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ARTICLE INFO ABSTRACT

Keywords: Invasive species pose a significant threat to global biodiversity and ecosystem health, necessitating effective

Australian acoustic observatory monitoring tools for early detection and management. Here, we present the development and assessment of a

lélrdNETd user-friendly and transferable monitoring tool for the invasive cane toad (Rhinella marina) using passive acoustic
ane toa

monitoring (PAM) and machine learning algorithms. Leveraging a continental-scale PAM dataset (Australian
Acoustic Observatory), we trained a cane toad classifier using the BirdNET algorithm, a convolutional neural
network architecture capable of identifying acoustic events. We validated thousands of BirdNET predictions
across Australia, and our classifier achieved over 90 % accuracy even at many sites outside the areas from which
the training data were obtained. Additionally, because cane toads typically call for long periods, we significantly
enhanced detection accuracy by incorporating contextual information from time-series data, essentially checking
if other calls occurred around each detection (an optimized threshold approach using conditional inference
trees). This method substantially reduced false positives and improved overall performance in cane toad
detection at sites across Australia. Overall, our method will allow others to develop accurate and precise auto-
mated acoustic monitoring tools tailored to their situation, with minimal training data, addressing the critical

Invasive species
Machine learning
Passive acoustic monitoring

need for accessible solutions in biodiversity monitoring, control of invasive species and conservation.

1. Introduction

Biological invasions present a significant threat to biodiversity,
ecosystem structure and function, human health, and the global econ-
omy (Bradshaw et al., 2016; Ehrenfeld, 2010). Effective conservation
and management are enhanced by monitoring invasive species, enabling
early detection of new incursions, assessment of population trends, and
implementation of timely control measures to mitigate adverse impacts
on native biodiversity and ecosystems (Pysek et al., 2020; Vander Zan-
den et al., 2010).

Passive acoustic monitoring (PAM) uses acoustic recorders to capture
environmental sounds, including those of invasive species, making it a
valuable tool for tracking and managing biological invasions (Ribeiro Jr
et al.,, 2022). This non-invasive monitoring method uses analysis of
recorded audio to detect species (Blumstein et al., 2011; Gibb et al.,
2019). Studies indicate that PAM is comparable in effectiveness to
traditional observer-based monitoring to assess diversity of many
terrestrial vertebrate species (e.g., Hoefer et al., 2023; Melo et al., 2021).
In addition, PAM enables continuous monitoring, a highly cost-effective
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approach to invasive species detection, particularly in remote areas and
rugged environments (Hu et al., 2009).

PAM generates a very large amount of data, which often cannot be
analyzed using human listening (Villanueva-Rivera and Pijanowski,
2012), and thus automated approaches become essential for its appli-
cation. There is, however, a scarcity of publicly accessible, broadly
applicable, and easy-to-use sound detection and classification tools
(Pérez-Granados et al., 2023; Wood et al., 2023a). Machine learning
algorithms, especially deep convolutional neural networks (CNNs), have
shown great promise in automating sound identification for invasive
species, enabling faster and more accurate analysis of large datasets
(Kahl et al.,, 2021; Jeantet and Dufourq, 2023). Although time-
consuming to develop (Knight et al., 2017), these tools can signifi-
cantly expand the opportunities for monitoring over large spatial scales
and extended time periods, enhancing early detection and management
(Amorim et al., 2023).

Cane toads (Rhinella marina) invaded northern Australia in 1935
(Easteal, 1981), and expanded across Queensland, New South Wales, the
Northern Territory, and Western Australia (Atlas of Living Australia,
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2024). Recognized as one of the world’s top 100 worst invasive species
(Lowe et al., 2000), cane toads spread rapidly (Shine et al., 2021) and
have profound negative impacts on Australian native biodiversity
(Shine, 2010). Notably, anurans, including cane toads, rely heavily on
vocalizations for courtship, making them ideal candidates for detection
via passive acoustic monitoring (PAM) (e.g., Pérez-Granados et al.,
2023; Wood et al., 2023a).

Although cane toads are a highly vocal invasive species, there are no
publicly accessible, user-friendly acoustic classifiers tailored specifically
for their detection. Despite efforts dating back to the 1990s to integrate
PAM with automated detection algorithms for cane toads (Hu et al.,
2009; Taylor et al., 1996, 2017), these tools have not been widely
adopted. One barrier to adoption is a need for sensor and algorithm
flexibility (Roe et al., 2018). For instance, the original algorithms and
software were designed and applied within custom-built acoustic sensor
networks (e.g., Taylor et al., 1996, 2017), limiting their broad applica-
bility. In addition, variation among background noises and intra-specific
call variation can cause variation in the success of automated species
recognition in different locations (Cole et al., 2022; Lauha et al., 2022;
Metcalf et al., 2022). Cane toads range across a very wide area, and their
advertisement calls vary among Australian populations (Muller et al.,
2016; Yasumiba et al., 2016). Consequently, automated detection tools
developed for specific regions or study areas may not work well in other
areas. In light of these challenges, there is a critical need for innovative
solutions to cane toad detection over wide areas.

