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A B S T R A C T

Invasive species pose a significant threat to global biodiversity and ecosystem health, necessitating effective 
monitoring tools for early detection and management. Here, we present the development and assessment of a 
user-friendly and transferable monitoring tool for the invasive cane toad (Rhinella marina) using passive acoustic 
monitoring (PAM) and machine learning algorithms. Leveraging a continental-scale PAM dataset (Australian 
Acoustic Observatory), we trained a cane toad classifier using the BirdNET algorithm, a convolutional neural 
network architecture capable of identifying acoustic events. We validated thousands of BirdNET predictions 
across Australia, and our classifier achieved over 90 % accuracy even at many sites outside the areas from which 
the training data were obtained. Additionally, because cane toads typically call for long periods, we significantly 
enhanced detection accuracy by incorporating contextual information from time-series data, essentially checking 
if other calls occurred around each detection (an optimized threshold approach using conditional inference 
trees). This method substantially reduced false positives and improved overall performance in cane toad 
detection at sites across Australia. Overall, our method will allow others to develop accurate and precise auto
mated acoustic monitoring tools tailored to their situation, with minimal training data, addressing the critical 
need for accessible solutions in biodiversity monitoring, control of invasive species and conservation.

1. Introduction

Biological invasions present a significant threat to biodiversity, 
ecosystem structure and function, human health, and the global econ
omy (Bradshaw et al., 2016; Ehrenfeld, 2010). Effective conservation 
and management are enhanced by monitoring invasive species, enabling 
early detection of new incursions, assessment of population trends, and 
implementation of timely control measures to mitigate adverse impacts 
on native biodiversity and ecosystems (Pyšek et al., 2020; Vander Zan
den et al., 2010).

Passive acoustic monitoring (PAM) uses acoustic recorders to capture 
environmental sounds, including those of invasive species, making it a 
valuable tool for tracking and managing biological invasions (Ribeiro Jr 
et al., 2022). This non-invasive monitoring method uses analysis of 
recorded audio to detect species (Blumstein et al., 2011; Gibb et al., 
2019). Studies indicate that PAM is comparable in effectiveness to 
traditional observer-based monitoring to assess diversity of many 
terrestrial vertebrate species (e.g., Hoefer et al., 2023; Melo et al., 2021). 
In addition, PAM enables continuous monitoring, a highly cost-effective 

approach to invasive species detection, particularly in remote areas and 
rugged environments (Hu et al., 2009).

PAM generates a very large amount of data, which often cannot be 
analyzed using human listening (Villanueva-Rivera and Pijanowski, 
2012), and thus automated approaches become essential for its appli
cation. There is, however, a scarcity of publicly accessible, broadly 
applicable, and easy-to-use sound detection and classification tools 
(Pérez-Granados et al., 2023; Wood et al., 2023a). Machine learning 
algorithms, especially deep convolutional neural networks (CNNs), have 
shown great promise in automating sound identification for invasive 
species, enabling faster and more accurate analysis of large datasets 
(Kahl et al., 2021; Jeantet and Dufourq, 2023). Although time- 
consuming to develop (Knight et al., 2017), these tools can signifi
cantly expand the opportunities for monitoring over large spatial scales 
and extended time periods, enhancing early detection and management 
(Amorim et al., 2023).

Cane toads (Rhinella marina) invaded northern Australia in 1935 
(Easteal, 1981), and expanded across Queensland, New South Wales, the 
Northern Territory, and Western Australia (Atlas of Living Australia, 
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2024). Recognized as one of the world’s top 100 worst invasive species 
(Lowe et al., 2000), cane toads spread rapidly (Shine et al., 2021) and 
have profound negative impacts on Australian native biodiversity 
(Shine, 2010). Notably, anurans, including cane toads, rely heavily on 
vocalizations for courtship, making them ideal candidates for detection 
via passive acoustic monitoring (PAM) (e.g., Pérez-Granados et al., 
2023; Wood et al., 2023a).

Although cane toads are a highly vocal invasive species, there are no 
publicly accessible, user-friendly acoustic classifiers tailored specifically 
for their detection. Despite efforts dating back to the 1990s to integrate 
PAM with automated detection algorithms for cane toads (Hu et al., 
2009; Taylor et al., 1996, 2017), these tools have not been widely 
adopted. One barrier to adoption is a need for sensor and algorithm 
flexibility (Roe et al., 2018). For instance, the original algorithms and 
software were designed and applied within custom-built acoustic sensor 
networks (e.g., Taylor et al., 1996, 2017), limiting their broad applica
bility. In addition, variation among background noises and intra-specific 
call variation can cause variation in the success of automated species 
recognition in different locations (Cole et al., 2022; Lauha et al., 2022; 
Metcalf et al., 2022). Cane toads range across a very wide area, and their 
advertisement calls vary among Australian populations (Muller et al., 
2016; Yasumiba et al., 2016). Consequently, automated detection tools 
developed for specific regions or study areas may not work well in other 
areas. In light of these challenges, there is a critical need for innovative 
solutions to cane toad detection over wide areas.

In this study, we introduce a free and user-friendly cane toad acoustic 
classifier designed for analyzing broad spatio-temporal datasets across 
Australia. By utilizing a machine-learning algorithm and an extensive 
audio dataset, we aimed to create a freely accessible, flexible cane toad 
classifier with high detection accuracy with the ability to accommodate 
regional variability in call characteristics, thereby facilitating repeatable 
and cost-efficient monitoring efforts for the invasive toads across 
Australia. Given the widespread nature of cane toad populations, we 
incorporated data post-processing techniques to optimize detection 
performance over a wide area.

2. Materials and methods

2.1. BirdNET

We chose the BirdNET algorithm, a CNN architecture designed to 
identify acoustic events by analyzing visual patterns in spectrograms 
(Kahl et al., 2021), to develop our cane toad acoustic recognizer. Bird
NET is a freely available, pretrained algorithm can be used to train a 
custom classifier that can detect species outside its original training 
data. It reliably identifies over 6000 species worldwide (https: //github. 
com/kahst/BirdNET-Analyzer), including more than 40 frog species 
(Pérez-Granados et al., 2023; Wood et al., 2023a), with proven effec
tiveness across various recording conditions (Kahl et al., 2021; Man
zano-Rubio et al., 2022). Here, we want to highlight the user- 
friendliness of BirdNET software’s graphical user interface (GUI), 
which simplifies audio analysis and recognizer training without neces
sitating advanced programming expertise, thus facilitating its use by a 
wide range of stakeholders. Additionally, custom trained BirdNET rec
ognizers can be readily shared as a portable TensorFlow Lite file, 
ensuring easy access, compatibility across different sensor networks, 
recording equipment, and study designs, and enabling widespread 
adoption across various parties.

