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Accuracy of stochastic finite element analyses for the safety 
assessment of unreinforced masonry shear walls
Lewis J. Goocha,b, Mark G. Stewartb and Mark J. Masiaa

aCentre for Infrastructure Performance and Reliability, The University of Newcastle, Callaghan, Australia; 
bCentre for Built Infrastructure Resilience, University of Technology Sydney, Ultimo, Australia

ABSTRACT  
To examine structural safety and reliability, an accurate prediction 
of the variability of structural resistance must first be determined. 
This may be achieved through extensive physical testing or, more 
commonly in modern research, synthetic data generation, such as 
stochastic finite element analyses (SFEAs). Due to the prevalence 
and versatility of such techniques, and the need for a high level 
of confidence when performing a safety assessment, an 
understanding of the accuracy of data derived from SFEAs is 
essential. In this paper, SFEA models have been developed to 
predict the responses of 16 unreinforced masonry walls tested in 
a laboratory under cyclic in-plane lateral loading. Each SFEA has 
been developed to reflect the as-built conditions of these 
experimental specimens and focus on predicting the shear 
capacity of the failure mechanisms that unreinforced masonry 
shear walls are susceptible to. From the results of these SFEAs, 
the accuracy (quantified as model error) of this modelling 
strategy has been estimated by comparing the peak in-plane 
shear resistances of the laboratory and numerical models.

KEYWORDS  
Unreinforced masonry; shear 
walls; stochastic finite 
element analysis; spatial 
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1. Introduction

The reliability of a structure or structural element is defined by a relationship between a 
load effect and a corresponding structural resistance. In general, a structure will typically 
be considered to have failed if its resistance is exceeded by a destabilising load effect 
(Melchers and Beck 2018). Therefore, the accurate prediction of a structure’s response is 
an essential component of examining structural safety and risk. A versatile tool for such pre
dictions is that of numerical modelling, such as the finite element method (FEM). The util
isation of this tool allows for the structural response (load capacity, stiffness, ductility, etc.) 
to be examined for any configuration of a structural element without the need for expens
ive and time-intensive full-scale physical testing. Recent investigations of the variability and 
reliability of structural elements incorporate the FEM in the form of a stochastic finite 
element analysis (SFEA), such as the studies on out-of-plane loading of masonry walls by 
Isfeld, Stewart, and Masia (2021; 2023) and Muhit (2021).
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Due to both the versatility and prevalence of the FEM, the quantification of the accu
racy of SFEA predictions of structural resistance is essential to structural reliability. As 
noted by Melchers (2007), errors associated with the adopted models of structural and 
material behaviours are prominent among the technical sources of structural failures. 
This is particularly relevant to reliability-based assessments where accuracy in the 
extreme cases of a structure’s load carrying capacity (i.e. the configurations of material 
properties, structural dimensions and any stabilising load effects corresponding to a struc
ture’s most vulnerable state) can have a significant impact on predictions of safety.

There have been developments in the field of the structural reliability of load-bearing, 
masonry structures for the past 50 years (Ellingwood et al. 1980; Hart et al. 1983; Heffler 
et al. 2008; Mojsilović and Stewart 2015; Stewart and Lawrence 2007). However, the risk 
associated with unreinforced masonry (URM) walls subject to unfavourable stress 
states, such as the combined shear-tensile stresses induced under seismic or wind 
loading conditions, remains unquantified. This research gap is highly significant to the 
safety-in-design of structural masonry systems and the assessment and maintenance of 
the large number of existing URM structures. As wall elements are responsible, not 
only for the transfer of transient lateral loads into a structure’s foundation but also of per
manent and imposed gravity loading (and also the support of non-structural systems), a 
lack of understanding regarding the structural reliability of these systems equates to a 
lack of confidence in the safety of all load-bearing URM structures.

The vulnerability of URM walls subject to these highly variable loading conditions 
necessitates the accurate prediction of URM shear wall behaviour when designing new, 
or assessing existing, masonry structures. To examine the accuracy of contemporary 
methods of predicting the ultimate capacity of URM shear walls, seven spatially variable, 
SFEA models have been developed based on the laboratory testing performed in a pre
vious study (Gooch et al. 2024). These numerical models have been developed using the 
simplified micro-modelling method, adapted from Lourenço (1996b), using the commer
cial finite element software package DIANA 10.3 (2019). This modelling methodology is 
common in masonry research (Howlader et al. 2020; Isfeld et al. 2021; Lourenço 2008) 
and allows for the nonlinear behaviour of the unit–mortar interface to be included 
while reducing the computational expense of each simulation. These attributes favour 
a spatially variable SFEA that requires both a large number of realisations, as well as a 
detailed material model of the critical failure surfaces.

The results of these SFEAs, in conjunction with the experimentally observed responses, 
allow for an investigation into the accuracy, presented as model error (ME), associated 
with this common modelling technique to be performed. Furthermore, a direct compari
son between the SFEA predictions and the repeat laboratory tests allows for the limit
ations of this modelling methodology to be assessed, particularly with reference to the 
accuracy of capturing the load–displacement behaviour of specific URM shear wall 
failure mechanisms. These results can be used to inform the application of numerical 
methods of predicting URM behaviour, as well as facilitating the use of a correction for 
ME in applications such as a reliability analysis.

The SFEA method was adopted in the current study due both to its capacity to consider 
the spatial variability of material properties that is observed in masonry structures (Corrêa 
et al. 2012). Furthermore, to assess the reliability of a structural system, the variability of 
the system’s capacity to resist destabilising load effects (commonly as a probability 
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density function (PDF)) must be determined (Melchers and Beck 2018). An approximation 
of this PDF cannot readily be made from conventional FEM, as all parameters utilised in 
this technique are deterministic and so, therefore, is the predicted structural resistance.

2. Configuration of wall models

The numerical models developed in this study are based upon the experimental specimens 
tested by Gooch et al. (2024). These experimental specimens were separated into four sets, 
each of which were designed to undergo a distinct failure mechanism of URM shear walls: 
namely (Set 1) flexural tension, (Set 2) flexural compression, (Set 3) shear sliding and (Set 4) 
diagonal tension. This numbering notation has been utilised in the subsequent sections to 
refer to these distinct experimental sets. Furthermore, all four specimens in a given exper
imental set were constructed by the same mason; Sets 1 and 2 were constructed by mason 
A, while Sets 3 and 4 were constructed by mason B (Gooch et al. 2024). The use of a 
different mason results in different qualities of workmanship for the distinct sets, a 
factor that is evident in the material characteristics presented in Section 2.3.

