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ABSTRACT
Estimates of abundance are fundamental for the management and conservation of threatened species. The Mahogany Glider 
(Petaurus gracilis) is an Endangered marsupial endemic to the Wet Tropics of northeastern Australia. Despite its status, there is 
no reliable estimate of abundance. In this study, we conducted camera trapping surveys for the species and employed a Bayesian 
integrated species distribution model to derive abundance estimates. Presence–absence data from camera trapping surveys and 
presence-only data from historical sighting records were included in the integrated species distribution model. The model esti-
mated median abundance at 6036, 4834 and 2820 individuals for home range estimates of 9, 16 and 25 ha, respectively. We suggest 
using the more conservative abundance estimate of about 2800 individuals, based on the 25 ha home range, because it likely best 
summarizes density across the distribution. Using simulated data, we tested the effects of camera placement and subsampling, 
demonstrating that clustered camera arrangements and subsampling from aggregation did not significantly affect model out-
comes, with predictions primarily dependent on home range estimates. Our survey results suggest considerable spatial variation 
in glider density across its range. The abundance estimates provide a baseline for future conservation initiatives and highlight 
the importance of ongoing monitoring and the application of advanced modeling techniques to inform species management.

1   |   Introduction

Estimating species abundance presents significant challenges. 
Because it is impractical to count every individual, abundance 
estimates must be derived from sampling, which requires the 
use of statistical models (MacKenzie and Nichols 2004; Bonar 
et  al.  2011; Bailey, Mackenzie, and Nichols 2014). Several 
widely used approaches exist, each with different data require-
ments and assumptions. Capture–recapture methods estimate 
detection probability and abundance by repeatedly surveying 
marked individuals over time (e.g., White and Burnham 1999). 
Random Encounter Models treat animals as randomly moving 

particles and estimate density within a defined area, but they 
require cameras to be unbaited and randomly placed (Rowcliffe 
et al. 2008). Site-structured models, such as the Royle–Nichols 
model (Royle and Nichols  2003; Royle et  al. 2005) and N-
mixture models (Royle 2004), do not require animals to be in-
dividually identified or cameras to be randomly placed. These 
models rely on repeated presence–absence or count data to 
account for imperfect detection. Distance sampling is another 
well-established method that estimates density based on the 
measured distance to detected individuals (e.g., Buckland 
et al. 2015). These models rely on assumptions of a closed pop-
ulation during the survey period, independent detections and 
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unbiased detection probabilities (Gilbert et  al.  2021), which 
may not hold in field conditions, particularly for low-density or 
cryptic species.

Biases and imperfections in estimating abundance are often 
amplified for rare species, and the challenges vary depend-
ing on the nature of rarity (e.g., clumped vs. dispersed; broad 
vs. narrow distribution) (Jeliazkov et  al.  2022). Rare species 
typically have low detection rates, which increases the risk 
of false negatives (instances where animals are present but 
undetected) leading to underestimation of abundance and 
potentially misleading inferences about habitat associations 
(Gu and Swihart 2004; Cunningham and Lindenmayer 2005). 
High frequencies of non-detection can also result in inflated 
zeros in the data, which, if not appropriately modeled, may bias 
parameter estimates or reduce model fit (Welsh et  al.  1996; 
Dénes et al. 2015). Furthermore, small sample sizes, such as 
low numbers of detections, reduce statistical power and inflate 
the variance of estimates, which can disproportionately bias 
abundance estimates and reduce confidence in model outputs 
(Gerrodette 1987; Link and Sauer 1997; Bean et al. 2012). To 
address these issues, either greater survey effort is required 
to obtain representative data (e.g., Bonar et al. 2011; Linden 
et  al.  2017; Burns et  al.  2019), or more robust modeling ap-
proaches must be used—particularly those that can incorpo-
rate multiple data sources and account for imperfect detection 
(Jeliazkov et al. 2022).

One such approach is the integrated species distribution model, 
which has been developed to overcome many of these limita-
tions by combining data from multiple detection methods. For 
instance, the integrated species distribution model (hereafter 
‘integrated model’) enables the simultaneous use of presence–
absence and presence-only data within a unified statistical 
framework (Koshkina et al. 2017). By linking occupancy mod-
eling with species distribution modeling, it accounts for imper-
fect detection while incorporating environmental covariates to 
estimate abundance across large spatial scales. The occupancy 
component supports abundance estimation by using repeated 
detection/non-detection data, while the integration of presence-
only data helps relax the closure assumption typically required 
in standard occupancy or abundance models, allowing inference 
beyond the boundaries of structured survey data (Dorazio 2014; 
Koshkina et al. 2017).

