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ABSTRACT
Time-series forecasting is essential for predicting events in the future and for tracking objects. The conventional recurrent neural 
network model needs to pad the target with zeros when handling long inputs, resulting in a loss in accuracy. Recently, it was pro-
posed to divide a time series input into patches and merge the learned weights. However, such a model is difficult to interpret. In 
this article, we consider a mixture of continuous and discrete Markov states to model long-range time dependencies. For example, 
in a vehicle, each gear level can be a discrete state and the throttle input is continuously controlled to maximise the efficiency of 
the engine. Data collected from the sensor is prone to noise due to component faults or external disturbances. Hence, we apply 
a stability constraint to select samples for training. We validate our algorithm on three datasets: (1) Apple Watch, (2) Car engine 
and (3) Election tweets. On all datasets, we achieve an improvement in the range of 5%–20% in the F-measure. Furthermore, the 
features learned are easy to explain in terms of real-world scenarios.

1   |   Introduction

In recent years, smartwatches have become increasingly pop-
ular. They are capable of capturing signals from users across 
various activities and emotional states (Wang et al. 2020a). This 
continuous stream of data has opened up opportunities for ap-
plications in personal assistants and smart healthcare (Cambria 
et  al.  2010, 2012; Grassi et  al.  2011; Mehta et  al.  2020; Wang 
et al. 2020b). Nonetheless, these devices are susceptible to sud-
den changes caused by component malfunctions or environ-
mental factors (Chaturvedi, Pandelea, et  al.  2024; Chaturvedi 
et  al.  2021). Additionally, to protect user identity, intentional 
perturbations are introduced into the trained models, which 
may lead to a reduction in accuracy.

Markov chains typically compute state probabilities based on 
observations with a limited number of discrete states. However, 
such models tend to have low memory capacity due to rapidly 
diminishing gradients from past observations (Chaturvedi, 

Satapathy, et  al.  2024). While discrete-time data is often col-
lected at fixed intervals—such as every second or minute—real-
world signals often change continuously, requiring parameter 
integration over time (Spaeh and Tsourakakis  2024). In these 
cases, transitions between states do not occur at regular inter-
vals but are instead governed by an exponential random variable. 
In this work, we introduce a Markov chain model that incorpo-
rates both discrete and continuous states to better capture long-
range dependencies. We refer to our proposed approach as the 
Continuous-time Markov Chain (CMC).

To quickly optimise the parameters of the Markov chain, we 
propose the use of a control system. In (Wang and Hunt 2023) 
the authors consider a control model to determine the speed of a 
treadmill that maintains the heart rate close to a reference line. 
Similarly, in (Zhang et al. 2011) a control model was used to es-
timate knee movement from wearable sensors. They have indi-
cated that sensors often have high distortions in measurements 
and hence it is useful to design a controller that can align the 
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measured values to the desired values. In this article, we further 
explore the dual problem of controlling and detecting the models 
by discarding noisy samples.

We begin our evaluation with data collected from a smartwatch, 
which is used to predict whether a person is walking or running. 
Figure 1 shows smartwatch data recorded during three different 
activities: (a) sitting (blue), (b) walking (green), and (c) running 
(red). This data is sampled at fixed intervals of a few minutes. 
As illustrated, the participant's heart rate rises from 78 to 81, 
and the number of steps increases from 15 to 35 within a single 
interval. A sharp decline in steps is also observed as the partic-
ipant slows down. In addition to smartwatch data, we evaluate 
our approach on telemetry data from a car engine across var-
ious gear levels. Finally, we analyse a two-week time series of 
election-related tweets to detect named entities such as individ-
uals, political parties, and social issues.

The next Section 2 discusses the related work, followed by the 
theory of the algorithm in Section 3. We validate our approach 
on real-world datasets in Section 4. Lastly, we provide our con-
clusions in Section 5.

