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Abstract
The accurate diagnosis of pathogenic variants is essential for effective clinical decision making within precision 
medicine programs. Despite significant advances in both the quality and quantity of molecular patient data, 
diagnostic rates remain suboptimal for many inherited diseases. As such, prioritisation and identification of 
pathogenic disease-causing variants remains a complex and rapidly evolving field. This review explores the latest 
technological and computational options being used to increase genetic diagnosis rates in precision medicine 
programs.

While interpreting genetic variation via standards such as ACMG guidelines is increasingly being recognized as 
a gold standard approach, the underlying datasets and algorithms recommended are often slow to incorporate 
additional data types and methodologies. For example, new technological developments, particularly in single-
cell and long-read sequencing, offer great opportunity to improve genetic diagnosis rates, however, how to best 
interpret and integrate increasingly complex multi-omics patient data remains unclear. Further, advances in artificial 
intelligence and machine learning applications in biomedical research offer enormous potential, however they 
require careful consideration and benchmarking given the clinical nature of the data. This review covers the current 
state of the art in available sequencing technologies, software methodologies for variant annotation/prioritisation, 
pedigree-based strategies and the potential role of machine learning applications. We describe a key set of design 
principles required for a modern multi-omic precision medicine framework that is robust, modular, secure, flexible, 
and scalable. Creating a next generation framework will ensure we realise the full potential of precision medicine 
into the future.
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Introduction
Identifying targetable disease-causing genetic variants 
lies at the heart of advancing precision medicine, improv-
ing clinical diagnostics, and enhancing our understand-
ing of genetic contributions to diseases [1]. Precision 
medicine entails a healthcare delivery model that relies 
extensively on patient specific data points to guide the 
development of customised therapies [2]. One key driver 
of such initiatives is the ability to pinpoint pathogenic 
variants that greatly improves our mechanistic under-
standing of the disease process [3]. This progress has 
been largely enabled by the increasing affordability and 
accessibility of high-quality sequence data. Despite this 
progress, conclusively linking genetic variants with dis-
ease remains resource-intensive and time-consuming [4]. 
The most significant challenge remains differentiating the 
key genetic drivers from the large volumes of background 
genetic variation naturally present in every person. Fur-
ther challenges exist with variant detection, annotation 
and prioritisation methods with the lack of global stan-
dards resulting in an over reliance on variable bespoke 
in-house solutions [5]. Groups such as the American 
College of Medical Genetics and Genomics (ACMG) 
are addressing this by providing guidelines on variant 
detection and interpretation; for example they propose 
guidelines to establish consistent cataloguing of genetic 
variants, classifying variants into five categories based 
on the strength of the evidence for disease causation. 
Despite these standards, many variants remain annotated 
as variants of uncertain significance (VUS), lacking suffi-
cient functional assay data required for reliable classifica-
tion [6]. Additionally, recurrent false positive variants can 
be included in clinical databases [7].

There is also an increasing recognition of the role of 
large and repetitive genetic variants in driving disease, 
however these remain challenging to detect with current 
short-read sequencing technologies and are better suited 
to more expensive long-read sequencing approaches [8]. 
Additionally, non-coding variants are being recognised 
in driving disease including intronic variants which cre-
ate cryptic splice sites as well as variants modifying 
regulatory elements such as enhancers and promotors 
[9]. Another challenge specific to complex disease is the 
often-little understood interactions between genetic 
and environmental factors. Factors such as lifestyle and 
surrounding environment can contribute significantly 
to disease development and progression; however, our 
understanding of these processes is limited [10].

Segregation analysis of germline variants within fami-
lies plays a critical role in precision medicine by enabling 
the accurate interpretation of genetic findings in the 
context of inherited disease risk [11]. By studying how 
a specific variant co-segregates with a disease pheno-
type across multiple family members, clinicians and 

researchers can distinguish pathogenic mutations from 
benign polymorphisms, thus improving diagnostic accu-
racy [12]. This analysis not only helps validate the clinical 
relevance of a variant but also informs risk assessment, 
surveillance strategies, and therapeutic decisions for both 
affected individuals and at-risk relatives. In precision 
medicine, where individualized care hinges on the pre-
cise understanding of genetic contributions to disease, 
segregation analysis remains a cornerstone for translating 
genomic data into meaningful clinical outcomes. Overall 
family data provides evidence needed to reclassify vari-
ants, either supporting pathogenicity through clear seg-
regation or suggesting benign status through inconsistent 
patterns. This improved classification directly impacts 
clinical decision-making, from diagnosis and treatment 
selection to family planning [13]. Family analysis enables 
confident clinical recommendations, reduces uncertainty 
in genetic counselling, and identifies at-risk family mem-
bers who would benefit from testing or enhanced surveil-
lance, exemplifying the promise of precision medicine.

Despite steady progress, genetic diagnostic discov-
ery rates for many complex diseases using traditional 
approaches remain low and capturing “missing heritabil-
ity” requires multi-pronged approaches. These include 
a variety of sequencing-based (e.g. long-read, single-
cell sequencing) and computer-based approaches (e.g. 
machine learning, multi-omic workflows). Robust frame-
works capable of integrating huge volumes of complex 
patient data, genetic variant and annotation information 
are urgently needed [14].

Sequencing technology
A diverse selection of sequencing technologies are now 
available for identifying genetic variants [15]. DNA-based 
solutions include whole genome sequencing (WGS), 
whole exome sequencing (WES), and targeted gene 
panels, while genetic variants can also be detected in 
cDNA used for RNA sequencing (RNA-Seq) [16]. Newer 
approaches include long-read sequencing, suitable for 
identifying more complex, larger genetic variants [17], 
and single-cell sequencing to identify rare or cell-type-
specific variants [18, 19].

Current DNA-based sequencing options
Targeted gene panel sequencing is appropriate when 
driver genes are largely known for a disease. In such 
cases, gene panels can obtain high diagnostic rates and 
the simple deployment, interpretation, and lower costs, 
offers an attractive alternative to WES/WGS [16, 20, 21]. 
Targeted panels are typically sequenced at a high depth 
to identify rare variants, a process which can be com-
bined with unique molecular identifier (UMI)-based 
approaches to further increase resolution [22]. There 
are limitations of this approach however such as their 
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inability to identify novel variants and large genetic vari-
ants [16, 23].

