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Abstract

Single nucleotide polymorphisms are the most prevalent type of DNA variation occurring at a single nucleotide
within the genomic sequence. The AVPRTa gene exhibits genetic polymorphism and is linked to neurological

and developmental problems, including autism spectrum disorder. Due to the difficulties of studying all non-synon-
ymous single nucleotide polymorphisms (nsSNPs) of the AVPR1a gene in the general population, our goal is to use

a computational approach to identify the most detrimental nsSNPs of the AVPRTa gene. We employed several
bioinformatics tools, such as SNPnexus, PROVEAN, PANTHER, PhD-SNP. SNP & GO, and I-Mutant2.0, to detect the 23
most detrimental mutants (R85H, D202N, E54G, H92P, D148Y, C203G, V297M, D148V, S182N, Q108L, R149C, G212V,
M145T, G212S,Y140S, F207V, Q108H, W219G, R284W, L93F, P156R, F136C, P107L). Later, we used other bioinformatics
tools to perform domain and conservation analysis. We analyzed the consequences of high-risk nsSNPs on active sites,
post-translational modification (PTM) sites, and their functional effects on protein stability. 3D modeling, structure vali-
dation, protein-ligand binding affinity prediction, and Protein-protein docking were conducted to verify the presence
of five significant substitutions (R284W, Y140S, P107L, R149C, and F207V) and explore the modifications induced due
to these mutants. These non-synonymous single nucleotide polymorphisms can potentially be the focus of future
investigations into various illnesses caused by AVPR1a malfunction. Employing in-silico methodologies to evaluate
AVPR1a gene variants will facilitate the coordination of extensive investigations and the formulation of specific thera-
peutic approaches for diseases associated with these variations.
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Introduction

Globally, the human genome is approximately 99.9%
identical, with individual genetic variances making up the
remaining 0.1%. These genetic differences arise from ran-
dom mutations [1]. The most ubiquitous kind of genetic
variation in humans is represented by single-nucleotide
polymorphisms (SNPs), an invaluable resource for deci-
phering complicated genetic features [2]. Missense muta-
tions, also known as non-synonymous single nucleotide
polymorphisms (nsSNPs), have the potential to induce
phenotypic diversity in humans through modifications in
protein expression [3]. Prior research suggests that non-
synonymous single nucleotide polymorphisms (nsSNPs)
contribute to around 50% of the mutations linked to dif-
ferent genetic disorders [4]. Substituting amino acids in
conserved regions can affect the structure, stability, and
function of proteins. Non-synonymous single nucleotide
polymorphisms (nsSNPs) have the potential to alter the
function of proteins, which in turn can elevate suscepti-
bility to human diseases [5]. Autism spectrum disorder
(ASD) is a severe neuropsychiatric illness that has strong
hereditary underpinnings. Nevertheless, the genetic vari-
ables that contribute to autism are quite diverse, with
several loci fulfilling distinct functions in various indi-
viduals [6].

Autism is a neurodevelopmental condition caused by
several genes, with more than 90% of cases being influ-
enced by genetics [7]. Arginine vasopressin (AVP) is
an endogenous ligand that spontaneously binds to and
stimulates AVPRI A receptors in both the peripheral
and central nervous systems. The AVPRI A, or arginine
vasopressin receptor 1A, has a profound influence on
behaviors such as forming pair bonds, providing parental
care, displaying aggression, and managing stress [8—11].
This receptor plays a crucial function in brain signal-
ing. Pharmacological approaches and the examination of
various animal models have demonstrated the benefits of
understanding the role of AVPRI A in behavior [12, 13].
AVP receptors have seven transmembrane domains and
are categorized as G-protein-coupled receptors. At least
three types of vasopressin receptors (VIR/V1a, V2R, and
V3R/V1b) have been found in humans. AVPRIa, located
on chromosome 12ql4-15, is especially relevant to
human behavioral research. This is because the specific
patterns of V1a receptor gene expression in the brain play
a significant role in the observed variations in social and
reproductive behavior within and between species. The
Vole model has demonstrated this relationship [14—16].

Preclinical research has demonstrated that arginine
vasopressin (AVP) enhances some social behaviors, such
as association and connection, through interacting with
the V1a receptor (AVPRI A) in the brain. The effects of
AVP on behavior and the location of the V1a receptor
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in the brain differ significantly among different mam-
malian species [17]. This suggests that the AVPRIa gene
is a probable candidate for susceptibility to autism [18].
Previous studies investigating familial ties have demon-
strated a strong association between the AVPRI A gene
and autism [19]. The presence of two microsatellite poly-
morphisms, RS1 and RS3, in the vicinity of the promoter
region of AVPRI A, which codes for the receptor subtype
primarily responsible for regulating behavior, has been
linked to autism and behavioral traits [20, 21]. The sever-
ity of autistic traits can be significantly influenced by a
single nucleotide polymorphism (SNP) of the AVPRIa
gene [22]. The AVPRI1a gene encodes the vasopressin V1a
receptor, one of the primary receptors for arginine vaso-
pressin (AVP). A low arginine vasopressin (AVP) concen-
tration level in cerebrospinal fluid (CSF) is an indicator
of social impairment in monkeys with low social behav-
ior and autistic children [23]. An extensive association
study was conducted involving 3 microsatellites and
twelve tag single nucleotide polymorphisms (SNPs) situ-
ated within and near the AVPRI A gene in 205 Finnish
families. This was followed by an assessment of the gene’s
promoter, which revealed a significant correlation with
autism [24]. A study was undertaken in the Korean popu-
lation to evaluate the relationship between autism spec-
trum disorder and changes in the AVPRI A promoter
region. The study used a family-based association test
(FBAT) for this purpose. The results suggest that altera-
tions in the AVPRI A promoter region may have a role in
the development of ASD and the regulation of AVPRI A
expression [25]. Here, we explored several computational
approaches to pin down non-synonymous polymor-
phisms in the human AVPRI A gene.

Materials and methods
The overall workflow of this project is shown in Fig. 1.

Retrieval of SNPs

A total of 402 nsSNPs associated with the human
AVPRIa gene were retrieved from the dbSNP database
(https://www.ncbi.nlm.nih.gov/). We collected informa-
tion on SNPs, including SNP ID, protein accession num-
ber, location, residue alteration, and global minor allele
frequency (MAF) [26]. The AVPRIa gene sequence was
sourced from Uniprot (https://www.uniprot.org). Studies
investigated the harmful effects of missense SNPs on the
AVPRI1a gene.

GeneMANIA to understand AVPR1a interactions with other
genes

GeneMANIA  (https://genemania.org/) was used
to investigate the relationship between the AVPRIla
gene and other genes based on pathways, expression,


https://www.ncbi.nlm.nih.gov/
https://www.uniprot.org
https://genemania.org/

Jibon et al. BMC Genomics (2025) 26:492

Page 3 of 21

Retrieval of
SNPs from

[ Gene of interest (AVPR1a) ]—>

Analysis of genes
related to AVPRIa

NCBI l

with GeneMANIA

] g [ Domain analysis by InterPro ]

Conservation analysis
by Predict protein.

—

Prediction of High-risk nsSNPs
consequences on ligand binding sites

}a

consequences on PTM sites.