2   |   Related Works

Time series forecasting is applied in a wide range of fields, from 
traffic prediction to human tracking (Oneto et al. 2016; Cambria, 
Howard, et al. 2013). Recently, several transformer-based mod-
els such as Autoformer and Fedformer (Zhou et al. 2020) have 
been developed. These models are capable of predicting the 
hourly temperature of an electrical transformer for up to 20 days, 
although the mean squared error (MSE) increases significantly 
after the first day. They effectively capture long-range depen-
dencies in time series by employing a generative-style decoder 
that performs dimensionality reduction on the input. However, 
a notable limitation is the slow inference caused by step-by-step 
decoding. Additionally, zero-padding in the decoder can nega-
tively impact accuracy. Parameter tuning requires an exhaustive 
grid search to find the optimal settings.

The Informer model utilises a self-attention mechanism with 
O(LlogL) time complexity and memory usage, where L is the 

input sequence length. For tuning such complex models, es-
pecially in the presence of noisy data, Bayesian optimisation 
can be applied (Snoek et al. 2012), which assumes a Gaussian 
prior over the objective function. In (Kong et al. 2025) the au-
thors divide a multivariate time series into univariate chan-
nels. Then each univariate series is segmented into patches 
and processed by a linear layer. They show that they can 
outperform Long-short-term-memory (LSTM) on different 
datasets. Also, they demonstrate that, as patch size increases, 
the prediction accuracy increases first and then decreases. 
Channel independence is able to avoid over-fitting problems. 
While they showed lower mean-square error in some time se-
ries forecasting, the result is not statistically significant. Next, 
it cannot model very long-term dependencies in time series. 
They introduced the concept of multi-head in each LSTM unit 
with memory mixing using a block diagonal matrix. It is not 
clear how such a model is more effective and interpretable 
than traditional regression models.

There has been an explosion in the use of wearable devices as 
a sedentary lifestyle has been linked to chronic cardiovascular 
and metabolic diseases (Chaturvedi et al. 2016). These devices 
have become more readily available, and medical profession-
als can get detailed and reliable information about their pa-
tients' daily activity. Such devices can also send reminders to 
consumers that they have been sedentary for long durations. 
Recently, machine learning is being used to identify different 
activities from wearable trackers. For example, neural networks 
have been used to extract features from real-time sensor data. 
(Fuller et  al.  2021) combined Apple Watch and Fitbit data to 
predict activities such as lying, sitting, walking, and running, 
achieving 98% accuracy. This work highlights the reliability of 
LSTM-based classification even when device heterogeneity is 
present. Similarly, (Wang and Liu 2020) proposed a hierarchical 
deep LSTM model that achieved over 90% accuracy on multiple 
public datasets for human activity recognition. Their approach 
demonstrated how deeper LSTM architectures can capture both 
fine-grained and long-term dependencies in wearable sensor 
data, further supporting the effectiveness of LSTM-based mod-
els for real-time physical activity classification. Building on this, 
our approach integrates a stability-constrained Markov model 
using Simulink to enhance interpretability while maintaining 
strong predictive performance.

FIGURE 1    |    Apple watch data collected during three different activities (a) Hear rate (b) Number of steps. Heart rate increases from sitting to run-
ning. Number of steps also increases and then reduces when the stopping. Data is collected at a fixed interval gap of a few minutes.
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The Apple Watch dataset is understudied despite several ar-
ticles on wearable devices. In (Fuller et al. 2021), the authors 
showed that even though the rotation forest model had the 
highest accuracy, the difference was only slightly different 
from random forests. They used a feature ranking method to 
understand which variable is the most important. They also 
conclude that machine learning can combine both device 
datasets for movement type classification. However, they use 
device type as a feature during training which can increase 
the dimensionality of the problem. Another limitation is that 
there is a lack of proper understanding of what is considered 
vigorous physical activity in terms of the number of steps, as it 
will vary across persons.