WES is effective in finding both known [24] and novel 
driver mutations [25] in coding regions of the genome. 
WES employs a targeted approach via a capture array 
containing most known coding exons, thus covering the 
majority of the coding regions [3]. Despite only account-
ing for ~ 1% of the genome, an estimated 85% of muta-
tions responsible for diseases are thought to occur within 
exons [26–28]. WES is attractive with regard to price and 
sequence depth relative to WGS [29, 30].

WGS is an unbiased method that provides sequence 
data across the entire genome [31]. WGS is increasingly 
becoming the first choice for patient sequencing due 
to advantages including the ability to detect small and 
large genetic variants as well as achieving relatively even 
sequence coverage [32–34]. The diagnostic superiority of 
WGS to chromosomal microarray (CMA), karyotyping, 
targeted sequencing assays and WES [35–40] has been 
demonstrated. Accordingly, precision medicine programs 
are employing WGS as the first option resulting in the 
development of increasingly standardised methodologies 
[41, 42].

Current RNA-based sequencing options
Bulk RNA-seq is a high-throughput method used to 
examine the complete set of RNA transcripts within a 
biological sample [6]. Bulk RNA-Seq typically obtains 
sequence data from a mixed heterogenous population 
of cells in contrast to tagged individual cells as is done in 
single-cell RNA-Seq (scRNA-Seq) [43]. The clinical util-
ity has been demonstrated largely for the ability to iden-
tify dysregulated genes that warrant further investigation 
within the genome [44]. Additionally, RNA-Seq allows 
the identification of aberrant splicing events such as 
retained introns or skipped exons and gene fusions.

Single-cell sequencing
In contrast to traditional bulk sequencing methods, sin-
gle-cell technologies incorporate cell-specific barcodes 
to obtain per-cell sequence information for thousands of 
cells simultaneously. To date, most single-cell platforms 
utilise RNA as input (scRNA-Seq) however a growing 
number of platforms offer single-cell DNA sequencing 
(scDNA-Seq).

Single-cell RNA sequencing is an advanced technol-
ogy able to evaluate transcriptional similarities and 
variances within a population of cells, revealing cell-
type-specific levels of heterogeneity previously undetect-
able by bulk sequencing methods [45–47]. Nonetheless, 
scRNA-Seq remains technically challenging with limi-
tations including generation of doublets and dead cells, 
lower sequencing depth per cell, data sparsity, high 
input cell requirements, and high cost. Despite these 

challenges, scRNA-Seq offers an unprecedented opportu-
nity to track disease progression within heterogenous cell 
populations.

Single-cell DNA sequencing allows the detection of 
per-cell or cell-type-specific rare genetic variants from 
mixed heterogenous input samples [48]. Many of the 
same limitations are shared with scRNA-Seq, however 
variant detection is feasible for targeted gene panels 
using technologies such as Mission Bio’s Tapestri plat-
form. Additionally, significant amplification is typically 
required [49], a process known to introduce errors and 
uneven coverage resulting in challenges in downstream 
data analysis [50].

Long-read sequencing
Third generation single molecule long-read sequencing 
overcomes many of the limitations of short-read tech-
nologies [51]. Initially plagued by high error rates, con-
tinual improvements are producing progressively longer 
and higher quality reads, with lengths of up to 2 Mega-
base pairs now possible [52, 53]. The third-generation 
sequencing market is primarily dominated by two tech-
nologies: (i) Pacific Biosciences and (ii) Oxford Nano-
pore Technologies (ONT) [54], both of which offer DNA 
or RNA based sequencing. Long-read DNA sequencing 
is critical if driver variants are repetitive or complex in 
nature (e.g. long tandem repeats, copy number variants) 
or occur in repetitive gene families, GC-rich regions 
or pseudogenes. Long-read RNA sequencing captures 
full-length isoforms and can identify novel transcripts, 
skipped exons, retained introns and gene fusion products 
[55].

Prioritisation strategies
All sequencing approaches generate large numbers of 
genetic variants, the majority of which are not relevant 
for the underlying disease. Reducing the genetic search 
space for causal variants can be done through a combi-
nation of careful patient selection, variant annotation (at 
the level of variant, gene and gene network), and software 
development and optimisation (Fig. 1).

Sample selection strategies
Sample selection strategies are critical to increasing the 
likelihood of identifying disease causing variants. Com-
mon strategies include grouping unrelated individuals 
by phenotype, selecting patients with early onset and/or 
extreme phenotype and pedigree sequencing for families.

For single or unrelated individuals, strategies include 
sequencing samples with early onset or extreme phe-
notypes as well grouping patients with similar pheno-
types that potentially share an underlying genetic cause 
[56]. Choosing unrelated individuals with a shared 
well-characterised phenotype requires annotation with 
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standardised human phenotype ontology (HPO) terms 
[57]. Further defining inclusion and exclusion criteria 
based on clinical features - disease progression, or other 
relevant parameters – allows the generation of a study 
cohort that is relatively homogenous and well suited for 
detecting shared driver variants (or pathways) linked to 
the observed phenotype [58]. The significance of careful 
patient selection is highlighted in numerous studies as an 
effective way to increase diagnosis rates [59, 60].

Pedigree-based strategies
For related individuals, utilization of pedigree sequenc-
ing is an extremely effective strategy for reducing the 
genomic search space for causal variants. Pedigree 
sequencing is particularly useful for the identification of 
rare familial variants which segregate with the phenotype 

of interest [61, 62]. This approach yields additional infor-
mation including inheritance modes and can track the 
segregation of variants within families, however custom 
software is required [12]. Sequencing of a proband child 
with healthy parents is very successful for rare, early 
onset diseases by focusing on a small number de novo 
variants. Similarly, consanguineous pedigree sequencing 
reduces the search space to homozygous variants [63].

