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ARTICLE INFO ABSTRACT

Keywords: Malaria is among the leading causes of mortality and morbidity among children in Ghana. Therefore, identifying
LASSO the predictors of malaria prevalence in children under-five is among the priorities of the global health agenda. In
RIDGE Ghana, the paradigm shifts from using traditional statistics to machine learning techniques to identifying pre-
Elastic net . . . . . . .

Malaria dictors of malaria prevalence are scarce. Thus, the present study used machine learning techniques to identify
Ghana variables to build the best fitting predictive model of malaria prevalence in Ghana. We analysed the data on 2867

under-five children with malaria RDT results from the 2019 Ghana Malaria Indicator Survey. LASSO, Ridge, and
Elastic Net regression methods were used to select variables to build predictive models. The R freeware version
4.0.2 was used. One out of four children tested positive for malaria (25.04%). The logit models based on selected
features by LASSO, Ridge, and Elastic Net contained eleven, fifteen, and thirteen features, respectively. The
LASSO regression model is preferred because it contains the smallest number of predictors and the smallest
prediction error. The significant predictors of malaria among children were being older than 24 months, residing
in the poorest household, being severely anaemic, residing in households without electricity, and residing in a
rural area. The predictors identified in our study deserve policy attention and interventions to strengthen malaria
control efforts in Ghana. The machine learning techniques employed in our study, especially the LASSO
regression technique could be beneficial for identifying predictors of malaria prevalence in this group of children.

1. Introduction

Globally, childhood malaria remains one of the leading causes of
under-five morbidity and mortality in Sub-Saharan Africa (SSA) (Mait-
land, 2016; Camponovo et al., 2017). Malaria is known to cause hae-
molysis of red blood cells (erythrocytes) coupled with the formation of
abnormal red blood cells (dyserythropoietic) all of which culminate in
the development of anaemia in children (White, 2018). Complications of
malaria have unfavourable clinical outcomes with significant case-
fatality rate (Aponte et al., 1999). Therefore, childhood malaria has
been taken seriously by clinicians and policymakers over the years.

Substantial global policy initiatives have been implemented since the
early 2000s to curb the burden of malaria in SSA. An example is the
United States President’s Malaria Initiative (PMI) which was launched in
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2005 and consequently led to an increased availability of insecticide-
treated mosquito nets (ITNs), antimalarial treatments and rapid diag-
nostic tests and indoor residual spraying amongst others. The PMI has
led to a significant reduction in under-five mortality in SSA (Jakubowski
et al., 2017). Following the success of the “for a malaria-free world
2008-2015 initiative”, the Roll Back Malaria Partnership outlined an
action plan in dubbed, “Action and Investment to Defeat Malaria (AIM)
2016-2030" (Partnership and Action, 2015). The alignment of the
timeframe of the vision of AIM to that of the Sustainable Development
Goals (SDG) underscores the need to address the problem of under-five
malaria to ensure the realization of SDG goal 3. Nevertheless, malaria
continues to be a significant cause of childhood deaths in SSA, thus
threatening to derail the gains towards the achievement of the sustain-
able development Goal 3.2 which seeks to reduce under-5 mortalities to
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at least as low as 25 per 1000 live births by 2030.

The potential adverse outcome after childhood malaria underscores
the need for early detection and identification of high-risk populations.
Researchers have over the years used a variety of predictive modelling
approaches to identify high-risk populations. These have included cor-
relation studies, standard linear and logistic regression models, Poisson
regression, non-linear models, an autoregressive integrated moving
average models (ARIMAs) and spatial mapping approaches (Zhou et al.,
2004; Wangdi et al., 2010; Bi et al., 2003; Craig et al., 2004; Weiss et al.,
2019; Millar et al., 2018; Yankson et al., 2019). These predictive
modelling approaches are largely limited by the number of covariates
that can be fitted and are usually subject to the intuition of the
researcher. For conditions such as malaria which is influenced by a
range of physical, climatic, and social factors, machine learning models
provide the opportunity to fit many covariates to identify high-risk
populations. Wang et al. (Wang et al., 2019) demonstrated the superi-
ority in the use of ensemble algorithms in predicting malaria in China
using secondary health data. However, there is a paucity of literature in
the Ghanaian context utilizing machine learning algorithms to predict
malaria in children under five. This study sought to fill the gap in the
literature by using LASSO, ridge, and Elastic net regression models to
build a predictive model of malaria prevalence in children under five
years in Ghana.

