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Abstract

Background Ecological risk assessments rarely consider the impacts of environmental stress on microbial
communities. Incorporating microbial community responses into these evaluations requires establishing sensitivity
thresholds based on the absolute abundance of viable taxa. While essential for describing microbial community
dynamics, sequencing-based analyses are typically limited to relative proportions and fail to reveal the magnitude
or directionality of abundance shifts. This study presents a workflow that combines propidium monoazide (PMA)
treatment and microbial load estimates with 16S rRNA gene amplicon sequencing and quantitative microbiome
profiling (QMP) to assess the absolute abundance of viable taxa in seawater microbiomes.

Results Using natural seawater, microbial load estimates from droplet digital PCR (ddPCR) and flow cytometry

(FQ) correlated strongly for total and intact cell counts, confirming the suitability of both methods for normalising
16S rRNA gene amplicon sequencing data. We demonstrated that PMA at concentrations of 2.5-15 uM effectively
inhibited PCR amplification of DNA from membrane-compromised cells, reducing 16S RNA gene copies by 24-44%
relative to untreated samples. Samples with known proportions of intact cells were generated by mixing heat-
killed and natural seawater, enabling absolute abundance assessments by normalising 16S rRNA gene amplicon
sequencing data to intact cell loads estimated via ddPCR and FC. This approach facilitated detailed comparisons of
the effects of QMP versus relative microbiome profiling (RMP) on alpha and beta diversity metrics and on relative and
absolute amplicon sequence variant (ASV) abundance profiles. Unlike RMP, QMP captured significant shifts in the
microbial community composition across samples with decreasing proportions of intact cells. While RMP failed to
detect abundance changes at ASV-level, QMP revealed consistent abundance declines.

Conclusion This workflow enhanced the accuracy in representing microbial community dynamics by addressing
key limitations of RMP such as the inclusion of damaged cells or extracellular DNA and the misleading proportions
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of identified taxa. It is particularly suited for quantifying the magnitude and direction of changes in taxa abundance
following stress exposure, making it directly applicable to microbial stress-response modelling.

Keywords Microbial ecotoxicology, Marine Microbiome, Response modelling, Cell viability, PMA, Absolute

quantification, Flow cytometry, ddPCR

Background

Microbial ecotoxicology is an interdisciplinary field that
integrates microbial ecology, biochemistry, and tradi-
tional (eco)toxicology, and aims to provide a holistic
approach to understand microbial communities response
dynamics under environmentally realistic conditions [1].
High-throughput sequencing technologies and associ-
ated bioinformatics have enabled the field to significantly
advance and achieve detailed assessments of stressor
effects at multiple biological levels [2-7]. However, cur-
rent methods fail to meet the requirements for establish-
ing regulatory guidelines for aquatic ecosystems, which
demand quantitative derivation of environmentally rel-
evant effect thresholds [8, 9]. To address this, cultivation-
independent genomics tools should be integrated with
traditional ecotoxicology modelling to establish quantita-
tive microbial sensitivity thresholds for use in regulatory,
management, and conservation frameworks [10-12].

Next-generation sequencing (NGS) techniques are
widely applied to infer the relative composition of micro-
bial communities by amplifying the 16S rRNA gene with
universal primers and quantifying microbial taxa as pro-
portions of the sample sequence library [13, 14]. While
NGS amplification methods allow for culture-indepen-
dent microbial community characterisation, they are
restricted in differentiating viable or metabolically active
cells from nonviable cells and extracellular DNA, lead-
ing to consistent overestimation of viable taxa fractions
[15]. This limitation is particularly problematic for micro-
bial ecotoxicology testing at the community level, where
concentration-response modelling should solely focus
on viable community members, analogous to survival
assessments conducted with a single species [11].

Cell viability and activity assessments, compatible with
subsequent NGS, range from RNA analyses and stable-
isotope probing to DNA-binding dyes such as propidium
monoazide (PMA) [15-18]. PMA is commonly used as
an efficient and cost-effective method to discriminate
intact cells based on membrane integrity by selectively
binding to the DNA of membrane-compromised cells,
thereby preventing PCR amplification [15, 16, 19, 20]. In
combination with quantitative PCR (qPCR), 16S rRNA
gene amplicon sequencing, and shotgun metagenom-
ics, PMA has been applied to assess intact cell propor-
tions in a variety of sample types, including soil [21], fish
[22], faecal cells in seawater [23], and anoxic analogue
environments such as permafrost, salt mines, acidic
lakes, and sulfur springs [24]. However, factors including

microbial community characteristics, dye concentration,
light exposure, and sample conditions (e.g., turbidity and
salt content) can influence PMA performance, highlight-
ing the need for further optimisation, especially in low-
biomass environments such as natural seawater [15, 25].

In addition to assessing cell viability, accurately quanti-
fying the magnitude and direction of microbial responses
requires converting relative abundances into absolute
values. Since NGS data are inherently compositional, an
increase in the relative abundance of one taxon inevi-
tably leads to decreases in others, regardless of actual
changes in population size [26-28]. To overcome this
limitation, several approaches can be employed to deter-
mine absolute taxa abundance using defined “anchor”
points, such as spike-in standards or microbial load esti-
mates obtained through cell enumeration or molecu-
lar quantification techniques [27, 29-31]. For example,
quantitative microbiome profiling (QMP), based on
normalising sequencing data to absolute abundance val-
ues using microbial cell counts obtained via flow cytom-
etry (FC), has shown utility across diverse sample types
[27, 28, 32—-34]. However, further validation is needed
to apply this approach in stress-response modelling for
microbial ecotoxicology testing.

This study presents a PMA-16S rRNA gene amplicon
sequencing workflow, coupled with QMP, for application
in microbial ecotoxicology using indigenous seawater
microbiomes as model communities (Fig. 1). The objec-
tives were to: (i) assess the effectiveness of cell-based
anchoring measured by FC versus molecular-based
anchoring measured by droplet digital PCR (ddPCR);
(ii) determine optimal PMA concentration for excluding
DNA from membrane-compromised cells and extracel-
lular DNA; and (iii) evaluate how the abundance data
transformation (relative vs. absolute) influences the inter-
pretation of microbial community dynamics.

