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A B S T R A C T

Introduction: Machine Learning (ML) is transforming medical research by enhancing diagnostic accuracy,
predicting disease progression, and personalizing treatments. While general models trained on large datasets
identify broad patterns across populations, the diversity of human biology, shaped by genetics, environment,
and lifestyle, often limits their effectiveness. This has driven a shift towards subject-specific models that
incorporate individual biological and clinical data for more precise predictions and personalized care. However,
developing these models presents significant practical and financial challenges. Additionally, ML models
initialized through stochastic processes with random seeds can suffer from reproducibility issues when those
seeds are changed, leading to variations in predictive performance and feature importance. To address this,
this study introduces a novel validation approach to enhance model interpretability, stabilizing predictive
performance and feature importance at both the group and subject-specific levels.
Methods: We conducted initial experiments using a single Random Forest (RF) model initialized with a
random seed for key stochastic processes, on nine datasets that varied in domain problems, sample size,
and demographics. Different validation techniques were applied to assess model accuracy and reproducibility
while evaluating feature importance consistency. Next, the experiment was repeated for each dataset for up to
400 trials per subject, randomly seeding the machine learning algorithm between each trial. This introduced
variability in the initialization of model parameters, thus providing a more comprehensive evaluation of the
machine learning model’s features and performance consistency. The repeated trials generated up to 400
feature sets per subject. By aggregating feature importance rankings across trials, our method identified the
most consistently important features, reducing the impact of noise and random variation in feature selection.
The top subject-specific feature importance set across all trials was then identified. Finally, using all subject-
specific feature sets, the top group-specific feature importance set was also created. This process resulted in
stable, reproducible feature rankings, enhancing both subject-level and group-level model explainability.
Results: We found that machine learning models with stochastic initialization were particularly susceptible
to variations in reproducibility, predictive accuracy, and feature importance due to random seed selection
and validation techniques during training. Changes in random seeds altered weight initialization, optimization
paths, and feature rankings, leading to fluctuations in test accuracy and interpretability. These findings align
with prior research on the sensitivity of stochastic models to initialization randomness. This study builds on
that understanding by introducing a novel repeated trials validation approach with random seed variation,
significantly reducing variability in feature rankings and improving the consistency of model performance
metrics. The method enabled robust identification of key features for each subject using a single, generic
machine learning model, making predictions more interpretable and stable across experiments.
Conclusion: Subject-specific models improve generalization by addressing variability in human biology but
are often costly and impractical for clinical trials. In this study, we introduce a novel validation technique
for determining both group- and subject-specific feature importance within a general machine learning model,
achieving greater stability in feature selection, higher predictive accuracy, and improved model interpretability.
Our proposed approach ensures reproducible accuracy metrics and reliable feature rankings when using models
incorporating stochastic processes, making machine learning models more robust and clinically applicable.
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1. Introduction and related work

Machine learning (ML) and other forms of Artificial Intelligence
AI) have emerged as transformative statistical tools that are revolu-
ionizing various fields of science, including medical research. These
echnologies excel at identifying complex patterns in vast datasets,

often revealing insights that remain elusive to human researchers. In
he realm of medicine, ML is increasingly utilized for tasks such as drug
iscovery [1–3], patient diagnostics [4–6], and the analysis of genomic
ata [7–9].

Despite the growing adoption of machine learning (ML) in medical
esearch, its real-world effectiveness remains limited by challenges in

model generalizability and reproducibility [10,11]. While ML models
trained on large datasets can identify broad population-level patterns,
they often struggle to adapt to individual patient differences driven by
genetics, environment, and lifestyle [10,12,13]. This lack of adaptabil-
ty leads to inconsistent clinical predictions, reducing the reliability of
L-based tools in personalized medicine [14–16].

Reproducibility remains a major issue, as even minor modifications
o model parameters, dataset partitions, or random seed initialization
an result in drastically different outcomes [17]. Without rigorous

validation techniques, ML models risk producing misleading results
that fail to hold up under independent verification. A study by Kapoor
et al. [15] found that among 294 medical ML studies, many suffered
rom data leakage, lack of independent validation, and overoptimistic
erformance reporting, further exacerbating the reproducibility crisis.

