
Access to this file is available from:

References


Anctil M, Hayward DC, Miller DJ, Ball EE (2007) Sequence and expression of four coral G protein-coupled receptors distinct from all classifiable members of the rhodopsin family. Gene 392:14-21


Battenberg EL, Bloom FE (1975) A rapid, simple and more sensitive method for the demonstration of central catecholamine-containing neurons and axons by glyoxylic acid induced fluorescence: I. Specificity. Psychopharmacol Commun 1:3-13


de Jong DM, Hislop NR, Hayward DC, Pontynen PC, Ball EE, Miller DJ (2006) Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora. Dev Biol


Fux E, Mazel C (1999) Unmixing coral fluorescence emission spectra and predicting new spectra under different excitation conditions. Applied Optics 38:466-494


Lockett TJ (1990) A bacteriophage lambda DNA purification procedure suitable for the analyses of DNA from either large or multiple small lysates. Analytical Biochemistry 185:230-234


Pang K, Matus DQ, Martindale MQ (2004) The ancestral role of COE genes may have been in chemoreception: evidence from the development of the sea anemone, Nematostella vectensis (Phylum Cnidaria; Class Anthozoa). Dev Genes Evol 214:134-138
Prasher DC (1995) Using GFP to see the light. TIG 11:320-323


Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. PNAS 74:5463-5467


Technau U (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23:788-794
Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC,


Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363-367


Figure 6.1 Spectral characteristics of the recombinant proteins from *Acropora millepora* presettlement library.
Figure 6. 2 Box shade alignment between larval and adult Acropora fluorescent proteins. Arrowheads points to the orientation of the residue (in or outside) the GFP-like β barrel (Beltran-Ramirez et al 2010)

Figure 6. 3 Prawn chip coloured embryos.

Figure 6. 4 38h-FITC coral embryo

Figure 6. 5 Red granulations in planula cells.

Figure 6. 6 Planula section stained against amilFP
Figure 6.8 Lawn of *E. coli* expressing the amilCP and FPs produced during this research.
Nucleotide sequence of the nuclear GFP-like genes from *Nematostella vectensis* and *Acropora millepora*.

Exononic sequences are marked in bold.