2.2. Audio dataset

To develop and train our cane toad recognizer, we used audio from 
the Australian Acoustic Observatory (A2O), a continent-wide acoustic 
sensor network, consisting of 62 active sites, covering seven major 
ecoregions in Australia. Each site is equipped with four acoustic 
recording units (ARUs) placed in various habitats, ranging from 

rainforests to arid landscapes, providing real-world sound data (see Roe 
et al., 2021 for full details). We selected all A2O sites in Queensland, 
along with specific sites in New South Wales, the Northern Territory, 
Western Australia and Victoria (Fig. S1), and used audio recordings from 
18:00 to 06:00, as adult cane toads in Australia are generally nocturnal 
(Doody et al., 2019). These sites were characterized by multiple occur
rence records of cane toads in the Atlas of Living Australia (2024), and 
the acquired audio data from these A2O sites served as the basis for 
model training, testing, and performance evaluation.

2.3. Training data generation

Cane toads typically produce advertisement calls lasting, on average, 
eight seconds, with a dominant frequency ranging from 500 to 600 Hz 
and a call frequency spanning 110–1180 Hz (Bleach et al., 2015; Muller 
et al., 2016). Creating a classifier using BirdNET involves three key 
steps: generating training data that accurately represents the target 
species’ acoustic characteristics, training the classifier with the pre
processed training dataset, and evaluating the classifier using a testing 
dataset (Fig. 1). While this workflow follows the tools and methods used 
in our study, each step can be adapted using alternative software, codes, 
or algorithms, depending on the specific research needs and available 
resources.

In this workflow, training data was generated using the monitoR R 
package (Hafner and Katz, 2018), a tool for template-based acoustic 
detection. This step involved constructing a binary acoustic template 
based on previously recorded cane toad calls (Fig. S2). monitoR was 
selected for its compatibility with our workflow; however, alternative 
signal processing methods can yield similar results, such as using feature 
embeddings (Allen-Ankins et al., 2025). According to BirdNET’s de
velopers, the algorithm’s performance plateaus after 3500 samples per 
class (Kahl et al., 2021). To account for regional variations in detecting 
toad calls, particularly in the absence of specific guidelines on training 
data allocation per location for individual classes or species, we ensured 
a minimum of 3500 training samples in total, with an average sample 
count close to this threshold per recording site. Because the BirdNET 
algorithm processes only three-second audio snippets, our template was 
three seconds long (Fig. S2). Employing a single template is effective at 
identifying toad calls for generating training data, achieving reasonable 
performance even for species with geographical variation and highly 
variable harmonics in their calls (Balantic and Donovan, 2020; Katz 
et al., 2016). While a template can detect the target species, it also 
produces a high number of false positives, making it insufficient as a 
standalone classifier. However, these false positives can be valuable for 
training the classifier. Therefore, we created a single binary-point tem
plate with the makeBinTemplate function, using a typical cane toad call 
(Fig. S2). The binary-point template maps signal (‘on’ points) and non- 
signal (‘off’ points) areas within a spectrogram, disregarding other 
values. We set the amplitude cut-off to ‘interactive selection’ and used a 
rectangle around the call to identify potential ‘on’ points during tem
plate creation (see Hafner and Katz, 2018 for full details).

We then conducted template detection using the binMatch function 
from the monitoR package on audio data (18:00–06:00) from the wet site 
ARUs at eight study sites, totaling 21,491 h (Fig. 1, S1). This analysis was 
carried out using R version 4.2.3 (R Core Team, 2023) and leveraged the 
James Cook University High-Performance Computing (JCU HPC) re
sources. However, this step can also be processed using a standard 
computer, depending on the available computing resources and the 
amount of audio recordings one needs to analyze. Due to the substantial 
number of predictions generated from the template analysis, we focused 
our validation efforts on two-hour recordings with over 200 predictions 
and checked the top-scoring 100 predictions for each month from each 
ARU. This labeled cane toad audio spanned a latitude range of − 13.16 to 
− 26.50 and encompassed all months and hours (Fig. S1; Table 1). 
Consequently, our training dataset consisted of both true positives (cane 
toad calls) and highly repeated false-positive sounds (Table 1). To 
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prepare the training dataset for use with BirdNET, we segmented all 
labeled audio into three-second audio segments using the AudioSegment 
module (Hu and Wang, 2007) in Python version 3.11.6 (Van Rossum and 
Drake Jr, 1995).

2.4. Classifier development

Before training the model, we added noise and background sounds 
identified during template detection, labeling them as ‘Background’, 
and included any other unidentified vocalizations labeled as ‘Unidenti
fied Sounds’ to the training dataset (Fig. 1; Table 1), following the 
recommendation to include a non-event class (https://github.com/kah 
st/BirdNET-Analyzer). Additionally, we incorporated non-target spe
cies’ vocalizations to align with BirdNET’s training methodology and 

developer recommendations (Kahl et al., 2021; https://github.com/kah 
st/BirdNET-Analyzer), which suggest that including non-target sounds 
enhances target species’ predictive performance. Including these vo
calizations could improve the classifier’s ability to differentiate cane 
toad calls from spectrally and temporally similar sounds, enhancing its 
robustness and utility. We further refined the training data and 
enhanced detection accuracy by applying a low-pass filter to the cane 
toad training data using scipy.signal in Python (filtering out frequencies 
above 1300 Hz) (MacCallum et al., 2011). This step helped to prevent 
BirdNET from learning to recognize commonly co-occurring sounds, 
such as other amphibians and insect noise. Finally, we used the full 
dataset to train the cane toad classifier with the custom training function 
in the BirdNET software [Epochs = 100, Batch size = 32, Learning rate 
= 0.001].