Methods

Seawater sampling

Seawater samples were collected from a nearshore coastal
site (19°16’38.4”S, 147°03'32.1”E) located at the Austra-
lian Institute of Marine Science, Townsville, Queensland.
Collection was performed using a submersible pump
(750 GHP, Rule-Mate, Xylem Inc., USA) at a depth of 1 m
and subsequently filtered with a canister filter equipped
with a 4.5 pm absolute filter cartridge (Synopex, Parkway
Process Solutions, Australia). For each sampling event,
40 L of seawater were collected into polyethylene carboy
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Fig. 1 Conceptual diagram illustrating the quantitative workflow for assessing changes in absolute abundances of seawater microbiomes. This approach
combines propidium monoazide (PMA) treatment with 16S rRNA gene amplicon sequencing coupled with quantitative microbiome profiling (QMP). In
the illustrated example, (i) the control community consists of two “viable”taxa in a ratio of 60:40% or 6:4 (relative or absolute). Following stress exposure,
the relative and absolute ratios of the exposed community detected without PMA treatment remain unchanged; however, in the treated community,
PMA binds to the DNA from cells compromised by the stress exposure. Microbial loads of intact cells can then be quantified with molecular techniques
using droplet digital polymerase chain reaction (ddPCR). (ii.A) In the molecular-based workflow, PCR amplification of DNA from membrane-compro-
mised cells is inhibited by PMA-treatment, allowing quantification of 16S rRNA gene copy number via ddPCR. (ii.B) In the cell-based workflow, Live/Dead
staining (SYBR Green and propidium iodide) of independent sub-samples allows the quantification of intact cells by flow cytometry (FC). (ii.C) 165 rRNA
gene amplicon sequencing data can be rarefied to an even sequencing depth resulting in relative microbiome profiling (RMP). In this example, RMP
shows the same 60:40 ratio of taxa in both the control and stress-exposed communities. In contrast, sequencing data rarefied to an even sampling depth
(=microbial sample load) obtained from the molecular- or cell-based quantification techniques results in QMP, which reveals a 50% decline in absolute
abundance of both taxa in the stress-exposed community. This workflow outlines the necessary steps required to generate absolute abundance data
suitable for application in stress-response modelling of viable microbial taxa in natural seawater microbiomes (created with BioRender.com)
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containers. Sampling was conducted for each individual
experiment (n =3) over a period of one month, with sam-
ples collected on separate days according to experimen-
tal requirements. Seawater was directly transported by
vehicle in sealed carboys from the collection site to the
laboratory at AIMS (<2 km) and processed immediately
upon arrival.

Comparison of cell-based and molecular-based absolute
quantification of seawater microbial communities

To evaluate the relationship between cell counts and
absolute 16S rRNA gene copy numbers, varying propor-
tions of natural seawater and artificial seawater (ASW,
Aquaforest Reef Salt prepared at a salinity of 33 ppt, fil-
tered to 0.22 pum) suspensions were measured with FC
and ddPCR. Suspensions were prepared in triplicate with
natural seawater proportions of 100, 80, 60, 40, 20, and
0% of a total 500 mL sample, with ASW making up the
remaining proportion. For FC measurements, 0.5 mL
sub-samples (n =18) were taken from each treatment
and stained with SYBR Green I (SG) to determine total
microbial cell counts (see flow cytometry methods sec-
tion for more details on the staining procedure). The
remaining suspensions were filtered onto Sterivex filters
(0.22 um pore size, polyethersulfone membrane, Milli-
pore Merck, Australia) using custom-built units for auto-
matic filtration, snap frozen in liquid nitrogen and stored
at —80 °C until DNA extraction and total 16S rRNA gene
copy number quantification by ddPCR.

Optimisation of PMA treatment concentration for natural
seawater samples

Multiple concentrations of PMA were tested to identify
the optimum value for low biomass seawater samples.
This step was necessary to ensure sufficient PMA was
added to the samples to inhibit PCR amplification of
DNA from membrane-compromised cells, while avoiding
potential cytotoxic effects of PMA on membrane-intact
cells [35]. To assess the efficiency of PMA in exclud-
ing membrane-compromised cells, another set of natu-
ral seawater samples was subjected to heat treatment at
85 °C for 5 min [36] using a water bath. Additional 0.5
mL sub-samples were taken from the natural and heat-
treated (n=12) seawater communities for counting total
(SG stained) and intact microbial cells (Live/Dead stain-
ing; co-staining using SG and propidium iodide (PI), see
flow cytometry methods section for more details on the
staining procedure). Natural and heat-treated seawater
communities (#=48) were then filtered onto Sterivex fil-
ters and treated with PMA. Briefly, 2 mL aliquots of PMA
working stocks (PMAxx Dye, 20 mM in H,O, Biotium,
Fremont, CA, USA) diluted in phosphate buffered saline
(PBS, 33 ppt salinity, pH 8.0) at final concentrations
of 0, 1.25, 2.5, 5, 15, 25, 50, and 100 pM were added to

Page 4 of 17

individual Sterivex filters. Samples were incubated in the
dark for 10 min before exposure for 30 min to a 464 nm
light LED Transilluminator (120 V, General Electric,
USA) to achieve photo-induced PMA cross-linking to
DNA from membrane-compromised cells and extracel-
lular DNA. Sterivex filters were placed randomly on hori-
zontal rollers rotating at 25 rpm to ensure homogeneous
light exposure. Following light exposure, PMA solution
was expelled using 5 mL syringes, and filters were snap
frozen in liquid nitrogen and stored at —80°C until sub-
sequent DNA extraction, ddPCR quantification, and 16S
rRNA gene amplicon sequencing.