In this study, we introduce a free and user-friendly cane toad acoustic
classifier designed for analyzing broad spatio-temporal datasets across
Australia. By utilizing a machine-learning algorithm and an extensive
audio dataset, we aimed to create a freely accessible, flexible cane toad
classifier with high detection accuracy with the ability to accommodate
regional variability in call characteristics, thereby facilitating repeatable
and cost-efficient monitoring efforts for the invasive toads across
Australia. Given the widespread nature of cane toad populations, we
incorporated data post-processing techniques to optimize detection
performance over a wide area.

2. Materials and methods
2.1. BirdNET

We chose the BirdNET algorithm, a CNN architecture designed to
identify acoustic events by analyzing visual patterns in spectrograms
(Kahl et al., 2021), to develop our cane toad acoustic recognizer. Bird-
NET is a freely available, pretrained algorithm can be used to train a
custom classifier that can detect species outside its original training
data. It reliably identifies over 6000 species worldwide (https: //github.
com/kahst/BirdNET-Analyzer), including more than 40 frog species
(Pérez-Granados et al., 2023; Wood et al., 2023a), with proven effec-
tiveness across various recording conditions (Kahl et al., 2021; Man-
zano-Rubio et al., 2022). Here, we want to highlight the user-
friendliness of BirdNET software’s graphical user interface (GUI),
which simplifies audio analysis and recognizer training without neces-
sitating advanced programming expertise, thus facilitating its use by a
wide range of stakeholders. Additionally, custom trained BirdNET rec-
ognizers can be readily shared as a portable TensorFlow Lite file,
ensuring easy access, compatibility across different sensor networks,
recording equipment, and study designs, and enabling widespread
adoption across various parties.

2.2. Audio dataset

To develop and train our cane toad recognizer, we used audio from
the Australian Acoustic Observatory (A20), a continent-wide acoustic
sensor network, consisting of 62 active sites, covering seven major
ecoregions in Australia. Each site is equipped with four acoustic
recording units (ARUs) placed in various habitats, ranging from
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rainforests to arid landscapes, providing real-world sound data (see Roe
et al., 2021 for full details). We selected all A20 sites in Queensland,
along with specific sites in New South Wales, the Northern Territory,
Western Australia and Victoria (Fig. S1), and used audio recordings from
18:00 to 06:00, as adult cane toads in Australia are generally nocturnal
(Doody et al., 2019). These sites were characterized by multiple occur-
rence records of cane toads in the Atlas of Living Australia (2024), and
the acquired audio data from these A20 sites served as the basis for
model training, testing, and performance evaluation.

2.3. Training data generation

Cane toads typically produce advertisement calls lasting, on average,
eight seconds, with a dominant frequency ranging from 500 to 600 Hz
and a call frequency spanning 110-1180 Hz (Bleach et al., 2015; Muller
et al., 2016). Creating a classifier using BirdNET involves three key
steps: generating training data that accurately represents the target
species’ acoustic characteristics, training the classifier with the pre-
processed training dataset, and evaluating the classifier using a testing
dataset (Fig. 1). While this workflow follows the tools and methods used
in our study, each step can be adapted using alternative software, codes,
or algorithms, depending on the specific research needs and available
resources.

In this workflow, training data was generated using the monitoR R
package (Hafner and Katz, 2018), a tool for template-based acoustic
detection. This step involved constructing a binary acoustic template
based on previously recorded cane toad calls (Fig. S2). monitoR was
selected for its compatibility with our workflow; however, alternative
signal processing methods can yield similar results, such as using feature
embeddings (Allen-Ankins et al., 2025). According to BirdNET’s de-
velopers, the algorithm’s performance plateaus after 3500 samples per
class (Kahl et al., 2021). To account for regional variations in detecting
toad calls, particularly in the absence of specific guidelines on training
data allocation per location for individual classes or species, we ensured
a minimum of 3500 training samples in total, with an average sample
count close to this threshold per recording site. Because the BirdNET
algorithm processes only three-second audio snippets, our template was
three seconds long (Fig. S2). Employing a single template is effective at
identifying toad calls for generating training data, achieving reasonable
performance even for species with geographical variation and highly
variable harmonics in their calls (Balantic and Donovan, 2020; Katz
et al., 2016). While a template can detect the target species, it also
produces a high number of false positives, making it insufficient as a
standalone classifier. However, these false positives can be valuable for
training the classifier. Therefore, we created a single binary-point tem-
plate with the makeBinTemplate function, using a typical cane toad call
(Fig. S2). The binary-point template maps signal (‘on’ points) and non-
signal (‘off’ points) areas within a spectrogram, disregarding other
values. We set the amplitude cut-off to ‘interactive selection’ and used a
rectangle around the call to identify potential ‘on’ points during tem-
plate creation (see Hafner and Katz, 2018 for full details).

