

Check for updates

SHORT COMMUNICATION

Prevalence of vector-borne pathogens Ehrlichia canis, Babesia spp. and Dirofilaria immitis in dogs in Townsville, far north Queensland

K Gerber, * D JA Picard, J Elliman, C CJ Joone, D Y Indrawirawan and CC Constantinoiu

Ehrlichia canis, Babesia spp. and Dirofilaria immitis are blood-borne pathogens transmitted to dogs by arthropods. The aim of the current study was to investigate the prevalence of E. canis, Babesia spp. and D. immitis in domestic dogs, aged 6 months or older, in Townsville, in far north Queensland, Australia. Dogs were recruited through convenience sampling, with the assistance of local veterinary clinics and James Cook University staff and students. Up to 3 ml of blood was collected per dog, into EDTA vacutainer tubes. Testing for E. canis and Babesia spp. was performed through qPCR, with a second PCR used to identify the species in *Babesia*-positive cases. Testing for D. immitis was performed using a commercial antigen detection kit and the modified Knott's test (MKT); microfilariae identity was confirmed by morphological features and qPCR. Of 301 dogs sampled, none tested positive for E. canis, whereas 9 (3.0%, 95% CI 1.1-4.9%) tested positive for Babesia vogeli, and 15 (5.0%; 95% CI 2.5-7.5%) tested positive for D. immitis, based on the combined antigen and MKT results.

Keywords canine; canine ehrlichiosis; heartworm; mosquito; tick

Aust Vet J 2025;103:430–432 doi: 10.1111/avj.13450

🕇 hrlichia canis, an obligate intracellular, gram-negative bacterium, causes canine monocytic ehrlichiosis (CME) and is I transmitted primarily by the brown dog tick Rhipicephalus sanguineus sensu lato ("tropical strain"), which was recently renamed R. linnaei. 1,2 Although common worldwide, E. canis was considered exotic to Australia until recently.3 Babesia vogeli, a protozoan parasite that causes a relatively mild form of canine babesiosis, is also transmitted by R. linnaei, and was first reported in domestic dogs in Australia in 1966.4 A second species, B. gibsoni, was detected in dogs in south-eastern Australia in 2002.⁵ Dirofilaria immitis (heartworm), a mosquito-borne nematode, causes a life-threatening condition in dogs and is endemic in Australia.⁶ D. immitis can infect a wide range of hosts, including humans.⁷ The prevalence and geographical distribution of vector-borne pathogens are influenced by factors such as the presence of vectors, the socio-economic status of owners, host availability, and the presence of a wildlife or free-ranging reservoir species.8

The aim of the current study was to investigate the prevalence of *Ehrlichia canis*, *Babesia* spp., and *Dirofilaria immitis* in clientowned dogs in Townsville, far north Queensland, Australia.

The study protocol was approved by the James Cook University Animal Ethics Committee (A2919). A sample size of 296 dogs was required, assuming a 26% prevalence of infection with *D. immitis*, 6 with a 95% confidence level. Up to 3 ml of blood was collected via aseptic venipuncture into EDTA vacutainer tubes from healthy dogs aged 6 months or older attending participating veterinary clinics for routine clinical procedures or owned by James Cook University staff or students. Dogs were recruited through convenience sampling.

Samples were separated into aliquots of whole blood as well as plasma, buffy coat fraction, and red cell pellet after centrifugation. Genomic DNA was extracted and purified from whole blood using the QuickGene DNA whole blood kit S (Kurabo Industries Ltd., Osaka, Japan) and from the buffy coat fraction using the QuickGene DNA tissue kit S (Kurabo Industries Ltd.), with the QG-Mini480 (Kurabo Industries Ltd.), following the manufacturer's instructions.

Purified buffy coat DNA was used to detect E. canis-specific DNA using two primer sets, and purified whole blood DNA was used to detect Babesia genus DNA. All positive Babesia DNA extracts were retested using primers specific to B. vogeli, B. canis, and B. gibsoni (Table S1). Quantitative real-time PCR was run in duplicate using the SensifastSYBR Hi-Rox kit (Bioline, Luckenwalde, Germany) as per the manufacturer's instructions on a MIC PCR cycler (GeneTarget Solutions Pty. Ltd., Dural, NSW), with a dog BetaActin gene control, positive control, and a negative nontemplate control. All positive samples were retested twice more, and only those that remained positive were recorded as positive. Positive control DNA for Babesia genus was obtained from a dog that had previously tested positive for B. vogeli on PCR and had Babesia piroplasms observed in its blood. Positive control material for molecular testing of E. canis was provided by courtesy of the State of Queensland through the Biosecurity Sciences Laboratory, Department of Primary Industries. Testing for D. immitis antigen was performed on whole blood using a commercially available diagnostic test, Anigen rapid CHW Ag Test Kit 2.0 (Bionote, Hwaseong-si, Gyeonggi-do, Korea) as per the manufacturer's instructions. Dogs were checked for microfilariae (Mf) using the modified Knott's test (MKT). The identity of Mf was confirmed by morphological features and morphometry and by qPCR (Qiagen Rotorgene Q) using DNA extracted from whole blood as per Albonico (2014)¹⁰ (Table S1) and gel electrophoresis (1% TAE gel, 100 V).11

^{*}Corresponding author.