: - (AVPR1a) protein sequence
creening obtained from UniProt
SNPnexus
E SIFT |
Polyphen |
{PROVEAN/
: High-risk nsSNPs selected
[ for further analysis
Confirmatory
Analysis
PANTHER <
_— ‘ 3D Structure predicted by
PPh-2 | AlphaFold 2
MutPred2 |

[ Prediction of High-risk nsSNPs ]

i

> Structure refinement
by ModRefiner

(G

Pathogenicity I [

Structural validation &

RMSD calculation of the

selected mutants by PyMol
.

-
Structure validated by SAVES

— Meta-SNP | RMSD calculation

L (SNAP l

- PhD-SNP

— SNPs & GO | Protein — Ligand docking
analysis by PyRx

v6.0 server & TM-score
calculated by TM-Align

I Protein Stability I l

MU Pro |
-Mutant2.0 | se— {

Protein — Protein docking
analysis by ClusPro

Interaction analysis by
Discovery Studio

)l

INPS3D |

Fig. 1 Project workflow

localization, genetics, and protein interaction. This tool
confirms the connective network between the AVPRIa
gene and other genes [27].

Screening of deleterious nsSNPs

We employed two different bioinformatics tools to evalu-
ate the likely impact of genetic variations extracted from
the dbSNP databases. The tools mentioned above used:
SNPnexus (https://www.snp-nexus.org) includes Sorting
Intolerant from Tolerant (SIFT) and Polymorphism Phe-
notyping (PolyPhen) [28]. SIFT predicts harmful nsSNPs
by examining protein homology sequences and natu-
ral nsSNP alignments. A score below 0.05 indicates that
SIFT considers the nsSNPs to have a deleterious effect on
protein function [29]. PolyPhen-2 predicts the functional

impact of amino acid substitutions on protein structure
and function using sequence-based characterization
[30]. PolyPhen generates a position-specific independ-
ent count (PSIC) score for each amino acid variant. Dif-
ferences in PSIC scores for variants indicate their direct
functional impact [31, 32]. PROVEAN is another tool we
used to screen deleterious nsSNPs. PROVEAN predicts
the functional impact of variants. A threshold value of >
—2.5 indicates a deleterious nsSNP [33].

Confirmatory analysis of the deleterious nsSNPs

We cross-checked our screened nsSNPs with another
three bioinformatics tools to reconfirm the level of
severity and deleterious nature. The biological and evo-
lutionary information for every protein-coding gene
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is compiled in PANTHER (http://pantherdb.org) [34].
PPh-2 (http://genetics.bwh.harvard.edu/pph2) predicts
how point mutations affect protein expression [35]. Mut-
pred2 (http://mutpred.mutdb.org/) is used to assess,
using molecular and biological data, the possible struc-
tural consequences of nsSNPs arising from alterations in
proteins [36].

Screening of disease-associated SNPs

To examine the association of screened nsSNPs with a
disease, PhD-SNP, SNPs&GO, and Meta-SNP were per-
formed. In order to categorize an SNP’s effect as either
disease-related or neutral, the PhD-SNP tool (https://
snps.biofold.org/phdsnp/phd-snp.html) generates an
accuracy index score from 36,000 benign and harm-
ful SNVs. It was developed and verified using the Clin-
Var dataset [37]. SNPs&GO (https://snps-and-go.bioco
mp.unibo.it/snps-and-go) assesses changes in amino
acids at a particular location in a protein [38]. SNPs&GO
and PhD-SNP are pivotal approaches based on machine
learning that leverage comparative conservation scores
derived from multiple sequence alignments [39]. In
Meta-SNP (https://snps.biofold.org/meta-snp), the out-
puts from individual predictors are combined as input,
and disease occurrence is predicted if mutations surpass
a threshold of 0.5 [40].

Functional effects of SNPs on protein stability

To determine the changes in protein stability, we used
three different tools: MUpro, I-Mutant 2.0, and INPS3D.
Protein stability assessment is commonly conducted
using the MUpro server (http://mupro.proteomics.ics.
uci.edu). This web server is built using two machine
learning techniques: Support Vector Machines (SVM)
and Neural Networks. These techniques assess how
single-site changes in amino acids affect the stability of
proteins and display the results as a rise or fall, denoted
by positive or negative scores [41]. The neural network
technique is employed by the I-Mutant 2.0 web server
(https://folding.biofold.org/i-mutant/i-mutant2.0.html).
It is applied to predict potential changes in protein stabil-
ity after mutations. A reliability index (RI) of 0 to 10, with
10 denoting the maximum dependability, is used to make
predictions. The server also assesses the degree of protein
instability and gives a free energy change number (AAG)
that shows if stability will rise or fall. A protein stability
decrease is indicated by a AAG value less than 0, whereas
an increase in protein stability is suggested by a value
greater than 0 [42]. Protein stabilities can be predicted
for both wildtype and mutant variants using a recently
developed tool named INPS3D. The INPS-MD (Impact
of Non-synonymous mutations on Protein Stability—
Multi Dimension) web server (https://inpsmd.biocomp.
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unibo.it/inpsSuite/default/index3D) was utilized for this
purpose. This tool takes into account several variables,
including the molecular weights and hydrophobicities of
the native and mutated amino acids, the alignment score
difference, the likelihood of the original residue undergo-
ing mutation, the relative solvent accessibility (RSA) of
the original amino acid, and the local energy difference
between the wildtype and altered protein structures [43].

Domain analysis of AVPR1a

We utilized a widely used computational tool, InterPro
(https://www.ebi.ac.uk/interpro/), to identify the func-
tional domains of our desired protein (AVPRIa) [44].
This application uses a database of protein families,
domains, and functional sites to find motifs and domains
of proteins and, in turn, determine their functional char-
acterization [45].

Conservation analysis

In order to evaluate the amino acid conservation pattern
within the protein sequence, we made use of the predict
protein server (https://predictprotein.org). The AVPRIa
protein’s single-letter amino acid sequence was submit-
ted for evaluation. More than thirty tools are integrated
with this service, including ConSurf and other techniques
for finding functional areas. Evolutionary conservation
was analyzed using Bayesian empirical inference [46].

Predictions of ligand binding sites

The meta-server program COACH (http://zhanglab.
ccmb.med.umich.edu/COACH/) used two comparison
techniques, TM-SITE and S-SITE, to find ligand bind-
ing templates from the BioLiP protein function data-
base in order to predict protein-ligand binding sites.
Additionally, sequence feature correlations and binding-
specific sub-structure were used. In order to anticipate
ligand binding sites (LBS), COACH employs a consen-
sus approach by combining the predictions from several
algorithms, including TM-SITE, S-SITE, COFACTOR,
FINDSITE, and ConCavity. Cluster size, PDB hits, ligand
names, consensus binding residues, and downloadable
complex structures are the factors used by the COACH
server to select the top ten models. Each model is then
given a C- scores. The expected reliability is shown by the
C-score, which has a range of 0 to 1. Higher scores cor-
respond to higher reliability [47].

Prediction of post translational modification (PTM) site

The neural network-based and frequently used program
which called NetPhos 3.1 (https://services.healthtech.
dtu.dk/services/NetPhos-3.1/) was used to estimate the
probable phosphorylation sites of the AVPRIa protein.
If a threshold score is more than 0.5, it suggests that a
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certain location is probably phosphorylated [48]. In order
to forecast probable locations of MHC-binding sites, we
employed GPS-MBA 1.0 (https://mba.biocuckoo.org/)
[49]. To identify potential SUMOylation and ubiquityla-
tion sites, we used GPS-SUMO (https://sumosp.biocu
ckoo.org/) and GPS-Uber (http://gpsuber.biocuckoo.cn/
wsresult.php) [50, 51].