We then conducted template detection using the binMatch function
from the monitoR package on audio data (18:00-06:00) from the wet site
ARUs at eight study sites, totaling 21,491 h (Fig. 1, S1). This analysis was
carried out using R version 4.2.3 (R Core Team, 2023) and leveraged the
James Cook University High-Performance Computing (JCU HPC) re-
sources. However, this step can also be processed using a standard
computer, depending on the available computing resources and the
amount of audio recordings one needs to analyze. Due to the substantial
number of predictions generated from the template analysis, we focused
our validation efforts on two-hour recordings with over 200 predictions
and checked the top-scoring 100 predictions for each month from each
ARU. This labeled cane toad audio spanned a latitude range of —13.16 to
—26.50 and encompassed all months and hours (Fig. S1; Table 1).
Consequently, our training dataset consisted of both true positives (cane
toad calls) and highly repeated false-positive sounds (Table 1). To
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Fig. 1. Workflow for developing the machine-learning acoustic classifier for
cane toad detection. The process begins with signal processing, where sample
calls and field recordings are processed for Data Generation to produce training
and testing data, which the previous one is then used in Classifier Training to
develop a custom classifier. The trained classifier undergoes Preliminary
Assessment using a subset of testing data, followed by Audio Analysis on the full
testing dataset. Performance is further evaluated in Classifier Performance
Assessment, where classifier performance is evaluated before potential
deployment in broader studies. The final step, Detections Optimization, is
optional and involves refining detection outputs to further enhance accuracy
based on study-specific requirements.

prepare the training dataset for use with BirdNET, we segmented all
labeled audio into three-second audio segments using the AudioSegment
module (Hu and Wang, 2007) in Python version 3.11.6 (Van Rossum and
Drake Jr, 1995).

2.4. Classifier development

Before training the model, we added noise and background sounds
identified during template detection, labeling them as ‘Background’,
and included any other unidentified vocalizations labeled as ‘Unidenti-
fied Sounds’ to the training dataset (Fig. 1; Table 1), following the
recommendation to include a non-event class (https://github.com/kah
st/BirdNET-Analyzer). Additionally, we incorporated non-target spe-
cies’ vocalizations to align with BirdNET’s training methodology and
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Table 1

Details of the training dataset generated by template analysis from the Austra-
lian Acoustics Observatory (A20). NSW stands for New South Wales, NT for
Northern Territory, and QLD for Queensland and WA for Western Australia.

Sound class State Months Recording time N(@3s
(Per 2 h) audio
snippet)
Jan, April 18:00, 22:00,
Background NT, QLD Jun, Jul, Sep 02:00, 04:00 623
NT,
Mar—
Canis lupus oLD, Ajr_JD‘:;’ 18:00-04:00 153
WA &
Centropus QLD Feb, Mar, Jul, - 6.00, 04:00 323
phasianinus Sep-Dec
Cyclorana WA Nov 22:00, 00:00 925
asutralia
Cyclorana QLD Nov 04:00 241
crypototis
Cyclorana QLD Nov, Dec 20:00-04:00 10,959
novaehollandiae
Dacelo NSW, Jan-May, . X
novaeguineae NT, QLD  Jul-Dec 18:00, 04:00 324
NT,
Rhinella marina* QLD, Jan-Dec 18:00-04:00 22,006
WA
Ninox boobook QLD Feb-May, 18:00-04:00 1218
Jul-Nov
Notaden QLD Jan-Mar 18:00, 20:00 2291
melaoscaphus
18:00, 22:00,
Unknown NT, WA Aug-Nov 02:00, 04:00 60

Note: *The training dataset for Rhinella marina was generated using recordings
from the following A20 stations, listed from west to east: Uunguu Indigenous
Protected Area, Litchfield Savanna, Staaten River National Park, Mitchell Grass
Rangeland, Moorrinya National Park, Undara National Park, Wambiana Cattle
Station, and Fletcherview Research Station (Fig. S1).

developer recommendations (Kahl et al., 2021; https://github.com/kah
st/BirdNET-Analyzer), which suggest that including non-target sounds
enhances target species’ predictive performance. Including these vo-
calizations could improve the classifier’s ability to differentiate cane
toad calls from spectrally and temporally similar sounds, enhancing its
robustness and utility. We further refined the training data and
enhanced detection accuracy by applying a low-pass filter to the cane
toad training data using scipy.signal in Python (filtering out frequencies
above 1300 Hz) (MacCallum et al., 2011). This step helped to prevent
BirdNET from learning to recognize commonly co-occurring sounds,
such as other amphibians and insect noise. Finally, we used the full
dataset to train the cane toad classifier with the custom training function
in the BirdNET software [Epochs = 100, Batch size = 32, Learning rate
= 0.001].