The flexibility of the integrated model makes it especially valu-
able for rare species, where detections are sparse and conven-
tional methods such as mark-recapture or N-mixture models 
may not be feasible (Gilbert et  al. 2020). It is also well suited 
for situations with patchy or incomplete survey coverage and 
baited sampling (Mäkinen et al. 2024). A Bayesian implemen-
tation of the model has been developed to improve accuracy 
and quantify uncertainty in parameter estimates (Fidino 2021). 
Although the model assumes independence between obser-
vations and requires careful selection of spatial covariates, 
it has been shown to perform well in estimating abundance 
for elusive and rare species. Successful applications include 
the Yellow-bellied Glider (Petaurus australis) in southeastern 
Australia (Koshkina et al. 2017), large carnivores in New York 
State (Twining et al. 2024) and Baird's Tapir (Tapirus bairdii) in 
Central America (Schank et al. 2017, 2019).

The Mahogany Glider (Petaurus gracilis) is an Endangered 
mammal species restricted to the Wet Tropics of northeast 
Australia. This medium-sized, gliding marsupial is con-
fined to lowland sclerophyll forests characterised by euca-
lyptus and melaleuca trees with a grassy understory and 
distinct seasonal rainfall (Jackson and Claridge  1999; Chang 
et  al.  2022). The glider's habitat requires diverse tree species 
to provide year-round nectar for foraging and suitable tree hol-
lows for nesting (Van Dyck  1993; Jackson  1998). Mahogany 
Gliders are reported to be socially monogamous with home 
ranges of 6–10 ha in fragmented habitats and 19–24 ha in 
continuous habitats (Jackson  2000b). Listed as Endangered 
under Australia's Environment Protection and Biodiversity 
Conservation Act 1999 (EPBC Act, Threatened Species 
Scientific Committee 2023), the species has suffered from ex-
tensive deforestation due to cattle grazing, sugarcane farming 
and forestry activities (Jackson et al. 2011).

Conservation efforts to date have focused on collaborating 
with landowners to maintain and restore habitat, conduct-
ing revegetation and installing glider poles to facilitate road 
crossings (Asari et  al.  2010; Jackson and Diggins 2020). 
However, fundamental knowledge gaps remain, including rig-
orous estimation of population densities and size across the 
distribution. To date, population density has been estimated 
only once, through a capture-recapture study conducted 
around 1998 in a small area in the center of the distribution 
(Jackson 2000a). That study suggested a density of 0.16 indi-
viduals per hectare in fragmented habitat and 0.24 in contin-
uous habitat, which led to an extrapolation of 10,000–14,000 
individuals across the range in a review of the species' con-
servation status (Burbidge et  al.  2014). In the same review, 
a speculation of 1200–2000 individuals, lacking any meth-
odological detail, is also presented (Burbidge et  al.  2014). 
Uncertainty around abundance has complicated efforts to as-
sess population trends and the impacts of significant events, 
such as Cyclone Yasi in 2011, on the viability of the species 
(Starbridge 2012; Holloway 2013).

In this study, we used data from camera trapping surveys and 
historical sighting records in an integrated model to estimate 
the abundance of the Mahogany Glider across its known range, 
aiming to provide a more rigorous abundance estimate. We also 
assess the potential uncertainty of these estimates by testing 
the effects of camera placement, sample size and varying home 
range sizes. Our camera trapping survey strategies and abun-
dance estimates will serve as a foundation for long-term moni-
toring of this threatened species.

2   |   Methods

2.1   |   Study Sites and Timing of Surveys

Between 2020 and 2022, camera trapping surveys were con-
ducted in the lowland woodland of the central and southern Wet 
Tropics bioregion in north-east Australia. Two sampling designs 
were used across different monitoring projects: transects, repre-
senting prior-informed sampling, and grids, representing system-
atic sampling (Jeliazkov et al. 2022). These data were integrated 
in the current study to maximize spatial coverage and analytical 
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robustness. Transect surveys were initially conducted to ground-
truth a previously developed species distribution model (Chang 
et  al.  2022), while grid-based surveys were designed for occu-
pancy and abundance estimation (Figure 1). The details of these 
two designs are outlined below. Most surveys were carried out 
during the dry season, primarily from May to November, due to 
the swampy and inaccessible nature of Mahogany Glider habitat 
during the wet season (December–April).

2.2   |   Presence-Absence (PA) Surveys

Both transect and grid designs were used to collect presence-
absence data for the integrated model. The transect sites were 
monitored using 9 to 24 infrared cameras from 15 to 89 nights, 
and the grid sites were monitored using a fixed number of 20 cam-
eras from 32 to 45 nights. The cameras were positioned at least 
120–150 m apart, depending on the tree availability (Table 1).

For transect surveys, camera locations were based on > 50% 
modelled habitat suitability (Chang et  al.  2022), Google Earth 
satellite imagery, and site accessibility, with exact placement ad-
justed for habitat conditions and suitable trees. For grid surveys, 
a grid design was used with 150 m spacing between cameras, 
created using ArcMap 10.8, and a buffer of 75 m to account for 
glider home ranges in fragmented habitats (Jackson  2000b). 
Grid sites had 20 cameras deployed for at least 4 weeks (White 
2019; Kays et al. 2020).