3D modeling

The native structure of the AVPR1a protein was down-
loaded from the AlphaFold protein structure database
(AlphaFold DB, https://alphafold.ebi.ac.uk/) [52]. Alpha-
Fold2 predicted the rest of the mutant protein structure
[53]. The protein sequences of mutants were modified
according to the substitution of amino acid positions.
In order to minimize steric clashes, obtain precise side-
chain locations, and eliminate distracting stereochemical
violations without compromising accuracy, we employ
gradient descent in the Amber force field through Alpha-
Fold2 to predict relaxed structure [54]. The ModRefiner
tool (http://zhanglab.ccmb.med.umich.edu/ModRefiner)
was utilized to refine the predicted structure [55].

Structural validation and RMSD calculation

The selected structural model was validated using the
widely accepted server SAVES v6.0 (https://saves.mbi.
ucla.edu). This site offers tools like PROCHECK and
ERRAT to assess the overall quality of the 3D model [56].
Furthermore, the RAMACHANDRAN plot produced
by PROCHECK was used to evaluate the model’s qual-
ity [57]. The alignment of a protein’s tertiary structure
with its primary structure is evaluated by 3D verification
[58]. We utilized the pyMOL tool (https://pymol.org/2)
to compute the root-mean-square deviation (RMSD)
by superimposing the native and mutant protein struc-
tures, representing the difference between the two com-
pared models. A higher RMSD value indicates a greater
deviation between the two structures. On a scale ranging
from O to 1, the TM-score evaluates the structural simi-
larity of two models; a score of 1 denotes total similar-
ity, while lower values suggest growing dissimilarity [59].
Afterward, the template modeling score (TM-score) was
calculated by comparing the wild-type protein structure
with mutant protein structures using TM-align (https://
zhanglab.ccmb.med.umich.edu/TM-align) [60].

Protein-ligand interaction analysis

We conducted docking of all chosen ligands with
AVPRI1a using the PyRx program (https://pyrx.sourc
eforge.io) [61]. Virtual ligand screening was carried
out using the Lamarckian genetic algorithm (LGA),
which combines AutoDock and AutoDock Vina [62].
By applying AutoDock tools to convert PDB files to
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Pdbqt format and ascertain binding affinities. The grid
size was modified as per the center (XYZ axis). The
grid box center remained at coordinates X: —7.4813, Y:
4.9867, Z: 10.6823, with dimensions set to X: 109.4936,
Y: 98.4684, and Z: 130.9739 A [63]. Stronger ligand
binding ability with the target receptor is indicated by
negative values of the binding affinities of the ligands to
the receptors, which were computed in kcal/mol [64].
Discovery Studio (https://discover.3ds.com/discovery-
studio-visualizer-download) was utilized to visualize
2D and 3D interactions between ligands and proteins.
It depicted the position and size of binding sites, non-
bonding interactions, bonding angles and lengths of a
docked ligand [65].

Analyze docking results of protein-protein complex

by ClusPro

We utilized the ClusPro web server (https://cluspro.org)
to conduct protein-protein docking analysis. This tool is
extensively employed for studying protein-protein dock-
ing interactions. ClusPro offers various sophisticated
options to tailor the search procedure, such as remov-
ing unstructured protein regions, applying attraction
or repulsion forces, considering pairwise distance con-
straints, producing homo-multimers, incorporating data
from small-angle X-ray scattering (SAXS), and locating
heparin-binding sites. Based on the type of protein, six
different energy functions are accessible. Ten models,
each with a center of densely packed clusters of low-
energy docked structures, are produced by docking with
each set of energy parameters [66].

Molecular dynamics (MD) simulation

The protein-ligand complexes were subjected to MD
simulations using GROMACS [67] and the WebGro
server (https://simlab.uams.edu/). The ligand topology
files were generated using the PRODRG Server [68], with
a triclinic simulation box employed for system setup. The
complexes were solvated using the SPC water model, and
the system was neutralized by adding 0.15 M NaCl. The
simulations were performed using the GROMOS96 43al
force field. An initial energy minimization was carried
out with 5000 steps of the steepest descent algorithm.
Subsequently, the system was equilibrated under NVT
and NPT ensembles with standard parameters, main-
taining a temperature of 300 K and a pressure of 1.0 bar.
Using the Leap-frog MD integrator, the MD trajectories
were generated over a 200 ns timescale, with trajectory
snapshots taken every 0.1 ns, yielding 2000 frames for
analysis. The trajectory snapshots were subsequently ana-
lyzed to determine Rg, RMSD, RMSF, and SASA [67, 69].
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Results

Download datasets of interest

The SNPs of the AVPRIa gene were acquired from the
dbSNP database, which is widely considered the most
actively utilized and comprehensive database currently
accessible. According to the NCBI dbSNP database, the
human AVPRIa gene displayed a sum of 4190 single
nucleotide polymorphisms (SNPs). Among the entire col-
lection, there were 402 non-synonymous SNPs (nsSNPs)
(Table S1), 177 synonymous SNPs, 1625 SNPs placed in
the 3" UTR, 168 SNPs in the 5" UTR, and 893 SNPs in
intronic regions. The remaining SNPs were classified into
various categories (Fig. 2). Only the non-synonymous
single nucleotide polymorphisms (nsSNPs) were selected
for this investigation.

GeneMANIA to understand AVPR1a interactions with other
genes

GeneMANIA efficiently analyzes the other genes related
to the AVPRIa gene. The graphical representation of the
analysis is illustrated in Fig. 3. These findings suggest that
the AVPRIa gene may have a functional connection to
the co-expressed genes and could be involved in common
biological pathways. So, if any mutation occurs in the
AVPRIa gene, it may also affect the overall gene network
interactions among all the related genes.
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Screening of deleterious nsSNPs

SIFT and Polyphen score initially indicates deleterious
SNPs based on score. SIFT score 0 and polyphen score 1
denote the most deleterious nature of nsSNPs. The range
of the Polyphen and SIFT output scores is 0 to 1. We spe-
cifically chose common non-synonymous single nucleo-
tide polymorphisms (nsSNPs) that received a score of 0 in
the SIFT algorithm and a score of 1 in the PolyPhen algo-
rithm. This selection criteria ensures that only the most
harmful SNPs are included in our study. The use of the
PROVEAN tool facilitates the identification of the most
harmful SNPs through further investigation. The thresh-
old value of this tool is —2.5. The PROVEAN tool clas-
sified nsSNPs as harmful when the result was less than
—2.5. Conversely, a score greater than —2.5 is anticipated
to be neutral. Finally, we have identified a total of 23 nsS-
NPs that met the specified criteria. These nsSNPs have
been classified as having a high likelihood of impacting
protein function (Table 1).