Lack of explainability has generated mistrust in the use of AI 
models (Cambria et  al.  2023). One way of explaining a model 
is by using attention to identify the most critical parts of the 
data that influence the model's prediction (Amin et  al.  2023). 
In the context of the car racing model, explainability is essen-
tial in making strategic decisions (Cambria et  al.  2014, 2009; 
Cambria, Rajagopal, et al. 2013; Cambria, Schuller, et al. 2013a, 
2013b). In (Villegas and García-Ortiz 2023) the authors focus on 
the explainability of neural networks in understanding driver 
performance. Here, feature selection is done to choose the most 
important features for prediction. They consider data splitting 
and regularisation to train and evaluate the model. First, they 
train a model on the racing dataset. Next, different explainabil-
ity techniques such as attention and feature importance are ap-
plied to the trained model. Permutation importance techniques 
then randomly permute the values of quality and measure the 
impact of the model's performance. For example, the feature 
‘technical characteristics’ has a negative importance, indicating 
that it reduces the accuracy of the model. However, they con-
sider a heat map of the neural network weights to predict the at-
tention of different data samples, which is not visibly significant. 
Furthermore, their parameter tuning was not well-defined and 
the MSE metric is a weak indicator of model quality. Lastly, they 
did not do parameter tuning, randomly set the number of LSTM 
units to 128 and used dropouts to avoid overfitting.

3   |   Theory

LSTMs are unstable during training due to the large number 
of parameters and hence the convergence to global minima is 

not guaranteed. Instead, if we design a controller, we can show 
that with suitable initialisation of parameters, the model will 
converge (Luo et al. 2024). There is a constraint on the number 
of samples from a single individual from a smartwatch. Here, 
using a trial-and-error approach for tuning the model is not 
practical. Instead, it can learn quickly from a hidden-Markov 
model (HMM) with continuous time states for each activity 
(Swamy et al. 2022). The traditional transition matrix assumes 
independence between features, which is not true in the real 
world, hence a piece-wise integration over continuous time is 
more suitable for changes in activity levels (Jena et al. 2021; Li 
et al. 2019).

For discrete HMM, we bin each input feature into three or more 
levels and the probability for all levels adds up to 1. Instead, the 
continuous HMM can be viewed as a multiple regression over 
continuous inputs where the sum of weights adds up to 1. While 
discrete HMMs use frequencies to compute the probabilities, 
the continuous HMM does an integration over time, as the time 
spent in a particular state may vary (Hawkes and Sykes 1990). 
A control model is also more transparent compared to an LSTM 
where the features learned in the hidden neurons can only be 
understood by visualising the activations of input samples. It 
can be made detectable by enforcing constraints so that the ei-
genvalues of the feature weights are always negative and hence 
stable during gradient descent (Mescheder et  al.  2018). Next, 
we detail our implementation of the HMM with both discrete 
and continuous states and the use of control theory for feature 
learning.

3.1   |   Hidden Markov Model

A HMM is used to identify contextual dependencies between 
observations in a time series. For example, for smartwatch data, 
the observable states (O1, O2, etc.) are activities such as ‘Sitting’, 
‘Walking’ and ‘Running’ that each participant performed in a 
single session (see Figure 2). The hidden states (s1, s2, etc.) rep-
resent underlying contextual patterns that influence the transi-
tions between these entity types. For instance, how likely is the 
activity of walking to be followed by running.

In a Markov chain, a state i is accessible from a state j if it is 
possible to begin in j and arrive in i in finite number of words. 
The probability of transitioning from state i to state j is called 

FIGURE 2    |    A hidden Markov Model with three observed states Ot for ‘Sitting’, ‘Walking’ and ‘Running’ conditional on the hidden states st ‘Heart 
rate’, ‘Number of Steps’ and ‘Intensity’, where t  is the time index for single participant.
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the transition probability. The state transition probability is 
given by:

where mij is the number of occurrences where the activity type 
Oi is followed by the activity type Oj in the smartwatch dataset.