At each camera location, a pair of straight-trunked trees about 
2 to 4 m apart was selected. One tree was used to mount the 
lure holder, while the camera was securely fastened to the 
other (Figure 1B). To enhance detectability, a mixture of oats, 
honey and peanut butter was used as lure in custom-made PVC 
and metal lure holders. This setup ensures the lure remained 
functional without being consumed by the gliders or other 
animals. Additionally, a diluted honey and raspberry cordial 

FIGURE 1    |    Survey sites and methods. (A) Transect (white) and grid (orange) camera trapping surveys across the Wet Tropics. The asterisks in-
dicate sites where Mahogany Gliders were detected. (B) Installation process of brackets onto the tree pair (one for lure holder, one for camera) for 
repeat monitoring. Photo credit: Taruna Venkat. (C) A Mahogany Glider captured on a camera trap investigating the lure holder at Muller's Creek. 
The 21 cm length of wood served as a scale bar.
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solution was sprayed on the lure tree. A 21 cm wooden scale 
bar (equivalent to the averaged snout-vent length of Squirrel 
Gliders) was suspended next to the lure holder for size refer-
ence in the images. Swift Enduro professional-grade motion 
cameras, equipped with infrared mode and 32 GB SD cards, 
were used for both survey designs. Infrared cameras were 
programmed with highest sensitivity to operate from 5 pm to 
7 am, during the nocturnal activity period of the glider, cap-
turing sequences of three photos with a 3-s interval upon de-
tecting animal presence using invisible flash. Cameras were 
positioned 3 to 4 m above the ground.

In transect surveys, the lure holder was wrapped around the 
trunk using jute twine and the cameras were securely fastened 
with tie-down straps to the tree facing the lure holder. In grid 
surveys, V-shaped metal brackets and 10 × 10 cm L-shaped 
brackets were installed for the lure holders and cameras, re-
spectively, to standardize the placements for repeat monitoring 
(Figure 1B,C).

Logistical challenges during arboreal camera trapping included 
difficulty finding suitably spaced, straight-trunked trees for 
consistent placement, overexposure from pale eucalyptus bark 
in infrared images, and a high rate of false triggers caused by 
wind-blown vegetation and rainfall. Surveys were restricted 
to the dry season (May–November) due to heavy wet-season 
rainfall and the inaccessibility of sites, many of which become 
swampy and impassable during the wet season.

Upon retrieval, photos were viewed manually and animals cap-
tured on camera were catalogued. A detection incident was de-
fined as an animal being photographed at least 30 min after the 
preceding image of that species.

2.3   |   Presence-Only (PO) Data

We used historical records from the WildNet database and the 
Mahogany Glider Recovery Team as our presence-only dataset. 
Data cleaning involved converting animal counts at each coor-
dinate to presence records, removing entries with incomplete 
information, and excluding records predating 1990 (due to sub-
sequent landscape changes). This process resulted in a total of 
487 valid sighting records in the presence-only dataset (Chang 
et al. 2022).

2.4   |   Environmental Covariates

We used the predictors that showed significance in the lat-
est species distribution modelling (Chang et  al.  2022) as the 
environmental covariates in the integrated model (Table S1). 
These spatial rasters were standardised to the same resolu-
tion of 250 m and cropped to the known range of the glider 
(Blakeney  2015). Soil and vegetation types that were sig-
nificantly correlated with glider presence were recoded into 
a binary format (1 for relevant, 0 for others). The preferred 

TABLE 1    |    Camera trapping survey sites and detection counts of Mahogany Glider (MG).

Site Region
Survey 

type Cameras Nights

Total 
trapping 

effort MG

MG 
Naïve 

rate (%)
Other arboreal 

species recorded

Abergowrie West of Ingham Transect 20 27 540 0 0.00 Krefft's Glider

Balgal North of TSV Transect 20 52 1040 0 0.00 Krefft's Glider

Bambaroo South of Ingham Transect 24 33–89 1016 19 1.87 NA

Clemant SF North of TSV Transect 20 42 840 0 0.00 Krefft's Glider

Coolbie South of Ingham Transect 10 53 530 2 0.38 Krefft's Glider, 
White-tailed Rat, 
Feathertail Glider

Hinchinbrook Cardwell Transect 20 57 1140 0 0.00 Krefft's Glider

Long Pocket West of Ingham Transect 20 15 300 0 0.00 Krefft's Glider

Mutarnee North of TSV Transect 20 20 400 2 0.50 Krefft's Glider, 
Feathertail Glider