Confirmatory analysis of the deleterious nsSNPs

Another three computational tools were applied to
reconfirm the detrimental nature of initially screened
nsSNPs to maintain the required accuracy. The combined
prediction result of PANTHER, PPh-2, and Mutpred2
contributes to finalize the number of deleterious SNPs
for further analysis (Table 2). The PANTHER tool makes
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Table 1 Risky nsSNPs screened by SIFT, Polyphen, and PROVEAN
Variant ID Nucleotides AA Variations SIFT Prediction Polyphen Prediction PROVEAN Prediction

Score Score Score

rs1260022270 /T R85H 0 De 1 PD —4.557 De
rs1267958616 /T D202 N 0 De 1 PD —4.955 De
rs1321994497 T/C E54G 0 De 1 PD —6.152 De
rs1325662981 T/G H92P 0 De 1 PD -9.126 De
151337643184 C/A D148Y 0 De 1 PD -8.744 De
1338176647 A/C C203G 0 De 1 PD -11.893 De
151369668995 (@) V297M 0 De 1 PD —2.867 De
rs1377891669 T/A D148V 0 De 1 PD —8.744 De
11417441306 /T S182N 0 De 1 PD —2.931 De
151424280726 T/A Q108L 0 De 1 PD -6.529 De
11440280008 G/A R149 C 0 De 1 PD —7.772 De
11449556252 C/A G212V 0 De 1 PD -8918 De
rs369710823 A/G M145T 0 De 1 PD -5.810 De
rs376518166 (@2) G212S 0 De 1 PD —5.946 De
15745458336 T/G Y140S 0 De 1 PD —8.344 De
15748572296 A/C F207V 0 De 1 PD -6.937 De
rs754449459 T/A Q108H 0 De 1 PD —4.663 De
15758567125 A/C W219G 0 De 1 PD —12.884 De
rs767540299 G/A R284 W 0 De 1 PD —7.070 De
15772227542 G/A L93F 0 De 1 PD -3.650 De
15773269527 G/C P156R 0 De 1 PD —8.794 De
rs776488571 A/C F136 C 0 De 1 PD —7.712 De
rs780705756 G/A P107L 0 De 1 PD -9.216 De

De Deleterious, P D Probably Damaging
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Table 2 Confirmatory assessment of screened deleterious nsSNPs through PANTHER, PPh-2, and Mutpred?2
Variant ID Nucleotides AA Variations PANTHER PPh-2 Prediction MutPred2
Score Score
rs1260022270 /T R85H PD 1 PD 0.534
1s1267958616 T D202 N PD 1 PD 0.841
rs1321994497 T/C E54G PD 1 PD 0.807
rs1325662981 T/G H92P PD 1 PD 0.898
rs1337643184 C/A D148Y PD 1 PD 0.945
rs1338176647 A/C 203G PD 1 PD 0.967
rs1369668995 T V297M PD 1 PD 0.646
rs1377891669 T/A D148V PD 1 PD 0.936
151417441306 /T S182N PD 1 PD 0.756
rs1424280726 T/A Q108L PD 1 PD 0.877
11440280008 G/A R149 C PD 1 PD 0.930
rs1449556252 C/A G212V PD 1 PD 0.867
rs369710823 A/G M145T PD 1 PD 0.882
1s376518166 /T G212S PD 1 PD 0.781
rs745458336 T/G Y140S PD 1 PD 0.852
1748572296 A/C F207V PD 1 PD 0.931
15754449459 T/A Q108H PD 1 PD 0.802
1758567125 A/C W219G PD 1 PD 0.926
15767540299 G/A R284 W PD 1 PD 0.757
15772227542 G/A 93 F PD 1 PD 0.820
15773269527 G/C P156R PD 1 PD 0.942
15776488571 A/C F136 C PD 1 PD 0.823
rs780705756 G/A P107L PD 1 PD 0.854

P D Probably Damaging

a prediction about how the nsSNPs will affect the way the
protein functions. Every screened nsSNP in PPh-2 was
predicted to be harmful (PSIC >0.5); these variants were
expected to be extremely harmful, with a PSIC score of 1.
The MutPred?2 score shows how likely it is that a change
in an amino acid will impact the function of the protein.
Pathogenicity is predicted to be using a score threshold of
0.5. The higher the score, the more probable it is that an
amino acid substitution is linked to a particular disease.

Screening of disease-associated SNPs

It is very crucial to identify nsSNPs related to disease
for further analysis. The Meta-SNP algorithm detected
22 nsSNPs that were associated with disease, excluding
D202 N (rs1267958616). The G212S (rs376518166) muta-
tion was classified as neutral by SNAP, but the remain-
ing mutations were deemed to be associated with disease.
The PhD-SNP analysis identified a total of 3 nsSNPs
that were determined to be neutral: E54G, V297M, and
R284 W and the rest of the nsSNPs were confirmed to
be disease-causing. The SNPs & GO software identifies a
total of 23 nsSNPs that are associated with disease. The

comprehensive forecast outcomes are succinctly outlined
in Table 3.

Impact of screened nsSNPs on the stability of proteins
According to the MU Pro tool, Q108L and P107L make
the protein more stable, whereas the remaining 21 nsS-
NPs were projected to make less stable, which would
reduce the protein activity. I-Mutant2.0 detected S182 N
and Q108L increased, and the remaining were decreased
the the protein stability. The indicated structural effect of
23 possible nsSNPs was acquired from INPS3D. The out-
puts of the protein stability evaluation are presented in
Table 4.

Detection of nsSNPs on the AVPR7a domains

InterPro predicted two functional domains of AVPRIa,
which are (GPCR_Rhodpsn_7 TM) Seven-transmem-
brane rhodopsin-like G protein-coupled receptors
domain (from amino acid 68 to 348), (VIR_C) Con-
served C-terminal domain of Vasopressin V1 recep-
tors (from amino acid 372 to 418) (Fig. 4). This domain
analysis result indicated that 22 out of 23 nsSNPs are
positioned in the large GPCR_Rhodpsn_7 TM domain.
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Table 3 Prediction of disease-associated SNPs by Meta-SNP, SNAP, PhD-SNP, and SNPs & GO

Variant ID Nucleotides AA Variations Meta-SNP SNAP PhD-SNP SNPs & GO
rs1260022270 /T R85H 0.659 Di 0.590 Di 4 Di 7 Di
rs1267958616 (@4} D202 N 0.481 Ne 0.720 Di 5 Di 3 Di
rs1321994497 T/C E54G 0.766 Di 0.740 Di 3 Ne 9 Di
1s1325662981 T/G H92P 0.900 Di 0.775 Di 5 Di 10 Di
rs1337643184 C/A D148Y 0932 Di 0.840 Di 8 Di 9 Di
151338176647 A/C C203G 0.905 Di 0.850 Di 5 Di 9 Di
rs1369668995 /T V297M 0.809 Di 0.755 Di 1 Ne 9 Di
151377891669 T/A D148V 0.928 Di 03815 Di 8 Di 10 Di
rs1417441306 /T S182N 0.727 Di 0.735 Di 3 Di 9 Di
151424280726 T/A Q108L 0.568 Di 0.530 Di 5 Di 9 Di
rs1440280008 G/A R149C 0911 Di 0.805 Di 5 Di 9 Di
rs1449556252 C/A G212V 0.742 Di 0.525 Di 4 Di 8 Di
rs369710823 A/G M145T 0.773 Di 0.590 Di 4 Di 9 Di
1s376518166 (@4} G212S 0.653 Di 0310 Ne 3 Di 6 Di
rs745458336 T/G Y140S 0.841 Di 0.705 Di 6 Di 9 Di
15748572296 A/C F207V 0.721 Di 0.690 Di 3 Di 9 Di
15754449459 T/A Q108H 0.649 Di 0.550 Di 2 Di 8 Di
rs758567125 A/C W219G 0.839 Di 0.825 Di 6 Di 9 Di
1s767540299 G/A R284 W 0.751 Di 0.695 Di 0 Di 6 Di
15772227542 G/A L93F 0.765 Di 0.710 Di 2 Ne 7 Di
rs773269527 G/C P156R 0.900 Di 0.815 Di 0 Di 9 Di
15776488571 A/C F136 C 0.825 Di 0.615 Di 5 Di 9 Di
15780705756 G/A P107L 0.547 Di 0.640 Di 7 Di 8 Di

DiDisease, Ne Neutral

Polymorphism in the domain area could significantly
alter the activity of protein.