Here, we consider three hidden dimensions, namely: (1) Heart 
rate measured by the smartwatch (2) The number of steps mea-
sured by the smartwatch over an interval of few minutes (3) The 
intensity of the activity. The three hidden dimensions are dis-
cretized into three levels. Next, we compute the emission and 
transition probabilities that maximize the likelihood of observed 
states given the hidden states for each participant.

For the continous time case we can model the system using a 
transition function r(t) such that:

where y(t) is the output of the system, � is the variable change in 
time, A(r(t)) and C(r(t)) are the input and output weights.

Next, if we assume that the r(t) jumps from one Markov state to 
another at time instants t0, t1, … , tT then:

where:

then the system is piecewise constant in parameters A(r(t)) and 
C(r(t)) and Γ

(
t0, tT

)
 is the observability matrix that ensures the 

system is detectable.

3.2   |   Stability Constraint

The HMM described by Equation  (1) assumes discrete transi-
tion states from one time point to the next; however, in the real 
world, transition states may change continuously and are more 
suitably calculated using an integration over the time interval as 
given by Equation (4). Figure 3 illustrates a feedback control sys-
tem for human activity prediction. Here, the objective is to max-
imise the speed of running given the input ‘heart rate’, ‘number 
of steps’ and ‘intensity’. Here we are faced with a dual control 
problem of balancing two objectives: (1) controlling the system 

effectively for stability; (2) detecting and improving future states 
of the system using feedback.

A system can be controlled by providing external inputs u(t) that 
enable the system to complete tasks, where t is the discrete time 
index, such as seconds or minutes. Detectability is about estimat-
ing the internal states of the system x(t) over time. The hidden 
states are related to the input signal by u(t) = − Lx(t). The system 
is designed to remain stable over time, hence the error between the 
observed output x(t) and the desired output u(t) approaches zero 
where {L}n×n is the learned weight matrix for the n inputs in u(t). 
With different control inputs, it becomes difficult for the system to 
minimise errors. This is referred to as the dual control problem. In 
this work, we aim to manage this problem by considering changes 
in weights continuously over time, instead of discretely, by using a 
piecewise detectability function where each sub-interval of time is 
modelled by a separate function and added together.

We can optimise both the controllability and detectabil-
ity constraints using the following two inequalities (Ji and 
Chizeck 1990):

where A are the weights for hidden states x(t), B are weights for 
inputs u(t), I is the identity matrix, ‖Z ‖ is the highest eigenvalue 
of the matrix Z′Z and {M}n×n is a positive semidefinite matrix to 
be determined.

For smooth convergence of a continuous time Markov chain to 
global minima of error, we find that the following inequality 
must hold for each time sample:

where x(0) is the first training sample. For each training sam-
ple, we select a subset that obeys the inequality given by 
Equation (6). Next, we train the hidden states of CMC using this 
subset of samples and use the output features for classification. 
We can use this inequality to select a subset of training samples 
to determine the weights of the system.

(1)�ij =
mij

∑3
j=1mij

where
�

i≠j
�ij = 1
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dx(t)
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Γ
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)
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FIGURE 3    |    A feedback control unit for predicting human activity 
from three inputs: (a) Heart rate (b) Number of steps (c) Intensity. The 
control unit will try to maximise the efficiency of running.
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4   |   Experiments

In this section, we evaluate CMC (available on GitHub1) on real-
world datasets. We have used the same training procedures on 
all three datasets to allow for benchmarking across them. We 
first evaluate CMC on a short-time series smartwatch dataset 
that has a high level of noise due to movement during an activ-
ity. Next, we use it to predict the speed of a car during racing. 
This is a long time series and the sensors are reliable due to a 
controlled racing environment. Lastly, we apply it to a stream 
of Tweets during an election campaign. Here, the aim was to 
model numerous entities that collectively influence sentiments 
and determine the election results.

4.1   |   Parameter Tuning

To determine the optimal parameters for the LSTM and 
Informer baselines, a trial-and-error approach on a validation 
set is used on the watch dataset. Figure 4 shows the F-measure 
plotted against different parameter settings, namely (a) number 
of previous time steps, (b) number of neurons, (c) batch size and 
(d) size of training data.