Selective detection of intact seawater microbiota

The performance of the PMA-ddPCR assay in selectively
detecting intact cells in the presence of various propor-
tions of damaged cells was tested. Defined ratios of natu-
ral and heat-treated seawater were mixed in triplicate to
achieve a final natural seawater concentration of 100, 80,
60, 40, 20, 0% in a total 500 mL sample. Samples (n=18)
were then treated with a concentration of 2.5 yM PMA
(chosen based on results from the PMA concentration-
range-finding experiment) and processed as outlined
in the previous section. PMA-untreated samples (0
UM PMA, n=3) were included as controls for the 100%
natural seawater treatment and processed in the same
manner. To compare the performance of PMA-ddPCR
quantification assay with the Live/Dead-FC quantifica-
tion assay for microbial load anchoring in QMP, sub-
samples (7 =18) were taken from each sample for Live/
Dead staining and FC cell counting (see flow cytometry
methods section for more details).

DNA extraction and 16S rRNA gene amplicon sequencing
DNA was extracted from Sterivex filters using a phe-
nol-chloroform extraction method, as outlined in the
Supplementary Methods. Duplicate blank DNA extrac-
tions were included to identify reagent contamination.
DNA quality and yield were quantified by NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Aus-
tralia) and Qubit fluorometer (Thermo Fisher Scientific,
Australia) using the 1X dsDNA High Sensitivity assay kit
(Thermo Fisher Scientific, Australia). The samples were
stored at -20 °C.

Amplicon library preparation and sequencing was per-
formed at the Australian Centre for Ecogenomics in Bris-
bane, Queensland, where amplicon PCR was done on the
V4 hypervariable regions of the 16S rRNA gene using the
primer pair 515F (5'-GTGYCAGCMGCCGCGGTAA-3’)
[37] and 806R (5'-GGACTACNVGGGTWTCTAAT-3)
[38]. Libraries were constructed following the Illumina
16S Metagenomic Sequencing Library Preparation Pro-
tocol (#15044223 B, see Supplementary Methods for
more details) and sequenced using 2 x 300 bp paired-end
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chemistry on the MiSeq platform. Appropriate positive
and negative controls were included following the Aus-
tralian Centre for Ecogenomics standard workflow.

Flow cytometry

Bacterial cell abundance in seawater samples was quan-
tified using a BD Accuri C6 flow cytometer (BD Bio-
sciences, USA), with 488-nm excitation from a blue
solid-state laser. For total bacterial cell counts, seawater
samples were 10-fold diluted in ASW and stained with
the fluorescent dye SYBR Green I (SG: 10,000X concen-
trate in DMSO, Invitrogen, USA) at a final concentration
of 1x(1:10,000 dilution) [39]. For live/dead differen-
tiation, samples were co-stained with SG and PI (Live/
Dead staining, SGPI) at final concentrations of 1X SG
and 15 pM PI The PI concentration was selected based
on a concentration-range finding experiment where PI
concentrations of 2.5, 5, 10, 15, and 20 uM were tested.
Concentrations less than 10 pM resulted in incomplete
staining of damaged cells, while concentrations higher
than 15 pM resulted in false PI-positive staining of intact
cells (data not shown). Stained samples were incubated in
the dark at room temperature for 15 min [39]. Forward
scatter, side scatter, green (FL1, optical filter: 533/30)
and red (FL3, optical filter: 670 LP) fluorescence were
recorded with a set threshold of 1000 events (selected
based on the background counts of blank samples = ster-
ile ASW) on the FL1 channel. Measurements were per-
formed at a medium flow rate of 35 uL. min™' by running
a standardised 50 puL volume of sample. Duplicate blank
samples using sterile ASW stained with SG were included
to control sample background counts. Data was acquired
on two-parameter density plots with an electronic gating
to separate positive signals from instrument and sample
background (Figure S1). Data was processed with the BD
CSampler Plus software (BD Biosciences, USA).

Droplet digital PCR

Total 16S rRNA gene copy numbers in seawater were
quantified using ddPCR. PCR reactions of 22 pL were
prepared in duplicate 96-well PCR plates with each
well containing 11 pL QX200 ddPCR EvaGreen Super-
mix (Bio-Rad Laboratories, USA), 0.3 puM of the primer
pair 1406F (5'-GYACWCACCGCCCGT-3’) and 1525R
(5'-AAGGAGGTGWTCCARCC-3') [40], 7.18 pL ultra-
pure water, and 2.5 pL extracted genomic DNA or ultra-
pure water/sterile ASW (negative template controls).
Previously amplifiable DNA was used as a positive tem-
plate control. Droplet generation was performed with the
QX200 Automated Droplet Generator (Bio-Rad Labora-
tories, USA) that partitioned each sample into ~20,000
droplets in which nucleic acid molecules are randomly
distributed. After droplet generation, the PCR plate was
removed from the Droplet Generator and sealed with a
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PX1 PCR Plate Sealer (Bio-Rad Laboratories, USA). PCR
amplification was run to end point in the C1000 Touch
Thermal Cycler (Bio-Rad Laboratories, USA) with the
following cycling steps: enzyme activation at 95 °C for
5 min, 40 cycles of paired denaturation at 95 °C for 30 s
and annealing/extension across a temperature gradi-
ent from 51 to 61 °C for 1 min (temperature ramp rate:
1.5 °C s7'), signal stabilisation at 4 °C for 5 min, followed
by 5 min at 90 °C. Samples were held overnight at 4 °C
until droplets were read. After thermal cycling, the sealed
plate was transferred to the QX200 Droplet Reader (Bio-
Rad Laboratories, USA) for subsequent droplet readings
and data acquisition and analysis were performed using
the QuantaSoft software (Bio-Rad Laboratories, USA,
version 1.7.4). Concentrations of 16S rRNA gene copies
per mL seawater were corrected for elution volume and
losses during extraction before normalising to the filter
volume as follows:
Microbial load(165 rRN A gene copies mL ™' seawater) =

ddPCR concentration » PCR dilution factor x DNA dilution + DN A elution volume
DNA catraction volume (1)
1