South Mission 
Beach

Tully Transect 9 58 522 0 0.00 Striped Possum

Allendale South of Ingham Grid 20 41–42 832 78 9.38 Krefft's Glider

Bambaroo South of Ingham Grid 20 30–31 610 25 4.10 NA

Muller's Creek Cardwell Grid 20 44–45 894 22 2.46 Krefft's Glider

Ollera Creek North of TSV Grid 20 42 840 3 0.36 Brushtail Possum

Note: The location of the sites is shown in Figure 1. Survey design was transect or grid (grey shading). The trapping effort is represented as the product of the total 
number of nights and cameras at each site. Note that the operational duration of cameras varied within a site, and the variation of each camera was incorporated in the 
trapping effort calculation and in the model. The Naïve capture rate was calculated by dividing the Mahogany Glider. detections by the total trapping effort.
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soil type was hydrosol, while the preferred vegetation types 
included Eucalyptus woodlands with a tussock grass under-
story and Melaleuca open forests (Table  S1). To account for 
detection bias, we included distance to road, as this factor is 
known to influence predictions in species distribution mod-
elling (Chang et  al.  2022). Missing data representing ocean 
areas were removed from the environmental covariates. 
Before model fitting, each variable was scaled and centred 
(Kruschke 2014).

2.5   |   Integrated Model Description

The integrated species distribution model consists of an inhomo-
geneous Poisson process that models the latent species abundance 
across the area of interest using two sub-models corresponding to 
two types of monitoring data: (1) a thinned Poisson process that 
describes the observed presence-only data, and (2) an occupancy 
model that fits the presence-absence data. Both sub-models are 
linked to the latent abundance, and the model evaluates the likeli-
hood of all three components simultaneously.

The inhomogeneous Poisson process describes the latent abun-
dance N of the Mahogany Glider in their known extent B as 
shown in the Equation (1):

The mean abundance of Mahogany Glider in the range �(B) is de-
termined by an intensity function � as shown in Equation (2). In 
our model, the intensity function depends on an intercept term 
and nine environmental covariates (Equation 3).

Occupancy models estimate species presence on a spatial grid, 
and the latent occupancy at gird k (Zk) was estimated using the 
probability of glider presence �k through a Bernoulli process 
(Equation 4) (Fidino 2021). This probability �k depends on the 
latent abundance at the grid k (Nk) (Equation  6 in Koshkina 
et al. 2017)

Inferring from the latent abundance N(B), the presence-only 
sub-model composed of a thinned Poisson process describing 
the imperfectly detected abundance �(B) (Equation 5). The im-
perfect detection is accounted for by a thinning factor b(s) in 
Equation (5), which is composed of an intercept term and an ob-
servation bias layer (Equation 10 in Koshkina et al. 2017)

The presence-absence sub-model is a typical occupancy model 
which consists of j survey sites and each site surveyed wj days. A 
successful detection at j site on the w day is a Bernoulli process 

determined by the latent occupancy Z and observations bias 
(pj,w) as shown in Equation (6).

We assumed the camera detectability to be consistent across 
sites, thereby only the intercept term is used in the pj,w function 
(Equation 4 in Koshkina et al. 2017).

The likelihood functions of Dorazio  (2014) and MacKenzie 
et  al.  (2002) were used to estimate the coefficients for each 
environmental covariate in the intensity function of la-
tent abundance and in the thinning factor (biases) for the 
presence-only and presence-absence model, respectively 
(Koshkina et al. 2017). Assuming the presence-absence data-
set is independent from the presence-only dataset, the joint 
likelihood of the integrated model can then be expressed by 
multiplying the likelihood of the sub-models (Dorazio  2014; 
Koshkina et al. 2017).

2.6   |   Testing Model Accuracy

We examined the effects of camera placement, sample size and ag-
gregation methods on the accuracy of the integrated model, based 
on the simulation framework of Fidino (2021). In the framework, 
animal occurrence was generated according to environmental co-
variates within a raster; presence-only (PO) data were randomly 
selected across the raster, and 100 cameras were evenly distrib-
uted for presence-absence (PA) data. This simulation process ac-
curately captured the true coefficient values. However, our study 
differs in two key aspects: (1) our cameras are clustered within 
10 sampling sites rather than being evenly distributed, and (2) 
the number of cameras varies across different resolutions due to 
subsampling when multiple cameras fall within the same cell. 
Aggregation, which combines detections from multiple cameras 
within a cell, reduces both the total number of cameras and de-
tections as the aggregation factor increases (resolution decreases). 
To ensure the applicability of the model to our data, we conducted 
simulations to test its ability to cover the true values under the 
conditions mentioned above. First, we tested the effect of clustered 
cameras by simulating 25 clusters, each containing four cameras, 
and compared the modeling results to the evenly distributed 
100-camera setup. Second, we evaluated the impact of sample size 
changes due to subsampling, without altering individual camera 
observations. Third, we tested three aggregation methods for each 
cell using a detectability rate of 0.3: averaging all camera observa-
tions (mean), retaining only the camera with the highest detection 
(max) and summing all observations (sum). The low detectability 
of 0.3 not only reflects the low detection rate of rare species but 
also ensures the total observations did not exceed the number of 
survey nights and hence violate occupancy model assumptions. 
The assigned coefficients are abundance intercept (Latent Int.), 
environmental covariate coefficient (Latent Slope), SDM intercept 
(PO Int.), observation bias (PO slope) and occupancy intercept (PA 
Int.). The derived values from the assigned coefficients are occu-
pied cells that subsequently estimate the Abundance (Figures S2–
S4). The effects were examined by comparing the width of credible 
intervals of the estimated coefficients and whether they overlap 
the known true values.