2. Materials and data
2.1. Design, data collection, and study sample

We analyzed the data on children under-five from the 2019 Ghana
Malaria Indicator Survey (GMIS) (Ghana Statistical Service (GSS),
2019). The GMIS is based on a two-stage sampling design. The sampling
was based on ten administrative regions. Each region was divided into
urban and rural areas, resulting in twenty sampling strata. Enumeration
areas (EAs) were sampled from each stratum. In the first stage, 200 EAs
(97 in urban areas and 103 in rural areas) were selected with probability
proportional to EA size (Ghana Statistical Service (GSS), 2019). In the
second stage of selection, a fixed number of 30 households were selected
from each cluster to make up a total sample size of 6,000 households
(Ghana Statistical Service (GSS), 2019). About 5,181 women age 15-49
(representing 98.8% response rate) who were either permanent resi-
dents of the selected households or visitors who stayed in the household
the night before the survey were eligible to be interviewed (Ghana
Statistical Service (GSS), 2019). With the parent’s or guardian’s consent,
children age 6-59 months were tested for anaemia and malaria infection
(Ghana Statistical Service (GSS), 2019). The biomarker dataset has
malaria RDT results on 2867 children under-five in Ghana.

3. Measures
3.1. Outcome variable

The outcome variable is children who tested positive for malaria
through a rapid diagnostic test (RDT) kit. The RDT malaria test for
children under-five was conducted by taking a drop of blood with the SD
BIOLINE Malaria Ag P.f rapid diagnostic test (RDT). This test kit pro-
duces a result in 15 min (Ghana Statistical Service (GSS), 2019). The SD
BIOLINE P.f RDT tests for one antigen, histidine-rich protein II (HRP-II),
specific to Plasmodium falciparum (Pf), the major cause of malaria in
Ghana (Ghana Statistical Service (GSS), 2019).

3.2. Explanatory variables

The selection of explanatory variables was informed by literature
search and their availability in the dataset. These variables include the
following: child age, number of under-five children in a household, has
mosquito bed net for sleeping, sex of household head, sex of a household
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member, dwelling sprayed against mosquito last 12 months, household
wealth, sex of household head, child-anaemia status, has electricity in
HH, has a television in the household, place of residence, the region of
residence, number of children who slept under mosquito bed net pre-
vious night, insecticide-treated net available in the household, number
of household members.

3.3. Statistical analyses

We describe the characteristics of the study sample by using fre-
quency and percentages. Chi-square test of independence was performed
between the outcome and the explanatory variables. We used the Least
Absolute Shrinkage and Selection Operator (LASSO), Ridge, and Elastic
Net regression methods to identify variables to build the best fitting
predictive model of malaria prevalence in Ghana. For LASSO, an alpha
value of one was used and for Ridge an alpha value of 0. Given that the
alpha values for Elastic net lie between an alpha value of zero and one (i.
e. 0 < alpha < 1), we performed maximum likelihood to obtain the alpha
value which was estimated to be 0.4186508 based on 5-fold cross-
validation, repeated five times using ‘caret’ package. We estimated the
minimum lambda (i.e., lowest mean squared error (MSE)) for LASSO,
Ridge and Elastic net via maximum likelihood estimation under k-fold
cross-validation. The ‘glmnet’ package was used to select features for all
models under the machine learning approaches.

Let Y be the malaria indicator. We set the binary response Y; =

1 if the i — th child had malaria ) .
{ 0 otherwise and assume 7; to be the probability
that a given child i had malaria. Thus, our model formulation for the

multivariable binary logistic regression for predicting under-five ma-
laria status is: log (ﬁ) =By +d(xi) 5, where j, is the intercept, d() is

a vector of predictors and f is a vector of regression coefficients for the
predictors in the model. We extend this model to incorporate the regu-
larization parameters for LASSO, Ridge and Elastic net models.

After fitting the model to the full dataset, we split the data into 80%
and 20% training and validation sets respectively. We then fit models to
these data and evaluate their predictive ability via AUC Curves. To
examine any evidence of multicollinearity, we employed the generalized
variance inflation factor (GVIF) (Hair et al., 2018; Fox and Monette,
1992) with a GVIF value below 10 considered acceptable (Hair et al.,
2018). The goodness of fit of the model was tested using Hosmer and
Lemeshow goodness of fit (GOF) test. The fit was also examined using
McFadden’s R? and a model with a value between 0.2 and 0.4 is
considered an excellent fit. All analyses were performed in the R free-
ware version 4.0.2 (Core-Team R, 2019).