2.5. Preliminary assessment

To ensure the reliability of our trained classifier, a preliminary per
formance assessment was conducted before running the classifier over 
all A2O sites (Fig. 1), which would have taken hundreds of hours. For 
this initial assessment, we created a test dataset consisting of 20 two- 
hour recordings from nine sites within or close to suitable habitat for 
cane toads (suitability ≥0.4; Kelly et al., 2023). We used audio data from 
recorders not used in the training dataset (Fig. S2; Table S1). To ensure a 
diverse representation of available soundscapes, these recordings were 
selected randomly across the temporal distribution of available re
cordings, encompassing both wet and dry seasons, as well as a range of 
times between 18:00 and 06:00. Each three-second segment (n =
45,720) of the selected recordings was manually labeled as either ‘Cane 
Toad’ or ‘Not Cane Toad’. The 20 selected recordings were then 
analyzed using the custom-trained classifier and the species list 
(including all the sound classes from the training data) using BirdNET 
software. This analysis can also be performed using the analyze.py script, 

Fig. 1. Workflow for developing the machine-learning acoustic classifier for 
cane toad detection. The process begins with signal processing, where sample 
calls and field recordings are processed for Data Generation to produce training 
and testing data, which the previous one is then used in Classifier Training to 
develop a custom classifier. The trained classifier undergoes Preliminary 
Assessment using a subset of testing data, followed by Audio Analysis on the full 
testing dataset. Performance is further evaluated in Classifier Performance 
Assessment, where classifier performance is evaluated before potential 
deployment in broader studies. The final step, Detections Optimization, is 
optional and involves refining detection outputs to further enhance accuracy 
based on study-specific requirements.

Table 1 
Details of the training dataset generated by template analysis from the Austra
lian Acoustics Observatory (A2O). NSW stands for New South Wales, NT for 
Northern Territory, and QLD for Queensland and WA for Western Australia.

Sound class State Months Recording time 
(Per 2 h)

N (3 s 
audio 
snippet)

Background NT, QLD
Jan, April 
Jun, Jul, Sep

18:00, 22:00, 
02:00, 04:00

623

Canis lupus
NT, 
QLD, 
WA

Mar–Jun, 
Aug–Dec 18:00–04:00 153

Centropus 
phasianinus QLD

Feb, Mar, Jul, 
Sep–Dec 18:00, 04:00 323

Cyclorana 
asutralia WA Nov 22:00, 00:00 925

Cyclorana 
crypototis

QLD Nov 04:00 241

Cyclorana 
novaehollandiae

QLD Nov, Dec 20:00–04:00 10,959

Dacelo 
novaeguineae

NSW, 
NT, QLD

Jan–May, 
Jul–Dec 18:00, 04:00 324

Rhinella marina*
NT, 
QLD, 
WA

Jan–Dec 18:00–04:00 22,006

Ninox boobook QLD Feb–May, 
Jul–Nov

18:00–04:00 1218

Notaden 
melaoscaphus QLD Jan–Mar 18:00, 20:00 2291

Unknown NT, WA Aug–Nov
18:00, 22:00, 
02:00, 04:00 60

Note: *The training dataset for Rhinella marina was generated using recordings 
from the following A2O stations, listed from west to east: Uunguu Indigenous 
Protected Area, Litchfield Savanna, Staaten River National Park, Mitchell Grass 
Rangeland, Moorrinya National Park, Undara National Park, Wambiana Cattle 
Station, and Fletcherview Research Station (Fig. S1).
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available at https://github.com/kahst/BirdNET-Analyzer. The perfor
mance of the classifier was evaluated using the eventEval function from 
monitoR (Hafner and Katz, 2018). This function allowed us to categorize 
the detected events as true positives (TP), true negatives (TN), false 
positives (FP), or false negatives (FN). We then computed precision and 
recall metrics, with precision representing the proportion of our classi
fier’s detections that correctly identified cane toad calls [precision =
TP/(TP + FP), and recall representing the proportion of actual cane toad 
detections captured by our classifier, recall = TP/(TP + FN)]. Recog
nizing that different projects may have different desired temporal res
olutions at which cane toad detections are required (e.g., most projects 
will not need to detect every call at three-second intervals, but rather, 
for example, hourly presence), we conducted precision and recall ana
lyses across a wide range of temporal scales, from seconds (3 s) to an 
hour (3600 s). This approach provided an understanding of our classi
fier’s performance under diverse conditions and temporal resolutions, 
thus enhancing its applicability for studies with different objectives.

2.6. Audio analysis & classifier performance assessment

We processed the audio data from all selected A2O sites (n = 40) on 
the JCU HPC with our trained classifier (Fig. 1), adjusting the sensitivity 
parameter to 1.5 [0–1.5] and minimum confidence score to 0.1 [0–1] to 
optimize cane toad detection (Kahl et al., 2021). The confidence score 
represents BirdNET’s ‘confidence’ in its predictions, with higher values 
generally indicating greater prediction accuracy, although this rela
tionship varies across species (Wood and Kahl, 2024). Setting a high 
sensitivity performs better in acoustically dense environments by 
detecting more sound events, whereas setting a lower minimum confi
dence score generates more predictions, although there may be more 
false positives, and both are necessary for threshold performance eval
uation (Kahl et al., 2021). To provide a standardized threshold and 
assess classifier accuracy, we calculated probabilistic scores following 
Wood and Kahl (2024).

With over 3,500,000 detections, manual validation of each one was 
impractical, necessitating their treatment as putative observations sub
ject to a probabilistic threshold (e.g., Brunk et al., 2023). Using the 
segments.py script from BirdNET-Analyzer, we randomly sampled 270 
cane toad detections per site across confidence scores (0.1–1) (Barré 
et al., 2019; Metcalf et al., 2022), validating 30 detections per 0.1 in
terval. Some sites with fewer than 30 detections in specific confidence 
score intervals had smaller sample sizes, and only sites with at least one 
validated true-positive detection were included in further analyses. 
Subsequently, we manually validated 8623 predictions using Kaleido
scope Lite version 5.6.6 (Wildlife Acoustics®, Manyard, MA, USA) for all 
40 selected sites and retained 6546 predictions from 26 toad-positive 
sites for subsequent analysis. We used logistic regression to evaluate 
the classifier’s spatio-temporal transferability, using validated pre
dictions (correct vs. incorrect) and BirdNET confidence scores, with 
season (dry/wet) and site as covariates, to determine the probabilistic 
thresholds (see Wood et al., 2023b and Wood and Kahl, 2024 for 
detailed methodology). To evaluate potential site-specific seasonal ac
curacy, we performed another logistic regression analysis incorporating 
interaction terms between season and site as covariates. We then 
extracted the coefficients for these interaction terms, computed esti
mated marginal means, and conducted pairwise comparisons using the 
emmeans package in R (Lenth, 2024) to quantify the differences.

2.7. Detection optimization using time-aggregated features

Given the extensive temporal range of the data, non-perfect precision 
is likely to generate many false positives (FP), making it difficult to 
determine cane toad site presence directly from recognizer output 
without further validation. As cane toads typically call intensively over 
extended periods during chorusing events (e.g., Brodie et al., 2020, 
2022), isolated calls are uncommon. Therefore, we anticipated that 

incorporating time-series features would enhance the accuracy of the 
classifier in distinguishing true positives (TP) from FP. To optimize the 
classifier’s detection results for studies requiring high precision and 
recall at fine temporal resolution, a thresholding framework suggested 
by Singer et al. (2024) was applied. This approach integrates contextual 
information from aggregated time-series data, including the quality (i.e., 
raw model score) and quantity of detections at varying temporal 
intervals.