The geometry and load configurations of each SFEA are reflective of those adopted for 
the laboratory specimens. However, as discussed in Section 2.3, the material testing per
formed on the masonry utilised in the full-scale laboratory testing indicates that speci
mens cannot be readily divided based solely upon their distinctive geometries and 
boundary conditions. As such, the following sections outline the structural configurations 
of each SFEA, as well as the material models adopted for each analysis.

2.1. Geometry and boundary conditions

The wall specimens were modelled using the simplified micro-modelling method (Lour
enço 1996b). These models used a single wythe of masonry units (110 mm wall thickness) 
and were 1194 mm tall (equivalent to a half-storey in height). Furthermore, SFEAs repre
senting experimental Sets 1 and 2 were 1190 mm in length (aspect ratio equal to 1.0), 
while the models for Sets 3 and 4 were 1910mm in length (aspect ratio of 0.625) (refer 
to Figures 1a and b, respectively).

Each SFEA utilised boundary conditions consistent with the laboratory conditions. Ver
tical pre-compression was applied over a length of 240 mm at the top of the loading 
beam. The base of the concrete footing beam was restrained in both the horizontal 
and vertical directions. The tops of the truss elements shown in Figure 1(b) are supported 
via horizontal and vertical restraints representative of the pins supporting these elements 
in the laboratory set-up. In the case of the SFEA representing experimental Set 4, the shear 
stop applied at the bottom course of units has been modelled using a horizontal restraint 
applied to both ends of the modelled wall.

2.2. Loading scheme

The self-weight of the walls and the applied vertical pre-compression (Fy) was initially 
applied to each model. This loading was held constant during each SFEA. Prescribed 
lateral displacements (dx) were then applied to the centre of the loading beam. Both 
monotonic and cyclic loading schemes were examined in the SFEAs (refer to Figure 2). 
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Figure 1. Simplified FEA micro-models: (a) numerical models of experimental Sets 1 and 2 (cantilev
ered), and interface element breakdown and (b) numerical models of experimental Sets 3 and 4 (fixed- 
top boundary).
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However, the monotonic loading scheme resulted in a significant overprediction of the 
peak in-plane shear capacity of walls subject to shear-based failure modes. As such, a 
cyclic displacement scheme, consistent with the experimental program, was adopted in 
the SFEAs to maximise accuracy, at the expensive of computational time.

2.3. Material models

The properties required to define the material models have been determined via labora
tory testing (refer to Gooch et al. 2024) and from the literature noted in Table 1. Despite 
using a single type of masonry unit and a single mortar mixing ratio across the entire 
experimental testing program, the results of these material characterisation tests indi
cated that the initial division of specimens into four sets distinguished by their geometries 
and boundary conditions was insufficient. For example, in the case of Set 1, two mortar 
batches were utilised in the construction of the four wall specimens. Despite being con
structed by the same mason and being tested after the same approximate curing period 
and in the same conditions, the first mortar batch maintained a flexural tensile bond 
strength equal to only one-third of that estimated for the second mortar batch. As 
such, this experimental set, and Sets 2 and 3, were further divided based upon these dis
tinct material characteristics. The final set of SFEAs has been denoted as follows: 

. Experimental Set 1 (flexural tension): SFEAs I and II

. Experimental Set 2 (flexural compression): SFEAs III and IV

. Experimental Set 3 (shear sliding): SFEAs V and VI, and

. Experimental Set 4 (diagonal tension): SFEA VII.

Table 2 presents a summary of the means and coefficients of variability (COVs) of the sto
chastic (randomly variable) material parameters adopted in this study’s SFEAs. The PDFs 
determined to describe each parameter are derived by Gooch et al. (2024). These PDFs 

Figure 2. Comparison of monotonic and cyclic applications of shear displacements.
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are: a Gumbel distribution for the direct tensile unit strength, a Lognormal distribution for 
the bed and perpend joint thicknesses and shear bond strength, and a Lognormal or 
Truncated Normal distribution for the flexural tensile bond strength. These findings are 

Table 1.  Summary of material parameters used in FE modelling.
Material Property Notation Value Unit Source

Brick Elastic modulus E 26,315 N/mm2 Compression test
Poisson ratio ν 0.15 – Heffler (2009)
Mass density ρ 1938 kg/m3 AS 3700 (2018)
Direct tensile strength fbt Table 2 N/mm2 Direct tension test
Tensile fracture energy GI

f,unit Equation 
(4)

Nmm/ 
mm2

Li (2015), after Lourenço et al. 
(2005)

Unit–mortar 
interface

Linear normal stiffness kn Equation 
(1)

N/mm3 Compression test, Mojsilović and 
Stewart (2015)

Linear shear stiffness ks Equation 
(2)

N/mm3

Poisson ratio ν 0.20 – Lourenço (1996a)
Direct tensile strength ft Table 2 N/mm2 Bond wrench test
Tensile fracture energy GI

f,joint Equation 
(3)

Nmm/ 
mm2

Heffler (2009), after Van der Pluijm 
(1997)

Shear bond strength c Table 2 N/mm2 Triplet test
Initial friction angle ϕ0 0.653 Radians Confined triplet test
Initial dilatancy angle Ψ 0.464 Radians Petersen (2009)
Residual friction angle ϕr 0.510 Radians Masia et al. (2007)
Dilatancy suppressing 

confining stress
σu –0.75 N/mm2 Petersen (2009)

Shear bond degradation 
coefficient

δ 1.8 – Petersen (2009)

Masonry compressive 
strength

fuc Table 3 N/mm2 Compression test

Compressive fracture 
energy

Gfc Equation 
(5)

Nmm/ 
mm2

Lourenço (1996a), after Model 
Code 90 (1991)

Shear traction control 
factor

Css 9.0 – Lourenço (1996a)

Equivalent plastic 
relative 
displacement

κp Equation 
(6)

mm Lourenço (1996a), after Eurocode 6 
(2005)

Fracture energy factor 
(a)

GII
f (a) –0.49 mm Petersen (2009)

Fracture energy factor 
(b)

GII
f (b) 0.035 Nmm/ 

mm2
Petersen (2009)

Steel Elastic modulus E 200 000 N/mm2 AS4100 (1998)
Poisson ratio ν 0.3 – AS4100 (1998)

Concrete Elastic modulus E 30 100 N/mm2 AS3600 (2018)
Poisson ratio ν 0.2 – AS3600 (2018)

Table 2.  Summary of spatially variable material parameter statistics.

