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A B S T R A C T

Worldwide activity in renewable energy is a motive power to introduce technological innovations. Integrating
intermittent energy sources such as solar energy and wind power with battery storage and Vehicle to Grid
operations has several advantages for the power grid. The first advantage is that energy storage supports the
power grid during the periods that the power grid is facing challenges from high peak demand. The second
advantage is that using battery storage and Vehicle to Grid operations would shift the power grid load from
the peak and busy time to less demand time. And the third advantage uses energy storage and Vehicle to Grid
operations to smooth the fluctuating power supply fed into the power grid by intermittent renewable energy
resources. This energy storage idea is of particular importance because, in the future, more renewable energy
sources are integrated into the power grid worldwide. The research objective includes the results and examines
the role and advantages of battery storage and Vehicle to Grid operations integrated into intermittent sources.
The battery storage and Vehicle to Grid operations will create a renewable power supply and enhance the
power grid reliability, including a large proportion of intermitted renewable energy sources.
1. Introduction

The future power grid integrates renewable energy sources such as
solar energy, wind power, co-generation plants, and energy storage.

The nature of solar energy and wind power, and also of varying
electrical generation by these intermittent sources, demands the use
of energy storage devices. In this study, the integrated power system
consists of Solar Photovoltaic (PV), wind power, battery storage, and
Vehicle to Grid (V2G) operations to make a small-scale power grid.
Such a system supplies sustainable power for loads connected to the
large-scale and small-scale power grid.

Many research works are devoted to improving the models for wind
characteristics [1]. One study [2] compared different methods to esti-
mate Weibull distribution parameters for wind speed in the wind farm.
Another study [3] presented a statistical analysis of the wind charac-
teristics and wind energy potential at ordinary sites using the Weibull
distribution model. The wind speed variations, as well as Weibull dis-
tribution parameters, were highlighted on alternative timescales. One
study [4] utilized a Markov chain model to determine the stochastic
behavior of wind direction and showed that it had a significant effect on
the efficiency of wind farms. One study [5] investigated the sensitivity
of wind speed distribution functions on wind data and identified more
robust and accurate models. One study [6] investigated the application
of extreme learning machines for the estimation of Weibull parameters
more accurately.
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V2G operations are a vital part of Electric Vehicle (EV) develop-
ment. The increased number of EVs results in challenges to the power
grid. Network support utilizes V2G operations and smart charging.
Intermittent renewable energy requires energy storage and power reg-
ulation to keep demand and supply balanced. V2G operations along
with battery storage increase the penetration of renewable sources. In
V2G operations, batteries act as a frequency response reserve, spin-
ning reserve, and non-spinning reserve. Batteries are appropriate for
frequency regulation. The V2G operations may provide stable power
frequency, power quality, and reliability of the power grid. Utilizing
the V2G operations as a power regulation, EVs can be a crucial part of
the power utility.

The V2G operations can supply ancillary services to stabilize the
power grid. Such ancillary services are crucial for national security.
Controlling generation and electrical load will stabilize fluctuating fre-
quency. Electricity is transferred through the network and substations
to customers. In an electricity network failure situation, customers
can form islanded microgrids. General-purpose vehicles provide an-
cillary services to the islanded microgrid. Because electricity prices
vary over time, V2G operations provide profit by charging batteries
at lower prices and discharging them at higher prices. One study
revealed decreased lifetime reduction in V2G operations and extended
lifetime. V2G operations work with the most optimal state of charge
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level, and the driving situation operates with selected state of charge
windows. The study is significant to the EV industry and is worthy of
observation because it demonstrates an extended life with an EV battery
management system instead of the development of battery chemistry.
Research implications are the importance of EV battery management in
V2G operations, and V2G operations demonstrate the more compelling
technology. The research has addressed the defined research objective
by decreasing lifetime reduction from V2G operations [7].

Energy storage technologies that are engaged in power systems [8]
include the technology, performance, and capital costs of energy stor-
age and emphasized directions for further research. As energy storage,
V2G operations can provide ancillary services and enable higher uti-
lization of renewable energy sources [8]. The availability of future
electrical energy storage technologies is presented in [9].

One proposal investigated cycle life measurements and the cycle life
model. The model included driving patterns, V2G operations, and EV
battery lifetime. The study obtained how much V2G operations reduced
battery cycle lifetime and operational cost. Driving distance, number of
battery charging cycles, and battery operational cost increased the cost
of V2G operations. The study covered measurements, cycle life models,
driving patterns, battery lifetime, driving range, and grid-connected
V2G. This research connects all these considered methods for the cycle
life model. The study optimized battery charging and estimated the
battery’s life cycle. The novelty of this research was the use of charge
limits according to driving distance [10].