In this detection optimization approach (Fig. 1), statistical parame
ters aggregating detection quality and quantity across 12 time intervals 
were calculated (Table 2). Along with the original BirdNET confidence 
score, a total of 169 predictors were modeled using conditional infer
ence trees (CIT) (Hothorn et al., 2006). These CIT models identified 
threshold values that maximized differentiation between true and false 
positives for the 6546 validated cane toad detections. By allowing in
teractions among predictor variables, the models used all 169 variables 
in combination. With a tree depth set to two, the threshold rules 
incorporated up to two conditions. These conditions included either (1) 
a minimum confidence score per time interval, (2) a minimum number 
of detections per time interval, or (3) a combination of both. This 
resulted in 14,364 model combinations.

CIT models were ranked based on a performance metric, calculated 
as the weighted sum of precision (p) and recall (r): model performance 
= p × w + r × (1 – w). The weighting factor (w) was set to 0.75 (Singer 
et al., 2024), as low precision is more likely to bias ecological inferences 
than low recall (Metcalf et al., 2022). To assess whether the optimized 
thresholds enhanced detection performance, the selected CIT models 
were compared against three universal thresholds (filtering above a 
certain BirdNET confidence score; UNI10: confidence score ≥ 0.1, 
UNI50: confidence score ≥ 0.5, UNI90: confidence score ≥ 0.9) (Wood 
et al., 2021) using precision, recall, and model performance. Due to 
multicollinearity among the aggregated time-series features, multiple 
candidate models with identical performance arose. We used only the 
simplest optimized threshold in the main text, figures, and tables. 
Furthermore, to evaluate the optimized threshold approach, we 

Table 2 
Aggregated time-series features, included as predictor variables for threshold 
modelling with conditional inference trees. All features are calculated for 12 
different time intervals (±3 s, ±6 s, ±9 s, ± 12 s, ±10mins, ±20mins, ±30mins, 
±40mins, ±12 h, ±24 h, ±48 h, ±72 h), resulting in 169 different predictor 
variables per validated detection.

Type Abbreviation Description

BirdNET default conf Original BirdNET confidence score
Aggregated time series 

features
ndets≥0.1 Number of detections with confidence 

score ≥ 0.1
ndets≥0.2 Number of detections with confidence 

score ≥ 0.2
ndets≥0.3 Number of detections with confidence 

score ≥ 0.3
ndets≥0.4 Number of detections with confidence 

score ≥ 0.4
ndets≥0.5 Number of detections with confidence 

score ≥ 0.5
ndets≥0.6 Number of detections with confidence 

score ≥ 0.6
ndets≥0.7 Number of detections with confidence 

score ≥ 0.7
ndets≥0.8 Number of detections with confidence 

score ≥ 0.8
ndets≥0.9 Number of detections with confidence 

score ≥ 0.9
ndets≥0.99 Number of detections with confidence 

score ≥ 0.99
avgconf Average confidence score
medconf Median confidence score
maxconf Maximum confidence score
minconf Minimum confidence score

Note: Adapted from Singer et al. (2024), Table S2. Abbreviations are modified.
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compared the ability of the best-performing CIT model and the highest 
precision universal threshold (i.e., UNI90) in determining cane toad 
presence at specific sites across the 40 A2O sites at which cane toads 
occurred, according to the Atlas of Living Australia, (2024). To further 
confirm that cane toads were absent at sites where the initial 270 vali
dation detections returned no true positives, all detections with confi
dence scores of ≥0.8 at non-detected sites were manually reviewed. 
Finally, the individual impact of each aggregated time-series predictor 
on the optimized threshold was assessed using backward selection. For 
more detailed methodology, see Singer et al. (2024). All analyses were 
conducted in R, with the classifier and acoustic materials available at htt 
ps://github.com/Leptobrachium/Gpshing.

3. Results

3.1. Preliminary performance assessment

In the preliminary performance assessment, a test dataset of 20 two- 
hour recordings from nine sites was analyzed using the classifier. The 
classifier successfully detected cane toad vocalizations in 9/20 re
cordings, resulting in 9474 detections. Manual validation of all 45,720 
three-second segments confirmed that cane toads were present in 9 of 
the 11 recordings where they actually occurred. However, the classifier 
missed two recordings where cane toad activity was extremely low 
(90.75 detections per hour, compared to 650.79 detections per hour in 
the other recordings). The remaining 18 recordings were correctly 
classified as either containing or not containing cane toads, indicating 
that the classifier did not produce any false positives. To assess detection 
performance at different temporal resolutions, we analyzed precision 
and recall across multiple time scales. Across all tested scales, precision 
remained above 95 % for the three selected confidence levels (0.1, 0.5, 
and 0.9; Fig. 2). Notably, the classifier achieved perfect precision from 
the two-to-five-minute level onward, meaning that no false positives 
were detected at or beyond this resolution. For recall, the classifier 
consistently detected at least 30 % of cane toad calls across all confi
dence levels, increasing to approximately 75 % between the 15-to-30- 
min intervals (Fig. 2). At the 0.9 confidence threshold, recall peaked 
at around 80 % at the 45-min level before slightly decreasing to 75 %, 
primarily due to missed detections in two recordings with low cane toad 
activity. However, it is important to keep in mind that these results are 
based on a dataset of 20 randomly selected two-hour recordings.

3.2. Classifier spatio-temporal performance

Overall, our trained classifier identified 3,542,224 cane toad 

detections across 778,039 h of A2O recordings (~88.75 years) from 40 
A2O sites. Cane toad presence was confirmed at 26 sites (n = 6546) 
based on validation of 8623 randomly selected detections spanning a 
confidence score range of 0.1 to 1 (Fig. S3). We observed considerable 
spatial variation in the distribution of confidence scores among the 
validated detections (Fig. S3). At some sites, including Chillagoe, 
Litchfield, Moorrinya, and Spyglass, all validated detections were true 
positives, regardless of confidence score. In contrast, other sites dis
played a gradual increase in the proportion of true positives as confi
dence scores approached the maximum (e.g., Boodjamulla, Doonan 
Creek). However, at certain sites, true positives were rare, with only one 
or a few scattered across the confidence score range (e.g., Minjerribah, 
Mourachan) (Fig. S3).