SFEA 
seta

Direct tensile unit 
strength

Bed joint 
thickness

Perpend joint 
thickness

Flexural tensile bond 
strength

Shear bond 
strength

fbt hj,bed hj,perpend fmt c
(MPa) (mm) (mm) (MPa) (MPa)

I (1) 1.53 [0.05] 10 [0.34] 10 [0.29] 0.27 [0.35] 0.42 [0.38]
II (2) 0.77 [0.31] 0.63 [0.16]
III (3) 0.47 [0.30] 0.32 [0.13]
IV (4) 0.25 [0.38] 0.41 [0.17]
V (5, 6) 0.40 [0.31] 0.81 [0.38]
VI (7, 8) 0.61 [0.18] 0.81 [0.38]
VII (9– 

12)
0.55 [0.24] 0.66 [0.23]

Note: COVs are shown in [ ]. 
aRelevant mortar batches from Gooch et al. (2024) are shown in ().
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consistent with the literature on masonry material behaviour (CEN 2002; Lawrence and 
Cao 1988; Lawrence and Lu 1991; Standards Australia 2018).

The masonry compressive strength, compressive fracture energy, and the stiffness of 
the mortar joints and composite masonry material have been adopted as deterministic 
properties. However, significant differences were observed between the measured 
masonry compressive strengths of specimens constructed by the different masons. As 
such, a different deterministic value for fuc, Gfc (determined as per Equation 5), Emas and 
Emor, has been utilised for each SFEA depending on the mortar batch relevant to the mod
elled experimental specimens (refer to Table 3).

The linear normal (kn) and shear (ks) stiffnesses of the unit–mortar interface have been 
adopted as dependent random variables (see Equations 1 and 2), defined by a relation
ship between the thickness of the mortar joint (from the experimental data of Mojsilović 
and Stewart 2015), and the stiffness of the joint and adjacent masonry units; as proposed 
by Lourenço (1996a) and Rots (1997).

kn =
Eunit · Emor

hj (Eunit − Emor)
(1) 

ks =
Gunit · Gmor

hj (Gunit − Gmor)
(2) 

The Mode I fracture energies for both the unit–mortar interface (GI
f,joint) and the unit 

cracking interface (GI
f,unit) are estimated from deterministic relationships. These relation

ships directly relate the randomly variable direct tensile strength values to the fracture 
energy through empirical relationships. For the unit–mortar interface, Heffler (2009) pro
posed the linear relationship shown in Equation (3), based upon the experimental data 
presented by Van der Pluijm (1997), see Figure 3.

GI
f ,joint = 0.01571ft + 0.0004882 (3) 

Similarly, the tensile fracture energy of the masonry units may be estimated by the linear 
relationship to the direct tensile strength proposed by Li (2015) after the experimental 
work of Lourenço et al. (2005). This relationship is presented in Equation (4) and Figure 4.

GI
f ,unit = 0.0097fbt + 0.0277 (4) 

These models for fracture energy do not capture the high variability observable in the 
experimental results of Van der Pluijm (1997) and Lourenço et al. (2005). Li et al. (2016) 
note that the model error of Equations (3) and (4) (defined as the ratio between the exper
imental data and the corresponding model prediction) may be described utilising Lognor
mal distributions, with the means, μME, and COVs, VME, shown in Figures 3 and 4.

Table 3.  Summary of deterministic material parameters.

SFEA set

Masonry compressive strength Compressive fracture energy Masonry stiffness Mortar stiffness
fuc Gfc Emas Emor

(MPa) (Nmm/mm2) (MPa) (MPa)

I, II 6.18 17.52 4328 589
III, IV 6.64 17.70 4650 641
V, VI 16.38 21.08 15543 4853
V 14.89 20.60 21,144 1496

CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS 7



Furthermore, the compressive fracture energy of the unit–mortar interface is also con
sidered a dependent random variable, as this property is estimated through a determinis
tic relationship to the masonry compressive strength (see Equation 5), based upon the 
recommendations by Lourenço (1996a) after Model Code 90 for concrete (Comite Euro- 
International Du Beton 1991).

Gfc = − 0.0036f 2
uc + 0.43fuc + 15 (5) 

The equivalent plastic relative displacement of the peak compressive strength (κp) may 
also be calculated as per Equation (6). This expression limits the compressive masonry 
strain to –0.002, as specified by Eurocode 6 (British Standards Institution 2005).

kp = 0.002 − fuc
1

Eunit
+

1
kn(hunit + hjoint)

􏼔 􏼕􏼚 􏼛

fuc (6) 

Figure 3. Tensile bond strength versus mode I fracture energy for clay brick masonry interface with 
general purpose mortar. Adapted from Heffler (2009).

Figure 4. Tensile unit strength versus mode I fracture energy for clay bricks. Adapted from Li (2015).
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2.4. Spatial variability

Previous studies considering the spatial variability of the joint-to-joint flexural tensile 
bond strength of bed joints (Isfeld et al. 2021, 2023; Li et al. 2016; Muhit 2021) have 
adopted a correlation coefficient (ρk) of 0.40, after the results of Heffler et al., (2008). Fur
thermore, Heffler et al., (2008) found that no significant correlation exists between adja
cent perpend joints, nor between the bed or perpend joints of successive courses, i.e. ρk =  
0. Hence, these values have been adopted for the current study.

In the case of the shear bond strength of mortar joints, a correlation coefficient 
between the flexural tensile and shear bond strengths of a single joint equal to 0.75 
has been derived by Gooch et al., (2023). Furthermore, considering the experimental 
data by Mojsilović and Stewart (2015), no statistically significant correlation between adja
cent or successive perpend or bed joint thicknesses was found. This finding is consistent 
with the data presented by Farjada and Shrive (2023).

3. SFEA results

The experimentally observed in-plane shear capacities, as well as the corresponding 
failure mechanisms, facilitate the quantification of the ME of each SFEA’s estimate of 
in-plane shear capacity. The initial 15 Monte-Carlo simulations were utilised in SFEAs I 
to VI. This number was selected to balance the high computational expense of the 
implemented cyclic loading scheme and the need for a stable estimate of the mean 
and COV of the in-plane shear strength (i.e. converged to an accuracy of ±1.0% for the 
mean and ±0.005 for the COV). However, as shown in Table 4, SFEAs III and VI utilised 
an additional five simulations to ensure a stable estimate of the COV of the peak in- 
plane shear strength. Furthermore, 25 simulations were adopted for SFEA VII due to 
the larger number of experimental wall specimens and the higher observed experimental 
COV.