Segregation analysis plays a vital role in interpreting 
and prioritising genetic variants by examining how a 
variant is inherited within a family and whether it con-
sistently appears in affected individuals while being 
absent in those unaffected. Such co-segregation patterns 
strengthens the case for pathogenicity, particularly when 
it is aligned with the expected pattern of inheritance [64, 
65]. In the line with ACMG/AMP guidelines, segregation 

Fig. 1  Variant prioritisation strategies
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data can count towards variant classification as ‘support-
ing evidence (PP1)’, with increasing weight assigned as 
more segregation evidence is observed [66]. Recognition 
of segregating de novo or very rare variants in dominant 
conditions further strengthens the case for pathogenic-
ity (PS2) [65]. In contrast, variants that do not segregate 
with disease phenotype in affected family members may 
indicate benign status, reduced penetrance, or the pres-
ence of phenocopies—individuals who exhibit symp-
toms due to non-genetic factors or different underlying 
genetic causes [67]. Such scenarios may point to potential 
locus heterogeneity, where similar phenotypes arise from 
mutations in different genes [68, 69]. The identification of 
such cases is vital for accurate genetic diagnosis. When 
causal variants are present in asymptomatic carriers, we 
can estimate penetrance and variability in disease sever-
ity thus enabling personalized monitoring strategies and 
more accurate prognoses for at-risk relatives [70].

Annotation-based strategies – variant level
Variants are first annotated based on the exact genomic 
coordinate and the observed nucleotide change. This 
includes assessing impact on transcripts, estimat-
ing impact on protein function, comparing to popula-
tion variant levels and overlapping with clinical variant 
databases.

Variants are typically overlapped to a transcript model 
and stratified according to their impact using popular 
tools such as SnpEff, VEP or ANNOVAR [71–73]. High 
level genomic overlaps are first considered (e.g. inter-
genic, intronic, exonic, etc.) and further refined by tran-
script effect when appropriate (e.g. exonic SNVs classified 
as synonymous or non-synonymous, exonic indels classi-
fied as frameshift or non-frameshift). Next, variants are 
run through functional inference tools to predict poten-
tial functional consequence of genetic variants. These 
tools utilise information including evolutionary conser-
vation patterns, protein annotations and structural infor-
mation to make predictions about the functional impact 
of genetic variants. Many tools exist including PolyPhen2 
and SIFT [74, 75] for missense mutations and CADD for 
all variant types [76]. While these tools are useful, their 
results should be combined with other types of evidence 
as they are known to suffer from high false positive rates, 
particularly for variant subclasses such as pharmacoge-
netic variants [77, 78].

Until recently, a significant limitation in the annota-
tion of protein features was the lack of comprehensive 
protein structures for all human proteins. AlphaFold 
successfully generated extremely accurate protein struc-
tures for all human proteins offering new opportunities 
for variant prioritisation [79]. The accuracy of functional 
impact tools can be increased with AlphaFold integration 
by considering the structural context of genetic variants 

[79]. AlphaMissense was subsequently developed based 
on AlphaFold2 predictions and fine-tuned using human 
and primate variant frequency databases [80]. Over time 
AlphaMissense (and subsequent developments) are likely 
to play a big role in improving functional impact metrics 
[81]. Overall there are many options for variant func-
tional annotation (e.g. ENSEMBL Variant Effect Predic-
tor (VEP), ANNOVAR, SnpEff) and functional inference 
prediction (Polyphen2, SIFT, CADD, AlphaMissense). 
Table 1 summarises several options including their rela-
tive strengths and weaknesses.

Population level databases of variant frequency are 
a powerful tool for understanding potential biologi-
cal impact of genetic variation both globally and within 
matched ethnicities. Assigning variant allele frequen-
cies enables the identification of rare or novel variants, 
a group enriched for pathogenic variants [82]. Variant 
databases have grown progressively larger over time, 
however historically most variants were of European ori-
gin [82]. Databases such as dbSNP and 1000 Genomes are 
two of the earliest databases and have proved invaluable 
for assigning variant frequencies [83, 84]. The Genome 
Aggregation Database, commonly known as gnomAD, 
is a more recent entry providing a comprehensive and 
publicly accessible repository that aggregates genomic 
data from a diverse range of populations [85]. It provides 
a wealth of information regarding the frequency and dis-
tribution of genetic variants across the human genome 
[86]. Critically, population databases have recognised the 
importance of incorporating non-European individuals, 
however many groups remain underrepresented [87].

Disease focused variant databases are another criti-
cal tool for variant prioritisation. While population level 
databases serve to filter out large numbers of common 
variants, disease variant databases help identify candi-
date pathogenic variants. These databases contribute 
significantly to the interpretation of genetic variants in 
a clinical context, aiding in the identification of variants 
associated with diseases thus informing clinical decision-
making. Some of the larger databases include ClinVar 
[88], Human Gene Mutation Database (HGMD) [89] and 
Leiden Open Variation Database (LOVD) [90]. ClinVar 
is one of the largest clinical genomic databases, serving 
as a repository for variant data from clinical laborato-
ries, clinicians, expert groups, patients, researchers, and 
other databases; it is a freely accessible, publicly curated 
database maintained by the National Centre for Biotech-
nology Information (NCBI) [91]. ClinVar ranks variants 
based on evidence such as functional assays providing a 
consistent scoring system across all potential clinically 
relevant variants. Similarly, the Human Gene Mutation 
Database (HGMD) aims to catalogue all mutations asso-
ciated with inherited diseases [92, 93]. The mutation data 
in HGMD are sourced solely from scientific literature 
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and undergo rigorous manual curation using manual 
screening of journals and automated text mining [93]. 
Finally, LOVD is a freely available web-based platform 
for the collection, display, and curation of DNA vari-
ants in locus-specific databases (LSDBs) [90]. The design 
of LOVD system includes flexibility and seamless inte-
gration with other locus-specific LOVD instances, and 
introduced the “custom column” feature, enabling cura-
tors to tailor field setups according to their needs [94].