In Figure 4a, the effect of the number of previous time steps in 
a sequence was considered. The F-measure increases with the 
number of time steps and then reduces. This can be explained 
by the fact that only around 30 samples were collected by the 
smartwatch for a single individual. In Figure  4b, the effect of 
the number of hidden neurons was studied. The F-measure 
increased slightly when the number of neurons was increased 
from 8 to 16. However, a further increase to 24 reduced the F-
measure due to over-fitting of the model.

In Figure  4c, the effect of increasing the batch size from 1 to 
16 is considered. F-measure decreases rapidly with increasing 
batch size. However, the speed of training also increases. Hence, 
a batch size of 8 was found to be optimal. In Figure 4d as ex-
pected, we find that the validation F-measure decreases with the 
percentage of training samples used. From the available samples 
following a heuristic approach, 70% are used for training, 10% 
for validation and 20% are used for testing.

4.2   |   Watch

This dataset contains 6264 samples from 46 participants with 26 
women and 20 men. They wear three types of devices, includ-
ing GENEActiv, Apple Watch and Fitbit. Participants completed 
40 min of total treadmill time and 25 min of sitting or lying time 
for a total of 65 min protocol. We consider a subset of 2769 sam-
ples from three activities, namely: sitting, walking and running.

Next, we use a Simulink model with three inputs, namely: (a) the 
number of steps, (b) the heart rate and (c) the Karvoven inten-
sity. We selected these features from the smartwatch dataset as 
they were the most significant and the remaining variables were 
highly correlated to them. Like an LSTM, the Simulink feedback 
control model applies a controller to maximise the accuracy of 
predicting the activity of a person for a given input.

For an input combination where the hidden state of the model is 
not stable, the efficiency will be low. Hence, we can use a Markov 
model to represent three hidden states of activities and apply a 
constraint to select a subset of 1278 samples for which the pre-
diction efficiency in the training data is high. The three states 
of the Markov chain are analogous to different activity levels. 

FIGURE 4    |    Effect of parameters in LSTM on F-measure (a) Number of previous time steps (b) Number of neurons (c) Batch size (d) Percentage 
of test samples.
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Hence, we can determine the transition probabilities when the 
state changes from one activity to another.

Finally, we simulate the MATLAB model again to determine 
the controlled hidden states and use them to predict the label 
using an LSTM. Table 1 compares the F-measure of the pro-
posed algorithm CMC with different baselines. The high-
est value in each column is shown in bold. The last column 
is the weighted sum normalised by the number of samples in 
each class in the testing dataset. Our method can outperform 
Informer by almost 40% in the F-measure. Informer performed 
the worst in ‘running’ class. LSTM has 22% lower F-measure 
than CMC. It does well in ‘running’ motion, however it per-
forms poorly in detecting the ‘walking’ class. We can conclude 
that our method is effective in classifying sensor measure-
ments from smartwatches.

To further compare the stability of different algorithms, we 
consider the mean and standard deviation of each activity class 
using 10-fold cross-validation. Figure 5 compares the F-measure 
of different algorithms across different activities. We can see that 
‘running’ activity performs the best in most models. LSTM and 
NN show a very large variance for the sitting activity, suggesting 
poor convergence due to noisy samples. CMC has the highest F-
measure and also has low variance on all activity types.

Lastly, we visualise the features learned at the hidden neurons of 
the LSTM for different activities in the watch dataset. Figure 6 
compares the activations for the original dataset and those for 

CMC. The time step index shows the activity at that time where 
‘s’ denotes sitting, ‘w’ denotes walking and ‘r’ denotes running. 
We can see that the activations dont change much for the orig-
inal dataset. However, after selecting samples using stability 
constraint and running the control model, significantly different 
activations are observed for different classes. For example, neu-
ron 2 is activated during walking and neuron 3 is highly activated 
during running.