3.1. SFEAs I and II – 0.5 MPa, AR: 1.0, cantilevered

The dominant failure mechanism predicted by SFEAs I and II was a flexural tensile failure 
mode. This mechanism is consistent with the experimental observations by Gooch 
et al. (2024). Cracking was generally limited to the bottom one or two courses of bed 
joints, as shown in Figures 5(a) and (d). However, some predicted cracking was consistent 
with the stepped diagonal cracks observed for experimental specimen Wall 2 of Set 1, (see 

Table 4.  Summary of SFEA configurations.

SFEA
Number of 
simulations

Exp. wall 
specimens

Aspect 
ratio

Pre-compression 
(MPa)

In-plane rotational 
restraint

Expected failure 
mode(s)a

I 15 I-1, I-2 1.0 0.5 Cantilevered FT
II 15 I-3, I-4 1.0 0.5 Cantilevered FT
III 20 II-1, II-2 1.0 1.0 Cantilevered FT/FC
IV 15 II-3, II-4 1.0 1.0 Cantilevered FT/FC
V 15 III-1, III-2 0.625 0.5 Fixed–fixed SS/DT
VI 20 III-3, III-4 0.625 0.5 Fixed–fixed SS/DT
VII 25 IV-1 to IV-4 0.625 0.7 Fixed–fixed SS/DT
aFlexural tension (FT), Flexural compression (FC), Shear sliding (SS), Diagonal tension (DT).

CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS 9



Figure 5b). Furthermore, the examination of the interface normal stresses of each simu
lation indicates that none of the simulations experienced a compressive failure at the 
point of peak shear capacity.

The mean peak in-plane shear strength, averaged from both the positive and negative 
loading directions are presented in Figure 6, along with the observed failure mechanism 
of each individual Monte-Carlo realisation.

The load–displacement envelopes of SFEAs I and II have been compared to the corre
sponding experimental results by Gooch et al. (2024). Each SFEA predicted a high initial 
stiffness, comparable to the experimental specimens, with the peak in-plane shear 
strength predicted between approximately 1.5 and 6 mm of in-plane displacement. 
However, the post-peak responses were not captured as accurately. The post-peak 
strength decrease in shear strength was predicted to be larger than in the experimental 
specimens (see Figure 7). Furthermore, the failure of the structure defined as a 20% 

Figure 5. Predicted crack patterns at peak in-plane shear capacity, representative of typical SFEAs I 
and II realisations, illustrated by normalised crack widths determined by each simulation: (a) SFEA 
I-2: peak load; (b) SFEA I-5: peak load; (c) SFEA II-3: peak load and (d) SFEA II-12: peak load.
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decrease in post-peak load carrying capacity (ASTM International 2011; Magenes et al. 
2008; Tomaževič 1999), was estimated to occur between 4 and 10 mm of in-plane displa
cement, in contrast, to the experimentally observed range of 12 to 24 mm. Despite this 
poorer post-peak representation, a clear estimate of the peak shear capacity is obtainable 
for each SFEA, allowing for a confident numerical estimation of the mean load carrying 
capacity.

The mean shear strengths determined from SFEAs I and II were 23.7 and 24.0 kN, with 
COVs 0.014 and 0.015, respectively. These values when compared to the experimental 
baselines produce average errors of 10.1% and 11.5%, for SFEAs I and II, respectively. 
These results are summarised in Table 5.

3.2. SFEAs III and IV – 1.0 MPa, AR: 1.0, cantilevered

The dominant failure mechanism predicted by the realisations of SFEAs III and IV was that 
of either a flexural tension or flexural compression failure. This is characterised by the 

Figure 6. Mean shear strengths and failure mechanisms of SFEAs I and II.

Figure 7. Lateral load–displacement response of SFEAs I and II and experimental Wall Set 1.

CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS 11



presence of flexural cracking in the first three courses of bed joints, often accompanied by 
damage to perpend joints at the base of wall, see Figures 8(a) and (b).

The distribution of compressive stresses was examined to separate flexural tension and 
compression failures. At the point of peak in-plane shear strength, compressive stresses 
decreased linearly from the toe of the wall, typical of either flexural failure (see Figure 
9a). However, in cases where a flexural compression failure was predicted, the masonry 
compression strength was reached at the point of peak in-plane shear capacity. Further
more, the following cycles predict the peak compressive stresses away from the toe of the 
wall (see Figure 9b). These stress distributions are the result of the reduction of effective 
compressive strength in accordance with the adopted compressive cap model (Lourenço 
1996b) once the initial masonry compression strength is exceeded.

These predictions are consistent with the experimental observations and facilitate an 
accurate determination of the failure mechanism of each SFEA realisation, as presented 
in Figure 10.

Table 5.  Comparison for SFEA I and II versus experimental Wall Set 1.

SFEA Parameter

SFEA results

Exp. wall specimen

Exp. value

Exp. mean %DiffaMean COV Pull (+) Push (–)

I Vmax (kN) 23.7 0.014 I-1 26.2 26.1 26.4 10.11%
I-2 26.7 26.6

δVmax (mm) 4.7 0.267 I-1 7.9 6.8 5.7 17.84%
I-2 2.1 6.1

δu (mm) 9.6 0.557 I-1 15.9 12.2 16.2 40.54%
I-2 12.7 24.0

II Vmax (kN) 24.0 0.015 I-3 26.9 25.9 27.1 11.50%
I-4 28.6 27.2

δVmax (mm) 4.1 0.646 I-3 4.9 3.9 3.9 −5.76%
I-4 2.1 4.7

δu (mm) 10.0 0.329 I-3 6.5 18.1 16.5 39.61%
I-4 18.2 23.2

aPercentage difference between the experimental value and the numerical prediction.

Figure 8. Predicted crack patterns at the peak in-plane shear capacity, representative of typical SFEA 
III and IV realisations, illustrated by normalised crack widths determined by each simulation: (a) SFEA 
III-9: peak load and (b) SFEA IV-2: peak load.
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The load–displacement responses predicted by SFEAs III and IV are compared to the 
laboratory results in Figure 11. The envelopes of the SFEAs exhibit a high initial 
stiffness followed by a decrease in in-plane shear capacity. While the predicted values 
of δVmax are lower than the experimental baselines, the overall response is consistent 
with Gooch et al. (2024). Furthermore, predictions of the in-plane shear strength were 
consistent with experimental observations, with average errors of 9.75% and 6.20%, 
respectively (Table 6).