2.5. Preliminary assessment

To ensure the reliability of our trained classifier, a preliminary per-
formance assessment was conducted before running the classifier over
all A20 sites (Fig. 1), which would have taken hundreds of hours. For
this initial assessment, we created a test dataset consisting of 20 two-
hour recordings from nine sites within or close to suitable habitat for
cane toads (suitability >0.4; Kelly et al., 2023). We used audio data from
recorders not used in the training dataset (Fig. S2; Table S1). To ensure a
diverse representation of available soundscapes, these recordings were
selected randomly across the temporal distribution of available re-
cordings, encompassing both wet and dry seasons, as well as a range of
times between 18:00 and 06:00. Each three-second segment (n =
45,720) of the selected recordings was manually labeled as either ‘Cane
Toad’ or ‘Not Cane Toad’. The 20 selected recordings were then
analyzed using the custom-trained classifier and the species list
(including all the sound classes from the training data) using BirdNET
software. This analysis can also be performed using the analyze.py script,


https://github.com/kahst/BirdNET-Analyzer
https://github.com/kahst/BirdNET-Analyzer
https://github.com/kahst/BirdNET-Analyzer
https://github.com/kahst/BirdNET-Analyzer

F.K.W. Leung et al.

available at https://github.com/kahst/BirdNET-Analyzer. The perfor-
mance of the classifier was evaluated using the eventEval function from
monitoR (Hafner and Katz, 2018). This function allowed us to categorize
the detected events as true positives (TP), true negatives (TN), false
positives (FP), or false negatives (FN). We then computed precision and
recall metrics, with precision representing the proportion of our classi-
fier’s detections that correctly identified cane toad calls [precision =
TP/(TP + FP), and recall representing the proportion of actual cane toad
detections captured by our classifier, recall = TP/(TP + FN)]. Recog-
nizing that different projects may have different desired temporal res-
olutions at which cane toad detections are required (e.g., most projects
will not need to detect every call at three-second intervals, but rather,
for example, hourly presence), we conducted precision and recall ana-
lyses across a wide range of temporal scales, from seconds (3 s) to an
hour (3600 s). This approach provided an understanding of our classi-
fier’s performance under diverse conditions and temporal resolutions,
thus enhancing its applicability for studies with different objectives.

2.6. Audio analysis & classifier performance assessment

We processed the audio data from all selected A20 sites (n = 40) on
the JCU HPC with our trained classifier (Fig. 1), adjusting the sensitivity
parameter to 1.5 [0-1.5] and minimum confidence score to 0.1 [0-1] to
optimize cane toad detection (Kahl et al., 2021). The confidence score
represents BirdNET’s ‘confidence’ in its predictions, with higher values
generally indicating greater prediction accuracy, although this rela-
tionship varies across species (Wood and Kahl, 2024). Setting a high
sensitivity performs better in acoustically dense environments by
detecting more sound events, whereas setting a lower minimum confi-
dence score generates more predictions, although there may be more
false positives, and both are necessary for threshold performance eval-
uation (Kahl et al., 2021). To provide a standardized threshold and
assess classifier accuracy, we calculated probabilistic scores following
Wood and Kahl (2024).

With over 3,500,000 detections, manual validation of each one was
impractical, necessitating their treatment as putative observations sub-
ject to a probabilistic threshold (e.g., Brunk et al., 2023). Using the
segments.py script from BirdNET-Analyzer, we randomly sampled 270
cane toad detections per site across confidence scores (0.1-1) (Barré
et al., 2019; Metcalf et al., 2022), validating 30 detections per 0.1 in-
terval. Some sites with fewer than 30 detections in specific confidence
score intervals had smaller sample sizes, and only sites with at least one
validated true-positive detection were included in further analyses.
Subsequently, we manually validated 8623 predictions using Kaleido-
scope Lite version 5.6.6 (Wildlife Acoustics®, Manyard, MA, USA) for all
40 selected sites and retained 6546 predictions from 26 toad-positive
sites for subsequent analysis. We used logistic regression to evaluate
the classifier’s spatio-temporal transferability, using validated pre-
dictions (correct vs. incorrect) and BirdNET confidence scores, with
season (dry/wet) and site as covariates, to determine the probabilistic
thresholds (see Wood et al., 2023b and Wood and Kahl, 2024 for
detailed methodology). To evaluate potential site-specific seasonal ac-
curacy, we performed another logistic regression analysis incorporating
interaction terms between season and site as covariates. We then
extracted the coefficients for these interaction terms, computed esti-
mated marginal means, and conducted pairwise comparisons using the
emmeans package in R (Lenth, 2024) to quantify the differences.

2.7. Detection optimization using time-aggregated features

Given the extensive temporal range of the data, non-perfect precision
is likely to generate many false positives (FP), making it difficult to
determine cane toad site presence directly from recognizer output
without further validation. As cane toads typically call intensively over
extended periods during chorusing events (e.g., Brodie et al., 2020,
2022), isolated calls are uncommon. Therefore, we anticipated that
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incorporating time-series features would enhance the accuracy of the
classifier in distinguishing true positives (TP) from FP. To optimize the
classifier’s detection results for studies requiring high precision and
recall at fine temporal resolution, a thresholding framework suggested
by Singer et al. (2024) was applied. This approach integrates contextual
information from aggregated time-series data, including the quality (i.e.,
raw model score) and quantity of detections at varying temporal
intervals.