Filter volume

Amplicon sequence data processing

Processing of demultiplexed sequencing data was per-
formed with the QIIME 2 pipeline v2020.8 [41]. The
plug-in demux (Boylen et al, 2019) was used to create
an interactive plot to visualise the data and assess the
quality of sequences. Amplicon primers were removed
using the plug-in cutadapt [42]. Denoising of paired-end
reads, chimera checking, trimming, and dereplication
were performed with DADA2 [43], applying truncation
lengths of 240 bases for the forward reads and 200 bases
for the reverse reads (based on Q score>30). Taxonomy
was assigned to amplicon sequence variants (ASVs) using
a naive-Bayes taxonomy classifier [44], trained with the
pre-formatted SILVA 138 release reference sequence
and taxonomy files [45, 46] representing the 515F/806R
region of the 16S SSU rRNA gene. The trained classifier
was applied to the representative sequences to assign tax-
onomy using the classify-sklearn command [47] in the
feature-classifier plugin based on 99% similarity. Addi-
tionally, ASVs arising from the blank DNA extractions
were excluded with the decontam R package (v1.16.0)
[48]. The sequence data generated in this study are avail-
able under NCBI BioProject ID PRJNA1176196 (acces-
sion numbers SRX2645979-SRX26459535).

Statistical analysis

All statistical analyses were performed using the R Sta-
tistical Software (v4.2.1) environment [49]. Data visu-
alisation was performed with the ggplot2 package
(v3.5.1) [51]. Regression analyses of 16S rRNA gene copy
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numbers and cell counts were conducted using a linear
model fitted with the Im() function from the stats pack-
age (v4.2.1) [49]. Pearson correlation coefficients were
calculated, and p-values were determined with the stats
package. Analysis of variance (ANOVA) was employed to
test for significant differences between PMA concentra-
tions, after confirming that assumptions of normality and
homogeneity of variance were met. Post-hoc compari-
sons were conducted using Tukey’s Honest Significant
Difference (HSD) test with p-value adjustments for mul-
tiple comparisons (stats package).

For relative microbiome profiling (RMP), sequenc-
ing data were rarefied to the lowest sample sequencing
depth using the phyloseq package (v1.40.0) [52]. Alpha
diversity, measured by observed ASV richness and Shan-
non diversity index, were calculated (after rarefaction)
using the phyloseq package. Statistical significance of dif-
ferences in alpha diversity indices between groups was
tested using a Kruskal-Wallis rank sum test (stats pack-
age). Pairwise differences were assessed using Dunn’s
test for multiple comparisons, with Benjamini-Hochberg
correction for multiple testing using the FSA package
(v0.9.5) [53]. Beta diversity was assessed based on Bray-
Curtis dissimilarities at the ASV-level. Principal coordi-
nate analysis (PCoA), limited to the first two dimensions,
was used to visualise microbial community composition
(phyloseq package). Permutational multivariate analysis
of variance (PERMANOVA) and multivariate homogene-
ity of group dispersions (PERMDISP2) were performed
using the vegan package (v2.6-6.1) [54], with 10,000 per-
mutations. Venn diagrams were generated with the eulerr
package (7.0.2) [55] to visualise unique and shared ASVs
between PMA-treated and untreated communities. Dif-
ferential abundance analysis was conducted at the ASV-
level using the DESeq2 package (v1.36.0) [56].

For quantitative microbiome profiling (QMP), sample
reads were rarefied to an even sampling depth based on
the ratio between sequencing depth and gene copy num-
bers (ddPCR) or cell counts (FC) using the rarefy_even_
sampling_depth function (seed=711) [27]. This yielded
absolute microbial taxa abundances per mL of seawa-
ter (cells or copies mL™'). Scatterplots with smoothed
lines (using the locally estimated scatterplot smoothing
(LOESS) method) were created with ggplot2 to visualise
relative and absolute ASV abundance changes.

Results

Comparison of total microbial loads in seawater estimated
by FC and ddPCR

The predictive accuracy of the two methods (FC vs.
ddPCR) was evaluated by analysing the relationship
between the predicted and the observed average counts
(relative to 100% natural seawater) (Figure S2). Regression
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analyses demonstrated significant positive linear rela-
tionships for both methods (FC: F,, = 69960, p <0.001,
Figure S2A; ddPCR: F, = 486.5, p<0.001, Figure S2B),
with adjusted R? estimates close to 1: FC=0.9999 and
ddPCR=0.9898 (Figure S2). The mean absolute error
(MAE) and root mean square error (RMSE) for FC was
MAE=0.257 and RMSE=0.346, while ddPCR showed
higher MAE (3.25) and RMSE (4.64) values, indicating
greater error magnitudes. Additionally, the coefficient
of variation (CV) for repeated measures was 7.5-fold
lower using FC (median CV =1.9%) compared to ddPCR
(median CV =15%) (Fig. 2C).

The relationship between estimated counts by FC and
ddPCR was further assessed using Pearson correlation
and linear regression analysis (Fig. 2D). A strong posi-
tive correlation was observed, with a Pearson correla-
tion coefficient of r=0.96. The linear regression analysis
further supported this finding, with the model explain-
ing 93% of the variance in ddPCR counts (F; ;s = 205.1,
p<0.001, adjusted R?=0.923) (Fig. 2D). The slope of the
regression line was 0.25 (95% CI: 0.209-0.282, p<0.001),
indicating that each additional cell measured by FC cor-
responds to an increase of approximately 0.25 gene cop-
ies detected by ddPCR (Fig. 2D).