Conservation analysis

The research conducted by the Conservancy demon-
strated a significant level of preservation in both the
structure and function of all AVPRIa residues. Pre-
dict protein server provides 3 types of conservation
scores: 1-3 (Minimal), 4—-6 (Mid-level), 7-9 (high). We
focused solely on the 7-9 scoring residues correspond-
ing to the residues in the highly conserved region (Fig-
ure S2). We noticed that all 23 detected nsSNPs were
present in the highly conserved region (Table 5). Prior
research has demonstrated that essential amino acids,
which play an active role in multiple biological func-
tions, are important. All of these are situated within a
protein’s conserved area. Therefore, it may be inferred
that non-synonymous single nucleotide polymor-
phisms (nsSNPs), which exhibit a high degree of con-
servation, have a significant detrimental impact on
both the structural and functional characteristics of
the AVPRIa protein.

High-risk nsSNPs consequences on ligand binding sites

We employed the COACH server to forecast the ligand
binding location of the AVPRIa protein. The COACH
server utilizes a combination of programs from TM-
SITE, S-SITE, COFACTOR, FINDSITE, and ConCavity
to estimate the combined output. The predicted binding
site residues are E54, Q108, W111, Q131, V132, M135,
F136, D202, C203, W204, F207, Q209, K128, W304,
F307, F308, M220, 1224, S338, A334, Q311. We noticed
that E54, Q108, F136, D202, C203, and F207 positions
matched our screened highly deleterious nsSNPs. Hence,
we can conclude that mutation of these positions can sig-
nificantly alter the function of the protein due to active
site modifications.

High-risk nsSNPs consequences on post-translational
modification (PTM) site

NetPhos 3.1 tool predicted probable 43 phosphoryla-
tion sites in the AVPRIa protein (Table S2). The positions
are $4, S16, T23, T28, S29, T61, S70, T79, T83, S84, 594,
T114, S138, Y150, S167, S182%, T183, Y186, S190, T206,
S213, T234, S253, S256, S278, S281, S283, T289, T323,
S338, S341, S380, S382, T386, Y388, S389, S393, S397,
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Table 4 Results of protein stability changes due to the nucleotide polymorphisms predicted by MU Pro, I-Mutant2.0, and INPS3D

Variant ID Nucleotides AA Variations MU Pro Score I-Mutant2.0 Score INPS3D Score
rs1260022270 /T R85H Decrease —1.0977846 Decrease 8 Decrease —0.229538
1s1267958616 /T D202 N Decrease —0.43786389 Decrease 5 Decrease —0497514
151321994497 T/C E54G Decrease -1.6185617 Decrease 9 Decrease —0.792783
11325662981 T/G H92P Decrease —-0.88200575 Increase 6 Decrease —1.14777
1s1337643184 C/A D148Y Decrease —0.95038532 Decrease 3 Decrease -0.1177
151338176647 A/C C203G Decrease —1.9037191 Decrease 8 Decrease —3.26869
rs1369668995 /T V297M Decrease —0.60384266 Decrease 8 Decrease —0434777
rs1377891669 T/A D148V Decrease —0.88691156 Decrease 2 Increase 1.16615
151417441306 /T S182N Decrease —0.32708786 Increase 3 Decrease —0452437
rs1424280726 T/A Q108L Increase 036395533 Increase 2 Increase 0.0731143
rs1440280008 G/A R149C Decrease —0.54728157 Decrease [§ Decrease —0.0546847
rs1449556252 C/A G212V Decrease —0.39457627 Decrease 6 Decrease -0.851292
1369710823 A/G M145T Decrease —2.6523221 Decrease 8 Decrease -1.91913
1s376518166 /T G212S Decrease —-0.92599754 Decrease 9 Decrease —0.119486
rs745458336 T/G Y140S Decrease —1.845721 Decrease 6 Decrease —1.85495
15748572296 A/C F207V Decrease —0.82949321 Decrease 8 Decrease —1.16988
15754449459 T/A Q108H Decrease —0.51365487 Decrease 8 Decrease —0.262685
1s758567125 A/C W219G Decrease —1.9396669 Decrease 9 Decrease —2.75964
1767540299 G/A R284 W Decrease —1.0222554 Decrease 4 Decrease —0438376
15772227542 G/A L93F Decrease —0.91229984 Decrease 8 Decrease —1.7408
15773269527 G/C P156R Decrease —0.63828646 Decrease [§ Decrease —0475707
15776488571 A/C F136 C Decrease —0.23947682 Decrease 7 Decrease —0.928974
15780705756 G/A P107L Increase 0.083468873 Decrease 4 Decrease —041095
. Matched high-risk nsSNP in MHC binding sites
- Matched high-risk nsSNP in phosphorylation sites
GPCR_Rhodpsn_7TM Domain VIR_C Domain
1 68 348 372 418

Fig. 4 Schematic representation of the matched high-risk nsSNPs in the MHC binding and phosphorylation sites (PTM sites) into the domain area
of the AVPR1a protein

5404, S407, S408, S410, S417 (Figure S3). Among them,
S182 position matched our predicted highly damaging
nsSNPs. To unveil the positions of the MHC binding
sites of AVPRI1a protein, we employed GPS-MBA 1.0 tool
(Table S3). The position ranges are 22—33, 26—34, 29-37,
96-104, 100-108, 154—-162, 253-261, 260-268, 273-281.
In the position range 100-108, we found 107 and 108
positions which match our screened risky nsSNPs. The
presence of highly damaging nsSNPs of these PTM sites

clearly indicates that mutation of those positions can sig-
nificantly affect protein activities (Fig. 4). We also predict
SUMOylation and ubiquitylation sites of AVPRIa pro-
tein, but none was found in our screened risky nsSNPs.

3D modeling

We predicted the 3D structures of all 23 mutants using
AlphaFold2. We utilized the platform AlphaFold2 colab
to perform structure prediction. We used relax number
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Table 5 Conservation analysis results of identified 23 mutants
evaluated by predict protein server

Variant ID AA Predict Protein
substitution
Score Prediction

rs1260022270 R85H 7-9 Highly conserved
151267958616 D202 N 7-9 Highly conserved
rs1321994497 E54G 7-9 Highly conserved
rs1325662981 Ho2P 7-9 Highly conserved
151337643184 D148Y 7-9 Highly conserved
rs1338176647 C203G 7-9 Highly conserved
rs1369668995 V297M 7-9 Highly conserved
rs1377891669 D148V 7-9 Highly conserved
rs1417441306 S182N 7-9 Highly conserved
rs1424280726 Q108L 7-9 Highly conserved
rs1440280008 R149 C 7-9 Highly conserved
151449556252 G212V 7-9 Highly conserved
rs369710823 M145T 7-9 Highly conserved
1s376518166 G212S 7-9 Highly conserved
rs745458336 Y140S 7-9 Highly conserved
15748572296 F207V 7-9 Highly conserved
15754449459 Q108H 7-9 Highly conserved
15758567125 W219G 7-9 Highly conserved
15767540299 R284 W 7-9 Highly conserved
15772227542 L93F 7-9 Highly conserved
15773269527 P156R 7-9 Highly conserved
15776488571 F136 C 7-9 Highly conserved
15780705756 P107L 7-9 Highly conserved

5 for all of the mutants to predict the proper relaxed
structure. We used modified protein sequences for all 23
mutants according to their mutation position changes.
The predicted protein structures were downloaded in
PDB format. We got wild-type protein sequence from the
UniProt database and downloaded wild-type structure
from the AlphaFold Protein Structure Database (Figure
S1).