In this detection optimization approach (Fig. 1), statistical parame-
ters aggregating detection quality and quantity across 12 time intervals
were calculated (Table 2). Along with the original BirdNET confidence
score, a total of 169 predictors were modeled using conditional infer-
ence trees (CIT) (Hothorn et al., 2006). These CIT models identified
threshold values that maximized differentiation between true and false
positives for the 6546 validated cane toad detections. By allowing in-
teractions among predictor variables, the models used all 169 variables
in combination. With a tree depth set to two, the threshold rules
incorporated up to two conditions. These conditions included either (1)
a minimum confidence score per time interval, (2) a minimum number
of detections per time interval, or (3) a combination of both. This
resulted in 14,364 model combinations.

CIT models were ranked based on a performance metric, calculated
as the weighted sum of precision (p) and recall (r): model performance
=p X w+r x (1 —w). The weighting factor (w) was set to 0.75 (Singer
et al., 2024), as low precision is more likely to bias ecological inferences
than low recall (Metcalf et al., 2022). To assess whether the optimized
thresholds enhanced detection performance, the selected CIT models
were compared against three universal thresholds (filtering above a
certain BirdNET confidence score; UNI10: confidence score > 0.1,
UNI50: confidence score > 0.5, UNI9O: confidence score > 0.9) (Wood
et al., 2021) using precision, recall, and model performance. Due to
multicollinearity among the aggregated time-series features, multiple
candidate models with identical performance arose. We used only the
simplest optimized threshold in the main text, figures, and tables.
Furthermore, to evaluate the optimized threshold approach, we

Table 2

Aggregated time-series features, included as predictor variables for threshold
modelling with conditional inference trees. All features are calculated for 12
different time intervals (+3 s, +6 s, +9 s, + 12 s, +10mins, +20mins, +30mins,
+40mins, +12 h, £24 h, +£48 h, £72 h), resulting in 169 different predictor
variables per validated detection.

Type Abbreviation  Description
BirdNET default conf Original BirdNET confidence score
Aggregated time series ndets>0.1 Number of detections with confidence
features score > 0.1
ndets>0.2 Number of detections with confidence
score > 0.2
ndets>0.3 Number of detections with confidence
score > 0.3
ndets>0.4 Number of detections with confidence
score > 0.4
ndets>0.5 Number of detections with confidence
score > 0.5
ndets>0.6 Number of detections with confidence
score > 0.6
ndets>0.7 Number of detections with confidence
score > 0.7
ndets>0.8 Number of detections with confidence
score > 0.8
ndets>0.9 Number of detections with confidence
score > 0.9
ndets>0.99 Number of detections with confidence
score > 0.99
avgconf Average confidence score
medconf Median confidence score
maxconf Maximum confidence score
minconf Minimum confidence score

Note: Adapted from Singer et al. (2024), Table S2. Abbreviations are modified.
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compared the ability of the best-performing CIT model and the highest
precision universal threshold (i.e., UNI90) in determining cane toad
presence at specific sites across the 40 A20 sites at which cane toads
occurred, according to the Atlas of Living Australia, (2024). To further
confirm that cane toads were absent at sites where the initial 270 vali-
dation detections returned no true positives, all detections with confi-
dence scores of >0.8 at non-detected sites were manually reviewed.
Finally, the individual impact of each aggregated time-series predictor
on the optimized threshold was assessed using backward selection. For
more detailed methodology, see Singer et al. (2024). All analyses were
conducted in R, with the classifier and acoustic materials available at htt
ps://github.com/Leptobrachium/Gpshing.

3. Results
3.1. Preliminary performance assessment

In the preliminary performance assessment, a test dataset of 20 two-
hour recordings from nine sites was analyzed using the classifier. The
classifier successfully detected cane toad vocalizations in 9/20 re-
cordings, resulting in 9474 detections. Manual validation of all 45,720
three-second segments confirmed that cane toads were present in 9 of
the 11 recordings where they actually occurred. However, the classifier
missed two recordings where cane toad activity was extremely low
(90.75 detections per hour, compared to 650.79 detections per hour in
the other recordings). The remaining 18 recordings were correctly
classified as either containing or not containing cane toads, indicating
that the classifier did not produce any false positives. To assess detection
performance at different temporal resolutions, we analyzed precision
and recall across multiple time scales. Across all tested scales, precision
remained above 95 % for the three selected confidence levels (0.1, 0.5,
and 0.9; Fig. 2). Notably, the classifier achieved perfect precision from
the two-to-five-minute level onward, meaning that no false positives
were detected at or beyond this resolution. For recall, the classifier
consistently detected at least 30 % of cane toad calls across all confi-
dence levels, increasing to approximately 75 % between the 15-to-30-
min intervals (Fig. 2). At the 0.9 confidence threshold, recall peaked
at around 80 % at the 45-min level before slightly decreasing to 75 %,
primarily due to missed detections in two recordings with low cane toad
activity. However, it is important to keep in mind that these results are
based on a dataset of 20 randomly selected two-hour recordings.