^aDiscipline of Veterinary Science, College of Science and Engineering, James Cook University, Douglas, Queensland 4811, Australia; karen.gerber@jcu.edu.au

^bDiscipline of Biomedicine, College of Medicine and Dentistry, James Cook

University, Douglas, Queensland 4811, Australia

^cJCUVet, James Cook University, Douglas, Queensland 4811, Australia

Of the 301 dogs tested, none were positive for E. canis. In Australia, E. canis was first detected in 2020, in sick dogs from a remote community in Western Australia, and subsequently spread to dogs in the Northern Territory and North Queensland, including Townsville.³ In immunologically naïve dogs, E. canis can cause immune-mediated destruction of platelets and white blood cells, resulting in bleeding and fatal bacterial sepsis. Some dogs may be subclinically infected or recover spontaneously, whereas others will develop chronic ehrlichiosis. Because only healthy dogs were sampled, our results suggest that chronic ehrlichiosis is either not yet endemic in this region or is present at very low levels. The results of this study are supported by the identification of only two cases of E. canis in 2024 by the Queensland Biosecurity Laboratory (Dr. Louise Jackson, personal communication). During the 2 months of this study, no cases were detected by one of the private diagnostic laboratories serving the area (Dr. Philippa McLaren, personal communication).

In contrast, 9 (3.0%, 95% CI 1.1–4.9%) of the 301 dogs tested positive for *Babesia* spp., all due to *B. vogeli*. A 2003 study found that *Babesia* 18S small subunit ribosomal RNA (rRNA) gene sequences in dogs in northern Australia were 99% homologous to *B. vogeli*, whereas those in south-eastern Australia were 100% homologous to *B. gibsoni*. B. *vogeli* typically causes subclinical infections in mature dogs, but can cause severe anaemia in puppies.

In the current study, babesiosis was not confirmed by visualisation of the parasites in blood smears due to the low sensitivity of this method in chronic or subclinical cases and unreliable species identification. Typically, *B. vogeli* parasitaemia is very low, with dogs in Australia previously reported as PCR-positive despite the absence of microscopic parasitaemia or clinical illness. 14,15

Few studies have investigated canine babesiosis in Australia since it was first detected, incidentally, in Townsville. Surveys found B. vogeli in 46/215 (21.3%)¹⁵ and 7/92 (7.6%)¹⁶ of dogs in remote Aboriginal communities in the Northern Territory and northwestern NSW, with a higher prevalence in central and northern areas compared to southern areas. A similar study found B. vogeli in 13/230 (5.6%) Aboriginal community and pound dogs, ¹⁷ and 12/238 (5.0%) client-owned dogs presented to veterinary clinics in the Northern Territory and south-east Queensland, again with higher infection rates in the northern tropics. 18 Comparisons of these studies to the current study should be done with caution, given the differences in sampling frames and source populations. Moreover, the current study included only healthy dogs older than 6 months of age, unlike previous studies that included some dogs with clinical signs suggestive of tick-borne disease as well as younger dogs that commonly have higher B. vogeli infection rates. 17

In the current study, 15/301 dogs (5.0%; 95% CI 2.5–7.5%) tested positive for *D. immitis*, based on the combined antigen test and MKT. Seven dogs were positive on both tests, seven on the antigen test only,

and one on the MKT only. The proportion of positive tests determined by each assay was not statistically different (P = 0.07), based on an exact McNemar's test (SPSS version 29.0; SPSS Inc., Chicago IL, USA). No coinfections of *D. immitis* and *B. vogeli* were detected.

The prevalence of *D. immitis* in dogs is higher in tropical areas due to high year-round temperature and humidity favoring a high density of mosquito vectors.¹⁹ In the 1970s, an estimated 77% of dogs in Townsville were infected with *D. immitis*.²⁰ By the early 2000s,this had dropped to 15% in shelter dogs,²¹ as a result of the introduction of macrocyclic lactones for the prevention of heartworm disease in 1994.²² More recently, a re-emergence of infection with *D. immitis* has been reported in shelter and pig hunting dogs from Queensland (5.8% in southern QLD, up to 21% in central QLD and up to 32.1% in northern QLD).^{6,19,23} Furthermore, two cases of infection with *D. immitis* were reported in NSW in June 2024.^{24,25}

The obvious difference in the prevalence of infection between shelter (25.8%)⁶ and owned (5%, present study) dogs from Townsville is likely to be due to high levels of compliance with the use of preventative treatments in owned dogs. This is supported by the retrospective information obtained on heartworm prevention in the dogs that were positive for *D. immitis* in the current study. The owner of only one dog claimed that they had consistently treated their dog to prevent HW infection; one dog had not been on any preventative treatment, and the remaining dogs (13) had not received consistent preventative treatments.