Optimisation of PMA treatment for seawater samples
PMA treatment of the natural seawater community
resulted in an average decline of 54-71% in DNA yields
(Figure S3A) and an average 21-53% decrease in 16S
rRNA gene copies (Fig. 3A), indicating a substantial
reduction in detectable microbial loads after DNA from
damaged cells was excluded from PCR amplification. The
statistical significance of these observations was sup-
ported by ANOVA: DNA yields: F, s = 9.819, p<0.001,
16S rRNA gene copies: F; ;s = 9.819, p<0.001 (Table S2
& 2). Tukey’s HSD post-hoc comparison further revealed
that PMA concentrations of 22.5 uM (except for 15 pM)
resulted in a significant reduction in DNA vyields (Table
S2) and 16S rRNA gene copy numbers (Table S3) com-
pared to PMA-untreated samples. However, no signifi-
cant differences in DNA yields were observed between
all tested PMA concentrations (Table S2). The 16S rRNA
gene copy numbers were not significantly different in
samples treated with concentrations>2.5 pM, except for
the comparison between the PMA concentrations of 15
uM and 25 uM (Table S3).

In the heat-killed seawater community, which served as
a control for the complete exclusion of membrane-com-
promised cells, PMA treatment significantly inhibited
DNA extraction yields (Figure S3B), and amplification of
16S rRNA gene copies was almost eliminated across all
PMA concentrations relative to the PMA-untreated sam-
ples (Fig. 3B).
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Fig. 2 Total microbial loads in seawater samples quantified by flow cytometry and droplet digital PCR (ddPCR). (A) Bar plot of average cells mL" + SD
(n=3 replicates). (B) Bar plot of average 165 rRNA gene copies mL' = SD (n=3 replicates). (C) Boxplot of coefficient of variation (CV9%, n=6 per method),
with whiskers=10th and 90th percentiles, box=25th and 75th percentiles, and horizontal line=median. (D) Linear regression analyses of cells mL ! versus

165 rRNA gene copies mL”

To validate these PMA-ddPCR results, FC analysis
was performed to quantify the proportion of intact cells
after Live/Dead staining was applied to the same sea-
water samples. In the natural seawater community, FC
measured 75% intact cells (SGPI, Fig. 3A), which was
consistent with the proportional reductions in 16S rRNA
gene copy numbers observed at lower PMA concentra-
tions (1.25-15 uM). ANOVA (F; 4 = 5.259, p<0.01) and
Tukey’s HSDpost-hoc comparison revealed no significant
difference in the proportions of intact cells measured by
ddPCR and FC, except for the 25 uM PMA concentration
(Table S4). In the heat-killed seawater communities, FC
indicated a 99% decline in the proportion of intact cells,

which was consistent with the reduction in 16S rRNA
gene copies across all PMA concentrations (Fig. 3B).

Effect of PMA on seawater microbiome composition

A total of 950,800 sequences were obtained from 24 sea-
water samples (minimum read depth: 32,041, maximum:
57,069, average: 39,617). After rarefaction to the mini-
mum read depth (=32,041 reads), 589 ASVs were recov-
ered and assigned to 22 phyla.

PMA treatment affected the relative abundance of
dominant taxa; however, the overall community com-
position was stable across different PMA concentra-
tions and replicates, and no significant rank abundance
shifts of the five most dominant taxa were observed
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communities

(Fig. 4A). For example, in the PMA-untreated samples,
the top five dominant taxa were Synechococcus CC9902
(18 +4.2%; average relative abundance + SD), SAR11 clade
Ia (14+0.13%), SAR86 clade (7.5+3.8%), AEGEAN-169
marine group (6.0+0.14%), and Candidatus Actino-
marina (5.5+0.19%) (Fig. 4A). Following PMA treat-
ment, the average relative abundances of Synechococcus
CC9902 and SARI11 clade Ia decreased to 9.4+1.7%
(range: 6.9-12%) and 6.9+ 1.3% (range: 3.2—-10%), respec-
tively (Fig. 4A). In contrast, the average relative propor-
tions of SAR86 clade, AEGEAN-169 marine group, and
Candidatus Actinomarina increased to 9.5+1.0% (range
8.2-12%), 9.3+0.89% (range 6.9-11%), and 8.7+1.3%
(range 4.6—11%), respectively (Fig. 4A).

There were no statistically significant differences in
the alpha diversity of seawater microbiomes between
PMA-treated and untreated samples, as measured by the
observed number of ASVs and Shannon diversity (Krus-
kal-Wallis rank sum test observed ASVs: x* = 10.57, df=7,
p=0.158; Fig. 4B and Shannon diversity: x* = 10.73, df=7,
p=0.151; Fig. 4C). However, microbial community struc-
ture (Bray-Curtis dissimilarities) at the ASV-level showed
significant clustering according to PMA-treated and
untreated samples, with the first two principal compo-
nents explaining 85% of the observed variation (Fig. 4C).
The statistical significance of sample groupings was veri-
fied with PERMANOVA on the distance matrix (F;,4 =
7.143, R? = 0.758, p<0.001). PMA treatment explained
76% of the variation in community composition, with
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24% of the variation attributed to residual factors. Addi-
tionally, there was no significant difference in sample
group dispersions (PERMDISP, F, ;4 = 0.881, p=0. 543),
indicating that the variability within groups was homoge-
neously distributed.

PMA treatment at a concentration of 2.5 uM influenced
the detection of specific ASVs, revealing 92 unique ASVs
that were undetectable in PMA-untreated communities
(Figure S4A). In contrast, PMA-untreated samples con-
tained 115 unique ASVs not observed in PMA-treated
communities. There were 215 shared ASVs between
PMA-treated and untreated communities (~50% of
ASVs) (Figure S4A). Differential abundance analysis

identified 146 ASVs with significantly different abun-
dances between PMA-treated and untreated samples
(Figure S4B). Phyla such as Actinobacteriota and Bacte-
roidota exhibited pronounced negative log2 fold change
values, indicating a significantly higher relative preva-
lence (p<0.05) in PMA-treated samples (Figure S4B).
Conversely, phyla including Cyanobacteria, Bdellovibri-
onota, and Verrucomicrobiota displayed significant posi-
tive log2 fold changes, suggesting a significantly higher
relative abundance in PMA-untreated samples (Figure
S4B). ASVs associated with Proteobacteria demonstrated
a differential response to PMA within the same phylum
(Figure S4B).
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Assessing the performance of the PMA-ddPCR and Live/
Dead-FC assays

The performance of PMA in detecting intact cells was
evaluated using seawater sample mixtures that included
defined ratios of intact and heat-killed cells. Absolute
abundance estimates measured by the PMA-ddPCR
assay were then compared with the Live/Dead-FC assay.
For this experiment, a conservative PMA concentration
of 2.5 uM was selected, as this was shown to effectively
inhibit PCR amplification of membrane-compromised
cells (see Results).