Annotation based strategies – gene level
A critical decision in any annotation workflow is the 
selection of the gene model. There are many efforts to 
standardise both gene sets and naming conventions how-
ever many challenges persist. Some of the popular mod-
els include ENSEMBL [95], GENCODE [96], RefSeq [97], 
UCSC [98] and UniProt [99]. Table 2 highlights the mod-
els’ strengths and weaknesses.

In addition to variant-specific annotations, gene-level 
annotations are subsequently applied. In many cases a 
specific variant may not have been explicitly linked to 
disease pathogenesis, however the role the gene plays 

Table 1  Variant annotation tools
Software (Class) Strengths Weaknesses
VEP (Functional 
annotation)

Open source; supports web, CLI, and API usage; annotates coding/non-
coding variants via Ensembl & RefSeq models; integrates allele frequen-
cies, pathogenicity scores & phenotype databases; customizable output 
& filtering options; regularly updated.

Complex output with multiple transcript annota-
tions; requires filtering to simplify; non-coding 
annotations require additional configuration; 
plugin setup can be complex; slower perfor-
mance on large datasets without caching.

ANNOVAR (Functional 
annotation)

Broad annotation support (e.g., RefSeq, gnomAD, CADD); flexible frame-
work; efficient variant filtering; fast runtime.

Lower HGVS accuracy (93.3% concordance); lim-
ited support for complex/structural variants; re-
quires manual database updates; not optimised 
for polygenic traits; collapses transcript isoforms.

SnpEff (Functional 
annotation)

Fast annotation for high-throughput pipelines; supports multiple 
genomes & transcript models; Coding annotation accuracy (~ 89.8%) 
comparable to VEP.

Lower concordance for indels & frameshifts 
(< 75%); protein syntax often mismatches 
references;

Polyphen2 (Functional 
inference prediction)

Predicts impact of missense mutations based on protein structure and 
evolutionary conservation.

High false-positive rate for certain variant classes, 
does not handle non-missense variants.

SIFT (Functional infer-
ence prediction)

Missense variants prediction based on sequence conservation. Lower accuracy for less conserved regions of 
proteins.

CADD (Functional infer-
ence prediction)

Combines 60 + annotations into a single impact score; ranks deleterious-
ness across coding & non-coding variants; Incorporates both simulated 
& observed variants for robust training; Machine learning (SVM) frame-
work improves generalizability and prioritization.

Lacks variant-type specificity (e.g. splicing vs. 
missense); less precise for rare or population-spe-
cific variants ; computationally demanding for 
non-pre-computed variants; may inflate scores 
for non-coding variants.

AlphaMissense 
(Functional inference 
prediction)

Combines structure & conservation; high concordance with REVEL/
CADD; effective for prioritizing pathogenic missense variants.

Still emerging; may inflate pathogenicity scores 
in some domains; needs further validation; ac-
curacy varies across genes/proteins classes.

Table 2  Gene model options
Gene Model Strengths Weaknesses
ENSEMBL Reliable cross-species gene annotation via combined manual & automated 

methods; supports transcript diversity & comparative genomics; regularly 
updated with VEP & BioMart links; core genome browser support.

Annotation varies by species; complex transcripts 
could be inconsistently modelled; dependent on 
quality of assembly genome

GENCODE High-quality gene annotation for human/mouse; includes lncRNAs, pseu-
dogenes, & transcripts; integrates manual curation & automation; captures 
transcript diversity; used within Ensembl, RefSeq, & UCSC

Incomplete experimental support for all transcripts; 
redundancy & unclear function in many lncRNAs / 
pseudogenes; manual curation limits scalability; inter-
version differences may affect coordinate tracking.

RefSeq High-quality, curated reference sequences for genomic, transcript, & protein 
data; consistent across species annotations; integrate
manual curation with scalable automation;
widely adopted in tools like VEP, ANNOVAR, GATK.

RefSeq tends to be conservative and includes fewer 
transcript isoforms; RefSeq updates less frequently 
than other models; RefSeq is centrally managed by 
NCBI and no community input

UCSC Curated gene models from mRNA/protein alignments enhances RNA-seq 
quantification; emphasizes
reliable transcripts & simplifies isoform sets for reproducible gene counts; 
integrated with UCSC Genome Browser.

Limited transcript diversity & isoforms & non-coding 
RNAs.
Fewer splice junctions reduce RNA-seq accuracy;
biased toward canonical genes

Uniprot Provides detailed protein-level annotation including domains, function, and 
subcellular localization

Does not directly annotate variants or regulatory ele-
ments; protein-focused
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in driving the disease is well characterised. Gene level 
annotations largely consist of disease databases and 
gene ontology (GO) term annotation and enrichment 
analysis. Databases are typically curated repositories 
of gene-disease associations and help identify whether 
gene dysfunction has previously been implicated in simi-
lar diseases. There are many such databases, the largest 
being the Online Mendelian Inheritance in Man (OMIM) 
database [100].

If, however, a gene has not been directly implicated in 
causing the disease, gene ontology (GO) is able to identify 
the function for each gene of interest potentially linking 
GO terms to the observed disease phenotype. GO anno-
tation is standardised through large international efforts 
such the Gene Ontology Consortium ​(​​​h​t​t​p​:​/​/​w​w​w​.​g​e​n​e​o​
n​t​o​l​o​g​y​.​o​r​g​​​​​) which enable quick and easy GO annotation 
of structured domain-specific ontologies [101]. A com-
mon application using GO terms is enrichment analysis, 
which aims to identify over-represented biological pro-
cess, molecular function or cellular component shared by 
genes implicated in driving a polygenic disease.