Anecdotally, local veterinarians report an increased incidence of heartworm disease in client-owned dogs in Townsville in recent times, in comparison to the near negligible incidence observed a decade earlier. The 5% prevalence of heartworm in the current study confirms the apparent increase in prevalence reported by local veterinarians. Reduced owner compliance with preventive treatments,⁶ a high reservoir of infection represented by wild dogs in the area,²¹ and an apparent loss of efficacy of chemicals used in heartworm prevention⁶ might explain the re-emergence of heartworm in dogs from Townsville. The high prevalence of infection with *D. immitis* in dogs from Townsville represents a risk of infection for susceptible hosts, including humans, in the area.⁷ Furthermore, infected dogs from Townsville can spread heartworm to other areas of Australia where the mosquito vectors are present.

In conclusion, 3% of healthy dogs In Townsville tested positive for *B. vogeli* and 5% for *D. immitis* in the current study, despite the availability of preventative treatments. Further research is needed to determine if positive cases are due to a lack of owner awareness and diligence, or parasite chemoresistance.

Acknowledgments

This study was kindly funded by Dogs Queensland. The authors sincerely thank Wulguru Veterinary Clinic, Hammett Street Vets, Townsville Veterinary Clinic, MyPetHub, Kings Road Veterinary Clinic, JCU Vet, James Cook University Desexing Clinic, Vet2URPet, Western Suburbs Veterinary Clinic, Tropical Vets North Queensland, James Cook University veterinary students, staff, and the JCU diagnostic laboratory for assistance with this study. In addition, the authors thank Wendy Foyle and Kelly Leather for technical assistance and IDEXX laboratory. *E. canis* positive controls were kindly supplied

by Louise Jackson and Darren Underwood (Biosecurity Sciences Laboratory, Department of Primary Industries, Queensland). Open access publishing facilitated by James Cook University, as part of the Wiley - James Cook University agreement via the Council of Australian University Librarians.

Conflicts of interest and sources of funding

The authors declare no conflicts of interest or sources of funding for the work presented here.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

- 1. Aziz MU, Hussain S, Song B et al. Ehrlichiosis in dogs: a comprehensive review about the pathogen and its vectors with emphasis on south and east Asian countries. *Vet Sci* 2022;10:21. https://doi.org/10.3390/vetsci10010021.
- 2. Šlapeta J, Chandra S, Halliday B. The "tropical lineage" of the brown dog tick *Rhipicephalus sanguineus* sensu lato identified as *Rhipicephalus linnaei* (Audouin, 1826). *Int J Parasitol* 2021;51:431–436. https://doi.org/10.1016/j.ijpara.2021.02.001.
- 3. Irwin P, Beadle J. The 'other' epidemic: canine ehrlichiosis in Australia. *Microbiol Aust* 2022;43:156–159. https://doi.org/10.1071/MA22053.
- 4. Hill M, Bolton B. Canine babesiosis in Queensland. *Aust Vet J* 1966;42:84–86. https://doi.org/10.1111/j.1751-0813.1966.tb04675.x.
- 5. Muhlnickel C, Jefferies R, Morgan-Ryan U et al. *Babesia gibsoni* infection in three dogs in Victoria. *Aust Vet J* 2002;80:606–610. https://doi.org/10.1111/j. 1751-0813.2002.tb10961.x.
- 6. Constantinoiu C, Croton C, Paterson MB et al. Prevalence of canine heartworm infection in Queensland, Australia: comparison of diagnostic methods and investigation of factors associated with reduction in antigen detection. *Parasite Vector* 2023;16(1):63. https://doi.org/10.1186/s13071-022-05633-9.
- 7. Theodore SG, Sawkins HJ, Mathew M et al. Human pulmonary dirofilariasis: an unexpected differential diagnosis for a solitary lung lesion. *Med J Aust* 2023; 219:455–456. https://doi.org/10.5694/mja2.52115.
- 8. Wang D, Bowman DD, Brown HE et al. Factors influencing US canine heartworm (*Dirofilaria immitis*) prevalence. *Parasite Vector* 2014;7(1):1–18. https://doi.org/10.1186/1756-3305-7-264.
- 9. Zajac AM, Conboy GA. *Veterinary clinical parasitology*. 8th edition. Chichester, West Sussex, UK, Wiley-Blackwell, 2012.
- 10. Albonico F, Loiacono M, Gioia G et al. Rapid differentiation of *Dirofilaria immitis* and *Dirofilaria repens* in canine peripheral blood by real-time PCR coupled to high resolution melting analysis. *Vet Parasitol* 2014;200:128–132. https://doi.org/10.1016/j.vetpar.2013.11.027.
- 11. Mylonakis M, Papadopoulos E, Koutinas A et al. Comparative methodology for the detection and differentiation of circulating microfilariae of *Dirofilaria immitis* in the dog. *J Helminthol* 2004;78:137–140. https://doi.org/10.1079/JOH2003210.