Several studies investigated the importance of rated wind speeds on
the energy production of wind turbines. One study [11] evaluated wind
potentials along the coastal area and suggested small wind turbines
ranging from 50 kW to 250 kW with moderate rated wind speeds
of 9–11 m/s could be more suitable for the region. One study [12]
defined a capacity factor based on wind speed and wind direction. They
investigated the importance of both terms in the better estimation of
wind energy potential. Another work applied a wind resource map to
integrate both wind speed and wind direction for cost optimization
of a wind farm [13]. One study [14] emphasized the effects of wind
directions on maximizing the efficiency of wind farms. Temporal and
spatial variability of wind speeds investigation revealed the effects of
turbulence on the assessment of wind resources [15]. The wind energy
potential in the southern Caspian Sea is studied [16]. They applied
uncertainty analysis in their work.

One study presented automatic battery charging and discharging
without EV drivers’ control. Battery power provided frequency regu-
lation, peak demand management, and a reserve power capacity. The
battery charge was near the optimum point, and the battery charge
was enough for the estimated next trip. The charging patterns aimed
to provide a prolonged lifetime. Every time an EV was parked, the
automatic charging provided battery charging. The driver did not need
to participate in the charging process. The driver needed to park
and plug into the power grid. Unnecessary communication is reduced
between driver and battery communication systems. The automatic
charging checks location, charging level, time, and availability to the
V2G operations before the charge required battery capacity [17]. One
study introduced the new equation for the capacity value and employed
the two-variable model. The model specified the suitable rated wind
speed for a variable speed wind turbine [18]. One review demonstrated
technical challenges in renewable energy. This review integrated V2G
operations into renewable energy systems, particularly in distributed
generation systems [19]. The solar PV system has an empirical model,
and the wind power operating curve utilizes the Weibull distribution
and Monte Carlo methods. Solar energy and wind power are intermit-
tent supplies, thus battery storage and V2G operations are supporting
the power smoothing process of the power grid.
2

2. Modeling approach for integrating renewable energy sources

This research investigates a power supply system based on a base-
load generator, a solar PV, a wind turbine, battery storage, and V2G
operations. The solar PV curve uses an empirical polynomial function.
The wind power curve employs the Weibull distribution. The wind is
unsteady and random because of turbulent fluctuations. It is essential
to use the probability density function to calculate the power output so-
lution from the wind turbine power curve [20]. Solar energy and wind
power supply a typical power grid electrical load, including a peak
period. As solar energy and wind power are intermittent, this study
examines the battery storage and V2G operations to support the power
grid. The electric power relies on the batteries, the battery charge, and
the battery capacity. Intermittent solar energy, wind power, and energy
storage system include a combination of battery storage and V2G
operations. These energy storages function simultaneously, supporting
each other. The study investigated the simultaneous usage of battery
storage and V2G operations. This study is significant and worthy of
investigating the implications of V2G operations that contribute greatly
to the convenience of electric vehicles in sustaining the power grid
because of this kind of ancillary service. The study divided renewable
energy supply systems into small-scale and large-scale supplies. The
study presented energy generation, battery storage, and V2G opera-
tions. They compared V2G operations with battery storage. The study
used battery storage and V2G operations to support the power grid.
They adopted renewable source supply simulations from the power
grid. The study used different power sizes, demonstrating the required
renewable energy system for the power grid [21].

The challenges in EV charging, renewable energy, and demand
response are investigated [22]. The uncertainty modeling methods have
strengths and weaknesses for power systems [23]. The control strategy
may reduce fluctuations and reduce electricity costs [24].

One study investigated battery wearing costs for EV battery pack-
ages. The study revealed the annual cost, the energy used for frequency
regulation, and the energy price for V2G. Results indicated that V2G
operations will supply inexpensive frequency regulation for the power
grid and will return a profit for utilities and EV users [25].

Solar energy and wind power should smooth the high peak demand.
Therefore, demand and supply estimation require an operational model
of electrical load, solar energy, wind power, and energy storage as well
as V2G operations. The advantages and disadvantages of wind farm
optimization techniques are described [26]. This study describes the
fundamental concept of integrated energy production.

One study presented the battery cycle aging model, which connects
battery experiments, cycle life models, driving patterns, battery lifetime
and driving distance, and V2G operations. The battery management
used a battery model to enhance battery life. The novelty of the battery
cycle aging model is utilizing charge limits to enhance driving distance.
The model recognizes the battery charger and approximate battery
life [27].

3. The operational baseload supply

The baseload power supply includes coal power stations, thermal
power plants, and gas turbines. In this study, the baseload is constant.
The capacity factor is the fraction of electric power generated by a
particular facility relative to its nameplate potential. Capacity factors
for renewable energy sources are typically much lower than those for
coal, gas, and nuclear plants as the intermittent nature of the energy
sources for the former [28].