3.4. Ethical consideration

We obtained permission to use the 2019 GMIS data from the DHS
MEASURE Program which is freely available after a simple, registration-
access request at the following address https://dhsprogram.
com/data/dataset_ admin/index.cfm. From their report, it is indicated
that the protocol for the 2019 GMIS was approved by the Ghana Health
Service Ethical Review Committee and ICF’s Institutional Review Board
(Ghana Statistical Service (GSS), 2019).

4. Results

In the sample, one out of four children tested positive for malaria
(25.04%) (see Table 1). The factors that were significantly associated
with malaria among children include child age, number of under-five
children, has mosquito bed net for sleeping, under-five children who
slept under mosquito bed net last night, sex of household, Household
wealth, Anaemia level, has electricity in household, has Television in the
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Table 1 Table 1 (continued)
Descriptive statistics. Study variables N (%) N (%)
Study variables N (%) N (%) No 475 324 = 141.90,
Malaria Prevalence (59.45) (40.55) p <0.001
Negative (-VE) 2149 Yes 1674 394
(74.96%) (80.95) (19.05)
Positive (+VE) 718 Has Television in HH
(25.04) No 822 437 Xz =111.74,
Total 2867 (65.29) (34.71) p < 0.001
Malaria Prevalence Yes 1327 281
-VE +VE (82.52) (17.48)
Child Age (in months) Place of residence
< 24 months 769 163 ¥% = 46.05, p Urban 944 116 ¥’ =178.12,
(82.51) (17.49) < 0.001 (89.06) (10.94) p < 0.001
24-48 months 972 366 Rural 1205 602
(72.65) (27.35) (66.69) (33.31)
> 48 months 408 189 Region of residence
(68.34) (31.66) Western 205 83 %% =123.90,
Number of U5C in household (71.18) (28.82) p < 0.001
0-1 910 265 %> = 25.04, p Central 174 82
(77.65) (22.35) < 0.005 (67.97) (32.03)
2-3 1085 385 Greater Accra 184 2(1.08)
(73.81) (26.19) (98.92)
>3 154 71 Volta 172 79
(68.44) (31.56) (68.53) (31.47)
Has mosquito bed net for sleeping Eastern 160 65
No 312 (80.0) 78 Xz =6.12,p < (71.11) (28.89)
(20.00) 0.05 Ashanti 240 40
Yes 1837 640 (85.71) (14.29)
(74.16) (25.84) Brong Ahafo 165 101
US5C slept under mosquito bed net (62.03) (37.97)
last night Northern 406 105
no 546 112 x% = 43.23,p (79.45) (20.55)
(82.98) (17.02) < 0.001 Upper East 210 90
all children 1044 428 (70.00) (30.00)
(70.92) (29.08) Upper West 233 71
some children 247 247 (76.64) (23.36)
(71.18) (28.82) Number of children who slept
no net in household 312 78 under mosquito bed net previous
(80.00) (20.00) night
Sex of HH No child 858 190 x> = 42.48,p
Male 1533 518 ¥>=017,p= (81.87) (18.13) < 0.001
(74.74) (25.26) 0.68 1-2 children 1157 468
Female 616 200 (71.20) (28.80)
(75.49) (24.51) >3 children 134 60
Sex of household member (69.07) (30.93)
male 1081 383 ¥¥=1.99,p= Insecticide-treated net
(73.84) (26.16) 0.16 No 973 239 ¥? =31.70, p
Female 1068 335 (80.28) (19.72) < 0.001
(76.12) (23.88) Yes 1176 479
Dwelling sprayed against mosquito (71.06) (28.94)
last 12 months number of household members ¥* =17.03, p
no 1758 605 xz =224,p= < 0.001
(74.40) (25.60) 0.13 < 6 members 1038 285
Yes 391 113 (78.46) (21.54)
(77.58) (22.42) Members 822 310
Household wealth (72.61) (27.39)
Poorest 619 341 ¥? = 214.24, > 9 members 289 123
(64.48) (35.52) p < 0.001 (70.15) (29.85)
Poorer 420 203
(67.42) (32.58)
Middle 431 126 household, place of residence, the region of residence, number of chil-
) (77.38) (22.62) dren who slept under mosquito bed net previous night, insecticide-
Richer ?963 00) 400 treated net, and number of household members (see Table 1).
Richest 310 7 (2.21)
(97.79) 4.1. Feature selection to build the predictors of malaria prevalence model