A strong positive correlation was observed between
microbial loads determined by PMA-ddPCR and Live/
Dead-FC methods, with a Pearson correlation coeffi-
cient of r=0.931. Linear regression analysis further dem-
onstrated a statistically significant positive relationship
(F 16 = 104.1, p<0.001), with an adjusted R*=0.869 (Fig-
ure S5). The slope of the regression line was 0.31 (95% CI:
0.245-0.374, p<0.001), indicating that each additional
intact cell detected by FC corresponded to an increase
of approximately 0.31 copies measured by ddPCR (Fig-
ure S5). The predictive accuracy (relationship between
predicted and relative averaged observed counts) of the
two methods was further compared, revealing signifi-
cant positive linear relationships for both ddPCR (F,,
= 137.3, p<0.001) (Figure S6A) and FC (F,, = 13,550,
p<0.001) (Figure S6B), with adjusted R? estimates close
to 1: ddPCR=0.9646 and FC=0.9996 (Figure S6A &
B). Additionally, the coefficient of variation (%CV) for
repeated measures was 9.6-fold lower using FC (median
CV=2.6%) compared to ddPCR (median CV=25%).
These findings agreed with our previous results when the
relationship between FC and ddPCR counts was investi-
gated based on total microbial load quantifications only
(no PMA or Live/Dead staining application).

Quantitative microbiome profiling influences microbiome
analysis
A total of 698,727 sequences were obtained from 18 sea-
water samples (minimum read depth: 28,423, maximum:
49,554, average: 38,818). Rarefaction to an even sequenc-
ing depth of 28,423 reads yielded a total of 626 ASVs.
The relative microbiome profiling (RMP) did not account
for variations in microbial load across samples (Fig. 5A),
and no significant relationship was observed between
the average number of sequenced reads and absolute
cell counts or gene copy numbers (F, , = 3.66, p=0.128,
adjusted R*=0.347). Rarefaction to an even sampling
depth resulted in the recovery of 449 ASVs when using
ddPCR anchoring, compared to 417 ASVs retrieved from
FC anchoring.

There were no significant differences in the observed
number of ASVs independent of RMP or QMP
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normalisation (Kruskal-Wallis rank sum test: p>0.05)
(Table S5, Figure S7). Shannon diversity was insignificant
for RMP (Kruskal-Wallis rank sum test: p >0.05, Table
S5, Table S7A) but indicated significant differences for
QMP (Kruskal-Wallis rank sum test: p<0.05, Table S5,
Figure S7B & C). However, post hoc comparison dem-
onstrated that only group comparison 100% versus 0%
intact cells was significant for both anchoring methods
(Table S5). When assessing Bray-Curtis community dis-
similarities at the ASV-level, RMP sample groupings
were only significant for the 0% intact cell group rela-
tive to other groups (PERMANOVA p<0.001, Fig. 5C
left plot, Table S6). After QMP, the community structure
showed significant clustering according to the % of intact
cells (PERMANOVA p<0.001, Fig. 5C middle and right
plot, Table S7). Correlation analysis further revealed sig-
nificant associations of 16S rRNA gene copies and cell
counts with Bray-Curtis dissimilarities (Pearson correla-
tion coefficient: ryc = —0.975, rgqpcr = —0.954), indicating
that reduced microbial abundances, identified by QMDP,
was a key driver of dissimilarity within the community.

RMP abundance curves remained generally stable
across samples, only decreasing or increasing in the vir-
tual absence of intact cells (e.g., 0% intact cells, Fig. 6A).
In contrast, QMP revealed predictable quantitative
declines in ASV abundances as the percentage of heat-
killed cells increased (Fig. 6B & C). QMP anchoring to
cells mL™! estimated via FC (Fig. 6C) yielded more reli-
able abundance relationships, with substantially nar-
rower confidence intervals compared to QMP anchoring
to 16S rRNA gene copy numbers (Fig. 6B).

Discussion

Quantifying changes in microbial taxa in response to
environmental disturbances requires accurate estimation
of the absolute abundances of viable community mem-
bers [27, 28]. However, DNA sequencing-based microbi-
ome studies overwhelmingly rely on relative abundance
data, which generally include DNA from dead cells and
extracellular sources, potentially leading to erroneous
interpretations [15, 57]. In this study, we presented a
workflow for quantifying absolute abundance of micro-
bial taxa in seawater microbiomes. PMA effectively
inhibited PCR amplification of DNA from membrane-
compromised cells in natural seawater microbial commu-
nities. Anchoring 16S rRNA gene amplicon sequencing
data to microbial loads of membrane-intact cells allowed
the transformation of relative (RMP) to absolute (QMP)
abundance data. The developed PMA-16S sequencing
workflow, combined with QMP, overcomes several com-
positional biases inherent in RMP analyses, allowing
for more accurate and reliable assessments of microbial
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abundance changes in response to environmental
stressors.