Additional challenges during model building include class imbal-
ance, outlier management and bias mitigation. As a result, there is an
urgent need for validation frameworks that enhance the stability and
interpretability of ML models, ensuring that predictions remain reliable
across diverse clinical settings. Such inconsistencies raise concerns
about the reliability of ML-based clinical decision support systems, par-
ticularly when feature importance rankings vary significantly between
experiments.

As researchers increasingly rely on ML to guide critical decisions
in healthcare, the need for robust validation, model interpretability,
and the ethical application of these technologies becomes paramount
to ensure that the advancements they offer are both meaningful and
beneficial. A 2023 survey by Nature [17] found that while the use
f ML is becoming increasingly common in science, 58% of the 1600
espondents raised concerns that ML techniques can introduce bias or
iscrimination in data, while 53% noted that ill-considered use can lead
o non-reproducible research.

Explainable AI (XAI) holds significant promise in making machine
earning systems more transparent, trustworthy, and actionable [18,

19], potentially mitigating some of these reproducibility issues by
larifying model decision-making processes. Yet, the influence of ML
ecommendations on physician behavior remains poorly characterized.
agendran et al. [20] investigated how clinicians’ decisions may be

nfluenced by additional information provided by XAI techniques and
ound that ML-generated explanations had a strong influence on medi-
al prescriptions. However, clinicians, researchers, and regulators alike

demand that XAI not only provide recommendations but also justify its
algorithmic reasoning to ensure clinical confidence in its outputs [20].

As machine learning models become more complex, the need for
nterpretability becomes even more critical in fields such as healthcare,
here decisions based on these models can directly influence pa-

ient outcomes. Many traditional validation techniques, such as cross-
validation and train–test splits, fail to provide sufficient stability in
feature importance rankings or performance metrics across trials [21].
To address this challenge, XAI supports two approaches to ensure
explainability [21]: (i) ante-hoc explainability, which involves con-
structing models that are inherently transparent, and (ii) post-hoc
 t

2 
explainability, which seeks to provide insights into complex, ‘‘black-
box’’ models after they have been trained. Post-hoc techniques, such
s feature importance analysis or visualization tools, aim to shed light
n how these models arrived at their predictions, making them more
nterpretable without sacrificing performance. However, the effective-
ess of these methods is often undermined by instability in feature
election due to random variations in model initialization and dataset
artitioning [22].

A prerequisite of using XAI effectively for explainability is robust
odel generalization. Generalization refers to a model’s ability to

perform well on new, unseen data, ensuring that it captures the core
atterns of the problem domain rather than overfitting to the specifics
f the training set. Without proper generalization, interpretability loses
alue and offers little meaningful insight. However, the notion of
eneralization itself may vary by context and demographics. A system
hat achieves the highest possible level of generalization is ideal, but
n emphasis on overly broad generalization in healthcare applications
ay overlook crucial patient-specific variations, reducing its clinical
tility [22].

Several factors can impact a model’s ability to generalize effec-
ively across different contexts, collectively posing significant barriers
o reproducibility. These include changes in clinical practice over time,
atient demographic variation, and differences in hardware and soft-
are used both for data collection and model training [22]. Additional

challenges during model building include class imbalance, outlier man-
agement, bias mitigation, and potential training data leakage, where
information from the test or validation dataset is inadvertently included
in the training dataset, leading to artificially inflated performance.
Kapoor et al. [15] found that data leakage alone was responsible for
overestimating ML model performance in numerous medical studies.
Such inconsistencies raise concerns about the reliability of ML-based
clinical decision support systems, particularly when feature importance
ankings vary significantly between experiments.

The primary objective of this study is to systematically address
these issues by developing a validation method that enhances both
reproducibility and model interpretability. Specifically, we aimed to
reproduce the findings of a previously published study [23], which
rovided source code, hardware and software specifications, and data
ia the Yale Open Data Access (YODA) Project. By leveraging multiple
andom trials with varying seed values, we evaluated how random
nitialization influences model performance and feature importance
ankings.

Prior studies [24,25] have demonstrated that changing the ran-
om seed can lead to significant differences in model outputs, some-

times inflating performance estimates by up to twofold [24]. Our
analysis confirmed these findings, specifically when using machine
learning models that incorporate stochastic processes during initializa-
tion, resulting in both performance and feature importance sensitivity
and inconsistency. This variability poses a major challenge in clini-
cal settings, where consistent and reliable predictions are critical for
decision-making. Inconsistent feature importance rankings may under-
mine clinicians’ confidence in AI-driven insights, limiting adoption in
real-world healthcare applications.