Anaemia level
Severe 10 (20.41) 39 ¥ = 267.76,

LASSO, Ridge, and Elastic Net regressions were used for feature se-
(79.59) p < 0.001

Moderate 504 342 lection to build a predictive model of malaria prevalence (Table 2), and
(59.57) (40.43) the binomial deviance versus the log(Lambda) plots are presented as
Mild 603 171 Fig. 1. The variables included in each of the feature selection models
. (77.91) (22.09) were: child age, number of under-five children in a household, has

Not anaemic 1032 166 . .
(86.14) (13.86) mosquito bed net for sleeping, sex of household head, sex of a household
Has electricity in HH member, dwelling sprayed against mosquito last 12 months, household

wealth, sex of household head, child-anaemia status, has electricity in
HH, has a television in the household, place of residence, the region of
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Table 2
Lasso, Ridge, and Elastic Net.

LASSO RIDGE ELASTIC NET
alpha =1 alpha =0 alpha =
0.4186508
(Intercept) 1.043406015 0.81622002 0.957635393
Region —0.125009418  —0.11751371  —0.125348706
Urban-rural residence 0.797182998 0.79393783 0.806272194
Has electricity in HH —0.334558348  —0.35767631  —0.353889442
Has Television in HH . —0.06166143 —0.001048464
Sex of HH 0.019345178 0.07802045 0.047635449
Has mosquito bed net for —0.08209747
sleeping
Household wealth index —0.356708586  —0.31547715  —0.352298541
sex of household member . —0.02806722 .
Anaemia level —0.821035391  —0.77787099  —0.817498792
Dwelling sprayed against —0.350619294 —0.38498364  —0.367712726
mosquito last 12 months
Number of children who 0.022397129 0.05179602 0.025362654
slept under mosquito bed
net previous night
Number of U5C in 0.003430091 0.03509552 0.02308751
household
Insecticide-treated net 0.136570517 0.18949137 0.157816524
Child Age 0.651001735 0.619984 0.652697693
number of household 0.02590606 0.000677887
members

residence, number of children who slept under mosquito bed net pre-
vious night, insecticide-treated net available in the household, number
of household members. Per the LASSO results, the best fitting models
excluded these variables: has mosquito bed net for sleeping, sex of a
household member, and the number of household members. The ridge
regression results included all the fifteen features. For the Elastic Net
regression results excluded these two variables: has mosquito bed net for
sleeping and sex of household member.

The plot in Fig. 1 displays the cross-validation error according to the
log of the regularization parameter (lambda). The left dashed black
vertical line indicates the optimal value of lambda which is the one that
minimizes the prediction error (i.e., binomial deviance). This lambda
value is expected to provide the most accurate model. For example, the
top plot in Fig. 1 indicates that log of lambda of approximately —5.7 will
be the one that minimizes the prediction error with 11 features selected.

4.2. Predictive ability of the feature selected models of LASSO, RIDGE,
and Elastic Net

We build three logit models, each with the features selected by
LASSO, RIDGE, and Elastic Net regressions. The logit models based on
selected features by LASSO, RIDGE, and Elastic Net contained eleven
features, fifteen features, and thirteen features, respectively. All the
models explained about 20% of the variability in malaria prevalence in
Ghana with the same area under the curve (AUROC) values (i.e., AU =
81.20%) indicating that the models were good at predicting malaria
prevalence in this group of children (Table 3, Fig. 2). Based on the
principle of parsimony, the Lasso regression is preferred because it
contains the smallest number of predictors and the smallest prediction
error. We also presented the root mean square error (RMSE, i.e., pre-
diction error) as a performance indicator for our models based on the
cross-validation estimates obtained. The best model is the one with the
lowest predictive error. Here again, the LASSO model (RMSE = 0.9489,
SD = 0.0202) performed relatively better than the Ridge (RMSE =
1.0366, SD = 0.0172) and Elastic net (RMSE = 0.9531, SD = 0.0190)
models (Table 3), supporting the choice of the LASSO model. Thus, only
the results in the LASSO selected feature logit model was interpreted.