Annotation based strategies – gene network level
Beyond gene-level annotations, the gene’s role within 
larger biological networks can be examined. To do this 
there are a variety of gene network analysis tools designed 
to analyse and interpret biological data, particularly gene 
expression data, in the context of biological networks. 
These tools aim to uncover relationships and interac-
tions between genes to gain insights into the underlying 
biological processes. They contribute significantly to the 
understanding of the complex relationships within bio-
logical systems, helping researchers unravel the func-
tional implications of gene interactions. Several popular 
tools in this space are STRING and Ingenuity Pathway 
Analysis (IPA). STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) is an online platform created 
to identify protein-protein interactions (PPIs) and func-
tional associations [102]. The STRING database, avail-
able at https://string-db.org/, ​s​y​s​t​e​m​a​t​i​c​a​l​l​y compiles 
and integrates protein–protein interactions, encompass-
ing both physical interactions and functional associa-
tions. The database is populated from various sources, 
including automated text mining of scientific literature, 
computational predictions based on co-expression and 
conserved genomic context, databases containing inter-
action experiments, and curated sources describing 
known complexes and pathways [103]. IPA is a proprie-
tary tool developed by QIAGEN with similar functional-
ity that is employed for applications including biomarker 
discovery, metabolomics, microRNA research, next-gen-
eration sequencing data analysis, proteomics, toxicoge-
nomics, and transcriptomics [104]. While most current 
gene network tools incorporate well-characterised large, 

curated datasets new tools that construct custom net-
works from genome/transcriptome patient data for a 
single patient offer potential for custom treatments [105].

Comprehensive annotation tools
While many pipelines overlap annotation datasets 
consecutively in series, aggregate tools are becoming 
increasing popular to manage the increasing number 
of disparate annotation resources. With continuously 
updated databases, it is increasingly important to apply 
consistent, up to date annotations [106]. ENSEMBL’s 
Variant Effect Predictor (VEP) is a prominent aggregate 
tool in the landscape of functional annotation. VEP pro-
vides comprehensive annotations for genetic variants, 
including their functional consequences, conservation 
scores, and potential associations with known diseases 
[107]. The tool is known for its user-friendly interface 
and frequent updates, ensuring that researchers have 
access to the latest genomic information by linking 
results to ENSEMBL’s latest gene model. VEP’s ability to 
handle diverse types of genomic variants and its integra-
tion with various databases make it a valuable resource in 
annotation improvement efforts [108]. Additional tools 
like ANNOVAR perform a similar role [109].

Complete end-to-end workflows
Beyond aggregate annotation tools, there are an increas-
ing number of complete end-to-end variant prioritisation 
workflows. These tools typically integrate functionalities 
including variant annotation, filtering, and interpreta-
tion aiming to identify potentially pathogenic variants 
directly from input variant lists with little to no manual 
interpretation required. Example include VarSeq, a com-
mercial variant analysis software tool that is designed to 
streamline the entire workflow, from variant discovery 
to interpretation for gene panels, exomes or genomes 
[110]. Non-commercial options include WANNOVAR, 
a web-based tool designed for annotation and functional 
prediction of genetic variants and VariantDB which is 
designed for the annotation, prioritisation and analysis 
of genetic variants [111]. Seqr is an increasingly popular 
option developed by the Broad Institute [112].

While this next generation of tools are promising, 
challenges with installation and lack of configurability 
hamper their widespread uptake with researchers and cli-
nicians often favouring to combine multiple tools to per-
form concurrent steps in bespoke workflows [38].

Machine learning applications
Addressing the significant challenges associated with 
pathogenic variant identification requires a multi-fac-
eted approach. One potential solution being considered 
is the development of advanced machine learning (ML) 
algorithms. By leveraging ML, algorithms can potentially 

http://www.geneontology.org
http://www.geneontology.org
https://string-db.org/
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improve diagnosis rates by identifying underlying com-
plex relationships within biological systems [113]. ML 
algorithms are gaining traction in life sciences due to the 
capacity to deal efficiently with complex genomic data 
patterns [114]. Early works suggest that ML algorithms 
have the potential to learn from, and act upon complex 
heterogeneous datasets by identifying new biological pat-
terns that increase diagnosis accuracy [115–118]. It is 
likely that ML algorithms will play an increasingly impor-
tant role in detecting pathogenic variants. Some recently 
published ML algorithms for precision medicine are 
listed in Table 3 .

Variant pathogenicity
One of the most common current applications of ML is 
predicting variant pathogenicity, with numerous com-
putational tools available [119–129]. ML models are 
typically trained on both known pathogenic and benign 
variants and deployed to predict the functional conse-
quences of genetic variants on both protein structure and 
function [130]. Depending on the composition of training 
data, these approaches can be divided into genome-wide, 
disease-specific, or even gene-specific categories [131]. 
Popular tools offering genome-wide data predictions 
include Rare Exome Variant Ensemble Learner (REVEL) 
[124], BayesDel [132], ClinPred [133] and AlphaMissense 
[52].

Variant prioritisation
Other common ML applications include variant detec-
tion, prioritisation and feature discovery. DeepVariant is 
an increasingly popular variant calling workflow compat-
ible with Illumina, PacBio HiFi, and Oxford Nanopore 
sequence data [134]. DeepTrio is built upon DeepVari-
ant and uses neural networks to identify variants specifi-
cally in pedigree of two or three members. M-CAP is a 
prioritisation tool that eliminates uncertain variants and 
reports 95% sensitivity levels [130]. MLVar is a another 
variant prioritisation workflow that follows ACMG 
guidelines and uses variant annotation features to pre-
dict probabilistic pathogenicity scores [135]. MAVERICK 

uses a neural network approach to predict pathogenic 
variants for Mendelian monogenic diseases [136]. Identi-
fying cryptic biological features is another important ML 
application, for example the prediction and recognition 
of transcription start sites (TSSs) [137], splice sites [138], 
promoters [139], enhancers [140], and nucleosome posi-
tion [141]. Larger end-to-end workflows employing ML 
are an active area of development.

Genome-wide association studies (GWAS) are another 
active area of ML algorithm development. Tools such as 
genomic best linear unbiased prediction (gBLUP) [142], 
support vector machine (SVM) [143], xGBoost [144], 
and random forest (RF) [145] are widely used to identify 
relevant traits in GWAS, with the large, well annotated 
GWAS data suitable for training purposes. Similarly, 
large datasets divided into disease and controls serve as 
suitable training data for ML algorithms that are able to 
predict traits and identify enriched variants [146]. Many 
tools however fail to generalise to specific diseases. To 
address this, studies often run multiple ML methods 
using a consensus-based approach.