3.2. Classifier spatio-temporal performance

Overall, our trained classifier identified 3,542,224 cane toad
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detections across 778,039 h of A20 recordings (~88.75 years) from 40
A20 sites. Cane toad presence was confirmed at 26 sites (n = 6546)
based on validation of 8623 randomly selected detections spanning a
confidence score range of 0.1 to 1 (Fig. S3). We observed considerable
spatial variation in the distribution of confidence scores among the
validated detections (Fig. S3). At some sites, including Chillagoe,
Litchfield, Moorrinya, and Spyglass, all validated detections were true
positives, regardless of confidence score. In contrast, other sites dis-
played a gradual increase in the proportion of true positives as confi-
dence scores approached the maximum (e.g., Boodjamulla, Doonan
Creek). However, at certain sites, true positives were rare, with only one
or a few scattered across the confidence score range (e.g., Minjerribah,
Mourachan) (Fig. S3).

There was a positive correlation between the confidence score and
the probability of a correct BirdNET prediction (hereafter referred to as
accuracy) using a logistic model (intercept = 2.980, SE = 0.177; p <
0.001; Table S2). Overall, accuracy reached over 80 % across all sites
and seasons at the highest confidence score (0.99). However, there was
significant spatial variability in accuracy (Fig. 3; Table S2). With a
confidence score above 0.9, 17/26 sites achieved high accuracy levels
exceeding 90 %. Among these, Chillagoe, Litchfield, Moorrinya, and
Spyglass achieved perfect accuracy (100 %) across all scores (Fig. 3).
Additionally, BirdNET predictions had a < 5 % chance of being incorrect
at the highest confidence scores at 15/26 sites (Fig. 3). Notably, 13/26
sites maintained consistently high accuracy (>90 %) even at lower
confidence thresholds (0.5). In contrast, 6/26 sites exhibited low accu-
racy (<70 %) even at the highest confidence score (Fig. 3). There was
also a significant difference in accuracy between seasons, such that
predictions for the wet season were more accurate than the dry season
across confidence scores (intercept = 0.530, SE = 0.102; p < 0.001;
Table S2). This seasonal difference, however, was consistently less than
10 % (Fig. 4). Furthermore, 10/25 sites displayed site-specific seasonal
variability in accuracy, with seven of them achieving higher accuracy in
the dry season compared to the wet season (Table S3).

3.3. Detection performance using time-series aggregated features

Because cane toads tend to call within lengthy choruses, the context
within which a detection occurs can include important information
which might increase the probability of a correct detection. We noticed
the trend for prolonged calling earlier, in section 3.1, in which
increasing the temporal scale of detection to periods longer than the 3 s
single detection made it more likely we would correctly detect calling.
Thus, we used a statistical method applying the aggregated time-series
data (Singer et al., 2024), to process the data. Sixteen candidate CIT
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Fig. 2. Preliminary assessment of the trained cane toad classifier on 20 randomly selected testing data from nine A20 sites. The lines depict the classifier’s precision
and recall across various temporal resolutions measured in seconds. Note that model confidence and precision converge at 100 % at a resolution of 300 s, while recall
is optimal at 2700 s. A resolution of approximately 10 min (~600 s) strikes a balance, achieving both high precision and recall.
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Fig. 3. The relationship between the probability of accurate BirdNET predictions (accuracy) of cane toad detections across BirdNET confidence scores in 26 toad-
presence A20 sites. Each line represents a distinct site, with accuracy plotted as a function of the confidence score. The solid black line shows the overall trend,
indicating the general relationship between confidence score and accuracy across all sites. The lines for Chillagoe, Litchfield, and Moorrinya are covered

by Spyglass’s.
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Fig. 4. The relationship between probability of accurate BirdNET predictions
(accuracy) of cane toad detections across BirdNET confidence scores in wet and
dry seasons.

models demonstrated the highest achievable performance (precision:
93.7 %, recall: 79.8 %, model performance: 0.902). Among these, the
simplest optimized threshold was derived from the model formula,
which required the +12-h average confidence score to be greater than
0.52 and at least five detections with confidence score > 0.1 in that
period (Table S4). We compared the success of applying this method
with another way to increase the probability of correct detections, which
is applying a high confidence threshold. When applying universal

thresholds, precision levels were 67.7 %, 71.9 %, and 79.6 % for UNI10,
UNIS50, and UNI90, respectively (Fig. 5; Table S5). At the three-second
level, the optimized threshold improved precision by 14.1 % over the
highest-precision universal threshold (UNI90). For recall, the optimized
thresholds showed an 21.3 % improvement over UNI50, second only to
the perfect recall rate of UNI10 (achieved with a minimum confidence of
0.1 in BirdNET audio analysis, see section 2.6). Overall, the optimized
threshold outperformed other approaches to increasing model perfor-
mance (Fig. 5; Table S5).