To address this, we introduce a novel random trial validation
method that systematically varies random seeds across multiple iter-
ations, aggregates feature rankings and stabilizes both model accuracy
and feature selection. By stabilizing feature importance rankings across
multiple randomized trials, the method enables clinicians to identify
the most relevant biomarkers or predictors for disease classification,
iagnosis, and treatment planning. This improved interpretability can
elp bridge the gap between ML models and clinical expertise, allowing
ractitioners to trust AI recommendations rather than viewing them as

‘black-box’’ outputs. Furthermore, trustworthy ML models have the po-
ential to support personalized medicine, where treatment decisions are
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Table 1
Datasets utilized in this study.

Dataset Sample size Features Ordinals Cardinality Domain

1. YODA RCT [23] 1513 – – – Medical
2. Breast Cancer [28] 683 10 10 91 Medical
3. Diabetes [29] 351 35 3 8150 Medical
4. College [30] 777 18 1 6249 Non-medical
5. Cars [31] 32 11 5 171 Non-medical
6. Glaucoma [32] 196 63 1 8960 Medical
7. Glass [33] 214 10 1 945 Non-medical
8. Diamonds [34] 250 10 3 544 Non-medical
8. Diamonds [34] 500 10 3 737 Non-medical
8. Diamonds [34] 2000 10 3 1273 Non-medical
8. Diamonds [34] 5000 10 3 2077 Non-medical
9. Alzheimer’s Disease [35] 48 23 – 448 Medical
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tailored to individual patients based on reproducible and interpretable
AI-generated insights. By improving model transparency, our approach
can facilitate regulatory approval of AI-based decision support systems
and accelerate their integration into clinical workflows.

2. Methods

2.1. Reproducibility

The datasets used in this study are listed in Table 1. For the first ex-
periment, five international randomized controlled trial (RCT) datasets
for evaluating the comparative efficacy of anti-psychotic medications
for treating schizophrenia were utilized, as per the original study [23]
ublished in the journal Science. These datasets are available from
he YODA project as accession numbers NCT00518323, NCT00334126,
CT00085748, NCT00078039, and NCT00083668.

The aim of the first experiment was to reproduce the findings
rom the original study by re-running the pre-processing, analysis and
isualization routines provided using the R source code made pub-
icly available [26]. Due to the resource intensive requirements of the

original pre-processing and model building routines, only the Ran-
om Forest (RF) [27] models were selected and run for a single set
f outcome criteria, the Remission in Schizophrenia Working Group
RSWG).

Once the initial analysis was completed, all random seeds in the
upplied source code were changed to a single number (42), and
he process was re-run to test for results stability. We observed that
hanges in the random seed affected both feature importance and
erformance. To further evaluate our findings, we extended experimen-
ation to additional well-studied and diverse public datasets (Table 1,

2–8).

2.2. Effect of random seed and validation techniques on performance and
feature importance

The next set of experiments utilized the RF algorithm in order
o build models for predicting the relevant binary outcome labeled
ithin each dataset. These experiments were designed to evaluate how
ltering random seeds during the initialization of the RF algorithm
nfluences accuracy metrics and the variance in feature importance
eported by the model. Furthermore, the effect of different valida-
ion techniques on model performance and feature importance was
xamined.

The datasets shown in Table 1 were selected due to the varying sam-
le sizes, feature attributes, and accessibility as open datasets. Table 1

further details the number of features, ordinal variables (categorical
ariables with a meaningful order), and cardinality (the number of
nique values a categorical variable can take) for each of the nine

datasets. These attributes were included in the table to highlight that
heir counts had no observable correlation with the stability of feature
mportance during subsequent experiments and provided sufficient
3 
variation for results comparison. All experimentation was done using
R [36] version 4.4.1.

For each experiment and related dataset, a number of validation
techniques were applied including an 80%/20% train and test split,
eave-one-subject-out (LOSO) validation, 10-fold cross validation, and
eave-one-out cross-validation (LOOCV), with each training and valida-
ion round repeated using two different random seeds to initialize the
F algorithm (42 and 43). The selection of validation techniques was
pplied to verify whether any specific technique provides more stable
redictive accuracy and feature importance ranking and are considered
tandard techniques typically applied when training and validating
achine learning model performance. For experimentation we selected

wo random seeds (42 and 43), 42 being a composite and even, and 43
eing a prime and odd.