There was a positive correlation between the confidence score and 
the probability of a correct BirdNET prediction (hereafter referred to as 
accuracy) using a logistic model (intercept = 2.980, SE = 0.177; p <
0.001; Table S2). Overall, accuracy reached over 80 % across all sites 
and seasons at the highest confidence score (0.99). However, there was 
significant spatial variability in accuracy (Fig. 3; Table S2). With a 
confidence score above 0.9, 17/26 sites achieved high accuracy levels 
exceeding 90 %. Among these, Chillagoe, Litchfield, Moorrinya, and 
Spyglass achieved perfect accuracy (100 %) across all scores (Fig. 3). 
Additionally, BirdNET predictions had a < 5 % chance of being incorrect 
at the highest confidence scores at 15/26 sites (Fig. 3). Notably, 13/26 
sites maintained consistently high accuracy (≥90 %) even at lower 
confidence thresholds (0.5). In contrast, 6/26 sites exhibited low accu
racy (<70 %) even at the highest confidence score (Fig. 3). There was 
also a significant difference in accuracy between seasons, such that 
predictions for the wet season were more accurate than the dry season 
across confidence scores (intercept = 0.530, SE = 0.102; p < 0.001; 
Table S2). This seasonal difference, however, was consistently less than 
10 % (Fig. 4). Furthermore, 10/25 sites displayed site-specific seasonal 
variability in accuracy, with seven of them achieving higher accuracy in 
the dry season compared to the wet season (Table S3).

3.3. Detection performance using time-series aggregated features

Because cane toads tend to call within lengthy choruses, the context 
within which a detection occurs can include important information 
which might increase the probability of a correct detection. We noticed 
the trend for prolonged calling earlier, in section 3.1, in which 
increasing the temporal scale of detection to periods longer than the 3 s 
single detection made it more likely we would correctly detect calling. 
Thus, we used a statistical method applying the aggregated time-series 
data (Singer et al., 2024), to process the data. Sixteen candidate CIT 

Fig. 2. Preliminary assessment of the trained cane toad classifier on 20 randomly selected testing data from nine A2O sites. The lines depict the classifier’s precision 
and recall across various temporal resolutions measured in seconds. Note that model confidence and precision converge at 100 % at a resolution of 300 s, while recall 
is optimal at 2700 s. A resolution of approximately 10 min (~600 s) strikes a balance, achieving both high precision and recall.

F.K.W. Leung et al.                                                                                                                                                                                                                             Ecological Informatics 89 (2025) 103172 

5 

https://github.com/Leptobrachium/Gpshing
https://github.com/Leptobrachium/Gpshing


models demonstrated the highest achievable performance (precision: 
93.7 %, recall: 79.8 %, model performance: 0.902). Among these, the 
simplest optimized threshold was derived from the model formula, 
which required the ±12-h average confidence score to be greater than 
0.52 and at least five detections with confidence score ≥ 0.1 in that 
period (Table S4). We compared the success of applying this method 
with another way to increase the probability of correct detections, which 
is applying a high confidence threshold. When applying universal 

thresholds, precision levels were 67.7 %, 71.9 %, and 79.6 % for UNI10, 
UNI50, and UNI90, respectively (Fig. 5; Table S5). At the three-second 
level, the optimized threshold improved precision by 14.1 % over the 
highest-precision universal threshold (UNI90). For recall, the optimized 
thresholds showed an 21.3 % improvement over UNI50, second only to 
the perfect recall rate of UNI10 (achieved with a minimum confidence of 
0.1 in BirdNET audio analysis, see section 2.6). Overall, the optimized 
threshold outperformed other approaches to increasing model perfor
mance (Fig. 5; Table S5).

To better characterize the best approach to optimization, we exam
ined the performance of models with different features included. The 
performance of the optimized thresholds declined as aggregated time- 
series features were progressively removed (Fig. 6). Precision 
remained at its peak of 93.7 % when predictors incorporating time in
tervals longer than ±12 h were included, while recall maintained its 
maximum of 79.8 % with predictors integrating intervals longer than 
±20 min. Excluding all time intervals resulted in only a minor decrease 
in precision (~4 %) compared to using the original BirdNET confidence 
score alone, but it led to a significant drop in recall by over 70 % (i.e., 
more correct calls were missed). Model performance also showed a 
notable decline of approximately 0.2 without incorporating time in
tervals. On the other hand, removing the 12 least informative statistical 
parameters had no effect on model performance, precision, or recall. 
However, the average confidence score was critical, as its removal 
caused the most substantial decreases in model performance (~20 %), 
precision (~1.5 %), and recall (~70 %).

CIT optimized thresholds increased detection accuracy of cane toad 
occurrences compared to UNI90 across various sites (Fig. 7). Using the 
UNI90 threshold, 13 site-level false positives were identified, predomi
nantly in southern and western regions, whereas the CIT optimized 
threshold produced only three false positive (Fig. 7). The application of 
the CIT optimized threshold remarkably improved the performance of 

Fig. 3. The relationship between the probability of accurate BirdNET predictions (accuracy) of cane toad detections across BirdNET confidence scores in 26 toad- 
presence A2O sites. Each line represents a distinct site, with accuracy plotted as a function of the confidence score. The solid black line shows the overall trend, 
indicating the general relationship between confidence score and accuracy across all sites. The lines for Chillagoe, Litchfield, and Moorrinya are covered 
by Spyglass’s.

Fig. 4. The relationship between probability of accurate BirdNET predictions 
(accuracy) of cane toad detections across BirdNET confidence scores in wet and 
dry seasons.
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Fig. 5. Comparison of precision, recall and model performance among three universal thresholds (filtering above a certain BirdNET confidence score; UNI10: 
confidence score ≥ 0.1, UNI50: confidence score ≥ 0.5, UNI90: confidence score ≥ 0.9), and optimized thresholds derived from conditional inference trees (CIT 
Optimized: ±12 h > 0. 516,334,615 and at least five detections with confidence ≥0.1). Model performance is calculated as the weighted sum of the precision (p) and 
the recall (r): model performance = p × 0.75 + r × (1–0.75).

Fig. 6. Effects of stepwise reduction of aggregated time-series features (ATF) on the optimized threshold models’ performance: [A: model performance; B: precision; 
C: recall]. Predictors are ordered according to time interval length and average effect on the model, derived from bootstrapping with 999 permutations. The dashed 
line separates models that include only the original BirdNET confidence score, based on a three-second interval, from those that incorporate aggregated time- 
series features.
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cane toad detection at site-level, compared to relying solely on a Bird
NET confidence score of ≥0.9.