Structural validation and RMSD calculation

The modeled structures were validated by the SAVES
v6.1 server, and the evaluation of the secondary struc-
ture was conducted using the RAMACHANDRAN
plot. The RAMACHANDRAN plot revealed that a sig-
nificant proportion of the residues of amino acids in the
projected structures occupied a region with a signifi-
cant level of favorability. The comprehensive validation
results, RMSD values, and TM scores for all mutants are
presented in Table 6. We calculated the RMSD of all 23
mutants using PyMOL (Fig. 5) and nominated 5 mutants
(R284 W, Y140S, P107L, R149 C, and F207 V) based on
the maximum RMSD value (Fig. 6). TM scores of all
screened mutants also indicate the structural similarity
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and dissimilarity between the native and mutant protein
models.

Protein-ligand interaction analysis

As we know, our targeted gene is associated with autism,
so for molecular docking analysis, we used 93 compounds
with potential for autism treatment as references that are
also available in the drug bank, including approved and
clinical trial drugs category (Table S4). Our primary goal
is to assess the variation in protein-ligand interactions
between native and mutant proteins. We downloaded our
reference compound structures in sdf format from the
PubChem database. After molecular docking analysis, we
selected the top 3 compounds for each target based on
maximum binding affinity. The selected top 3 drug com-
pounds represent lead molecules for each mutated vari-
ant and may have the potential to work properly against
those reported deleterious SNPs (Table 7). We used Dis-
covery Studio to visualize the 2D interactions (Fig. 7). We
found significant differences between native and mutants
in binding affinity and interacting residues responsible
for hydrogen and hydrophobic bond formation (Table 7).
In some cases, we got utterly new best-binding molecules
compared to the native protein binding interaction pro-
file. For example, Mutant F207 V exhibits an entirely new
binding interaction profile compared to the native pro-
tein. Hence, we can conclude that polymorphisms can
drastically alter the protein’s conformation.

Analyze docking of protein-protein complex by ClusPro

To assess the variation of the protein-protein docking
results, we used native protein as a reference protein and
evaluated the changes against the mutants. We perform
protein-protein docking among 6 protein-protein com-
plexes. These are Native-Native, Native-F207 V, Native-
P107L, Native-R149 C, Native-R284 W, Native-Y140S.
We noticed significant variation in the binding energy
among the 6 complexes (Fig. 8). Thus, we can conclude
that mutations can significantly alter the structural and
functional characteristics of the protein.

Assessment of MD simulation trajectories

Molecular dynamics (MD) simulations are an essential
computational method for studying the conformational
flexibility, thermodynamic stability, and time-dependent
behavior of biomolecular systems [64]. We performed
a 200 ns molecular dynamics simulation to validate the
docking outputs and the dynamic behaviour of the best
resulting drug molecules against the five nominated
mutated variants of the target gene in the cellular envi-
ronment. After the simulation was completed, the
dynamic trajectories were examined, and various metrics
such as root-mean-square deviation (RMSD), radius of
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Table 6 Structural validation and RMSD calculation results of all the 23 High-risk nsSNP mutants by several rigorous analysis tools

AA substitution ERRAT PROCHECK Alpha Fold PyMOL TM Align
Score Core Allow Generously Disallowed Relax Number RMSD TM score
R85H 91.8182 80.3% 14.2% 4.0% 1.6% 5 0.543 0.84317
D202 N 933131 81.4% 13.8% 4.3% 0.5% 5 0.528 0.82517
E54G 94.4444 80.5% 15.4% 2.7% 1.4% 5 0.440 0.78985
H92P 93.2927 80.2% 13.6% 3.5% 2.7% 5 0.494 0.83291
D148Y 947531 82.2% 12.4% 3.5% 1.9% 5 0.506 0.81940
C203G 90.8012 80.8% 14.1% 3.8% 1.4% 5 0.529 0.82390
V297M 93.0303 81.9% 13.0% 3.2% 1.9% 5 0.543 0.82911
D148V 91.8429 80.3% 14.1% 4.1% 1.6% 5 0.562 081979
S182N 90.7186 81.4% 13.6% 3.7% 1.3% 5 0.529 0.83106
Q108L 93.0091 80.5% 14.1% 3.8% 1.6% 5 0.502 0.82449
R149 C 92.1687 81.1% 13.2% 4.1% 1.6% 5 0.601 0.81542
G212V 95.5836 80.5% 15.6% 2.5% 1.3% 5 0.529 0.82035
M145T 93.1138 81.9% 13.0% 3.5% 1.6% 5 0463 0.81857
G212S 954268 82.5% 12.1% 4.0% 1.3% 5 0.540 0.81713
Y140S 95.2681 81.4% 14.1% 3.2% 14% 5 0.568 0.82421
F207V 91.489%4 81.1% 13.8% 4.6% 0.5% 5 0.565 0.80465
Q108H 925 80.1% 14.2% 3.8% 1.9% 5 0490 0.82186
W219G 94.1358 80.8% 13.8% 4.1% 1.4% 5 0.510 0.82389
R284 W 92.9664 82.2% 12.4% 3.5% 1.9% 5 0.589 0.82516
L93F 92.8144 81.4% 12.4% 4.9% 14% 5 0482 0.83330
P156R 94.3925 81.9% 13.5% 3.5% 1.1% 5 0514 0.81200
F136 C 95.1515 82.7% 10.8% 4.1% 24% 5 0.507 0.81425
P107L 94.1935 80.8% 15.4% 2.0% 1.9% 5 0.608 0.80210

gyration (Rg), solvent-accessible surface area (SASA), and
root-mean-square fluctuation (RMSF) were determined
(Figs. 9 and 10). To understand the dynamic profiling of
the native AVPRI A protein, we simulated it. We consid-
ered it as a control (AVPR1 A_APO) to evaluate the flex-
ibility potential of the mutated protein form in complex
with the best binding drug molecules (Y140S_ 115237,
R149 C_115237, R284 W_5073, P107L_213046, and F207
V_46200932). The PubChem CIDs of the studied com-
pounds were retrieved as: Paliperidone (115237), Ris-
peridone (5073), Lurasidone (213046), and Balovaptan
(46200932).