To better characterize the best approach to optimization, we exam-
ined the performance of models with different features included. The
performance of the optimized thresholds declined as aggregated time-
series features were progressively removed (Fig. 6). Precision
remained at its peak of 93.7 % when predictors incorporating time in-
tervals longer than +12 h were included, while recall maintained its
maximum of 79.8 % with predictors integrating intervals longer than
+20 min. Excluding all time intervals resulted in only a minor decrease
in precision (~4 %) compared to using the original BirdNET confidence
score alone, but it led to a significant drop in recall by over 70 % (i.e.,
more correct calls were missed). Model performance also showed a
notable decline of approximately 0.2 without incorporating time in-
tervals. On the other hand, removing the 12 least informative statistical
parameters had no effect on model performance, precision, or recall.
However, the average confidence score was critical, as its removal
caused the most substantial decreases in model performance (~20 %),
precision (~1.5 %), and recall (~70 %).

CIT optimized thresholds increased detection accuracy of cane toad
occurrences compared to UNI90 across various sites (Fig. 7). Using the
UNI90 threshold, 13 site-level false positives were identified, predomi-
nantly in southern and western regions, whereas the CIT optimized
threshold produced only three false positive (Fig. 7). The application of
the CIT optimized threshold remarkably improved the performance of
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Fig. 7. Comparison of cane toad occurrences across Australia based on two different thresholding approaches. Map A represents occurrences using a universal
threshold UNI90 (BirdNET confidence score > 0.9); map B represents occurrences using a conditional inference tree (CIT) optimized threshold (+12 h > 0.
516,334,615 and at least five detections with confidence >0.1). Each point on the map corresponds to an A20 study site, with colors indicating the detection
outcome: true positive (green), true negative (orange) and false positive (pink). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

cane toad detection at site-level, compared to relying solely on a Bird-
NET confidence score of >0.9.

4. Discussion

We provide step-by-step information on building our acoustic clas-
sifier for cane toads (Fig. 1). Every component of this workflow,
including the BirdNET algorithm, the programming tools (R and Py-
thon), Kaleidoscope Lite and the A20 audio data were free to use,
ensuring that the classifier development process was cost-effective but
also widely accessible to researchers and practitioners with varying
levels of expertise and resources. While we used a high-performance
computing (HPC) cluster to process the large-scale A20 recordings
efficiently, BirdNET can also run on standard desktop computers,
allowing users to analyze smaller datasets from fewer sites without
requiring advanced computing infrastructure. The trained classifier,
along with all training materials and code, is available in an online re-
pository (https://github.com/Leptobrachium/Gpshing). We hope that
this standardized approach will serve as a reference model for devel-
oping similar classifiers for other invasive species.

We found that the trained classifier reliably detected cane toad vo-
calizations, consistently distinguishing cane toad calls from background
noise, achieving high precision and recall across various temporal scales
at all confidence levels (Fig. 2). However, while the recall rate was
generally strong, it varied with confidence level and temporal resolution
(Fig. 2). Nonetheless, the slight decline in recall at the two-hour level
occurred because some vocalizations, particularly in low-activity re-
cordings, were missed. This variation underscores the importance of
carefully selecting thresholds and temporal resolutions tailored to the
specific objectives of the study.

In ecological research, false positives can be more critical mistakes
than false negatives, as they suggest a species is present where it is not
(Cole et al., 2022; Tolkova et al., 2021). However, missing some vo-
calizations (false negatives) does not necessarily hinder site-level
detection, as the extended survey periods afforded by PAM typically
compensate for occasional missed detections (Hoefer et al., 2023;
MacKenzie et al., 2002; Tyre et al., 2003). Keeping these criteria in
mind, our classifier showed substantial improvement in detecting cane
toad occurrences across Australia after incorporating time-aggregated

features, reducing false positives from 13 (under a high universal
threshold of 0.9) to just three at the site level (Fig. 7). While some false
positives remain, this refinement significantly enhances classifier reli-
ability compared to relying solely on the confidence score threshold. Our
optimized CIT thresholds maintained high precision, while significantly
improving the recall rate for our classifier at even the three-second level
across a broad spatio-temporal area (Fig. 5; Table S5). Although we did
not explicitly test the spatio-temporal variation of detection results after
applying the optimized threshold, the classifier’s performance at 17 sites
was strong (Fig. 3), with minimal temporal variation (Fig. 4). Therefore,
we suggest that our classifier, with the optimized threshold, could meet
the precision and recall requirements necessary for application to a
range of different study objectives, not just site-level occurrence
detection.