Large Language model
Large language models (LLM) show promise in a variety 
of precision medicine applications such as reducing lit-
erature search time for variant classification and inter-
pretation. Microsoft developed the generative AI tool 
the EvAgg, which reports improvements in the sensitiv-
ity and specificity of pathogenic variant identification 
[147]. EvAgg reduced the manual curation time by 34% 
and increased the number of papers, variants, and cases 
evaluated per unit time. Such works have led to papers 
concluding that variant classification will be standard-
ized in the near future, however achieving this requires 
overcoming significant challenges [148]. A recent bench-
marking study considered four LLMs across ten fictional 
oncology patients and encouragingly found that LLMs 
were able to identify several important treatment strat-
egies and provide some reasonable suggestions not eas-
ily found by experts [149]. However, they concluded that 
LLMs are not yet applicable for routine clinical analysis 

Table 3  ML applications in precision medicine
Software Function ML approach Website
AlphaMissense Functional inference Deep learning ​h​t​t​p​​s​:​/​​/​a​l​p​​h​a​​m​i​s​​s​e​n​​s​e​.​h​​e​g​​e​l​a​b​.​o​r​g​/
DeepVariant Variant detection CNN ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​g​o​o​g​​l​e​​/​d​e​e​p​v​a​r​i​a​n​t
M-CAP Variant prioritisation Supervised ML ​h​t​t​p​​:​/​/​​b​e​j​e​​r​a​​n​o​.​​s​t​a​​n​f​o​r​​d​.​​e​d​u​/​M​C​A​P​/
MLVar Variant prioritisation Method/Pipeline using ML ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​G​i​o​v​​a​n​​n​a​N​i​c​o​r​a​/​M​L​V​a​r
REVEL Functional inference Random Forest (RF) ​h​t​t​p​​s​:​/​​/​s​i​t​​e​s​​.​g​o​​o​g​l​​e​.​c​o​​m​/​​s​i​t​​e​/​r​​e​v​e​l​​g​e​​n​o​m​i​c​s​/
BayesDel/
PEARCH

Functional inference Likelihood Based approach ​h​t​t​p​​s​:​/​​/​f​e​n​​g​l​​a​b​.​​c​h​p​​c​.​u​t​​a​h​​.​e​d​​u​/​B​​a​y​e​s​​D​e​​l​.​h​t​m​l

ClinPred Functional inference Random forest and Gradient boosting models ​h​t​t​p​​s​:​/​​/​s​i​t​​e​s​​.​g​o​​o​g​l​​e​.​c​o​​m​/​​s​i​t​e​/​c​l​i​n​p​r​e​d​/
MAVERICK Functional inference Neural network-based ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​​Z​u​c​h​​n​e​​r​L​a​b​/​M​a​v​e​r​i​c​k
EvAgg Clinical curation LLM model ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​​b​.​​c​o​​m​​/​m​i​c​​r​o​​s​o​​​f​t​/​h​​e​a​l​​t​h​​f​u​t​u​r​​e​s​-​e​v​a​g​g

https://alphamissense.hegelab.org/
https://github.com/google/deepvariant
http://bejerano.stanford.edu/MCAP/
https://github.com/GiovannaNicora/MLVar
https://sites.google.com/site/revelgenomics/
https://fenglab.chpc.utah.edu/BayesDel.html
https://sites.google.com/site/clinpred/
https://github.com/ZuchnerLab/Maverick
https://github.com/microsoft/healthfutures-evagg
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as an aid for clinical decision-making in oncology. Ana-
lysing complex germline disease represents an even big-
ger challenge.

While ML holds great promise for precision medi-
cine, it is not without challenges due to the complexity 
and uniqueness of an individual’s genome highlighting 
the need for accurate, robust and interpretable models. 
Challenges include issues with the accuracy of exist-
ing variant classifications as well as the rising number 
of variants of uncertain significance (VUS) [150]. Build-
ing robust ML models requires large, high-quality data 
that has been extensively benchmarked using both sim-
ulated and established reference data sets [151]. Gen-
erating such data sets is compounded by the inherent 
complexity of the human genome, with numerous non-
genetic factors contributing to complex disease. While 
ML algorithms are increasingly able to process complex 
genomic information to identify novel patterns and asso-
ciations relevant to variant interpretation, patient datas-
ets are increasingly heterogeneous in terms of data type 
and source [152]. Increasingly, data sets contain a num-
ber of data modalities (e.g. transcriptomics, epigenom-
ics, and clinical data) requiring updates and changes to 
existing ML models trained exclusively on other types 
of data [153]. ML algorithms face additional challenges 
with their need for large diverse and homogenous train-
ing datasets without potential biases, a known challenge 
with many complex molecular datasets [154]. Overall, 
the most significant barriers to widespread clinical adop-
tion of ML approaches are model interpretability, model 
validation and data harmonisation.

Model interpretability remains one of the most signifi-
cant barriers to clinical uptake as any critical treatment 
decisions require a clear understanding of how models 
arrive at recommendations. Deep learning models, while 
highly effective at pattern recognition in genomic data 
and medical imaging, often function as “black boxes” 
where the decision-making process remains opaque. 
This is particularly problematic in precision medicine, 
where treatment decisions involve weighing complex 
risk-benefit profiles for individual patients. For exam-
ple, a neural network might accurately predict cancer 
treatment response, but if clinicians cannot understand 
the biological rationale, they will be reluctant to act on 
it. New tools such as StratoMod [155] are using inter-
pretable ML to predict variant calling and sequencing 
errors however without additional orthogonal validation 
data, clinical uptake remains unlikely. To address ‘black 
box’ challenges in security sensitive applications new 
tools like EnEXP are using interpretable ensemble tree 
approach to achieve a global interpretation of the entire 
dataset through the aggregation of individual sample 
insights [156]. Recent advances in explainable AI, includ-
ing LIME and SHAP, offer promising approaches, but 

these post-hoc explanations may not accurately reflect 
the model’s true decision-making process [157].