We further examined our final (i.e., LASSO) model to detect any
presence of multicollinearity using the generalized variance inflation
factor (GVIF). All the estimates of GVIFs are below 3, suggesting that
there is no evidence of multicollinearity. The Hosmer and Lemeshow
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goodness of fit (GOF) test reveals no evidence of lack of fit (x?s = 13.6, p-
value = 0.0939). Also, the McFadden’s R? of 0.23 revealed an excellent
fit for our final model.

4.3. Evaluation of model fit on training and validation datasets

We tested our final preferred model (i.e., LASSO) on the training
dataset using Hosmer and Lemeshow goodness of fit (GOF) test. We did
not observe any evidence of lack of fit (x?g = 11.8, p-value = 0.1627).
Also, the McFadden’s R? of 0.25 and 0.21 respectively for the training
and validation dataset models indicate an excellent fit for our model.
The predictive ability of the fitted model based on AUC values for the
training and validation datasets are respectively 82.3% and 79.5%
(Fig. 3), indicating good predictive ability for both. We test for any
difference in the predictive performance between the fitted model for
the training and the validation sets by comparing the ROC curves for
these models. Both the DeLong’s (D = 1.1993, p-value = 0.2308) and
Bootstrap (D = 1.197, p-value = 0.2313) tests for the two ROC curves
suggest that there is no evidence of significant differences in the pre-
dictive performance of these models.

4.4. Regressors of malaria prevalence in Ghana

The following factors were regressed upon malaria prevalence in
Ghana: child age, number of under-five children in a household, sex of
household head, dwelling sprayed against mosquito last 12 months,
household wealth, child-anaemia status, has electricity in households,
place of residence, the region of residence, number of children who slept
under mosquito bed net previous night, and insecticide-treated net
available in the household.

The factors that are significantly related to the outcome were child
age, household wealth, child anaemia status, presence of electricity in
household, place of residence, and region of residence. The adjusted
odds ratios reported in Table 4 are reported as follows. Compared to
children who are less than 24 months, children who are 24-48 months
old [AOR = 2.63, 95% CI: 2.06, 3.36] and more than 48 months old
[AOR = 4.28, 95% CI: 3.19, 5.77] were more likely to test positive for
malaria. Compared to children in the poorest households, children in the
middle [AOR = 0.59, 95% CI: 0.40, 0.86], richer [AOR = 0.33, 95% CI:
0.20, 0.52], and richest [AOR = 0.10, 95% CI: 0.04, 0.23] households
were less likely to test positive for malaria. Compared to children with
severe anaemia status, children with moderate [AOR = 0.16, 95% CI:
0.07, 0.34], mild [AOR = 0.05, 95% CI: 0.02, 0.11], and not anaemic
[AOR = 0.03, 95% CI: 0.01, 0.06] were less likely to test positive for
malaria. Compared to children in households without electricity, chil-
dren in households with electricity [AOR = 0.68, 95% CI: 0.53, 0.87]
were less likely to test positive for malaria. Compared to children in
urban areas [AOR = 2.09, 95% CI: 1.58, 2.77], children in rural areas
were more likely to test positive for malaria. Compared to children in
Western region, children in Greater Accra [AOR = 0.08, 95% CI: 0.01,
0.29], Ashanti [AOR = 0.49, 95% CI: 0.30, 0.79], Northern [AOR =
0.17,95% CI: 0.11, 0.26], Upper East [AOR = 0.37, 95% CI: 0.23, 0.571,
and Upper West [AOR = 0.31, 95% CI: 0.18, 0.54] were less likely to test
positive for malaria.

5. Discussion

This study finds that in 2019, one out of four children tested positive
for malaria (25.04%) with considerable malaria prevalence across
different age group of children under five years. Our results also showed
a good predictive ability of our fitted models (i.e., AU = 81.20%) to
predict under-five malaria prevalence. Factors that were significantly
associated with malaria prevalence in Ghana included: child age,
household wealth, child anaemia status, presence of electricity in
household, place of residence, and region of residence.