(1)N(B) ∼ Poisson (�(B))

(2)�(B) = ∫
B

�(s)ds

(3)log(�) = �x(s)T = �1 ⋅ x(s)1 + … + �10 ⋅ x(s)10

(4)Zk ∼ Bernoulli
(

�k

)

(5)�(B) = ∫
B

�(s) ⋅ b(s)ds

(6)yj,w ∣ Zk[j] ∼ Bernoulli
(

pj,w ⋅ Z(k[j])

)

 20457758, 2025, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.72037 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [10/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 11 Ecology and Evolution, 2025

2.7   |   Model Configuration

We fitted the models based on the script of Fidino (2021) (GitHub 
repository: https://​github.​com/​mfidi​no/​integ​rated​-​occup​ancy-​
model​) using JAGS 4.3.1 (Plummer 2003) through the runjags 
package 2.2.1–7 (Denwood  2016) in R 4.1.2 (R Development 
Core Team 2022).

Since the environmental variables were represented as spatial ras-
ters, a resolution had to be defined. We aggregated pixels using 
factors of 3–5, following the methodology of Fidino (2021), to cap-
ture the home range estimates for the Mahogany Glider (9–25 ha) 
(Jackson 2000b). The aggregation factor represents the side length 
of a grid cell, resulting in three grid sizes: 9 ha (3 × 3), 16 ha (4 × 4) 
and 25 ha (5 × 5) (Schank et al. 2019; personal communication with 
Mason Fidino). This range of grid sizes captures the variability in 
home range estimates (9–25 ha) and was used to estimate total 
abundance under different home range scenarios (Jackson 2000b). 
When multiple cameras were present within a single aggregated 
grid, only the camera with the most detections was retained, based 
on the optimal method identified in the simulation tests.

The process involved 4 chains, with a 1000-step adaptation phase, 
followed by a 10,000-step burn-in, and 25,000 steps with a thin-
ning factor of 5 to avoid auto-correlation. We subsequently sam-
pled the posterior 5000 times on each chain, which resulted in a 
total of 20,000 posterior samples. To ensure model convergence, 
we visually inspected the trace plots for each variable and veri-
fied Gelman-Rubin diagnostics were less than 1.05 (Brooks and 
Gelman 1998). The Gelman-Rubin statistic, also known as the R-
hat statistic, compares the variability within individual chains to 
the variability between different chains. We then determined the 
evidence of an effect by calculating 95% credible intervals (CIs) for 
each variable and assessed whether they overlapped zero.

To capture the range of abundance estimates, we drew 1000 
sets of model coefficients from the posterior distribution and 
generated 1000 corresponding abundance predictions. For 
each prediction, total abundance was calculated by summing 
the values across all pixels. Finally, we assessed the most 
likely abundance estimates and their uncertainty by examin-
ing the quantiles of the resulting abundance distribution (pos-
terior prediction).

2.8   |   Abundance Estimates Comparison

The abundance estimates from the integrated model were 
compared to two previous estimates reported in Burbidge 
et al. (2014) and two extrapolated estimates based on data from 
Jackson (2000b) and Jackson et al.  (2019). The estimates from 
Burbidge et  al.  (2014) included an extrapolated abundance of 
10,000–14,000 individuals (based on a density estimate of 0.16 
individuals per hectare in fragmented habitat and 0.24 in con-
tinuous habitat; Jackson 2000a) and a hypothesized abundance 
of 1500–2000 individuals (based on unpublished genetic data 
and personal communication with Mark Parsons).

We calculated two conservative abundance estimates based on 
table 1 in Jackson et al.  (2019), which lists the areas of primary 
and secondary subpopulations, along with associated habitat 

fragments, within the distribution of the Mahogany Glider. For the 
first estimate, we extrapolated abundance by multiplying the total 
area of the five primary subpopulations (each considered viable 
with > 800 individuals) by the estimated density for fragmented 
habitats (0.16 individuals/ha). This resulted in an estimated total 
abundance of 107,483 × 0.16 = 17,197 individuals (Extrapolation 1 
in Figure 2). We did not include secondary subpopulations in this 
estimate because Jackson et al. (2019) indicated that these popu-
lations are only viable with the establishment of corridors. In the 
second extrapolation, we assumed each of the five primary sub-
populations supported only the minimum viable abundance of 800 
individuals, resulting in a total estimated population of 4000 indi-
viduals (Extrapolation 2 in Figure 2).