PMA effectively reduces the contribution of compromised
cells in seawater samples

Natural microbial assemblages may display varying
metabolic activity and states of viability. However, DNA-
based molecular technologies alone cannot distinguish
between intact and compromised cells, as the persistence
of nucleic acids after cell death limits accurate estima-
tions of the intact microbial population [16, 20]. PMA

has been used with various environmental water sample
types, often in conjunction with species-specific prim-
ers to selectively detect intact faecal indicator bacteria
such as Escherichia coli, Enterococcus, and Bacteroides in
wastewater and seawater [23, 36, 58—61]. Yet, PMA has
not previously been applied to seawater samples to assess
the responses of entire microbial communities to stress
conditions. In this context, PMA may facilitate the estab-
lishment of quantitative stress-response relationships by
enabling accurate measurement of changes in the abun-
dance of intact microbial taxa.
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In this study, a range of PMA concentrations signifi-
cantly reduced 16S rRNA gene copy numbers in natural
seawater microbiomes to 47-79% of those in untreated
communities (Fig. 3A). FC analysis using Live/Dead
staining revealed that 75% of the same seawater com-
munity was composed of intact cells, consistent with
the reduction in 16S rRNA gene copy numbers at PMA
concentrations<15 uM (Fig. 3A). These results demon-
strate that about one-third of the microbial community
consisted of damaged cells, which should be excluded
from studies that require precise measurements of abso-
lute declines. While differences in gene copy number
estimates across the tested PMA concentrations were
only minor, higher concentrations may increase the per-
meability of intact cell membranes or induce cytotoxic
effects, potentially causing false-negative results [35, 62].
Based on these findings, we concluded that PMA concen-
trations between 2.5 and 15 uM are optimal for minimis-
ing the contribution of membrane-compromised cells in
seawater samples.

Low PMA concentrations effectively inhibited DNA
amplification from membrane-compromised cells in sea-
water; however, PMA performance can be influenced by
treatment conditions, including dye concentration, light
exposure, incubation duration, and biological, chemi-
cal, and physical factors such as biomass, community

composition, sample turbidity, pH, and salt content [15,
25, 61]. For example, higher concentrations (25-100
uM) may be required for more complex or high-biomass
samples, such as estuarine benthic mud, marine sedi-
ments [19], or tissue-rich samples from corals [63] and
sponges [64], where PMA can be lost to surfaces, par-
ticles, or biological material [23, 35, 65, 66]. PMA also
tends to perform better with less diverse microbial com-
munities [25], a characteristic of the seawater microbial
communities in this study. Chemical and physical condi-
tions of marine samples, such as high salinity concentra-
tions and elevated total suspended solids (TSS) typical
of inshore waters, can negatively impact PMA efficiency
[23, 61]. For instance, Bae and Wuertz [23] reported that
complete PMA suppression of DNA from heat-killed
cells was only achievable in samples with TSS concen-
trations <100 mg L™'. High salt concentrations may cre-
ate osmotic pressure, dehydrating the cell membrane
and altering its permeability, which could prevent PMA
from accessing target DNA, even in membrane-compro-
mised cells [67]. However, we did not encounter negative
interactions between these factors and PMA efficiency
in our samples, with PCR amplification of DNA from
heat-killed cells completely inhibited at all tested PMA
concentrations (Fig. 3B). This may have been facilitated
by the initial filtration step, which reduced the chemical
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and physical complexity of the sample by removing par-
ticles and biota larger than 4.5 pm in size. Seawater from
areas with significant anthropogenic influence, however,
is often characterised by high planktonic biomass and
elevated TSS concentrations. Therefore, sample-specific
factors should be carefully considered, and PMA concen-
trations adjusted accordingly [35].

Uniform exclusion of DNA from compromised cells across
diverse taxa by PMA

Compositional analysis of PMA-treated seawater sam-
ples revealed consistent taxonomic profiles across all
tested concentrations, with a high degree of similar-
ity observed between replicates (Fig. 4A). There were
no statistically significant differences in the observed
number of ASVs between PMA-treated and untreated
samples and, although Shannon diversity increased with
PMA-treatment, this change was not statistically signifi-
cant (Fig. 4B). However, notable differences in microbial
community dissimilarities were observed between PMA-
treated and untreated samples (Fig. 4C). This outcome
was expected, as PMA-treated samples mainly represent
intact cells, while the untreated samples include DNA
from both membrane-compromised cells and extracel-
lular sources, influencing relative abundance profiles and
compositional similarities. ASVs that were differentially
abundant between PMA-treated and untreated samples
were not associated with any specific taxonomic group
(Figure S4B), indicating that compromised cells, excluded
by PMA, represented multiple taxa. Furthermore, 21% of
unique ASVs were found exclusively in PMA-untreated
samples, suggesting these ASVs originated from DNA
of membrane-compromised cells or extracellular DNA
(Figure S4A). In contrast, 27% of ASVs were detected
only in the PMA-treated samples (Figure S4A) but these
ASVs were predominantly low abundance ASVs. Simi-
lar findings have been previously reported and are likely
linked to PCR amplification efficiency, where sequences
from highly abundant taxa are preferentially amplified
in PMA-untreated samples. Following PMA treatment,
DNA from damaged cells is inaccessible, allowing the
amplification of DNA from low-abundance taxa that
were previously overshadowed [19, 68, 69]. These results
suggest that PMA treatment does not affect the overall
number of ASVs but selectively removes the contribu-
tion of DNA from damaged cells, enhancing the detec-
tion of low-abundance taxa [63, 70, 71]. Some studies
have also reported the presence of PMA-resistant
microbes, including some Gram-positive and Gram-
negative bacteria, with differences in cell membranes
influencing the effectiveness of PMA treatment [20, 35,
72]. Although not specifically assessed in this study, we
found that Actinobacteriota showed significantly higher
relative prevalence in PMA-treated samples. These taxa
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typically possess a Gram-positive cell envelope, consist-
ing of a plasma membrane and a thick peptidoglycan
layer [73], which may reduce the effectiveness of PMA in
penetrating their membranes. However, PCR amplifica-
tion of DNA from the heat-killed community was effec-
tively eliminated at all PMA concentrations compared to
the untreated samples, suggesting that these effects were
likely minor, and that PMA treatment interacted similarly
across microbial taxa, with no clear taxon-specific biases.