Data validation is limiting clinical uptake as it presents 
unique challenges beyond traditional evaluation metrics. 
While models might demonstrate excellent performance 
on test sets, real-world clinical translation requires addi-
tional considerations. Temporal validation represents a 
particular challenge as medical practice and treatment 
protocols evolve continuously [158], for example models 
trained on historical data may not perform reliably on 
current patients in rapidly advancing fields like oncology 
where new biomarkers are regularly discovered. External 
validation across different healthcare systems and patient 
populations is also essential but difficult to achieve in 
practice. Models developed at academic centres may not 
generalize to community hospitals with different demo-
graphics. Overall, the validation process must account for 
clinical decision-making’s dynamic nature, where model 
predictions influence subsequent patient management, 
creating complex feedback loops difficult to capture in 
traditional frameworks.

Data harmonization is another significant barrier to 
clinical uptake. Genomic data harmonization involves 
reconciling different sequencing platforms, analytical 
pipelines, and annotation standards which can introduce 
systematic biases if not properly addressed [159]. Clini-
cal data harmonization faces complexities from vary-
ing electronic health record systems, coding standards, 
and documentation practices. Laboratory records may 
use different units, clinical observations different termi-
nologies, and treatment protocols may vary significantly 
across institutions. Temporal alignment of multi-modal 
data presents another significant challenge as genomic 
data is collected at specific time points while clinical data 
accumulates continuously, making it difficult to create 
coherent longitudinal patient profiles for ML training. 
Patient data is often siloed within healthcare systems due 
to privacy regulations and competitive concerns. Feder-
ated learning approaches offer potential solutions but 
introduce additional technical complexities [160]. Apply-
ing consistent guidelines and principles for data structure 
harmonization are critical; for example Findable, Acces-
sible, Interoperable, and Reusable (FAIR) principles for 
data sharing [161] are gaining popularity. There have also 
been some advances in scalable approaches [162] and 
guidelines on using ML ethically [163]. However, these 
need more empirical validation before implementing 
within health care systems.

Core principles for best practices
The state of art for best practices in pathogenic vari-
ant detection is a rapidly moving target, however core 
design principles are key in creating a robust and flexible 
framework able to integrate new modalities as they gain 
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traction in precision medicine. Here we describe several 
core principles needed to develop a system appropri-
ate for both the current and future needs in precision 
medicine.

For general design considerations, it is critical to 
design a workflow that is modular, scalable, parallelisable, 
secure, reproducible and flexible. A modular design that 
can incorporate new data types and algorithms as needed 
is a key requirement when working in this rapidly evolv-
ing space. Design flexibility is also key to ensure lon-
gevity. For example the ability to run multiple tools and 
employ a consensus based approach is increasingly being 
recognised in a variety of applications including variant 
detection and RNA-Seq data analysis [164]. It is also pref-
erable to incorporate well-tested standardised tools when 
available to avoid introducing unintentional errors aris-
ing from less well tested internally developed software. 
Another key consideration is the ability to parallelise and 
scale analysis components, important for reducing turn-
around time for individual patients and for handling an 
increasing volume of samples. Consistency regarding 
input format requirements and outputs is also critical 
in ensuring backwards compatibility and the ability for 
re-analysis.

More specific considerations for precision medicine are 
around security, interactivity and the ability to generate 
concise clinical reports. Handling patient data securely 
is critical for many reasons. Patient data that includes 
genomic information, medical records and family his-
tories requires the utmost care and sensitivity to meet 
patient expectations. Misuse of such data may lead to 
discrimination and potential legal ramifications. De-
identification is a common approach however it must 
be done properly to not allow re-identification via cross 
referencing of metadata or other public datasets. Ideally 
de-identification capability needs to be managed via an 
additional layer of access control. Security needs to be 
balanced with the development of interactive systems for 
clinicians who interrogate the data to identify pathogenic 
variants. Such web-based tools are critical however they 
need to ensure data is secure and protected throughout. 
The interface needs to support variant filtering and dis-
play variant summaries with the information needed to 
assess pathogenicity. The interface should support free 
text entry where clinicians record their determination 
and describe the evidence justifying the classification. A 
final consideration is the ability to develop robust clini-
cal reports. Developing user friendly reports requires 
many iterations with clinicians to determine both the fil-
ters to employ and the level of detail to include for each 
candidate driver. The report design requires flexibility to 
incorporate addition, often disease specific, information 
as needed.

Arguably the most critical component in precision 
medicine system is reproducibility. There are many prac-
tical considerations needed to ensure complete repro-
ducibility, which can be achieved through a combination 
of code versioning, log file generation, robust testing 
suites and employing a software pipeline manager. Ver-
sioning all code and config files during development 
coupled with thorough logging of all commands lays 
the foundation for reproducible workflows. Extensive 
documentation of code and protocols is also critical par-
ticularly when multiple team members are involved. The 
development of a robust testing suite with gold standard 
datasets will help ensure any changes will not generate 
unintended downstream consequences. Finally, it is rec-
ommended to employ a modern pipeline manager tool 
such as NextFlow or Snakemake to facilitate running the 
workflow in a variety of hardware infrastructures includ-
ing local infrastructure, HPC or cloud. Collectively fol-
lowing these design principles will drastically increase 
the reproducibility and longevity of the workflow.

Discussion
While precision medicine has increased diagnosis rates 
around the world, current challenges exist including han-
dling sensitive patient data and the lack of disease spe-
cific annotation, data standards and ethnically matched 
variant annotations. Future challenges include the need 
of integration of multi-omic data and the incorporation 
of new NGS data types (Fig. 2).