3   |   Results

3.1   |   Camera Trapping Surveys

The surveys conducted within the known range of the 
Mahogany Glider generally recorded low detection rates, ex-
cept for three sites that exhibited relatively high detection 
rates: Allendale, Bambaroo and Muller's Creek (Table  1). 
Allendale is situated south of Ingham in fairly continuous 
habitat; Bambaroo is a small and isolated fragment of primary 
forest near Allendale, and Muller's Creek is located further 
north, between Ingham and Cardwell (Figure  1). Coolbie, 
Mutarnee and Ollera Creek, positioned at the southern end of 
their range (Figure 1), had low detection rates, with only one 
to three observations each (Table  1). Surveys at Abergowrie 
and Long Pocket, both situated in high-probability habi-
tat areas to the west of Ingham (Figure 1), did not yield any 
Mahogany Gliders (Table 1).

Four of the survey sites were outside of (but close to) the known 
distribution of the Mahogany Glider, namely Hinchinbrook 
Island, Clemant State Forest, Balgal Beach and South Mission 
Beach (Figure 1A). Our surveys failed to detect any Mahogany 
Gliders in these areas. It is worth noting that the surveys on 
Hinchinbrook Island could only be conducted in moderate suit-
ability habitat because high suitability habitat was not accessible 
(Chang et al. 2022).

In addition to the target species, other arboreal mam-
mals detected during the surveys included the Common 
Brushtail Possum (Trichosurus vulpecula), White-tailed Rat 
(Uromys caudimaculatus), Krefft's Glider (Petaurus notatus), 
Feathertail Glider (Acrobates pygmaeus), Striped Possum 
(Dactylopsila trivirgata) and Fawn-footed Melomys (Melomys 
cervinipes).

3.2   |   Testing Model Accuracy

In the parameter testing, we used simulated data to assess the 
effects of camera placement (clustered vs. evenly distributed), 
sample size and aggregation methods (Figures S2–S4).

At finer spatial resolutions (aggregation factors 5 and 10), the 
model exhibited increased uncertainty in occupied cells. In 
contrast, at coarser resolutions (aggregation factors 15 and 20), 
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the model tended to underestimate the number of occupied 
cells (Figures S2 and S3) and may fail to capture the true values 
(Figure  S1). Clustered camera placement reduced the stability 
and accuracy of estimated coefficients and occupied cells at 
higher aggregation factors (15 and 20), although most estimated 
ranges still captured the true values (Figure  S2). In contrast, 
sample size reduction through subsampling had minimal im-
pact on model performance (Figure S3).

As the aggregation method influences the occupancy sub-model 
and its associated abundance intercept, we assessed the perfor-
mance of three aggregation approaches (max, mean and sum) 
using simulated data. The mean method performed poorly, 
showing high variability and instability in estimates of the latent 
abundance intercept, occupancy intercept (PA Int., which reflects 
detectability), the number of occupied cells, and total abundance 
(Figure S4). While the max and sum methods performed simi-
larly, the sum method may inflate detection counts, particularly 
under high detectability, resulting in values that exceed the num-
ber of survey nights and violate occupancy model assumptions. 
Therefore, we selected the max method (which uses the highest 
detection value from cameras within each grid cell) for our model 
(Figure  S4). This approach is also biologically meaningful, as 
the aggregation factor defines the pixel size used to approximate 
home range, and the maximum detection value better reflects the 
number of resident individuals within that area.

3.3   |   Abundance Estimates Using 
the Integrated Model

As observed in the simulation tests, abundance estimates were 
scale-dependent, with the use of smaller home range estimates 

producing higher abundance estimates (Figure 2). Therefore, 
we estimated the total abundance using three home range 
scenarios (grid sizes) that cover the estimated home range 
of Mahogany Glider (Jackson  2000b). For the smallest esti-
mated home range of 9 ha (aggregation factor = 3), the quantile 
ranged from 5155 to 6977 individuals, with a median of 6036. 
For the middle home range estimate of 16 ha (aggregation fac-
tor = 4), the quantile ranged from 4018 to 5755, with a median 
of 4834. For the largest home range of 25 ha (aggregation fac-
tor = 5), the quantile ranged from 2236 to 3487, with a median 
of 2820 (Figure 2, Table S2).

The overall estimated detectability, based on the occupancy 
sub-model of the integrated model, ranged from 4.5% to 8.7% 
across aggregation factors 3 to 5. These values reflect the low 
detection rates observed during field surveys. The coefficients 
representing species–environment relationships, which quan-
tify the effect of environmental covariates on predicted spe-
cies abundance and occupancy, remained relatively consistent 
across the aggregation factors. Most covariates were effective 
predictors, as indicated by their credible intervals not overlap-
ping zero, except for the minimum temperature of the month, 
which showed no significant effect (Figure S1). Among the co-
efficients, the occupancy intercept exhibited greater variability 
compared to the abundance and SDM intercepts. The most im-
portant environmental covariates in the models were distance 
to roads (−), elevation (−), preferred vegetation type (Eucalyptus 
open woodlands) (+) and temperature seasonality (+) (Table S2). 
Distance to waterways (+) was also significant across all three 
models, but to a lesser degree (Table S2). Soil type, precipitation 
seasonality and fire frequency were positively correlated with 
predicted densities, but their magnitude of effect varied between 
models (Table S2).