We found that children older than 24 months were more likely to test
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Table 3

Explained variance and area under the curve results for LASSO, RIDGE, and

Elastic Net.
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Fig. 1. The binomial deviance versus the log(Lambda) plots. Note: 1st row: LASSO; 2nd row: RIDGE; 3rd row: ELASTIC NET.

that older than 24 months are more likely to test positive for malaria.
Moreover, mothers with an index child much younger are given more
attention than those 24 months or more, hence the latter are more likely
to be exposed to mosquito bites. Other studies have also reported a

Model R-Square  RMSE (95% CI) §D AUC Number significant association between age and malaria infections in children in
Value Ghana (Nyarko and Cobblah, 2014; Orish et al., 2015; Chilanga et al.,

Lasso 0196989 0.9489 (0.9286, 0.0202  81.20% 1 2020). In the retrospective study in the Western Regional Hospital in
Ridge 01072966 (1):222;)(1.0194’ 00172 §1.20% s G.hana, Orish. et al (Orish et al., 2015), r.10ted that the ag.e—speciﬁc
1.0537) discrepancy in the prevalence of malaria was rather higher for

Elastic 0.1971316  0.9531 (0.9342, 0.0190  81.20% 13 younger children. This variance is understandable given that although
net 0.9721) community prevalence of malaria may be actually higher for older

positive for malaria. This finding may be attributable to multiple rea-
sons. One plausible explanation is the age-related decline in malaria
antibodies acquired from the mother during pregnancy as the child
grows. Although there is no consensus in the literature on the effect of
maternally acquired immunity in protecting against childhood malaria
(Riley et al., 2001, 1998), the assumption is that children in malaria-
endemic areas such as Ghana acquire malaria antibodies from their
mothers while in the womb but this immunity wanes gradually as the
child grows. This coupled with low utilization of insecticide-treated nets
in children older than 24 months (Nkoka et al., 2019) due to prioriti-
zation of access to ITN for younger siblings may explain our observation

children, the health seeking behaviours of parents plausibly prioritise
younger children with malaria for treatment.

We also found that children in at least a middle wealthy household
had a lower likelihood of testing positive for malaria. This finding can be
explained by the fact that children from wealthy households are more
likely to be living in affluent neighbourhoods with good drainage system
and clean environments that decrease the breeding of mosquitoes thus
decreasing the likelihood of mosquito bites and malaria (Dickinson
et al., 2012). Moreover, parents/guardians of children from wealthy
households are more likely to afford the purchase and use of ITN
(Dickinson et al., 2012; Ruyange et al., 2016) hence reducing the like-
lihood of malaria in children from wealthy families. This finding
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Fig. 2. Area under the curve values for the LASSO, RIDGE, AND Elastic Net
feature selected models.

corroborates the findings of other studies in Ghana (Nyarko and Cob-
blah, 2014; Afoakwah et al., 2018) and other African countries (West
et al., 2013) which all reported lower burden of malaria among children
from wealthy households.

The study found that children who were not severely anaemic and
not anaemic at all had a lower likelihood of testing positive for malaria.
The association between anaemia and malaria in SSA has been well
documented in the literature (McCuskee et al., 2014). This finding can
be related to the haemolytic effect of malaria on red blood cells causing
anaemia (White, 2018). This likely explains why mildly anaemia and
non-anaemic children were less likely to test positive for malaria.
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|

Sensitivity
%

/' AUC (%)

Ay —— Training (82.3)
T T T T 1
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0%
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The study also found that children in households with electricity had
a lower likelihood of testing positive for malaria. Access to electricity
can be understood as a proxy for wealth status, access to other social
amenities and socioeconomic status (Worrall et al., 2003). The
assumption is that access to electricity which is a proxy for socioeco-
nomic status creates protective conditions such as access to ITNs and
clean place of residence which reduce the likelihood of malaria (Dick-
inson et al., 2012; Worrall et al., 2003). A more direct plausible expla-
nation is that the use of electrically operated equipment like fans within
households with electricity can reduce mosquito bites. Nevertheless,
literature on the association between access to electricity and malaria
prevalence reports contrary findings in which access to electricity has
been found to be positively associated with malaria prevalence (Tas-
ciotti, 2017). Tasciotti (Tasciotti, 2017), for example, opined that access
to electricity rather increases the malaria vector density in households
which support the view that mosquitoes are attracted by light. This
coupled with the fact that members in households with electricity are
likely to spend more time in the evening outdoors increases their risk for
mosquito bites (Tasciotti, 2017).