Current challenges
The systematic annotation of genetic variants within 
precision medicine programs has led to the discovery 
of large numbers of pathogenic variants however it has 
become clear no single strategy is universally effective 
for all diseases. Success within a disease class depends on 
multiple factors including sequence technology, patient 
selection and annotation strategy. For example, pedi-
gree sequencing has been critical in identifying disease-
causing de novo mutations driving neurodevelopmental 
disorders [165] and autism spectrum disorders [166] 
and in tracing inheritance patterns across multiple gen-
erations in condition like Huntington’s disease [167]. In 
autoimmune disease research, B-cell or T-cell receptor 
repertoire sequencing is increasingly utilised to identify 
pathogenic clonal lineages [168]. Additionally, certain 
mutation types are strongly associated with a specific 
disease class such as copy number variations (CNVs) in 
neurological and autoimmune disorders [19, 169] and 
splicing variants in Duchenne muscular dystrophy [170]. 
Careful patient selection based on genomic profiling has 
been instrumental in matching patients with targeted 
therapies as demonstrated by studies such as the NCI-
MATCH (Molecular Analysis for Therapy Choice) trial 
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[171]. Collectively these findings underscore the need 
for additional disease-specific considerations to improve 
genetic diagnosis yields.

A major obstacle to incorporating genomic data into 
clinical practice is the lack of standard procedures for 
both analysing NGS data and summarising the rel-
evant information into clinical reports. While progress 
has been made, consistent and reproducible methods 
remains essential to ensure the reliability of genomic 
results [172]. While it is widely acknowledged that 
ACMG standards and guidelines serve as the de facto 
gold standard for genetic therapy, their recommended 
datasets and workflows are often distributed across dif-
ferent online platforms and databases [173]. Further, 
laboratories often employ different tools and cutoffs, 
resulting in discrepancies in variant classification with 
such inconsistencies impacting patient care [174].

Harmonizing interpretation guidelines is crucial for 
providing clinicians with reliable genomic information 
to guide personalized medical interventions [175]. How-
ever, any standardization must remain flexible given 
the fast pace of technological advancement and evolv-
ing data types [176]. Establishing global collaborations 
and encouraging data sharing initiatives can contrib-
ute to the development of comprehensive, standardized 
guidelines such as the Global Alliance for Genomics and 
Health (GA4GH) [177]. Standardized guidelines enhance 

consistency across laboratories, improve accuracy in 
variant classification, and ultimately contribute to the 
reliability of genomic data.

The global genetic landscape is shaped by ethnic diver-
sity and influenced by historical, geographical, and demo-
graphic factors [178]. To account for this, it is important 
to establish population-specific databases to capture the 
unique genetic variations across diverse ethnic groups. 
GNOMAD, for instance, has been instrumental in cata-
loguing genetic variations across varied populations, 
offering a valuable resource for ethnicity level variant fre-
quency estimations [179]. This information can influence 
not only disease susceptibility but treatment response; 
for example, certain pharmacogenetic variants affect 
drug metabolism differently in various populations [180]. 
However establishing population-specific databases 
comes with challenges, including ethical considerations, 
data privacy, and ensuring adequate representation [181]. 
Initiatives such as ‘All of Us Research Program’ aims to 
address these issues by building inclusive, large-scale 
dataset that reflects the global genetic diversity. Such 
efforts are crucial in unravelling the complexities of 
genetic variants across distinct ethnic groups.

Future challenges
The rise of affordable sequencing technology has led 
to a growing reliance on data generated across various 

Fig. 2  Current and future challenges

 



Page 12 of 16Dukda et al. Human Genomics           (2025) 19:97 

biological levels [182]. For example, the microbiome is 
increasingly being linked to human health outcomes 
with composition shifts observed during the onset of 
many diseases such as type II diabetes [183–186]. Inte-
grating metagenomic and other multi-omic patient data 
with clinical information has the potential to improve 
prognostics and predictive accuracy of disease pheno-
types ultimately leading to better treatment and preven-
tion strategies [187, 188]. However, the analysis of these 
complex datasets remains a challenge due to the inher-
ent heterogeneity in individual omics datasets and the 
computational resources required for analysis and inte-
gration [182]. The rapid pace of change within the multi-
omics space means benchmarking studies are essential 
to ensure appropriate tools are chosen to address spe-
cific biological questions [189–191]. Future develop-
ments should prioritise reducing complexity, enhancing 
interoperability, and creating user-friendly frameworks to 
consolidate multi-omics data.

The effective application of precision medicine 
depends on precise, evidence-driven interpretation of 
genetic data, ensuring proper clinical management and 
care, while avoiding flawed conclusions that could lead 
to harm [192]. Genomic data is inherently dynamic and 
influenced by fast moving technological advancements 
meaning variants that were once classified as benign 
may need re-evaluation as new evidence emerges [193]. 
Advanced informatics and ML algorithms are poised to 
enable real-time data integration of diverse datasets, 
identifying clinically-relevant patterns that contribute 
to the continuous refinement of variant interpretation 
[194]. Such systems will empower clinicians with the 
most up-to-date variant interpretations, enhancing the 
precision and effectiveness of personalized healthcare. 
Central to this vision is working with Electronic Health 
Records (EHRs), which serve as comprehensive reposi-
tories of patient-specific data, encompassing medical 
histories, treatment responses, and other relevant infor-
mation. Incorporating EHR data into the genetic vari-
ant prioritisation process enables a holistic view of the 
patient’s health journey [195]. Embracing a patient-cen-
tric framework will allow healthcare providers to tailor 
genetic interpretations that align with individual needs, 
ultimately realising the potential of personalised patient 
care.

Conclusion
Prioritising disease-causing genetic variants is funda-
mental for progressing personalized medicine, improv-
ing clinical diagnostics, and understanding genetic 
contributions to diseases. The adoption of precision 
medicine programs underscores the importance of pri-
oritizing genetic variants, tailoring patient care based on 
genetic makeup and individual characteristics. While the 

affordability of quality sequence data has improved, sub-
stantiating the link between genes and diseases remains 
resource intensive. Accurate identification of disease-
causing variants enhances diagnostic precision, aiding in 
early detection and targeted interventions for genetic dis-
orders. Addressing current challenges today will ensure 
better precision medicine in the future.
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