The stiffness or flexibility of the ligand-protein com-
plexes was evaluated based on their radius of gyration
(Rg) values. Increased Rg values indicated greater con-
formational instability, while reduced Rg values reflected
a more stable and rigid complex formation. Analysis of
the Rg revealed that all protein-ligand complexes exhib-
ited lower Rg values compared to the native (unbound)
protein, suggesting increased structural compactness
upon ligand binding (Fig. 9a). Among the complexes,
R284 W_5073 displayed the most rigid Rg profile, indi-
cating enhanced conformational stability. Notably,
while significant fluctuations were observed in most

complexes during the initial 0-100 ns simulation period,
all complexes attained stability in the 101-200 ns time-
frame, demonstrating sustained structural integrity over
extended dynamics. To evaluate the firmness of the pro-
tein-ligand complexes, the root-mean-square deviation
(RMSD) was measured and examined. Initial fluctuations
(0-50 ns) were observed in all complexes except for the
P107L_213046 complex, which exhibited relatively stable
behavior. Notably, four out of the five complexes (R149
C_115237, R284 W_5073, P107L_213046, and F207
V_46200932) achieved equilibrium after 51 ns and main-
tained stable conformations until the end of the simula-
tion (200 ns). In contrast, the Y140S_115237 complex
displayed a fluctuating nature but still holds its potential
as compared to the RMSD profile of the control (Fig. 9b).

To examine ligand-induced conformational changes
and stabilization in the protein, Root Mean Square
Fluctuation (RMSF) analysis was performed. Except
Y140S_115237, all the complexes displayed an over-
all similar range of fluctuations compared to the con-
trol, suggesting desirable protein residue flexibility. The
Y140S_115237 complex exhibited a bit higher fluctua-
tions, particularly within the residue region 380-418
(Fig. 10a). An analysis of the Solvent Accessible Surface
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Fig. 5 RMSD line graph of selected deleterious mutants

Area (SASA) was conducted to assess protein folding,
structural stability, and the influence of ligands on the
protein’s surface area. We noticed that all ligand-bound
complexes exhibited a significantly reduced solvent-
accessible surface area (SASA) profile compared to the
control (AVPR1 A_APO) over the entire 200 ns simula-
tion trajectory. The persistently lower SASA values of
all the complexes suggest enhanced structural compact-
ness and stability, indicative of tighter packing and more
favorable ligand-induced conformational dynamics
(Fig. 10b). This consistency underscores the thermody-
namic stability of the complexes, aligning with criteria for
optimal binding interactions and reinforcing their poten-
tial as promising candidates for further investigation.

Discussion

In this study, we utilized several in silico tools to identify
the most detrimental missense mutations in the AVPRIa
gene. We successfully identified 23 highly deleterious
nsSNPs with a strong potential to impact AVPR1a gene
activity drastically. To determine the most significant
genetic alterations, an approach combining predictions
from multiple tools was employed to examine the nsS-
NPs in the AVPR1a gene that have a high likelihood of
impacting biological processes. AVP and AVPRIa have
already been shown to be related to anxiety-like behavior

in multiple studies [70, 71]. AVPRIa gene methylation is
directly associated with social behavioral changes [72].
A previous research study identified two microsatellite
polymorphisms in the 5" flanking region of the AVPR1a
gene in 115 autism trios. Furthermore, they successfully
screened approximately 2 kb of the 5” flanking region
and the coding region, identifying 10 single nucleotide
polymorphisms (SNPs) [17]. Another study suggests that
variations in the noncoding regions of the vasopressin
la receptor gene (AVPRIa) are associated with a range
of socioemotional traits in voles, chimps, and humans.
These variations may influence behavioral changes
by altering gene expression at specific sites [73]. The
AVPRIa gene plays a key role in regulating social behav-
iors, including social interaction, social recognition, pair
bonding, and aggression, primarily by encoding the vaso-
pressin receptor 1 A (V1aR). Due to a single nucleotide
polymorphism (SNP) or point mutation in the AVPRIa
gene, changes in gene expression occur, which could
directly contribute to autism. For instance, the SNP of
the AVPRI1a gene (rs1042615) was identified in a previ-
ous study on autism susceptibility [18]. Altered vasopres-
sin signaling may affect emotional processing and social
memory in ASD.

Additionally, polymorphism in the AVPRla gene is
directly responsible for other health conditions, such
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Fig. 6 Comparison between native protein structure and nominated 5 mutant forms (R284 W, Y140S, P107L, R149 C, and F207 V). The green color

denotes native residues, while the mutated residues are yellow

as pain. The SNP of the AVPRIa gene (rs10877969) was
previously identified as a candidate pain SNP, found in
the promoter region of the AVPRIa gene on chromo-
some 12 [74]. The AVPRIa gene (12q14-15) has three
microsatellite loci ((GT),5, RS1, and RS3) that are func-
tionally significant in its promoter region [75]. The
RS3 microsatellite is associated with altruism [76] and
autism [17], while RS1 is responsible for Novelty Seek-
ing and Harm Avoidance variation [20] and autism [21].
The role of the AVPRIa gene in regulating social behav-
ior is supported by experimental research conducted in
animal model: in particular, AVPRI A antagonist led to
a reduction in aggression [77], while decreased AVPRI
A resulted in reduced anxiety and social behavior defi-
cits in voles [73]. The promoter region of AVPRI A has

polymorphisms that may interact differently with spe-
cific transcriptional factors, affecting quantitative aspects
like sociality in autistic children [25]. This volume of data
persuades us that the AVPRIa gene should be a prime
candidate for our rigorous investigation, aligning with
the theme of this study.

We utilized the NCBI dbSNP database to identify all
available SNPs for the AVPRIa gene. We then utilized
GeneMANIA to assess the overall related gene network
interaction types of the AVPRIa gene. After that, screen-
ing began with all accessible non-synonymous SNPs of the
AVPRIa gene. Figure 2 shows the segmental SNP distribu-
tion graph of the AVPRIa gene. In this study, rs1260022270,
rs1267958616, rs1321994497, rs1325662981, rs1337643184,
rs1338176647, rs1369668995, rs1377891669, rs1417441306,
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Table 7 Binding affinities and Interacting residues of protein ligands of native AVPRTa and mutant R284 W, Y140S, P107L, R149 C, and
F207V that acquired through molecular docking and non-bond interaction analysis

Protein-Ligands Binding  Hydrogen bond Hydrophobic Protein-Ligands Binding  Hydrogen bond Hydrophobic
affinities Interactions Interactions affinities Interactions Interactions
Native- Lurasidone -85 THR183 PHE187, PRO184, P107L- Lurasidone  —83 ALA215 TRP211,
ALA215,TRP211, TRP219,
TRP219 ALA215,VAL188
Native- Paliperi- —82 ASN196, GLY6, ALAS5, ILE192, P107L- Balovaptan ~ —82 ALA215 ILE208, PRO184,
done PHE207 ALA9 PHE187,
VAL188, ALA215
Native- Bosentan -8.0 SER213, SER314, ALAS5, SER4, ILE330  P107L- Paliperidone —8.1 ALA215 ILE208, VAL188,
GLN311 ALA215
F207 V- Balovaptan —8.2 ILE208, VAL207, PHE187, TRP219, R149 C- Paliperi- -85 SER4, ARG116, TRP204,
PHE187 VAL188, ALA215, done ASN195, TRP111
ILE208 ASN196, SER325
F207 V- Naltrexone  —8.0 ARG214,VAL315 TRP322, ALAS R149 C- Leucovorin -84 TRP111, ARG116, ALAS
TRP322, ALAS, GLY6,
ASP8, ASP112,
TYR115
F207 V- Risperidone 8.0 THR218 ALA215, VAL207, R149 C- Lurasidone  —8.1 ASN196, PRO7,VAL197
ILE208 SER4, ASP44
R284 W- Risperi- —8.7 ARG116, ASN196, TRP204, ARG2, Y140S- Paliperidone -84 SER4, ASP44, ALAS, TRP204,
done ASN195, SER325, TRP111,VAL197 VAL321, ALAS, VAL321
ASP202 TRP322
R284 W- Piperacillin -84 ARG116, ASN195, PRO41, VAL197 Y140S- Lurasidone  —8.3 SER4, ASN196, PRO7
GLU324, SER325, ALA5, VAL194
ARG2
R284 W- Paliperi- -83 SER213, ALA5, GLY6, TRP322, GLY6, PRO7, Y140S- Brexpipra-  —8.1 ARG214, TRP322, SER325, TRP204,
done PRO7, ASP8 ALAS zole ALAS ALAS