2.3. Proposed randomized trials validation approach

The RF algorithm uses a user-specified random seed during boot-
trap sampling and random feature selection to create multiple subsets
f the training data [37] and ensure reproducibility between model
raining sessions [37,38]. However, a study by Henderson et al. [39]

found that altering the random seed could inflate the estimated model
performance by as much as 2-fold, relative to what a different set of
random seeds would yield. Additionally, Peng et al. [40] noted that
system-specific factors including software library versions and hard-
ware specifications can influence the consistency of results when ma-
chine learning models are re-run, by potentially impacting the under-
lying random number generator. Initial testing using both SHAP [41]
and LIME [42] as potential feature importance calculators showed
oth methods are sensitive to varying random seeds. Given this and

the longer processing time required for calculations, we reverted to
using built-in feature importance methods provided by standard RF
algorithm.

In order to compensate for these noted limitations related to random
seed selection and its potential impact on reproducibility, we addressed
the problem through a repeated randomized validation method as
detailed in Fig. 1.

The proposed method first splits the training dataset by subject (see
the first column in Fig. 1). For each of the 400 trials per subject (Fig. 2),
he system random number generator which is used by the model
or key stochastic processes is initialized using the sum of the subject
ndex and trial number. A Random Forest model is then trained using
tratification on data from all other subjects and tested on the current
ubject (LOSO validation), and repeated for up to 400 trials. Note that
xperimentation using trial counts ranging from 50 to 1000 showed an
ptimal maximum of 400, at which point feature importance stabilized

and no longer showed variance. If the model correctly predicts the
outcome in each trial, the most important features are recorded. After
completing all 400 trials for a subject (column 2 in Fig. 1), the recorded
feature importance sets across the 400 trials (column 3 in Fig. 1) are
grouped and ranked using aggregation (column 4 in Fig. 1) to identify
the top sets that contributed most to achieving 100% accuracy, per
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Fig. 1. Proposed randomized trial validation approach for subject- and group-specific feature importance and model performance stabilization.
Fig. 2. Proposed randomized trial process for feature importance ranking.
subject (column 5 in Fig. 1). Upon completion of all subjects across all
trials, the same ranking method (column 6 in Fig. 1) is applied to find
the feature sets that occur most often across the dataset. This specifies
the overall feature importance for the group (column 7 in Fig. 1).

Although the random seed in each trial is initialized using the
sum of the subject index and trial number, potential concerns about
systematic bias across subjects due to seed proximity are naturally
mitigated by utilizing LOSO validation. Specifically, each subject’s
model is trained only on data from other subjects, and the random
seed influences only the internal stochastic processes of the model. As
the training data for each subject is entirely disconnected from their
own data, the seed’s effect is isolated within models that do not see
the test subject during training, preventing cross-subject contamination.
The use of 400 independent trials per subject further introduces a wide
range of random initialization states, ensuring variability across exper-
iments. To enhance bias-mitigation, a hashing function can further be
utilized on the combination of subject index and trial number.

The proposed method was tested with datasets 1 to 8 (Table 1) to
confirm its effectiveness across diverse domains, beyond just medical
datasets. Additionally, for dataset 8, multiple sample sizes were selected
and run to compare results on a single dataset of varying sizes.
4 
Finally, to validate the use of the proposed method to achieve
stable performance metrics and feature importance (per subject and per
group) in a medical dataset, the dataset from [35] was utilized. This
dataset 9 consists of 34 healthy controls and 14 subjects identified as
having Alzheimer’s disease, and was previously analyzed [43] to assess
the relative significance of clinical observations, neuro-psychological
tests, and specific blood plasma biomarkers (inflammatory and neuro-
trophic) [35].

3. Results

3.1. Challenges in reproducibility

Fig. 3 shows a comparison between the results of two scenarios
(Within-trial no validation and Leave-one-trial-out) reported in the
original study by Chekroud et al. [23], and those found in our reproduc-
tion (as explained in Section 2.1) after adjusting the original random
seed numbers in the published source code [26]. For the within-trial no
validation scenario, we note a substantial difference in both Chronic #2
and Older Adult subsets, with less substantial differences in the Leave-
one-trial-out scenario. However, balanced accuracy reported across
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Fig. 3. Original published results from [23] vs. reproduced results with a different random seed using the published source code [26].
both scenarios showed virtually no difference between the original
study (0.737, 0.537) and our reproduced study (0.735, 0.539).