Our study also revealed that children in rural areas had a higher
likelihood of testing positive for malaria. This finding supports the
assumption that urbanization is protective against malaria in sub-
Saharan Africa (Hay et al., 2005). Besides, our findings agree with the
results of Afoakwah et al (Afoakwah et al., 2018) who reported rural
children had a higher burden of malaria prevalence in Ghana. This may
likely be explained by the fact that poverty is common in rural areas
coupled with poor housing and environmental conditions that promote
the breeding of mosquitoes. Our findings reflect the need to prioritise
rural areas in malaria prevention policies.

We also found that having had dwelling areas sprayed against mos-
quito in the last twelve months before the survey was not protective
against malaria prevalence. Yearly spraying appears not to offer much
protection since mosquitoes breed virtually throughout the year in the
environment, although the breeding rate and vector burden may be
higher in the rainy season (Dery et al., 2010). On the contrary, some
studies have reported a significant protective effect of household

50 % 75 % 100 %
|
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%
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Fig. 3. Area under the ROC curve comparing the predictive ability of the training and the validation sets.
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Table 4
Regressors of Malaria Prevalence in Ghana.

LASSO RIDGE ELASTIC NET

Variables AOR [95% AOR [95% AOR [95% CI]
CI] CI]

(Intercept) 4.35 [1.81, 4.76 [1.92, 4.33 [1.79,
11.10] 12.56] 11.12]

Child Age

< 24 months 1 1 1

24-48 months 2.63 [2.06, 2.61 [2.05, 2.61 [2.05,
3.36] 3.34] 3.35]

> 48 months 4.28 [3.19, 4.26 [3.18, 4.26 [3.18,
5.771 5.74] 5.75]

Number of U5C in

household

0-1 1 1 1

2-3 1.12 [0.90, 1.09 [0.87, 1.09 [0.87,
1.39] 1.36] 1.36]

>3 1.54 [0.99, 1.33 [0.81, 1.34 [0.81,
2.38] 2.18] 2.19]

Sex of HH

Male 1 1 1

Female 0.97 [0.77, 0.97 [0.77, 0.98 [0.77,
1.22] 1.23] 1.23]

Dwelling sprayed against mosquito last 12 months

no 1 1 1

Yes 0.83 [0.57, 0.83 [0.57, 0.83 [0.57,
1.20] 1.20] 1.20]

Household wealth

Poorest 1

Poorer 0.81 [0.61, 0.82 [0.61, 0.82 [0.61,
1.09] 1.11] 1.10]

Middle 0.59 [0.40, 0.60 [0.40, 0.60 [0.40,
0.86] 0.90] 0.90]

Richer 0.33 [0.20, 0.34 [0.20, 0.33 [0.20,
0.52] 0.56] 0.56]

Richest 0.10 [0.04, 0.11 [0.04, 0.11 [0.04,
0.23] 0.24] 0.24]

Anaemia level

Severe 1

Moderate 0.16 [0.07, 0.16 [0.07, 0.16 [0.07,
0.34] 0.34] 0.33]

Mild 0.05 [0.02, 0.05 [0.02, 0.05 [0.02,
0.11] 0.11] 0.11]

not anaemic 0.03 [0.01, 0.03 [0.01, 0.03 [0.01,
0.06] 0.06] 0.06]

Has electricity in HH

No 1

Yes 0.68 [0.53, 0.68 [0.52, 0.68 [0.52,
0.87] 0.90] 0.89]

Place of residence

Urban 1

Rural 2.09 [1.58, 2.09 [1.58, 2.08 [1.57,
2.771] 2.77] 2.76]

Region of residence

Western 1 1 1

Central 0.90 [0.58, 0.90 [0.58, 0.90 [0.58,
1.38] 1.38] 1.38]

Greater Accra 0.08 [0.01, 0.08 [0.01, 0.08 [0.01,
0.29] 0.28] 0.28]

Volta 0.72 [0.47, 0.72 [0.47, 0.72 [0.47,
1.11] 1.10] 1.10]

Eastern 0.94 [0.60, 0.95 [0.61, 0.94 [0.60,
1.46] 1.47] 1.47]

Ashanti 0.49 [0.30, 0.49 [0.30, 0.49 [0.30,
0.79] 0.78] 0.78]

Brong Ahafo 0.81 [0.53, 0.80 [0.53, 0.80 [0.53,
1.23] 1.22] 1.22]