rs1424280726, rs1440280008, rs1449556252, rs369710823,

rs376518166, rs745458336, rs748572296, rs754449459,
rs758567125, r1s767540299, rs772227542, rs773269527,
rs776488571, rs780705756 are considered most risky

among total 402 non-synonymous SNPs of the AVPRIa
gene according to our meta-analysis by different reliable
computational methods. We initially screened deleterious
nsSNPs and then performed confirmatory analysis and
disease association studies for those nsSNPs. We predicted
the probable impact of screened SNPs on the stability of
the protein. Domain analysis identified two functional
domains, and the output confirms the presence of 22 nsS-
NPs out of 23 in the functional domain area. Then, Con-
servation analysis was employed to identify the highly
conserved regions of the target protein and pinpoint the
screened risky nsSNPs within those regions of the pro-
tein. Post-translational modification (PTM) site prediction
identified probable PTM sites, and the prediction of ligand
binding sites pinpointed the active sites of our desired pro-
tein. We identified high-risk nsSNP consequences at both
PTM sites and active sites of the AVPR1a protein, indicat-
ing that protein function may be significantly altered due to
these polymorphisms in crucial sites of the protein. Homol-
ogy modeling with AlphaFold2 was used to generate a
relaxed 3D model of the protein sequences of mutants, and

the wild-type structure was downloaded from the Alpha-
Fold Protein Structure Database. Structure validation was
necessary to assess the accuracy level of the modeled struc-
tures, and we utilized the SAVES v6.1 server to validate
these three-dimensional protein structures.

RMSD calculation measures the structural changes of
protein due to mutations. Figure 5 presents the RMSD of
all selected mutants in a line graph format. High RMSD
mutants, including R284 W, Y140S, P107L, R149 C,
and F207 V, were nominated as the 5 most detrimental
variants. PyRx was used to assess the variation in pro-
tein-ligand binding affinities among native and mutant
proteins. We docked 93 reference ligands to both wild-
type and 5 nominated mutants. For the F207 V variant,
Balovaptan, Naltrexone, and Risperidone were the top
three compounds with the best binding energy profiles,
suggesting potential efficacy against this mutant. Simi-
larly, for P107L, the most promising compounds were
Lurasidone, Balovaptan, and Paliperidone; for R149 C,
Paliperidone, Leucovorin, and Lurasidone; for R284
W, Risperidone, Piperacillin, and Paliperidone; and for
Y140S, Paliperidone, Lurasidone, and Brexpiprazole.
These compounds exhibited strong binding affinities and
may have therapeutic potential against their respective
mutant variants. Furthermore, post-docking analysis was
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Fig. 7 2D visual representation of wild protein and mutant variants (R284 W, Y140S, P107L, R149 C, and F207 V) with ligands including their binding
residues

carried out using Discovery Studio to evaluate non-bond  structure and to identify potential compounds that are
interactions. The purpose of docking is to examine how  feasible for working against target mutant variants. To
the activity of binding ligands correlates with 3D protein ~ observe the disparity in protein-protein interaction
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Native — F207V: -2073.4 Kcal/mole

Native — P107L: -2118.4 Kcal/mole

Native — R149C: -2332.1 Kcal/mole

Native — Native: -2181.3 Kcal/mole

Native — R284W: -2206.2 Kcal/mole

Fig. 8 Binding affinities of 6 protein-protein complexes analyzed by ClusPro

levels, we utilized a widely used server called ClusPro.
We observed significant variations in both protein-pro-
tein and protein-ligand docking outputs. Those signifi-
cant variations suggest a noticeable impairment in the
AVPRIa protein due to polymorphisms. We carried out a
200 ns molecular dynamics simulation to verify the dock-
ing outcomes and analyze the structural dynamics of the
most promising drug molecules when bound to the five
specified mutant forms of the target gene in an artificially
produced relevant environment [78]. A detailed evalua-
tion of dynamic properties was conducted by computing

Native — Y 1408S: -2196.9 Kcal/mole

critical metrics—including RMSD, RMSF, SASA, and
Rg—from MD simulation data. The results collectively
indicated stable structural conformations in most pro-
tein-ligand systems. All complexes showed consider-
able dynamic trends in MD simulations, reflecting stable
binding affinities and confirming the structural robust-
ness. The research methodology employed in this study
is based on establishing a connection between the altera-
tions and their molecular effects on the protein. When
numerous programs or tools are used to achieve a single
goal, the results are more dependable since each operates
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Fig. 10 a RMSF and b SASA, analysis of the unligated control (AVPR1 A_APO) and (Y140S_115237,R149 C_115237,R284 W_5073, P107L_213046,
and F207 V_46200932) complex. For each system, the MD simulations were performed for 200 ns

using a different algorithm. Even though our screened
highly detrimental nsSNPs in this study were not tested
under laboratory conditions, such as in vitro or other
assays related to identifying the functional significance
of mutations, the overall findings, obtained through
rigorous meta-analysis using different computational
approaches, highly prioritized those nsSNPs for further
laboratory studies and clinical assessments. To further
understand the specific function of these harmful nsS-
NPs on the AVPRIa gene, thorough wet lab research and
trials on various model species may be beneficial. Future

genome association studies will be capable of identify-
ing damaging SNPs associated with specific patients with
autism and other health conditions based on the findings
of this study.

Conclusion

This study employed in-silico analysis to investigate
the potential impact of nsSNPs on the structure, func-
tion, and stability of the AVPRIa protein. The presence
of 23 mutations likely caused impairment in the struc-
ture and function of the AVPRIa protein, potentially
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affecting its activity. We evaluated the influence of 23
non-synonymous single nucleotide polymorphisms on
changes in protein stability and functional alterations.
Additionally, we predict functional domains, probable
active sites, and PTM sites of the AVPRIa protein and
unveil the consequences of the presence of high-risk
nsSNPs in these domain areas, ligand binding sites, and
PTM sites. We propose 5 mutants based on high RMSD
values. Then, we evaluated the variation in several
interaction profiles between native and mutant proteins
through analysis of protein-ligand and protein-protein
docking interactions. It exhibits the effects of mutants
on the protein’s conformational changes, such as altera-
tions in protein structural and functional properties. To
fully understand and analyze these data on SNPs, it is
necessary to conduct comprehensive clinical trials that
include a diverse population. Additionally, experimen-
tal studies focusing on mutations are required to vali-
date the findings.
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