Figure 9. Predicted compressive stresses near the masonry compressive strength at and beyond peak 
in-plane shear capacity, representative of typical SFEA III and IV realisations: (a) SFEA III-2: compressive 
stresses at the peak in-plane shear capacity and (b) SFEA III-2: compressive stresses one displacement 
cycle post-peak.

Figure 10. Mean shear strengths and failure mechanisms of SFEAs III and IV.
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3.3. SFEAs V and VI – 0.5 MPa, AR: 0.63, fixed–fixed

The predicted failure modes of SFEAs V and VI (see Figure 12) are consistent with the 
experimental results reported by Gooch et al. (2024). In addition to the predicted crack 
patterns, the load–displacement behaviour of each SFEA realisation was investigated to 
accurately determine the governing failure mechanism.

A limitation of SFEAs V and VI is the overestimation of the stiffness prior to the pre
dicted peak shear strength. This introduces uncertainty when determining the failure 
mechanism from the crack patterns alone as the peak shear strengths were predicted 
at in-plane displacements between 0.2 and 0.5 mm. Due to this high initial stiffness, 
crack widths are limited at the point of peak strength, as seen in Figure 13. However, 
the formation of a single clear sliding plane was evident in predicted shear sliding failures, 
even at small in-plane displacements. These planes occurred predominantly through the 
first and second courses (see Figures 13a and b). Conversely, for diagonal tensile failures, a 
larger number of often less distinct sliding planes were predicted (see Figure 13c). 

Table 6.  Comparison for SFEAs III and IV versus experimental Wall Set 2.

SFEA Parameter

SFEA results

Exp. wall specimen

Exp. value

Exp. mean %DiffaMean COV Pull (+) Push (–)

III Vmax (kN) 41.2 0.011 II-1 43.4 47.1 45.6 9.75%
II-2 44.3 47.7

δVmax (mm) 1.7 0.472 II-1 6.9 7.0 7.0 76.31%
II-2 7.1 7.0

δu (mm) 6.7 0.393 II-1 8.8 9.9 11.6 42.17%
II-2 14.0 13.6

IV Vmax (kN) 43.0 0.021 II-3 44.8 44.6 45.9 6.20%
II-4 45.6 48.6

δVmax (mm) 2.3 0.454 II-3 7.0 10.1 7.8 70.05%
II-4 10.0 4.0

δu (mm) 9.0 0.254 II-3 18.0 18.0 16.0 44.04%
II-4 14.1 13.8

aPercentage difference between the experimental value and the numerical prediction.

Figure 11. Lateral load–displacement response of SFEAs III and IV and experimental Wall Set 2.
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However, as shown in Figure 13(d), these planes were not always significantly distinct 
from a shear sliding failure at low in-plane displacements.

The load–displacement responses of the SFEAs are presented against the experimen
tally observed responses in Figure 14. The mean differences in the predictions of shear 

Figure 12. Mean shear strengths and failure mechanisms of SFEAs V and VI.

Figure 13. Predicted crack patterns at peak in-plane shear capacity, representative of typical SFEA V 
and VI realisations, illustrated by normalised crack widths determined by each simulation: (a) SFEA V-9: 
peak load; (b) SFEA V-15: peak load; (c) SFEA VI-4: peak load and (d) SFEA VI-17: peak load.
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capacity between SFEAs V and VI and the experimental walls are –8.27% and –20.57%, 
respectively. While these errors in the predictions of in-plane shear capacity are consistent 
with previous studies of URM shear walls (Howlader et al. 2020; Konthesingha 2012), the 
shapes of the hysteretic envelopes are significantly different to experimental obser
vations. This discrepancy is a result of the overestimation of the initial stiffness of the mod
elled wall specimens in DIANA 10.3. The effect of this overestimation is exacerbated by the 
apparent bilinear stiffness observed in the experimental walls (refer to Figure 14a). Many 
permutations of the adopted modelling strategy were trialled to address this issue; 
however, these alterations produced minimal variations in the predicted results and 
were not capable of capturing the bilinear stiffness observed experimentally (see Table 7).

3.4. SFEA VII – 0.7 MPa, AR: 0.63, fixed–fixed

The failure modes predicted by SFEA VII (summarised in Figure 15) were consistent with 
the mix of shear-based failure modes observed during laboratory testing. The predicted 

Figure 14. Lateral load–displacement response of SFEAs V and VI and experimental Wall Set 3.

Table 7.  Comparison for SFEAs V and VI versus experimental Wall Set 3.

SFEA Parameter

SFEA results

Exp. wall specimen

Exp. value

Exp. mean %DiffbMean COV Pull (+) Push (–)

V Vmax (kN) 104.0 0.033 III-1 75.0 120.7 96.0 −8.27%
III-2 90.5 97.9

δVmax (mm) 0.25 0.0a III-1 7.1 5.8 5.7 95.61%
III-2 5.8 4.1

δu (mm) 15.8 0.641 III-1 7.1 6.5 6.8 −134.61%
III-2 6.4 7.1

VI Vmax (kN) 105.5 0.039 III-3 84.2 86.2 87.5 −20.57%
III-4 86.2 93.3

δVmax (mm) 0.3 0.720 III-3 4.0 9.9 5.5 94.37%
III-4 4.0 4.1

δu (mm) 15.4 0.340 III-3 14.0 14.0 19.0 19.00%
III-4 24.1 23.9

aA COV of 0.0 was determined for δVmax as all values of Vmax were predicted at δ = 0.25 mm. 
bPercentage difference between the experimental value and the numerical prediction.
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failure mechanisms could typically be determined from the predicted crack patterns and 
were confirmed through the investigation of the predicted load–displacement behaviours 
and the ultimate displacements of the SFEA realisations.

Predicted diagonal tensile failures produced a series of characteristic stepped cracks 
through the bed and perpend joints of the wall (see Figure 16b), while shear sliding fail
ures were identifiable by the formation of sliding planes, (refer to Figure 16a). Further
more, hybrid failure modes were discernible by the formation of several staggered 
sliding planes that subsequently produced a diagonal tension failure surface via the 
propagation of damage under cyclic loading (refer to Figures 16c and d).