4. Discussion

We provide step-by-step information on building our acoustic clas
sifier for cane toads (Fig. 1). Every component of this workflow, 
including the BirdNET algorithm, the programming tools (R and Py
thon), Kaleidoscope Lite and the A2O audio data were free to use, 
ensuring that the classifier development process was cost-effective but 
also widely accessible to researchers and practitioners with varying 
levels of expertise and resources. While we used a high-performance 
computing (HPC) cluster to process the large-scale A2O recordings 
efficiently, BirdNET can also run on standard desktop computers, 
allowing users to analyze smaller datasets from fewer sites without 
requiring advanced computing infrastructure. The trained classifier, 
along with all training materials and code, is available in an online re
pository (https://github.com/Leptobrachium/Gpshing). We hope that 
this standardized approach will serve as a reference model for devel
oping similar classifiers for other invasive species.

We found that the trained classifier reliably detected cane toad vo
calizations, consistently distinguishing cane toad calls from background 
noise, achieving high precision and recall across various temporal scales 
at all confidence levels (Fig. 2). However, while the recall rate was 
generally strong, it varied with confidence level and temporal resolution 
(Fig. 2). Nonetheless, the slight decline in recall at the two-hour level 
occurred because some vocalizations, particularly in low-activity re
cordings, were missed. This variation underscores the importance of 
carefully selecting thresholds and temporal resolutions tailored to the 
specific objectives of the study.

In ecological research, false positives can be more critical mistakes 
than false negatives, as they suggest a species is present where it is not 
(Cole et al., 2022; Tolkova et al., 2021). However, missing some vo
calizations (false negatives) does not necessarily hinder site-level 
detection, as the extended survey periods afforded by PAM typically 
compensate for occasional missed detections (Hoefer et al., 2023; 
MacKenzie et al., 2002; Tyre et al., 2003). Keeping these criteria in 
mind, our classifier showed substantial improvement in detecting cane 
toad occurrences across Australia after incorporating time-aggregated 

features, reducing false positives from 13 (under a high universal 
threshold of 0.9) to just three at the site level (Fig. 7). While some false 
positives remain, this refinement significantly enhances classifier reli
ability compared to relying solely on the confidence score threshold. Our 
optimized CIT thresholds maintained high precision, while significantly 
improving the recall rate for our classifier at even the three-second level 
across a broad spatio-temporal area (Fig. 5; Table S5). Although we did 
not explicitly test the spatio-temporal variation of detection results after 
applying the optimized threshold, the classifier’s performance at 17 sites 
was strong (Fig. 3), with minimal temporal variation (Fig. 4). Therefore, 
we suggest that our classifier, with the optimized threshold, could meet 
the precision and recall requirements necessary for application to a 
range of different study objectives, not just site-level occurrence 
detection.

Most classifiers are trained and tested in specific study locations or 
areas (e.g., Manzano-Rubio et al., 2022; Wood et al., 2023b), and may 
not be accurate when applied to sites not included in the training data 
(Allen-Ankins et al., 2024). Similarly, our classifier varied in detection 
accuracy in and across different sites and seasons (Figs. 3, 4; Table S2, 
S3). However, despite the observed variation in accuracy, our classifier, 
trained on a subset of audio data from eight A2O sites, still demonstrated 
robust performance across many locations, including those geographi
cally distant from the original training sites (Fig. 3, S2). It also showed 
that our training data preparation method was efficient (section 2.3). 
During manual validation of top detections from underperforming or 
false-positive A2O sites, we found that many of these sites were located 
in ecoregions not represented in the training dataset, specifically 
temperate grasslands, savannas, and shrublands, as well as tropical and 
subtropical moist broadleaf forests. In contrast, our training data 
included cane toad sounds, environmental noises, and other vocaliza
tions of spectrally overlapped species from tropical and subtropical 
grasslands, savannas, and shrublands and temperate broadleaf and 
mixed forests. This lack of representation from temperate grasslands, 
savannas, shrublands, and tropical and subtropical moist broadleaf 
forests likely contributed to the classifier’s difficulty in generalizing to 
these underrepresented sites. Although it may not be necessary to collect 
training data from every site, including samples from representative 
areas that cover a range of ecoregions, latitudes, and longitudes greatly 
increases the robustness of the recognizer at different sites. Thus, 

Fig. 7. Comparison of cane toad occurrences across Australia based on two different thresholding approaches. Map A represents occurrences using a universal 
threshold UNI90 (BirdNET confidence score ≥ 0.9); map B represents occurrences using a conditional inference tree (CIT) optimized threshold (±12 h > 0. 
516,334,615 and at least five detections with confidence ≥0.1). Each point on the map corresponds to an A2O study site, with colors indicating the detection 
outcome: true positive (green), true negative (orange) and false positive (pink). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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strategically selecting training data from diverse and representative 
regions is both time-efficient and effective in enhancing classifier 
function across different environments.

The application of optimized CIT thresholds significantly improved 
the classifier’s performance compared to relying solely on the BirdNET 
confidence score (Fig. 5; Table S5), demonstrating the effectiveness of 
integrating contextual information from time-series data into automatic 
call detection (Madhusudhana et al., 2021; Singer et al., 2024). Notably, 
the reduction in false positives at site level, especially in regions where 
misclassifications were common under the UNI90 threshold (Fig. 7), 
demonstrates the practical use of CIT optimization to refine classifier 
outputs and minimize erroneous detections. In addition, the optimized 
thresholds were most effective when incorporating time intervals no 
shorter than ±12 h (Fig. 6), suggesting that temporal context is impor
tant for accurately classifying cane toad occurrences. The decline in 
performance when the length of time intervals was excluded marks the 
importance of maintaining temporal granularity in the analysis, partic
ularly for studies that monitor species over extended periods and across 
broad geographical regions. Among the statistical parameters, average 
confidence scores and the number of detections with a confidence score 
≥ 0.1 provided the most valuable information. Average confidence 
scores at various time intervals were also the most influential parameter 
in previous studies on birds (Singer et al., 2024; Wood et al., 2021), 
implying that average scores could be a more reliable threshold than 
simply using minimum confidence scores in acoustic classification.

While our study demonstrates promising detection results from our 
acoustic classifier, some limitations should be acknowledged. Firstly, 
spatial performance was not flawless, likely because we limited training 
data to particular ecoregions to keep our approach efficient. Researchers 
applying this classifier to new study systems should retrain it with 
additional data from their specific sites to account for variations in the 
soundscape, ensuring optimal performance, broadening its applicability 
and minimizing site-specific biases. Apart from spatial characteristics, 
detection quality appears to depend on call abundance. True-positive 
detections in peripheral distribution areas and sites with lower cane 
toad activity (e.g., Mourachan, Minjerribah) become valuable for 
enhancing the classifier’s recall performance in these regions. It is worth 
noting that our classifier and the entire training dataset have been made 
publicly available on an online repository. The above cases could be 
used as additional training data in future updates. We also recommend 
that users always assess a subset of detection results for performance, 
even after applying the CIT approach, as the adaptation to spatio- 
temporal variation following the application of optimized thresholds 
has not yet been fully tested.