4.3   |   Car

The car dataset was downloaded using the FastF1 library 
(Grover  2022) which is an open-source python library for ac-
cessing F1 telemetry data such as speed, throttle etc. of each car 
during a race. This dataset contains historical telemetry data for 
each race, such as the speed of a driver, his position and any acci-
dents on each lap. For this article, we randomly selected several 
different racetracks and drivers and combined them, resulting 
in a time series of 4597 observations where each race has around 
300 time points. This data was used as input to the spark engine 
control model. We consider three features, namely: (1) the throt-
tle, (2) revolutions per min and (3) break as input. The model 
was trained to predict the gear levels, which were discretised 
into three values where 1 represents the lowest speed and 3 is 
the highest speed.

Next, we used an existing Simulink model for a spark engine 
where we replaced the spark angle with the rpm. The throttle 
and the break were used as such. Like an LSTM, the spark en-
gine model applies a controller to maximise the efficiency of the 
engine and predict the speed of the vehicle for a given input.

For an input combination where the hidden state of the model 
is not stable, the efficiency will be low. Hence, we can use a 
Markov model to represent three different gear levels and apply 
a constraint to select a subset of 1175 samples for which the pre-
diction efficiency in the training data is high. The three states 
of the Markov chain are analogous to different gear levels in a 
spark engine. Hence, we can determine the transition probabili-
ties when the state changes from one gear to the next.

Finally, we simulate the MATLAB model again to determine the 
controlled hidden states and use them to predict the labels using 
an LSTM. Table 2 compares the F-measure of the proposed algo-
rithm CMC with different baselines. The highest value in each 
column is shown in bold. Our method can outperform Informer 
and LSTM by almost 11% in the F-measure. Informer performed 
well on this dataset compared to the other two datasets. It could 
be because all the drivers had taken similar paths. We have al-
most 30% improvement at the speed of ‘Gear 2’. This is expected 
as we used the Simulink model for a spark engine that is opti-
mised for car data.

4.4   |   Elections

This dataset was created on Twitter using hashtags relevant to 
the 2025 Queensland elections. We crawled tweets daily for two 
weeks until the elections and for one week after the event. We 

TABLE 1    |    Comparison of baselines on watch dataset. CMC 
outperforms baseline LSTM by over 22% in F-measure.

Method Sitting Walking Running Total

NN 0.5 0.42 0.42 0.45

k-NN 0.73 0.74 0.77 0.74

Informer 0.71 0.30 0.14 0.53

LSTM 0.7 0.65 0.74 0.7

CMC 0.9 0.91 0.94 0.92

FIGURE 5    |    This graph shows the 10-fold cross-validation F-
measure and variance for each activity class in the watch dataset. LSTM 
and NN show very large variance for the sitting activity.
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used ChatGPT to label a subset of 2767 tweets for named entities 
such as ‘Person’ or ‘Political Party’. For each tweet we computed 
the sentiment score using a previously trained model. We found 
4830 entities across the three classes. Entities without Glove 
word vectors were discarded, resulting in 2783 entities.

Glove contains word embeddings of length 300 for 6 billion 
words in the English language. These are generated from co-
occurrence data in social media articles. However, to determine 
the context of a word, we use the cosine angle between two con-
secutive words in an election tweet. For example, when the en-
tity ‘Labor’ is followed by the word ‘women’ in a tweet. Then we 
can determine that the social issue ‘women’ is being targeted by 
the political party ‘Labor’ (Zhou et al. 2022).

We removed tweets for which a sentiment score could not be de-
termined and balanced the dataset across the three class types, 
resulting in 1965 named entities. Next, we can determine the 
magnitude of each named entity from the word vector. This will 
represent its relative position in the vector space. Lastly, to cap-
ture the positive or negative emotional content in the tweet, we 
compute the sentiment score using a pretrained sentence clas-
sifier. In this work we only consider three entity types, namely: 
‘person’, ‘political party’ and ‘social issue’.