FIGURE 2    |    Posterior predictions of the total abundance of Mahogany Gliders across their known range at home range sizes of 9, 16 and 25 ha 
(aggregation factors 3–5). The Boxplots represent estimates from the 1000 predictions from the integrated species distribution model. The brown rib-
bons indicate estimates mentioned by Burbidge et al. (2014). The blue and red lines represent extrapolations based on density estimates and habitat 
remnant assessments from Jackson (2000a, 2000b) and Jackson et al. (2019) (see Section 2).
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4   |   Discussion

Here we used presence-absence data from camera trapping 
surveys and presence-only data from historical sighting re-
cords in an integrated species distribution model, with the 
aim of providing the first detailed abundance estimate of 
Mahogany Glider. The integrated model estimated a median 
Mahogany Glider abundance of 6036 individuals (based on 
a 9 ha home range), 4834 (16 ha) and 2820 (25 ha). These es-
timates fall between previous coarse population bounds 
of 1200–2000 and 10,000–14,000 individuals (Burbidge 
et  al.  2014; Jackson et  al.  2019). We consider the estimate 
based on a 25 ha home range (approximately 2800 individu-
als) to be the most likely total abundance of Mahogany Glider 
because most of the total habitat area is concentrated in a 
small number of large and medium-sized patches, and the 
thousands of tiny, fragmented patches are unlikely to sup-
port viable populations (Jackson  2000b; Chang et  al.  2022). 
We highlight two key advantages of applying the integrated 
model for abundance estimates. First, it accommodates low 
detectability and reduces uncertainty by combining sighting 
records with repeated presence-absence data, outperform-
ing expert opinions and standalone abundance-occupancy 
models (Koshkina et al. 2017). Second, the integrated model 
enables estimation across entire distributions rather than spe-
cific study areas, with quantifiable confidence intervals (e.g., 
Schank et al. 2017, 2019; Twining et al. 2024).

4.1   |   The Effect of Aggregation Factors in 
Integrated Model Estimates

The integrated model is sensitive to the aggregation factor, 
which in our model represents the species' estimated home 
range. As the aggregation factor decreases (i.e., resolution in-
creases), abundance estimates rise. This scale dependency is 
inherent when working with gridded spatial data, when ac-
counting for false positives, and in the absence of individual 
identification—a common challenge in most camera trap-
ping surveys (Steenweg et  al.  2018; Nakashima  2020). This 
scale dependency was not addressed in the original model 
(Koshkina et al. 2017) but was later confirmed in a study on 
Baird's Tapir (Tapirus bairdii) using the same model (Schank 
et al. 2019). Our analysis shows the same pattern of scale de-
pendency. Defining the aggregation factor based on home 
ranges is biologically meaningful, but this process can be 
complex when the home range varies across the range or is 
difficult to determine (e.g., Schank et al. 2019; Fidino 2021). 
Incorporating variation in home range estimates, and using 
averaged home range estimates, are therefore recommended 
approaches (Schank et al. 2019).

4.2   |   Covariates in the Integrated Model

Most of the environmental covariates were identified as effective 
predictors by the integrated model (Figure S1). The relationship 
of elevation, vegetation type, soil type, distance to waterways, 
and observational bias (distance to road) aligned with pre-
vious species distribution models (SDMs; Chang et  al.  2022) 
and the known ecology of the species (e.g., Van Dyck  1993; 

Jackson 1998; Jackson et al. 2011). For a detailed discussion of 
the biological and ecological relevance of these predictors, see 
Chang et al. (2022).

Some discrepancies were observed. Precipitation seasonality, 
which was one of the key factors in previous SDMs (Chang 
et  al.  2022), was not consistently significant in the integrated 
model. Notable differences were also found in the effects of 
fire frequency and temperature seasonality. Fire frequency 
was positively associated with abundance estimates in the in-
tegrated model; whereas it was not a significant predictor in 
previous SDMs. This is an interesting difference, as fire fre-
quency is known to alter habitat suitability (Jackson et al. 2011). 
Temperature seasonality showed a positive correlation with 
abundance, which was an unexpected result based on previous 
SDMs (Chang et al. 2022) It is important to note that some envi-
ronmental variables that may be important to the species, such 
as tree hollow availability, could not be included due to the lack 
of adequate spatial and field data (Chang et al. 2022).

