ScIsoX, we benchmarked the package on 
three diverse single-cell long-read datasets, which were used in this study. Performance 
was measured on a MacBook Pro with Apple M1 Pro chip, 32 GB RAM, running R 
4.4.3. Runtime and memory usage were tracked for the two main computational steps: 
(1) SCHT structure creation via create_scht() and (2) isoform complexity metrics 
calculation via calculate_isoform_complexity_metrics(). Memory usage 
was measured as the R heap memory increment during function execution. Detailed 
performance metrics are presented in Additional file 2: Table S6. Processing times scaled 
reasonably with dataset size, and memory usage remained modest across all datasets.

Cell type annotation

All datasets used in this study include cell type annotations acquired through different 
methodologies. For the murine hematopoietic development dataset, cell type annota-
tions were based on experimentally validated labels [5]. For the brain dataset, we utilized 
preprocessed data and annotations from Joglekar et al. [6]. In that study, computational 
preprocessing was performed using Seurat [14], and annotations were generated 
through manual marker gene identification. This approach identified major brain cell 
populations including excitatory and inhibitory neurons, oligodendrocytes, astrocytes, 
microglia, vascular cells, and progenitor populations. For the PBMC dataset, we also 
performed preprocessing using Seurat [14] and subsequently classified cell types com-
putationally using SingleR [15]. The reference dataset contained well-characterized 
immune cell signatures that enabled identification of T cells, B cells, NK cells, mono-
cytes, and other PBMC subpopulations.

Validation of metric robustness to data sparsity

To directly address the challenge that single-cell isoform data is inherently sparse, 
we performed a comprehensive dropout perturbation analysis to empirically test the 
robustness of our seven core complexity metrics using the mouse brain dataset fea-
tured in our study. We systematically introduced additional random dropouts to the 
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non-zero counts of the brain dataset at increasing rates (from 10% to 50%) to simulate 
increasingly sparse conditions, with 20 independent iterations per level. The stability 
of the metrics was evaluated using the overlap coefficient, which measures distribu-
tional similarity, and the effect size of the perturbation was quantified using Cliff ’s 
delta. The results, detailed in Additional file  1: Fig. S10, demonstrate exceptional 
robustness. Even under extreme 50% additional dropout, the mean overlap coefficient 
across all seven metrics remained high at 0.789, and the corresponding effect sizes 
remained in the negligible-to-small range, confirming that the ScIsoX framework 
reliably quantifies complexity patterns even from sparse data.
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