Further adjusting the random seed again showed differences within
the individual scenarios. These findings are consistent with those of the
original study, and could potentially result in challenges in reproducing
study results, even under ideal conditions where the source code, data,
and hardware platforms have been duplicated, as was the case in this
particular study [23]. Based on the results of the original study [23],
the authors suggested that machine learning models predicting treat-
ment outcomes (in schizophrenia) are highly context-dependent and
may have limited generalizability. A potential approach to address
variations in experimental context and patient demographics is the
development of patient-specific models [44–48]. However, this solution
introduces greater complexity, logistical challenges, and increased costs
related to real-world implementation and scaling. Therefore, a new gen-
eral method is needed to improve reproducibility and generalizability
across diverse contexts, and this is the focus of this work.

Bouthillier et al. [49] identified three types of study reproducibility:

• Methods Reproducibility: A method is reproducible if reusing the
original code leads to the same results.

• Results Reproducibility: A result is reproducible if a
re-implementation of the method generates statistically similar
values.

• Inferential Reproducibility: A finding or a conclusion is repro-
ducible if one can draw it from a different experimental setup.

3.2. Random trial validation

Based on the above criteria, our initial experiment using the code
and data [26] from [23] fell short in all three aspects when considering
not only overall balanced accuracy and classification quality metrics,
but also specific scenarios within the study (Fig. 3). To further highlight
the impact of random seed choice for model initialization, we per-
formed four experiments on a single dataset for diabetes classification
using different random seeds and validation methods (Table 2). While
scores attained for the first random seed remained consistent, a dif-
ferent random seed produced significantly different results irrespective
of validation method. These inconsistencies become particularly rele-
vant for feature importance ranking, alongside interpretability, beyond
5 
mere predictive performance [50]. Cohen’s d statistic for both methods
shows large effect sizes (two standard deviations), indicating that the
choice of random seed has a strong impact on model performance in
both validation methods.

3.3. Comparison with other methods

Breiman [37] initially introduced an ad hoc, computationally ef-
ficient feature importance calculation method for the RF algorithm
known as ‘‘out-of-bag’’ variable importance (OOB VIMP) which remains
the default in most implementations and is widely used in the research
community, despite significant limitations. Wallace et al. [51] evalu-
ated OOB VIMP’s and proposed ‘‘knockoff VIMPs’’, an improved method
which facilitates a direct and interpretable estimate of the value of
a feature within a model, while however, still resulting in individual
variables that can be challenging to interpret.

Fig. 4 provides a comparison of feature importance scores attained
using industry standard methods including SHAP, LIME and the built-
in method provided by the RF algorithm (OOB VIMP). A single model
was trained using RF with a consistent random seed applied for ini-
tialization. The scores per feature produced by each individual method
differ widely, providing no consistency and likely leading to signifi-
cant challenges in interpretability and trustworthiness of the model’s
predictions.

Henderson et al. [39] in their study on RF feature importance
metrics in medicine, suggested the use of proper significance test-
ing and multiple trials with varying random seeds when comparing
predictive performance, with random seed selection explicitly part of
the algorithm. This averaging of multiple runs over different random
seeds can give insight into the population distribution of the algo-
rithm performance in an environment [39]. Building upon this and the
aforementioned works, we developed a new validation approach aimed
at stabilizing reproducibility, enhancing generalization, and improving
the explainability of machine learning models.

3.4. Evaluating random trial validation

To thoroughly assess the effectiveness of our proposed randomized
validation approach, we conducted experiments using a selection of
well-researched open datasets (Table 1, datasets 2–8) as detailed in
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Table 2
Accuracy scores based on varying random seeds and validation methods.

Validation method Random seed Accuracy Precision Recall F1-score Cohen’s d
80/20 42 91.42% 88.88% 88.88% 88.88% 1.99
80/20 43 97.14% 96.29% 96.29% 96.29% 1.99
10-Fold CV 42 91.42% 88.88% 88.88% 88.88% 2.00
10-Fold CV 43 92.85% 89.28% 92.59% 90.90% 2.00
Fig. 4. Feature importance results on the Breast Cancer dataset [28] using common methods including SHAP, LIME and Random Forest built-in algorithm.
Sections 2.2 and 2.3. Among these seven datasets, three are related
to health care, whereas four non-health care datasets were chosen to
eliminate any potential concerns related to population diversity. Below,
we discuss the results from all health-related datasets.