- 12. Jefferies R, Ryan UM, Muhlnickel CJ et al. Two species of canine babesia in Australia: detection and characterization by PCR. *J Parasitol* 2003;89: 409–412. https://doi.org/10.1645/0022-3395(2003)089[0409:TSOCBI]2.0. CO;2.
- 13. Shaw SE, Day MJ, Birtles RJ et al. Tick-borne infectious diseases of dogs. *Trends Parasitol* 2001;17:74–80. https://doi.org/10.1016/S1471-4922(00)01856-0. 14. Jefferies R, Ryan U, Jardine J et al. Blood, bull terriers and babesiosis: further evidence for direct transmission of *Babesia gibsoni* in dogs. *Aust Vet J* 2007;85: 459–463. https://doi.org/10.1111/j.1751-0813.2007.00220.x.
- 15. Brown G, Canfield P, Dunstan R et al. Detection of *Anaplasma platys* and *Babesia canis vogeli* and their impact on platelet numbers in free-roaming dogs associated with remote aboriginal communities in Australia. *Aust Vet J* 2006;84: 321–325. https://doi.org/10.1111/j.1751-0813.2006.00029.x.
- 16. Shapiro AJ, Brown G, Norris JM et al. Vector-borne and zoonotic diseases of dogs in north-west New South Wales and the Northern Territory, Australia. *BMC Vet Res* 2017;13(1):1–13. https://doi.org/10.1186/s12917-017-1169-2.
- 17. Hii S, Kopp S, Thompson M et al. Canine vector-borne disease pathogens in dogs from south-east Queensland and north-east Northern Territory. *Aust Vet J* 2012;90:130–135. https://doi.org/10.1111/j.1751-0813.2012.00898.x.
- 18. Hii S, Traub R, Thompson M et al. Canine tick-borne pathogens and associated risk factors in dogs presenting with and without clinical signs consistent with tick-borne diseases in northern Australia. *Aust Vet J* 2015;93:58–66. https://doi.org/10.1111/avj.12293.
- 19. Panetta JL, Calvani NED, Orr B et al. Multiple diagnostic tests demonstrate an increased risk of canine heartworm disease in northern Queensland, Australia. *Parasite Vector* 2021;14(1):393. https://doi.org/10.1186/s13071-021-04896-y.
- 20. Aubrey J, Copeman D. Canine dirofilarosis an evaluation of bimonthly diethylcarbamazine therapy in prophylaxis. *Aust Vet J* 1972;48:310–312. https://doi.org/10.1111/j.1751-0813.1972.tb05164.x.
- 21. Brown B, Copeman D. Zoonotic importance of parasites in wild dogs caught in the vicinity of Townsville. *Aust Vet J* 2003;81:700–702. https://doi.org/10.1111/j.1751-0813.2003.tb12546.x.
- 22. Smout FA, Skerratt LF, Butler JR et al. Dingoes (*Canis dingo* Meyer, 1793) continue to be an important reservoir host of *Dirofilaria immitis* in low density housing areas in Australia. *Vet Parasitol* 2016;215:6–10. https://doi.org/10.1016/i.vetpar.2015.10.020.
- 23. Orr B, Ma G, Koh WL et al. Pig-hunting dogs are an at-risk population for canine heartworm (*Dirofilaria immitis*) infection in eastern Australia. *Parasite Vector* 2020;13(1):1–11. https://doi.org/10.1186/s13071-020-3943-4.
- 24. Zhu Y, Barker L. An unexpected diagnosis of *Dirofilaria Immitis* (heartworm infection) in a dog on liver FNAs. *Contr Ther Ser* 2024;315:3–7.
- 25. Y M. Heartworm case in southwest Sydney. Contr Ther 2024;315:7–9.

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher's web-site: http://onlinelibrary.wiley.com/doi/10.1111/avj.13450/suppinfo.

Table S1. Primers used to detect *Ehrlichia canis*, *Babesia* species and *Dirofilaria immitis*.

(Accepted for publication 16 April 2025)

17510813, 2025, 7, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/avj.13450 by James Cook University, Wiley Online Library on [18/09/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/rerms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License