Next, we used a Simulink model with three inputs namely (a) co-
sine of word vector, (b) the magnitude of the word vector and (c) 
the sentiment score. These features were selected as explained 
above and discussed in our recent review article on named 

enitity recognition (Dhelim et  al.  2022). Like an LSTM, the 
Simulink feedback control model applies a controller to maxi-
mise the accuracy of predicting the entity class of a word based 
on previous words in the tweet or discussion.

For an input combination where the hidden state of the model is 
not stable, the efficiency will be low. Hence, we can use a Markov 
model to represent three hidden states of named entities and 
apply a constraint to select a subset of 1196 named entities for 
which the prediction efficiency in the training data is high. The 
three states of the Markov chain are analogous to different types 
of named entities. Hence, we can determine the transition proba-
bilities when the state changes from one named entity to another.

Finally, we simulate the MATLAB model again to determine the 
controlled hidden states and use them to predict the labels using 
a LSTM. Table 3 compares the F-measure of the proposed algo-
rithm CMC with different baselines. The highest value in each 
column is shown in bold. Our method can outperform the pre-
trained BERT model and Informer by almost 20% in F-measure. 

FIGURE 6    |    Visualisation of features learned at eight hidden neurons in an LSTM for sitting (s), walking (w) and running (r) (a) Original dataset 
(b) CMC Features. CMC features are significantly different across activities.

TABLE 2    |    Comparison of baselines on car dataset. CMC 
outperforms baseline Informer by over 12% in F-measure.

Method Gear 1 Gear 2 Gear 3 Total

NN 0.69 0.21 0.62 0.55

k-NN 0.79 0.1 0.42 0.43

Informer (Zhou 
et al. 2020)

0.36 0.55 0.71 0.65

LSTM 0.11 0.65 0.72 0.65

CMC 0.38 0.86 0.61 0.76

TABLE 3    |    Comparison of baselines on election dataset. CMC 
outperforms baseline LSTM by over 7% in F-measure.

Method Person
Political 

party
Social 
issue Total

BERT (Devlin 
et al. 2019)

0.69 0.83 0.46 0.66

GLINER (Zaratiana 
et al. 2024)

0.73 0.91 0.57 0.74

RAG-NER (Zhenwei 
et al. 2024)

0.69 0.85 0.21 0.58

Agent RAG-NER 
(Yao et al. 2023)

0.47 0.70 0.19 0.47

Informer (Zhou 
et al. 2020)

0.78 0.6 0 0.65

LSTM 0.83 0.42 0.97 0.77

CMC 0.8 0.92 0.81 0.85
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We have almost 40% improvement in the subclass ‘Social Issue’. 
This could be because we are able to determine the context of 
a ‘social issue’ with respect to a ‘person’ or ‘political party’ by 
using a Markov chain of named entities in a sentence. LSTM 
has a 10% lower F-measure than CMC, it does well on ‘social 
issue’ entities. However, it performs poorly on entities from the 
‘political party’ class.

5   |   Conclusion

In this paper, we explored a model with both discrete and con-
tinuous Markov states to capture long-term dependencies in 
time-series data. To model the discrete states we use a hidden 
Markov model. The continuous dependence between states is 
modelled by a piecewise exponential random variable. Baseline 
models are heavily dependent on the use of attention between 
consecutive observations and need a lot of parameter optimisa-
tion. Instead, here we consider the dual problem of controlling 
and detecting the system using a spark engine control model. A 
subset of training samples is selected using a stability constraint.

We consider the problem of determining human activity from 
wearable sensors and outperform the baselines by over 10% in 
the F-measure. We also apply the method to classify a time-series 
of election tweets collected from social media. Lastly, we can 
ensure that the system is detectable and hence easy to interpret. 
Predicting activity from sensors presents challenges, particu-
larly due to movement disturbances that may cause the device 
to lose contact. In the future, we plan to enhance the system 
by incorporating body posture information captured through 
a mobile camera. We also plan to explore the use of Bayesian 
Optimisation to initialise the parameters of the control model.
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