Northern 0.17 [0.11, 0.16 [0.10, 0.16 [0.10,
0.26] 0.26] 0.26]

Upper East 0.37 [0.23, 0.36 [0.23, 0.36 [0.23,
0.57] 0.56] 0.56]

Upper West 0.31 [0.18, 0.30 [0.17, 0.30 [0.17,
0.54] 0.52] 0.52]

Number of children who slept under mosquito bed net previous night

No child
1-2 children

1

1

1
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Table 4 (continued)

LASSO RIDGE ELASTIC NET
1.15 [0.75, 1.18 [0.75, 1.12 [0.72,
1.76] 1.86] 1.72]
>3 children 1.02 [0.55, 1.04 [0.56, 0.98 [0.53,
1.85] 1.94] 1.79]
Insecticide-treated net
No 1 1 1
Yes 1.04 [0.69, 1.08 [0.72, 1.08 [0.74,
1.56] 1.63] 1.63]
Has Television in HH
no — 1 1
yes — 0.97 [0.74, 0.98 [0.74,
1.28] 1.29]
number of household —
members
< 6 members — 1 1
6-9 members — 1.04 [0.83, 1.04 [0.83,
1.31] 1.31]
> 9 members — 1.25 [0.86, 1.25 [0.86,
1.79] 1.79]
sex of household member — —
male — 1 —
female — 0.95 [0.78, —
1.16]
Has mosquito bed net for — —
sleeping
No — 1 —
Yes — 0.87 [0.59, —
1.28]

spraying when the effect was assessed at a shorter duration of 6 months
(Afoakwah et al., 2018; Belete and Roro, 2016; Hamusse et al., 2012).
For example, Belete & Roro (Belete and Roro, 2016) reported that
spraying of the house environment in the last 6 months offers protection
from malaria. Moreover, Hamusse et al. (Hamusse et al., 2012) showed
that indoor residual spraying was effective in protecting against malaria
within 6 months of the initial spraying. This underscores the need for
continuous spraying at a shorter interval such as every 4-6 months to
offer protection as yearly spraying appears not to be sufficient in pre-
venting malaria.

The study found that compared to children in Western region (high
rainforest ecological zone), their counterparts in the Greater Accra
(Coastal Savannah), Ashanti (semi-deciduous rainforest), Northern
(Guinea Savannah), Upper East (Sudan Savannah), and Upper West
(Guinea Savannah) had a lower likelihood of malaria. This can be
explained by the fact that that high rain forest ecological zone of the
western region receives abundant rain compared to the other ecological
zones. Rainfall is known to be associated with high densities of malaria
vectors (Dery et al., 2010). With decrease rainfall in the other regions,
children living there are less likely to have malaria compared to their
counterparts in the high rainforest ecological zone of the western region.

5.1. Strengths and limitations

We have demonstrated the usefulness of machine learning tech-
niques in predictive modelling for malaria in Ghana with an optimal
level of sensitivities as seen in this study. The preliminary identification
of variables for the final modelling using lasso, ridge and elastic net
methods were less dependent on the researcher’s intuition. The use of
machine learning was also possible because a large nationality repre-
sentative data was used. By using a nationally representative cross-
sectional data, our findings can be generalized to children from other
similar countries. Also, the use of big data approach to malaria model-
ling has additional benefits with regards to scalability and transferability
to other settings with comparable data. Although our machine learning
modelling appeared to have good predictive ability, the results are
dependent on the data used in the development and validation. Larger
datasets than the one we used would perhaps produce better-trained

Downloaded for Anonymous User (n/a) at James Cook University from ClinicalKey.com.au by Elsevier on October 17,
2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.



J.M.K. Aheto et al.

models. Finally, all associations observed in this study do not infer
causality.

6. Conclusion

In summary, our study investigated the utility of machine learning
approaches for predictive modelling of malaria prevalence among
children under five years. The results showed evidence of concept and
identified that age of the child, household wealth, place of residence,
region of residence, anaemia status, and access to electricity was
significantly predictive of malaria prevalence. The results (AU =
81.20%) show that the performance of our models is good at predicting
under-five malaria prevalence. Beside identifying high-risk populations
for cost-effective interventions, our study should serve as encourage-
ment for malaria researchers in Ghana who are interested in machine
learning and big data approaches in modelling malaria prevalence.
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