4.3   |   Low Detectability and Integrated Model 
Performance

The estimated detectability of the Mahogany Glider ranged 
from 4.52% to 8.71% across our camera trapping sites. Low de-
tectability is known to bias occupancy model estimates and 
reduce accuracy (e.g., MacKenzie et al. 2002; Field et al. 2005), 
with detectability below a suggested minimum threshold of 
15% considered unsuitable for traditional occupancy models 
(O'Connell et al. 2006). An advantage of the integrated model-
ling approach is its ability to correct such biases by incorporat-
ing a species distribution model, thus improving accuracy at 
low detectability (Koshkina et al. 2017; Fidino 2021). However, 
it is worth noting that during the aggregation process, we re-
tained only the camera with the highest detection counts at 
each site, which likely inflated the overall detectability. This, 
in turn, likely overestimated the total abundance of the spe-
cies. This is one of the reasons that we lean towards the most 
conservative population estimate based on the 25 ha home 
range, which best represents the remaining habitat. Most 
suitable habitat is now concentrated in a few large patches, 
while many smaller patches appear to lack Mahogany Gliders 
(Chang et al. 2022).

Compared with the Royle–Nichols model, abundance het-
erogeneity in the integrated species distribution model is ex-
plained through the abundance intercept (latent intercept) and 
slope, which incorporate environmental covariates (Koshkina 
et al. 2017), rather than through site or time-specific variation 
(Royle and Nichols 2003). Such variation in detectability can be 
implemented in the integrated model; for example, Koshkina 
et al.  (2017) used wind strength and the time of day to imple-
ment varied detectability to estimate the abundance of Yellow-
bellied Gliders (Petaurus australis). Unfortunately, our surveys 
did not record covariates that may have contributed to detection 
variability. As a result, our model could only assume constant 
detectability across all camera locations and throughout the sur-
vey period. To improve future modeling efforts, surveys should 
aim to record potential sources of detectability variation, such as 
weather conditions, site characteristics and tree density.
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Although a positive abundance–occupancy relationship is a 
common feature of ecological systems (He and Gaston 2000; 
Gaston et al. 2000), this relationship is not always linear. It can 
be influenced by factors such as population dynamics (Buckley 
and Freckleton  2010) or the spatial scale of the sampling unit 
(Storch et  al. 2008). Both the integrated species distribution 
model and the Royle–Nichols model assume a nonlinear rela-
tionship between abundance and occupancy, where detection 
probability increases with abundance but eventually saturates 
(Royle and Nichols 2003; Koshkina et al. 2017; Fidino 2021).

4.4   |   Implications for Long-Term Monitoring

Our findings highlight the critical role of long-term monitor-
ing in improving abundance modeling. As outlined above, a 
comparison of population density at Muller's Creek now ver-
sus 20 years ago (Jackson 2000a) suggests a substantial decline, 
with catch rates dropping from 7.5%–15% to just 2% (Chang et al. 
2025). Standardized, long-term data collection can estimate 
population trends through time and link these to changes in 
habitat quality (e.g., due to fire, intensity of cattle farming, inva-
sive grasses, etc.), climate trends and rare events (e.g., cyclones). 
Sustained monitoring provides early warnings of population de-
clines or evidence of recovery (e.g., Cassey et al. 2007; Rodhouse 
et  al.  2019; Weldy et  al.  2023; Harju and Cambrin  2023). For 
example, Cyclone Yasi in 2011 was believed to have had sub-
stantial negative impacts on Mahogany Glider populations 
(Starbridge 2012; Holloway 2013) but detailed monitoring data 
was lacking to assess population declines and subsequent re-
covery. Our study initiated a monitoring program, now led by 
local communities and conservation groups, using fixed ar-
boreal camera traps at key sites. As these efforts continue and 
expand, abundance estimates for the Mahogany Glider will 
improve, enabling more effective conservation (McCarthy and 
Possingham 2007; Lindenmayer and Likens 2009).

4.5   |   Conclusions and Future Directions

The integrated model provides a baseline abundance estimate 
for this endangered species, especially in situations where tra-
ditional occupancy models struggle due to low detectability or 
large study areas (e.g., Linden et al. 2017; Koshkina et al. 2017). 
Despite limitations in accounting for population dynamics and 
variable home ranges, the model offers the best range-wide 
population estimate to date for the Mahogany Glider. Based on 
the most conservative estimate from the integrated models, we 
suggest the current population sits at around 2800 individu-
als. To further refine these estimates, research should expand 
camera trapping efforts to additional areas, particularly poorly 
known areas of the distribution such as the base of the moun-
tain ranges in the west and coastal areas in the east (Chang 
et al. 2022). Investigating other factors—such as the degree of 
habitat fragmentation, recent fire history, forest structure (tree 
size, age, tree hollows), floral species composition, flowering 
phenology—will be valuable in understanding variability in 
Mahogany Glider density and home range size. Combining 
these efforts with long-term monitoring and advanced model-
ing techniques will enable more targeted and adaptive man-
agement of the species.
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