The load–displacement behaviours predicted by SFEA VII exhibit the same issue as 
SFEAs V and VI, displaying a difference between the initial stiffnesses of the numerical 
models and laboratory specimens. This is a result of the bilinear stiffness observed in 
the laboratory tests (Gooch et al. 2024). Despite this limitation, SFEA VII produced an accu
rate estimation of the peak strength. A prediction of Vmax of 151.1 kN with a COV of 0.031 
was determined from SFEA VII. This corresponds to an average error of 4.18% (Figure 17) 
(Table 8).

3.5. Limitations

To address the limitations observed in the predictions of each SFEA (particularly those 
that produced shear-based failure mechanisms), an extensive sensitivity analysis was per
formed. These analyses considered the sensitivity of results to: 

. Meshing techniques: linear and higher-order elements, triangular and rectangular 
elements, mesh density, etc.

. Material properties: aggregated from a larger sample of the testing data of Gooch et al. 
(2024), values taken from the literature (Lawrence 1983; Lourenço 1996a; McNeilly et al. 
1996), upper-and-lower bound percentiles (60%, 70%, 85%, 95% and 99%) of proper
ties in deterministic FEMs, and extreme values of insensitive parameters.

Figure 15. Mean shear strengths and failure mechanisms of SFEA VII.
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These analyses were applied to a large number of permutations of each of the previously 
discussed SFEAs, as well as to deterministic equivalents. The final modelling technique 
presented in this study is the culmination of this investigation, the results of which indi
cate that the capture of this complex shear failure behaviour is beyond the capacity of the 
adopted FEM method.

Figure 16. Predicted crack patterns at peak in-plane shear capacity, representative of typical SFEA VII 
realisations, illustrated by normalised crack widths determined by each simulation: (a) SFEA VII-2: peak 
load; (b) SFEA VII-8: peak load; (c) SFEA VII-9: peak load and (d) SFEA VII-10: peak load.

Figure 17. Lateral load–displacement response of SFEA VII and experimental Wall Set 4.
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4. SFEA model error

From the results presented in Section 3, the ME associated with each SFEA can be inves
tigated. The ME of interest is that related to the SFEA predictions of the shear force 
required to initiate the distinct failure mechanisms of URM shear walls examined in this 
study; noted in the previous sections as the mean peak in-plane shear forces. The ME 
for each failure mode is

ME =
Average experimental capacity

Model predicted capacity
(7) 

where the Average experimental capacity is the average of the peak in-plane shear 
strengths recorded experimentally in both the push (–) and pull (+) directions for all nom
inally identical experimental wall specimens, and the Model predicted capacity is the 
average shear strength in the push and pull directions of a corresponding SFEA 
realisation.

The variability of the data determined from Equation (7) is a suitable proxy from which 
the normalised variability of the SFEA predictions of peak strength (VSFEA) may be deter
mined. The variability of ME (VME) is then determined as a function of VSFEA and of the 
variability of the experimentally determined shear capacities (VExp.), and is calculated as

VME =

���������������

V2
Exp. − V2

SFEA

􏽱

(8) 

Further to this, VExp. is determined from experimentally measured variability (Vmeasured), as 
presented by Gooch et al. (2024), the variability introduced into the laboratory testing as a 
result of inaccuracies in the gauges, reading outs and definitions of values (Vtest), and 
variability caused by differences between strengths or geometries in the experimental 
and control test specimens (Vspec) (Ellingwood et al. 1980), as

VExp. =

��������������������������

V2
measured − V2

test − V2
spec

􏽱

(9) 

Values of Vmeasured equal to 0.029 and 0.020 were observed for flexural tension and 
flexural compression failures, respectively (note that the value of 0.020 was derived 
from only two data points, and thus may be unreliable. However, this value of 0.020 is 

Table 8.  Comparison for SFEA VII versus experimental Wall Set 4.

Parameter

SFEA results

Exp. wall specimen

Exp. value

Exp. mean %DiffaMean COV Pull (+) Push (–)

Vmax (kN) 151.1 0.031 IV-1 181.8 133.5 157.7 4.18%
IV-2 147.5 131.7
IV-3 182.8 172.4
IV-4 153.8 158.3

δVmax (mm) 0.6 0.254 IV-1 7.5 9.8 7.6 92.75%
IV-2 4.0 9.6
IV-3 8.0 9.0
IV-4 4.0 8.8

δu (mm) 3.8 2.041 IV-1 8.3 9.8 11.1 66.29%
IV-2 13.4 14.0
IV-3 9.3 10.5
IV-4 10.7 13.0

aPercentage difference between the experimental value and the numerical prediction.
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consistent with the overall variability of Set II equal to 0.022 (Gooch et al. 2024)). These 
values are consistent with expectations, considering typical mean values and variabilities 
for masonry material properties (Lawrence 1983; McNeilly et al. 1996; Stewart and Lawr
ence 2007; Petersen et al. 2008), as well as the design equations presented in CSA S304-14 
(2014), NZSEE (2017), AS 3700 (2018) and TMS 402/602-22 (2022). Similarly, values of 
Vmeasured equal to 0.050 and 0.099 have been determined for shear sliding and diagonal 
tension failures. However, due to the evidence of hybridisation reported by Gooch et al. 
(2024), further investigation into the variability of these failure modes is recommended. 
These adopted values of Vmeasured are summarised in Table 9.

It should also be noted that, although the laboratory testing of 16 full-scale wall speci
mens and the associated material characterisation tests performed by Gooch et al. (2024) 
was significant in scope, it amounts to few datapoints relevant to the analysis performed 
herein. Though the application of synthetic data generation is intended to offset these 
limitations, the small sample size from which ME can be derived in the current study pre
dicates that the findings below are only indicative of the adopted FEM technique.

4.1. Mean model error and SFEA variability

The following sections outline the derivation of suitable probabilistic models that 
describe the ME of each SFEA’s prediction of the shear resistance for each of the examined 
failure mechanisms. These models have been derived by fitting Weibull, Normal, Lognor
mal, Gamma and Gumbel distributions to values of ME, and considering both the results 
of Kolmogorov–Smirnov (K–S) and Anderson–Darling (A–D) tests, and the goodness-of-fit 
of each distribution.

4.1.1. Flexural tension
A flexural tensile failure mode was predicted by all realisations of SFEAs I and II. Further
more, there is good agreement in the values of ME between these two analyses, as shown 
in Figure 18, with mean MEs equal to 1.11 and 1.13 for SFEAs I and II, respectively. From 
these results, values of μME = 1.13 and VSFEA = 0.017 have been determined for the predic
tion of flexural tension failures.