Fig. 5 details the outcome of experimentation using RF on the
breast cancer dataset (Table 1, #2) [28]. Where a 80%/20% train/test
split method was used for validation, the cell size feature consistently
ranked as the most important, irrespective of random seed choice.
However, feature ranking for the next four most important features
differed significantly (see the first row of Fig. 5). The same effect can
be observed when other validation methods were utilized (10-Fold CV,
LOSO) with varying random seeds, where bare nuclei ranked as the
top most important feature. Using the proposed random trial validation
method described in Section 2.3, we reach feature importance stability
within 256 trial iterations across all subjects as a group. Additionally,
we reach a stable feature importance set per subject (not shown) using
our proposed technique shown in Fig. 1.

Experimentation on the diabetes dataset [29] (Fig. 6) yielded match-
ing feature importance ranks irrespective of random seed choice when
using an 80%/20% train/test split for validation (see the first row of
Fig. 6). However, the results are markedly different compared to those
of the 10-Fold CV method (second row of Fig. 6). Additionally, there is
significant variation in feature importance rank using two different seed
values, further demonstrating the instability in machine learning on
this dataset. By applying the proposed random trial validation method,
we reached feature importance stability within 400 trials. Importantly,
subject-level feature importance (for Subject 1 as a sample) differs from
overall group feature importance.

Similar observations were noted for experiments performed on
datasets 4 to 8 (Table 1), irrespective of sample size, which was
tested by using dataset 8 (diamond classification). Because of space
constraints, these findings are not included in the main text but can
be reviewed and replicated through our open-source code and data
available at https://github.com/xalentis/Reproducibility.

Dataset 9 (Alzheimer’s disease) [35] was used to validate the pro-
posed random trial approach in a practical, real-world scenario. Fig. 7
shows the feature importance plots generated using the default OOB
VIMP approach implemented in the RF algorithm. When comparing
6 
the outcomes from an 80%/20% train/test split to those from 10-Fold
CV, we observe variations in feature importance rankings, including
four completely distinct features among the top five, aside from FAST,
which is ranked as the most critical in both cases. This highlights how
easily a model’s explainability and stability can be influenced by merely
choosing a different validation method.

3.5. Comparative analysis and validation insights into feature importance

In a prior study by Besga et al. [43] utilizing Support Vector
Machines (SVM), CART Decision Trees, and RF to classify healthy
controls from subjects diagnosed with Alzheimer’s disease using dataset
9, a Welch’s t-test 𝑝-value for each behavioral, biological biomarker,
and the aggregate neuro-psychological feature was calculated. Results
from this study indicated FAST, apathy (TA3), executive functions
(EF), attention (A) and memory (M) as the most statistically significant
features (𝑝 < 0.001) followed by total sleep (TS), total anxiety (TA2)
and total dysphoria/depression (TDD).

Based on the results from [43], Fig. 7 prompts an inquiry into which
of the two validation strategies better highlights the most relevant top-
tier features. The 80%/20% validation scheme ranks the FAST feature
among its top five features with 𝑝 < 0.001; however, it also includes
TA1 and TD1, which are absent from the top eight statistically signif-
icant features identified in [43]. In contrast, the 10-fold CV approach
includes three features in its top five that are statistically significant at
𝑝 < 0.001, while the other two features (TC and TD2) do not appear in
the top eight significant features according to the same study.

To assess the significance of features in the Alzheimer’s dataset [35],
Spearman correlations were computed between the 23 features and the
two classes (Normal and Alzheimer’s), as depicted in Fig. 8. This figure
is consistent with the results of [43] and offers an additional approach
to corroborate our proposed randomized trial method.

Fig. 9 shows the feature importance obtained using the proposed
random trial method for the group (left) and for an individual subject
(right). The feature rankings demonstrate a strong correlation with
previous research [43] and the findings shown in Fig. 8, particularly
for FAST, M, TA3 and A. In contrast to the outcomes shown in Fig. 7,
our proposed method successfully identifies four statistically significant

https://github.com/xalentis/Reproducibility
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Fig. 5. Experimental results on the Breast Cancer dataset [28]. The figure shows how modifying the cross-validation technique and/or random seed can result in different feature
importance sets, undermining model generalization, stability, and explainability. The figure also shows a stabilized feature importance set, using our proposed random trial validation
technique.