While PMA treatment effectively excludes membrane-
compromised cells from analysis, it does not provide
precise insights into the active fraction of the micro-
bial community. Viable cells can be metabolically active
or inactive, with respect to processes such as substrate
uptake, respiration, or biogeochemical cycles [17]. When
assessing microbial stress responses, the effectiveness of
PMA treatment likely depends on the mode of action of
the stressors, as some may impact cells without compro-
mising their membranes. Therefore, membrane integrity
alone does not confirm metabolic activity, and additional
viability assessment techniques, such as multi-omic
approaches, could provide a more comprehensive under-
standing of microbial viability. For example, combining
PMA-seq with metatranscriptomic or metaproteomic
profiles can overcome some limitations that are not cap-
tured by PMA-16S rRNA gene sequencing alone [15,
25]. Despite these limitations, PMA treatment of seawa-
ter samples remains valuable when differences in intact/
damaged cell ratios are quantitatively important, par-
ticularly for assessing microbial responses to increasing
stressor levels.

Converting relative to absolute abundance in seawater
microbiomes with ddPCR and FC-anchoring

QMP offers a valuable approach for determining absolute
microbial abundances from NGS data, addressing key
limitations of compositional data analysis and improving
microbial community assessments. Total 16S rRNA gene
copy numbers estimated in seawater by ddPCR were
highly correlated with total cell loads measured using
FC (Fig. 2A & B), indicating that either method could be
used to normalise NGS data. We also assessed the ability
of each method to detect predicted proportions of intact
cells in mixtures of heat-killed and natural seawater com-
munities. As with total microbial load estimates, FC and
ddPCR were strongly correlated in quantifying intact
cells, reinforcing the suitability of both methods for QMP
in microbial ecotoxicology. However, ddPCR exhibited
greater variability between replicates, higher uncertainty,
and lower predictive accuracy compared to FC (Fig. 2),
suggesting that FC may provide more precise estimates
of total microbial loads in seawater samples. This level of
precision is particularly important for establishing reli-
able relationships between taxon abundance and stressor
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levels in microbial ecotoxicology. Additionally, FC was
less technically demanding than ddPCR and has already
been effectively applied in QMP across different microbi-
ome sample types, including agricultural soil [74], faecal
material [27, 75], river water [33], and chicken gut [34].

It has been recommended that RMP should be nor-
malised to the sequenced microbial load, rather than
the microbial load in the original sample, as FC may not
accurately reflect the microbial load being sequenced
[76]. While ddPCR uses the same DNA extraction inputs
as NGS, method-specific protocols can also impact
amplification consistency between ddPCR and NGS.
Another challenge in applying ddPCR for absolute quan-
tification is the variability in 16S rRNA gene copy num-
bers among different taxa [77]. Despite the availability of
databases cataloguing variation in ribosomal RNA oper-
ons (rrn) for bacteria and archaea, many ASVs remain
unclassified [78], and the limited number of rrn entries
from sequenced genomes likely does not capture the full
range of rrn copy number variability using universal 16S
rRNA primers[78].

In the context of microbial ecotoxicology testing, these
specific limitations and biases of FC and ddPCR may be
less critical. The primary focus is on assessing propor-
tional changes (declines or increases) of specific taxa
relative to their absolute abundance, rather than compar-
ing absolute abundances across taxa. As such, method-
specific variations in sample volumes, input material, or
gene copy numbers are less important than maximising
consistency in exposure, sampling, quantification, and
sequencing across treatments. Although FC and ddPCR
showed a high correlation in measuring absolute micro-
bial loads in seawater, the advantages of FC make it a
more practical and reliable choice for routine microbial
load quantification, particularly in scenarios requiring
high sample throughput and assessments across multiple
stressor levels.

QMP allows for quantitative assessment of microbial
abundance changes

Substantial discrepancies were observed between QMP
and RMP in assessing microbial abundances within nat-
ural seawater communities. QMP accurately identified
absolute microbial abundance trends in samples with
predefined ratios of intact and heat-killed cells. In con-
trast, RMP was unable to capture microbial abundance
changes, resulting in markedly different distributions of
taxa abundances between the approaches, as previously
reported [27, 75]. While rarefying sequencing outputs to
an equal number of reads per sample is common practice
in microbiome research [79, 80], variations in sequenc-
ing depths often stems from technical artifacts during
DNA library pooling [81, 82]. This was confirmed in
the current study, where sample sequencing depths did
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not correspond to trends in absolute microbial loads.
Furthermore, RMP underestimated variations in the
microbial community structure, as samples with differ-
ent proportions of intact cells clustered closely together,
distinguishing only from the 100% heat-killed commu-
nity (Fig. 5C left plot). By contrast, microbial abundance
emerged as a significant driver of community dissimi-
larity after absolute abundance normalisation (Fig. 5C
middle and right plot). Additionally, RMP was unable
to identify declines in ASV abundance as the propor-
tion of intact cells declined from 100 to 0% in the mixed
community (Fig. 6A), while QMP accurately captured
the proportional declines in absolute ASV abundance
(Fig. 6B & C).

Conclusion

The PMA-16S rRNA gene amplicon sequencing work-
flow, coupled with QMP, enabled accurate quantification
of absolute microbial abundances in natural seawater
microbiomes. Treating seawater samples with low con-
centrations of PMA effectively reduced the contribu-
tion of DNA from compromised cells and extracellular
DNA, as validated by parallel FC Live/Dead staining.
This step is crucial for describing effects of environmen-
tal stress on microbial communities, ensuring only intact
cells contribute to quantitative abundance estimates.
Stressors like contaminants or heat events are likely to
compromise cell integrity, and this workflow enhances
the reliability of interpreting stress effects at the com-
munity level. It is particularly well-suited for quantifying
the magnitude and direction of ASV abundance changes
following stress, making it directly applicable to stress-
response modelling for individual taxa. By identifying
microbial stress thresholds based on absolute abundance
changes, this workflow can facilitate the incorporation of
microbial sensitivities into regulatory guidelines aimed at
protecting ecosystem health.
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