None of the probabilistic models could be rejected at the 5% significance level by 
either the K–S or A–D tests. As such, a qualitative assessment of the goodness-of-fit of 
each distribution has been performed. As may be observed in Figure 19(b), the 
Weibull, Normal and Lognormal distributions produce results closest to the line of 
perfect fit across the entire domain. Furthermore, the Lognormal model produces the 
best fit to the data at the lower tail of the CDF−1. Accuracy in this region is of the 
highest significance to a reliability analysis as it corresponds to a weaker than average ulti
mate resistance, and thus to a structural element with a greater probability of failure. 

Table 9.  Measured variabilities of peak in-plane shear strength, Vmeasured, for each failure mechanism.
Failure mode Experimental set Sample size Vmeasured

Flexural tension I 4 0.029
Flexural compression II 2 0.020
Shear sliding III 3 0.050
Diagonal tension IV 4 0.099
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Hence, a Lognormal distribution has been adopted for the ME of predicting a flexural 
tension failure.

4.1.2. Flexural compression
Flexural compression failures were predicted by SFEAs III and IV. A comparison to the 
experimental observations is presented in Figure 20 and facilitates the determination 

Figure 18. Distribution of the ratio between experimental and SFEA peak strengths for flexural tensile 
failures.

Figure 19. Probabilistic distributions and inverse CDF plots of the ratio between mean experimental 
and SFEA peak strength for flexural tensile failures: (a) PDFs of mean peak strength ratio: μExp./μSFEA 

(Flexural Tension) and (b) CDF−1s of mean peak strength ratio: μExp./μSFEA (Flexural Tension).
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of a mean ME for the prediction of a flexural compressive failure resistance of μME = 1.09, 
with VSFEA = 0.035.

The goodness-of-fit of each distribution presented in Figure 21 indicates that the Log
normal distribution produces a more accurate fit to the middle and lower tails of the 
CDF−1. As such, this probabilistic distribution has been adopted to describe the ME of 
the SFEAs that describe a flexural compressive failure.

Figure 20. Distribution of the ratio between mean experimental and SFEA peak strength for flexural 
compressive failure modes.

Figure 21. Probabilistic distributions and inverse CDF plots of the ratio between mean experimental 
and SFEA peak strength for flexural compressive failures: (a) PDFs of mean peak strength ratio: μExp./ 
μSFEA (Flexural Compression) and (b) CDF−1s of mean peak strength ratio: μExp./μSFEA (Flexural 
Compression).
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4.1.3. Shear sliding
The results of SFEAs V, VI and VII all contain predictions of the shear sliding failure loads. 
From the results of SFEAs V, VI and VII, mean MEs of 0.92, 0.85 and 1.06 were determined, 
respectively. These notably distinct means are evident in Figure 22, and are a result of the 
limitations discussed in Sections 3.3 and 3.4. While the overall mean μME = 0.94 is indica
tive of an accurate representation of the experimentally observed response, the inconsis
tencies evident between SFEAs are reflected in the larger VSFEA = 0.10. Due to this 
observation, as well as issues with load–displacement predictions, these results should 
be considered with caution. Refinement of the numerical and experimental modelling 
of walls subject to shear-based failure modes is planned in future studies.

From Figure 23(b), it may be observed that the Lognormal distribution produces the 
most accurate fit to most of the presented data and is slightly more conservative than 
the fitted Normal distribution. Hence a Lognormal distribution may be adopted to 
describe ME for the SFEAs that produce a shear sliding failure.

4.1.4. Diagonal tension
SFEA V produced four Monte-Carlo simulations that predicted a diagonal tensile failure, 
resulting in a mean ME of 0.90, while SFEA VII predicted 13 diagonal tensile failures, 
with a mean ME of 1.03. The overall average ratio between the SFEAs and the experimen
tal wall specimens that produced a diagonal tensile failure μME = 1.00 and a value of VSFEA  

= 0.062. This indicates that, on average, the numerical models presented in this study 
produce near perfect predictions of the shear resistances of the experimental walls that 
experienced a diagonal tensile failure. However, the limited accuracy in the predictions 
of the load–displacement responses (see Sections 3.3 and 3.4) indicates that these 
findings, as with those for shear sliding, should be utilised with a degree of caution.

The ME associated with a diagonal tensile failure has been derived from relatively few 
values. Despite this limitation, Figure 25(b) shows that the Normal, Lognormal and 
Gamma distributions produce a conservative fit to the data for values less than 

Figure 22. Distribution of the ratio between mean experimental and SFEA peak strength for shear 
sliding failure modes.
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approximately 1.05, with a Lognormal model producing the most accurate fit to the data 
shown in Figure 24. As such, a Lognormal distribution may be adopted to describe the ME 
for SFEAs prediction of a diagonal tensile failure load (Figure 25).

4.1.5. Summary of mean ME and SFEA variability by failure mode
From the results presented above, values of VSFEA have been derived for each of the 
observed failure mechanisms. Furthermore, a mean value of ME, μME, as well as a suitable 

Figure 23. Probabilistic distributions and inverse CDF plots of the ratio between mean experimental 
and SFEA peak strength for shear sliding failures: (a) PDFs of mean peak strength ratio: μExp./μSFEA 

(Shear Sliding) and (b) CDF−1s of mean peak strength ratio: μExp./μSFEA (Shear Sliding).

Figure 24. Distribution of the ratio between mean experimental and SFEA peak strength for diagonal 
tensile failure modes.
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probabilistic distribution to describe ME, have been determined. These results are sum
marised in Table 10.

4.2. Derivation of model error variability

As discussed previously, the variability of ME, VME, is a function of VSFEA (summarised in 
Table 10) and the variability of the experimentally observed peak strengths, VExp., as pre
sented in Equation (8). VExp. in turn is derived as a function of the measured variability of 
experimental peak shear strengths, Vmeasured (summarised in Table 9), as well as the vari
abilities in the testing procedure, Vtest, and in the specimens relative to a control speci
men, Vspec.