Fig. 6. Experimental results on the Diabetes dataset [29]. The figure shows how modifying the cross-validation technique and/or random seed can result in different feature
importance sets, undermining model generalization, stability, and explainability. The figure additionally presents a stabilized feature importance set for the entire dataset subjects
(third row, left column) and for a sample individual subject 1 (right column), employing our proposed validation method of random trials.
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Fig. 7. Experimental results on the Alzheimer’s disease dataset [35]. The figure shows how modifying the cross-validation technique even when the random seed is kept the same
results in different feature importance sets, undermining model generalization, stability, and explainability.
Fig. 8. Spearman correlations between 23 features and two classes (i.e. Normal and Alzheimer’s) within dataset [35].
features with 𝑝 < 0.001 among its top-5 rankings, assigning them all
high ranks. This result is not achieved in any of the experiments de-
picted in Fig. 7. Additionally, our proposed method yields stable group
and subject-level feature importance that correlates well with prior
clinical findings on biomarkers significant in Alzheimer’s disease [43],
irrespective of random seed choice for algorithm initialization. For this
particular dataset, all individual subject-level feature importance ranks
corresponded with those at the group level.
8 
3.6. Comparative evaluation of validation techniques: accuracy and com-
putational efficiency

Table 3 provides a comparison of accuracy scores achieved for
two sample datasets included in this study (the Breast Cancer [28]
and the Alzheimer’s Disease [35]), using a variety of common val-
idation methods, along with our proposed validation method using
random trials. Our proposed approach attained similar accuracy levels
on both datasets when matched against the three traditional validation
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Fig. 9. Experimental results on the Alzheimer’s disease dataset [35] using the proposed randomized trial method.
Table 3
Validation method accuracy comparison.

Dataset Sample size Validation Accuracy

2. Breast Cancer [28] 630 80/20 100.00%
2. Breast Cancer [28] 630 10-Fold CV 97.00%
2. Breast Cancer [28] 630 LOOCV 97.00%
2. Breast Cancer [28] 630 Random Trials 99.50%
9. Alzheimer’s Disease [35] 48 LOSO 100.00%
9. Alzheimer’s Disease [35] 48 Random Trials 100.00%

techniques. Nevertheless, Table 3 illustrates the impact of the chosen
validation technique on model performance. It is important to highlight
that, given the limited sample size of 48 in the Alzheimer’s Disease
dataset [35], only LOSO and our proposed validation methods were
employed.

Table 4 provides a summary of the execution times (in minutes) for
each validation experiment conducted on datasets 2–8 in this study.
Over 400 randomized trials, our proposed method significantly reduced
the computational time required compared to the standard LOSO ap-
proach, while taking longer time than the 10-fold cross-validation (CV).
The 80%/20% method resulted in much shorter experimentation times.
Although our approach has a longer execution time compared to 10-
fold CV and 80%/20% methods, it offers the advantages of yielding
stable, reproducible accuracy scores and reliable feature importance
assessments on both a group and subject level.

Table 5 provides a comparison of traditional validation methods
with the proposed method. The commonly used 80/20 split and cross-
validation shows high susceptibility to random seed variation, leading
to significant fluctuations in feature importance rankings and under-
mining model explainability. These inconsistencies can erode trust in
ML outputs, particularly in clinical contexts where stable identifica-
tion of critical features is essential for decision-making and regulatory
acceptance.

4. Conclusion and discussion

4.1. Key findings

In this study, we introduced a novel validation technique for de-
termining and stabilizing both group-level and subject-specific feature
9 
importance within a single, generalized machine learning framework.
This approach addresses the inherent variability in human biology, a
key factor that often complicates the reproducibility and interpretabil-
ity of machine learning results, even when the same hardware and
software settings are applied.

Existing research often focuses on building highly accurate group-
level, or general machine learning models. While these models fre-
quently achieve and report high accuracy scores, a significant limitation
arises when their performance is tested on new, unseen data [52]. In
many cases, these models fail to generalize effectively due to inherent
subject-specific differences in the training data, such as variations in
physiological responses, individual baseline characteristics, and sensor
placement inconsistencies.

4.2. Clinical implications

Both group-level and subject-specific models play crucial roles in
clinical decision-making. While general models provide broad insights
applicable to large populations, subject-specific models enable tailored
treatment and monitoring, enhancing patient outcomes. The integration
of both approaches, leveraging general models for population-based
risk assessments and subject-specific models for personalized care, can
significantly enhance AI-driven medicine.