Most classifiers are trained and tested in specific study locations or
areas (e.g., Manzano-Rubio et al., 2022; Wood et al., 2023b), and may
not be accurate when applied to sites not included in the training data
(Allen-Ankins et al., 2024). Similarly, our classifier varied in detection
accuracy in and across different sites and seasons (Figs. 3, 4; Table S2,
S3). However, despite the observed variation in accuracy, our classifier,
trained on a subset of audio data from eight A20 sites, still demonstrated
robust performance across many locations, including those geographi-
cally distant from the original training sites (Fig. 3, S2). It also showed
that our training data preparation method was efficient (section 2.3).
During manual validation of top detections from underperforming or
false-positive A20 sites, we found that many of these sites were located
in ecoregions not represented in the training dataset, specifically
temperate grasslands, savannas, and shrublands, as well as tropical and
subtropical moist broadleaf forests. In contrast, our training data
included cane toad sounds, environmental noises, and other vocaliza-
tions of spectrally overlapped species from tropical and subtropical
grasslands, savannas, and shrublands and temperate broadleaf and
mixed forests. This lack of representation from temperate grasslands,
savannas, shrublands, and tropical and subtropical moist broadleaf
forests likely contributed to the classifier’s difficulty in generalizing to
these underrepresented sites. Although it may not be necessary to collect
training data from every site, including samples from representative
areas that cover a range of ecoregions, latitudes, and longitudes greatly
increases the robustness of the recognizer at different sites. Thus,
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strategically selecting training data from diverse and representative
regions is both time-efficient and effective in enhancing classifier
function across different environments.

The application of optimized CIT thresholds significantly improved
the classifier’s performance compared to relying solely on the BirdNET
confidence score (Fig. 5; Table S5), demonstrating the effectiveness of
integrating contextual information from time-series data into automatic
call detection (Madhusudhana et al., 2021; Singer et al., 2024). Notably,
the reduction in false positives at site level, especially in regions where
misclassifications were common under the UNI9O threshold (Fig. 7),
demonstrates the practical use of CIT optimization to refine classifier
outputs and minimize erroneous detections. In addition, the optimized
thresholds were most effective when incorporating time intervals no
shorter than +12 h (Fig. 6), suggesting that temporal context is impor-
tant for accurately classifying cane toad occurrences. The decline in
performance when the length of time intervals was excluded marks the
importance of maintaining temporal granularity in the analysis, partic-
ularly for studies that monitor species over extended periods and across
broad geographical regions. Among the statistical parameters, average
confidence scores and the number of detections with a confidence score
> 0.1 provided the most valuable information. Average confidence
scores at various time intervals were also the most influential parameter
in previous studies on birds (Singer et al., 2024; Wood et al., 2021),
implying that average scores could be a more reliable threshold than
simply using minimum confidence scores in acoustic classification.

While our study demonstrates promising detection results from our
acoustic classifier, some limitations should be acknowledged. Firstly,
spatial performance was not flawless, likely because we limited training
data to particular ecoregions to keep our approach efficient. Researchers
applying this classifier to new study systems should retrain it with
additional data from their specific sites to account for variations in the
soundscape, ensuring optimal performance, broadening its applicability
and minimizing site-specific biases. Apart from spatial characteristics,
detection quality appears to depend on call abundance. True-positive
detections in peripheral distribution areas and sites with lower cane
toad activity (e.g., Mourachan, Minjerribah) become valuable for
enhancing the classifier’s recall performance in these regions. It is worth
noting that our classifier and the entire training dataset have been made
publicly available on an online repository. The above cases could be
used as additional training data in future updates. We also recommend
that users always assess a subset of detection results for performance,
even after applying the CIT approach, as the adaptation to spatio-
temporal variation following the application of optimized thresholds
has not yet been fully tested.

In light of our findings, several promising opportunities for future
research and development arise. Although our classifier was trained on
data from Australia, it has the potential to detect cane toads in other
regions where they have been introduced. Expanding its application to
countries such as French Guiana, the Philippines, and the United States
(Harvey et al., 2021; Shine et al., 2021) could provide valuable insights
into its performance in even more diverse environments. Collaborating
with researchers in these regions would both test the classifier’s
adaptability and enhance its utility by incorporating additional vocali-
zations from local species, ultimately improving effectiveness for global
cane toad monitoring and management. Secondly, our classifier has
potential applications beyond monitoring. By providing a reliable cane
toad call detection tool, it can contribute to broader efforts to under-
stand the species’ adaptation, breeding ecology, and ecological impact
in Australia. For example, our classifier can aid in examining spatio-
temporal patterns and environmental factors that influence cane toad
calling activity. Such studies could reveal key aspects of their repro-
ductive behavior, including chorus timing and frequency (e.g., Bolitho
et al., 2023; Wood et al., 2023a). Broadly, analyzing calling activity
patterns across the diverse locations sampled by the A20 could help
identify breeding hot spots and habitat preferences, furthering our un-
derstanding of cane toad ecology and distribution. Despite extensive
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research on cane toad invasion and its impact on native species (e.g.,
Greenlees et al., 2006; Lampo and De Leo, 1998; Shine, 2010), toads’
effects on the acoustics of local frog communities remain underexplored.
While playback experiments have shown that cane toad calls influence
the timing, rate, and inter-call intervals of some Australian frogs (Bleach
et al., 2015; Hopkins et al., 2023; Taylor et al., 2017), a comprehensive
understanding of their impact on acoustic resources, especially across
larger spatial scales, is lacking. Using our classifier to analyze large-scale
audio data could determine whether cane toads disrupt the acoustic
space of local frog communities in real-world settings, shedding light on
their effects on microhabitat use by native species.
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