In light of our findings, several promising opportunities for future 
research and development arise. Although our classifier was trained on 
data from Australia, it has the potential to detect cane toads in other 
regions where they have been introduced. Expanding its application to 
countries such as French Guiana, the Philippines, and the United States 
(Harvey et al., 2021; Shine et al., 2021) could provide valuable insights 
into its performance in even more diverse environments. Collaborating 
with researchers in these regions would both test the classifier’s 
adaptability and enhance its utility by incorporating additional vocali
zations from local species, ultimately improving effectiveness for global 
cane toad monitoring and management. Secondly, our classifier has 
potential applications beyond monitoring. By providing a reliable cane 
toad call detection tool, it can contribute to broader efforts to under
stand the species’ adaptation, breeding ecology, and ecological impact 
in Australia. For example, our classifier can aid in examining spatio- 
temporal patterns and environmental factors that influence cane toad 
calling activity. Such studies could reveal key aspects of their repro
ductive behavior, including chorus timing and frequency (e.g., Bolitho 
et al., 2023; Wood et al., 2023a). Broadly, analyzing calling activity 
patterns across the diverse locations sampled by the A2O could help 
identify breeding hot spots and habitat preferences, furthering our un
derstanding of cane toad ecology and distribution. Despite extensive 

research on cane toad invasion and its impact on native species (e.g., 
Greenlees et al., 2006; Lampo and De Leo, 1998; Shine, 2010), toads’ 
effects on the acoustics of local frog communities remain underexplored. 
While playback experiments have shown that cane toad calls influence 
the timing, rate, and inter-call intervals of some Australian frogs (Bleach 
et al., 2015; Hopkins et al., 2023; Taylor et al., 2017), a comprehensive 
understanding of their impact on acoustic resources, especially across 
larger spatial scales, is lacking. Using our classifier to analyze large-scale 
audio data could determine whether cane toads disrupt the acoustic 
space of local frog communities in real-world settings, shedding light on 
their effects on microhabitat use by native species.
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Pyšek, P., Hulme, P., Simberloff, D., Bacher, S., Blackburn, T., Carlton, J., Dawson, W., 
Essl, F., Foxcroft, L., Genovesi, P., Jeschke, J., Kuhn, I., Liebhold, A., Mandrak, N., 
Meyerson, L., Pauchard, A., Pergl, J., Roy, H., Seebens, H., Kleunen, M., Vila, M., 
Wingfield, M., Richardson, D., 2020. Scientists’ warning on invasive alien species. 
Biol. Rev. 95, 1511–1534. https://doi.org/10.1111/brv.12627.

R Core Team, 2023. R: A Language and Environment for Statistical Computing (Version 
4.2.3). R. http://www.R-project.org/.

Ribeiro Jr., J.W., Harmon, K., Leite, G.A., de Melo, T.N., LeBien, J., Campos- 
Cerqueira, M., 2022. Passive acoustic monitoring as a tool to investigate the spatial 
distribution of invasive alien species. Remote Sens. 14, 4565. https://doi.org/ 
10.3390/rs14184565.

Roe, P., Ferroudj, M., Towsey, M., Schwarzkopf, L., 2018. Catching toad calls in the 
cloud: Commodity edge computing for flexible analysis of big sound data. In: 2018 
IEEE 14th International Conference on e-Science (e-Science). IEEE, Amsterdam, 
Netherland, pp. 67–74.

Roe, P., Eichinski, P., Fuller, R.A., McDonald, P.G., Schwarzkopf, L., Towsey, M., 
Truskinger, A., Tucker, D., Watson, D., 2021. The Australian acoustic observatory. 
Methods Ecol. Evol. 12, 1802–1808. https://doi.org/10.1111/2041-210X.13660.

Shine, R., 2010. The ecological impact of invasive cane toads (Bufo marinus) in Australia. 
Q. Rev. Biol. 85, 253–291. https://doi.org/10.1086/655116.

Shine, R., Alford, R.A., Blennerhasset, R., Brown, G.P., DeVore, J.L., Ducatez, S., 
Finnerty, P., Grenlees, M., Kaiser, S.Q., McCann, S., Petit, L., Pizzatto, L., 
Schwarzkopf, L., Ward-Fear, G., Phillips, B.L., 2021. Increased rates of dispersal of 
free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 
23574. https://doi.org/10.1038/s41598-021-02828-5.

Singer, D., Hagge, J., Kamp, J., Hondong, H., Schuldt, A., 2024. Aggregated time-series 
features boost species-specific differentiation of true and false positives in passive 
acoustic monitoring of bird assemblages. Remote Sens. Ecol. Conserv. https://doi. 
org/10.1002/rse2.385.

Taylor, A., Grigg, G., Watson, G., McCallum, H., 1996. Monitoring frog communities: An 
application of machine learning. In: Proceedings, Eighth Innovative Applications of 
Artificial Intelligence Conference. AAAI Press, Portland, Oregon, USA, 
pp. 1564–1569.

Taylor, A., McCallum, H., Watson, G., Grigg, G., 2017. Impact of cane toads on a 
community of Australian native frogs, determined by 10 years of automated 
identification and logging of calling behaviour. J. Appl. Ecol. 54, 2000–2010. 
https://doi.org/10.1111/1365-2664.12859.

Tolkova, I., Chu, B., Hedman, M., Kahl, S., Klinck, H., 2021. Parsing birdsong with deep 
audio embeddings. ArXiv Preprint. https://doi.org/10.48550/arXiv.2108.09203.