While subject-specific models offer greater personalization, they
require more data for each individual, which may not always be
available. Additionally, these models need continuous updating and
validation to ensure they remain accurate as a patient’s health evolves.
In contrast, group-level models benefit from larger datasets but may not
be as precise for individual subjects. In clinical practice, ensuring inter-
operability between these models, validating them across different pa-
tient groups, and addressing ethical concerns related to personalization
such as bias are key challenges that must be carefully managed.

4.3. Methodological implications

We performed an array of experiments on several open datasets to
evaluate the performance of our approach. Using a sample dataset, we
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Table 4
Validation method execution time comparison.

Dataset Sample size 400 Random Trials (mins.) LOSO (mins.) 10-Fold CV (mins.) 80/20 (s)
2. Breast Cancer [28] 683 7.2 15 4 0.1
3. Diabetes [29] 351 1.6 2 1 0.2
4. College [30] 777 2.4 7 2 0.6
5. Cars [31] 32 0.07 0.38 0.05 0.01
6. Glaucoma [32] 196 1.2 1 1 0.2
7. Glass [33] 214 0.6 0.42 0.4 0.1
8. Diamonds [34] 250 2 2 1 0.3
8. Diamonds [34] 500 4 7 2 0.6
8. Diamonds [34] 2000 16 99 11 3
8. Diamonds [34] 5000 38.4 600 29 7
9. Alzheimer’s Disease [35] 48 6.1 0.14 0.064 0.02
t
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i
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Table 5
Comparison of different validation techniques and their impact on feature importance
tability.
Validation technique Feature stability Computational cost

80/20 Train-Test Split Unstable Low (0.1 s–0.6 s)
10-Fold CV Moderate Moderate (0.4 min–11 min)
LOOCV Moderate High (0.4 min–29 min)
LOSO Unstable Very High (0.14 min–600 min)
Proposed Method High Moderate to High (1.6 min–38.4 min)

demonstrated that the proposed method achieves high Spearman corre-
lation levels between expected and predicted feature importance, align-
ing with established biomarkers for Alzheimer’s disease, thereby under-
scoring its clinical relevance. Moreover, we showed that the method
delivers predictive accuracy and runtime performance comparable to
and often superior to widely used validation techniques, offering a
stable and interpretable alternative for biomedical applications.

The proposed method inherently accounts for time-varying charac-
teristics of feature importance through its design of repeated trials and
aggregation over multiple instances. By conducting multiple indepen-
dent trials per subject and recording feature importance at each trial,
temporal fluctuations and variability in feature relevance are captured
across the evaluation process. The subsequent aggregation step does
not merely select features based on a single snapshot but rather ranks
features based on their consistent contribution across time, smoothing
out transient variations. This longitudinal consideration ensures that
the final ranked feature sets reflect stable and robust patterns, rather
than being influenced by momentary shifts in data characteristics.

4.4. Limitations and future work

Importantly, feature importance does not necessarily imply a direct
ause of the outcome, and our proposed method does not resolve prob-

lems such as bias, confounding variables or data distribution disparity.
 further limitation is its higher computational demand compared to
idely used techniques such as 10-fold cross-validation and the 80/20

validation split. However, our method demonstrated significantly im-
roved computational efficiency compared to the commonly used LOSO
echnique on both high-powered server systems (10-core, 128 GB RAM)
s well as desktop and laptop type systems (4-core, 8 GB RAM),
hich is prevalent in medical machine learning research. Despite its

ncreased computational cost, the enhanced stability in reproducibility
nd explainability offered by our approach provides a valuable trade-
ff, making it a worthwhile option in medical AI, where these factors
re critical.

While innovations in medical machine learning, like the proposed
approach, have the potential to make a significant impact, their effec-
iveness will be limited if the study findings are not reproducible and
ccessible for further research. Open access to data and code is vital

for advancing scientific research, particularly in health care, where
reproducibility and transparency are essential for fostering trust in
10 
AI-driven solutions. By supporting the replication of results and en-
couraging further exploration, open access facilitates the development
of robust, generalizable, and clinically impactful AI models, which is
the primary aim of our study. To support further research in this area,
he full R source code used in this study is available on GitHub at

https://github.com/xalentis/Reproducibility.
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