4.2.1. Determination of test and specimen variability
To estimate suitable values for Vtest for each failure mechanism, the COVs of the applied 
pre-compressions and in-plane displacements were examined. From this data, values of 
Vtest equal to 0.015 and 0.017 have been determined for the experimental Wall Sets 1 
and 2, respectively. While similar instrumentation was adopted for Sets 3 and 4, the 
increased complexity introduced with the addition of the pantograph system for Sets 3 

Figure 25. Probabilistic distributions and inverse CDF plots of the ratio between mean experimental 
and SFEA peak strength for diagonal tension failures: (a) PDFs of mean peak strength ratio: μExp./μSFEA 

(Diagonal Tension) and (b) CDF−1s of mean peak strength ratio: μExp./μSFEA (Diagonal Tension).

Table 10.  Summary of μME, VSFEA and the probabilistic distributions adopted for ME.
Failure mode Sample size μME VSFEA Distribution

Flexural tension 30 1.13 0.017 Lognormal
Flexural compression 32 1.09 0.035 Lognormal
Shear sliding 38 0.94 0.100 Lognormal
Diagonal tension 17 1.00 0.062 Lognormal
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and 4, as well as the larger size of the wall specimens, is expected to have increased the 
value of Vtest. Of particular relevance are the potential friction losses in the pins included in 
the utilised truss arrangements (refer to Gooch et al. (2024)). As such, a value of Vtest for 
Sets 3 and 4 equal to 0.04, in line with the recommendations of Ellingwood et al., (1980) 
for reinforced concrete beams and columns, has been assumed.

To estimate a value of Vspec, the variability in specimen length, height and thickness 
was examined. The in-plane shear capacity of an URM wall is directly proportional to 
the thickness, and in most cases the height, of the wall. Furthermore, this capacity is pro
portional to the length or length-squared of the wall in the case of shear- and flexure- 
based failure modes, respectively (Magenes and Calvi 1997). As such, the variabilities of 
these geometric properties are highly relevant to the peak in-plane shear capacity and 
are thus a reasonable proxy from which Vspec may be estimated.

From direct measurements of the length of each wall specimen, the variability in speci
men length was determined to be approximately 0.005 for all four wall sets. However, speci
men height was not directly measured. To supplement this data, the variability in wall 
height and length was estimated by considering the variability in bed and perpend joint 
thickness (after Mojsilović and Stewart (2015)) and the mean and COV of the height and 
length of the utilised masonry units. This assessment produced COVs ranging from 0.006 
to 0.009. This statistical analysis was performed assuming no correlation between adjacent 
perpend joints, nor between successive bed joint courses (Heffler et al. 2008). Similarly, 
thickness of the laboratory wall specimens maintained a COV equal to 0.007. As such, a 
value 0.010 has been adopted for Vspec for all experimental sets.

Applying Equation (9), values for VExp. were determined as presented in Table 11. Fur
thermore, applying Equation (8) to the derived values of VExp. and VSFEA (refer to Table 10) 
produces the values of VME shown in Table 11. Note that in the cases of a flexural com
pression or shear sliding failure a value of VSFEA greater than the experimentally observed 
variability, VExp. was determined, and thus the application of Equation (8) does not 
produce a value of VME. In such cases, a value of VME = 0 has been assumed (i.e. a deter
ministic value of ME). This result is not inconsistent with other, similar statistical analyses 
of URM structures. Isfeld et al. (2021) reports COVs for the ME of out-of-plane flexural fail
ures ranging from 0 to 0.14 for walls of a similar geometry to those presented in this study. 
Similarly, Muhit (2021) reports values of VME, for an SFEA equal to 0 for the inward out-of- 
plane pressure loading and 0.06 for the outward out-of-plane pressure loading of URM 
veneer systems.

5. Conclusion

Seven spatially variable, stochastic finite element analyses (SFEAs) were performed on 
structural configurations consistent with the laboratory investigation presented by 

Table 11.  Summary of variabilities for URM shear wall failure mechanisms.
Failure mode Sample size Vmeasured Vtest Vspec VExp. VSFEA VME

Flexural tension 4 0.029 0.015 0.010 0.023 0.017 0.015
Flexural Compression 4 0.020 0.017 0.010 0.003 0.035 –
Shear sliding 3 0.050 0.040 0.010 0.028 0.100 –
Diagonal tension 4 0.099 0.040 0.010 0.090 0.062 0.065
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Gooch et al. (2024). Models predicting either flexural tension or flexural compression fail
ures produced accurate representations of the experimental specimens, with mean values 
of model error (ME) equal to 1.12 and 1.09, respectively. Furthermore, low variabilities in 
these MEs were determined, with a COV equal to 0.02 for flexural tension, and a COV of 0, 
indicating that a deterministic ME may be suitable, for a flexural compression failure. Con
versely, SFEAs of shear sliding and diagonal tension failures produced poor represen
tations of the experimental results. While the statistics of ME are similar to those for 
flexure, with mean values of 0.94 and 1.00, and COVs of 0 and 0.07 for shear sliding 
and diagonal tension, respectively, the load–displacement response of these numerical 
models were notably different to the experimental observations. In each case, the 
initial elastic stiffness was significantly overestimated, and the bilinear stiffness, such as 
is discussed by Al-Ahdal et al., (2022) and Medeiros et al., (2022) was not captured by 
the SFEAs. As such, predictions of shear behaviour made using the examined modelling 
methodology should be treated with caution, particularly where the limitations noted 
above are evident.

Despite these limitations, each SFEA produced reasonably accurate predictions of the 
peak in-plane shear capacities observed experimentally. Further applications of this mod
elling method, such as a reliability analysis of URM shear walls subject to the examined 
failure mechanisms may also consider the probabilistic models of ME presented in 
Table 12. In each case, a Lognormal distribution for ME was found to most accurately rep
resent the data observed in this study. This result is consistent with the literature (JCSS 
2002; Scholten et al. 2004), as well as previous, similar numerical investigations of URM 
structures (Isfeld et al. 2021; Muhit 2021).

A further limitation to the modelling technique presented in this paper is the compu
tational expense associated with each Monte-Carlo simulation. The walls examined in this 
study were a half-storey in height and were subjected to a simplified quasi-static cyclic 
loading, rather than the dynamic loads imposed by seismic and wind events. Despite a 
simplified micro-model being adopted, each Monte-Carlo realisation took between 
several hours and several days to complete. As such, this technique may not be suitable 
to applications such as reliability analyses due to the requirement for a high accuracy in 
the estimation of the extreme lower-bound strength of a structure, an attribute that typi
cally requires a large number of Monte-Carlo realisations. However, further refinement or 
simplification of the modelling method or an improvement in processing power may miti
gate this limitation. Further research into the prediction of shear-base failure mechanisms 
is on-going.
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