F.K.W. Leung et al.                                                                                                                                                                                                                             Ecological Informatics 89 (2025) 103172 

10 

https://doi.org/10.1080/09524622.2019.1605309
https://doi.org/10.1111/2041-210X.13198
https://doi.org/10.1111/2041-210X.13198
https://doi.org/10.1007/s00265-015-1879-z
https://doi.org/10.1007/s00265-015-1879-z
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.3390/d15080931
https://doi.org/10.1038/ncomms12986
https://doi.org/10.1038/ncomms12986
https://doi.org/10.1016/j.ecolind.2020.106852
https://doi.org/10.3389/fevo.2021.761147
https://doi.org/10.3389/fevo.2021.761147
https://doi.org/10.1186/s42408-023-00180-9
https://doi.org/10.1093/ornithapp/duac003
https://doi.org/10.1093/ornithapp/duac003
https://doi.org/10.1038/s41598-018-36384-2
https://doi.org/10.1038/s41598-018-36384-2
https://doi.org/10.1111/j.1095-8312.1981.tb01645.x
https://doi.org/10.1111/j.1095-8312.1981.tb01645.x
https://doi.org/10.1146/annurev-ecolsys-102209-144650
https://doi.org/10.1111/2041-210X.13101
https://doi.org/10.1111/j.1469-1795.2006.00057.x
https://doi.org/10.1111/j.1469-1795.2006.00057.x
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0095
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0095
https://doi.org/10.1071/PC21012
https://doi.org/10.1080/09524622.2023.2209052
https://doi.org/10.1670/23-004
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1109/TASL.2006.881700
https://doi.org/10.1109/TASL.2006.881700
https://doi.org/10.1145/1464420.1464424
https://doi.org/10.1016/2.eco.inf.2023.102256
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1016/j.ecoinf.2021.101236
https://doi.org/10.1071/WR22111
https://doi.org/10.1071/WR22111
https://doi.org/10.5751/ACE-01114-120214
https://doi.org/10.1890/1051-0761(1998)008[0388:TIEOTT]2.0.CO;2
https://doi.org/10.1890/1051-0761(1998)008[0388:TIEOTT]2.0.CO;2
https://doi.org/10.1111/2041-210X.14003
https://doi.org/10.32614/CRAN.package.emmeans
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0165
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0165
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0165
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0170
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0170
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1098/rsif.2021.0297
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
https://doi.org/10.1016/j.ecolind.2021.108305
https://doi.org/10.1016/j.ecolind.2021.108305
https://doi.org/10.1111/2041-210X.13967
https://doi.org/10.1111/2041-210X.13967
https://doi.org/10.1163/1568539X-00003404
https://doi.org/10.1139/cjz-2023-0154
https://doi.org/10.1111/brv.12627
http://www.R-project.org/
https://doi.org/10.3390/rs14184565
https://doi.org/10.3390/rs14184565
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0220
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0220
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0220
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0220
https://doi.org/10.1111/2041-210X.13660
https://doi.org/10.1086/655116
https://doi.org/10.1038/s41598-021-02828-5
https://doi.org/10.1002/rse2.385
https://doi.org/10.1002/rse2.385
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0245
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0245
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0245
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0245
https://doi.org/10.1111/1365-2664.12859
https://doi.org/10.48550/arXiv.2108.09203


Tyre, A., Tenhumberg, B., Field, S., Niejalke, D., Parris, K., Possingham, H., 2003. 
Improving precision and reducing bias in biological surveys: estimating false- 
negative error rates. Ecol. Appl. 13, 1790–1801. https://doi.org/10.1890/02-5078.

Van Rossum, G., Drake Jr., F.L., 1995. Python Reference Manual (Version 3.11.6). 
Python.

Vander Zanden, M., Hansen, G., Higgins, S., Kornis, M., 2010. A pound of prevention, 
plus a pound of cure: early detection and eradication of invasive species in the 
Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205. https://doi.org/10.1016/j. 
jglr.2009.11.002.

Villanueva-Rivera, L.J., Pijanowski, B.C., 2012. Pumilio: a web-based management 
system for ecological recordings. Bull. Ecol. Soc. Am. 93, 71–81. https://doi.org/ 
10.1890/0012-9623-93.1.71.

Wood, C., Kahl, S., 2024. Guidelines for appropriate use of BirdNET scores and other 
detector outputs. J. Ornithol. 165, 1–6. https://doi.org/10.1007/s10336-024- 
02144-5.

Wood, C.M., Kahl, S., Chaon, P., Peery, M.Z., Klinck, H., 2021. Survey coverage, 
recording duration and community composition affect observed species richness in 
passive acoustic surveys. Methods Ecol. Evol. 12, 885–896. https://doi.org/ 
10.1111/2041-210X.13571.

Wood, C., Kahl, S., Barnes, S., Van Horne, R., Brown, C., 2023a. Passive acoustic surveys 
and the BirdNET algorithm reveal detailed spatiotemporal variation in the vocal 
activity of two anurans. Bioacoustics 32, 532–543. https://doi.org/10.1080/ 
09524622.2023.2211544.

Wood, C., Barceinas, C., Kahl, S., 2023b. Pairing a user-friendly machine-learning animal 
sound detector with passive acoustic surveys for occupancy modeling of an 
endangered primate. Am. J. Primatol. 85, e23507. https://doi.org/10.1002/ 
ajp.23507.

Yasumiba, K., Duffy, R., Parsons, S., Alford, R., Schwarzkopf, L., 2016. Rapid 
differentiation of sexual signals in invasive toads: call variation among populations. 
Sci. Rep. 6, 28158. https://doi.org/10.1016/j.jglr.2009.11.002.

F.K.W. Leung et al.                                                                                                                                                                                                                             Ecological Informatics 89 (2025) 103172 

11 

https://doi.org/10.1890/02-5078
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0265
http://refhub.elsevier.com/S1574-9541(25)00181-5/rf0265
https://doi.org/10.1016/j.jglr.2009.11.002
https://doi.org/10.1016/j.jglr.2009.11.002
https://doi.org/10.1890/0012-9623-93.1.71
https://doi.org/10.1890/0012-9623-93.1.71
https://doi.org/10.1007/s10336-024-02144-5
https://doi.org/10.1007/s10336-024-02144-5
https://doi.org/10.1111/2041-210X.13571
https://doi.org/10.1111/2041-210X.13571
https://doi.org/10.1080/09524622.2023.2211544
https://doi.org/10.1080/09524622.2023.2211544
https://doi.org/10.1002/ajp.23507
https://doi.org/10.1002/ajp.23507
https://doi.org/10.1016/j.jglr.2009.11.002

	Advancing invasive species monitoring: A free tool for detecting invasive cane toads using continental-scale data
	1 Introduction
	2 Materials and methods
	2.1 BirdNET
	2.2 Audio dataset
	2.3 Training data generation
	2.4 Classifier development
	2.5 Preliminary assessment
	2.6 Audio analysis & classifier performance assessment
	2.7 Detection optimization using time-aggregated features

	3 Results
	3.1 Preliminary performance assessment
	3.2 Classifier spatio-temporal performance
	3.3 Detection performance using time-series aggregated features

	4 Discussion
	Declaration of generative AI and AI-assisted technologies in the writing process
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Supplementary data
	Data availability
	References