Baseload power generation is considered the backbone of the power
grid by some researchers [29]. In this view, the uninterrupted capacity
of baseload electricity provides grid stability and reliability in an
electricity system with a high share of variable renewable energy [30]
as strengthening the reliability and security of the grid by electricity
storage is considered an expensive option [31]. On the other hand,
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Fig. 1. Solar photovoltaic operational curve considering weather conditions.

Fig. 2. Solar photovoltaic operational curves for fast-moving cloud conditions.

oupling the system with conventional dispatchable resources would
imit possible emission cuts [32]. In recent years, however, the drop in
he cost of variable renewable energy and storage options, as well as
esource integration, are calling into question the need for significant
olumes of baseload generation. Studies show that grid demand could
e supplied by a mix of different renewable resources and storage
ptions [33,34], even if bioenergy is avoided [35], making a 100%
enewable power sector technically feasible and economically viable
lobally [21,36]. The electrical load for the system controller can be
redicted using the forecasting method [37]. The system controller
itigates fluctuations and costs [24].

. Solar photovoltaic supply and operational curve

Solar energy has time-based dependence, on solar radiation, and the
eather. An empirical model and operational curve were constructed

or solar PV operation to describe the solar PV power.

𝑃𝑉 = 𝑎𝑅5 + 𝑏𝑅4 + 𝑐𝑅3 + 𝑑𝑅2 + 𝑒𝑅1 + 𝑓 , (1)

here R represents the solar radiation. The solar PV operational curve
hows solar radiation from a clear sky in Fig. 1. The solar PV oper-
tional curve shows solar radiation with clouds in the sky in Fig. 2.
esearch and development of PV cells have led to higher efficiencies,
ignificant cost reductions [38], and long operating lifetimes with
inimal degradation [39]. Solar radiation data used in most simulation
odels, for example [40,41], are based on average values, such as

round measured or satellite-derived hourly values.
Increasing interest in renewable energy employs new technology

olutions. Distributed power production is replacing centralized elec-
ricity generation. Intermitted energy such as solar energy and wind
ower create unfavorable effects on power attributes such as qual-
ty, voltage, frequency, and reliability. The intermittent nature of re-
ewable production increases technical challenges for the power grid
3

peration. Solar energy, wind power, battery storage, and V2G oper-
tions offer a promising alternative to the power grid. Conventional
ower production can supply backup generation to magnify reliability.
he centralized and decentralized power systems can consume renew-
ble energy sources. The study presented cost minimized large-scale
enewable energy systems [42].

A distribution network, that has EVs and solar panels has power
uality challenges [43].

Installation costs for solar energy are decreasing, ensuring solar
nergy is a more compelling technology [44].

. Wind speed model

Employing new technology, the combination of solar energy, wind
ower, and energy storage solutions is under development [45].

The wind speed variation challenges can be avoided if accurate
nformation is available and forecast service predicts weather changes.
n general, meteorological methods as physical strategies are tech-
ologies that rely on real-time numerical weather prediction [46] and
tmospheric data to forecast wind speed [47]. Power supply from a
ind farm can be predicted to control power management to the power
rid. Forecast service is an important factor in integrating renewable
nergy into the power grid.

These forecasts lead to operational modeling and estimation before
wind farm installation. The differential error between forecasts and
easurements is updated to online systems. Numerical weather predic-

ion strategies play an essential part in meteorological forecasting, and
ould also be reliable for certain wind resource assessments [48]. The
ature of the power supply includes planned and unplanned factors.
owever, power stations meet industry requirements for planned and
nplanned variations. The other significant factor is siting, showing
vailable wind resources for a wind farm. Hydropower stations and
eothermal energy sources are not flexible in siting because of their
nergy resource. Wind power development includes possibilities for
arious siting and scaling options. Careful siting research before con-
truction has value for power output and magnifying power output
ifference over a turbine’s operating lifetime.

The V2G operations can supply ancillary services to stabilize the
ower grid. Such ancillary services are crucial for national security.
ontrolling generation and electrical load will stabilize fluctuating fre-
uency. Electricity is transferred through the network and substations
o customers. In an electricity network failure situation, customers can
orm islanded microgrids. General-purpose vehicles provide ancillary
ervices to the islanded microgrid. Because electricity prices vary over
ime, V2G operations provide profit by charging batteries at lower
rices and discharging them at higher prices [49].

The wind power production capability is described. There are per-
pective challenges to improving the power frequency regulation [50].
odeling wind power provides forecasting methods over a very short

eriod. This is a challenge for research. Implementing forecasting meth-
ds for the wind power industry highlights their contribution to the
lectricity network and frequency regulation. The energy market legis-
ation supports wind power supply. Still, the economic models for the
ower system stabilizing are not well recognized [50].

From site information, we can use wind speed hourly data, and we
an estimate wind power and the power delivered by using Eq. (2).

𝑊 𝑖𝑛𝑑 = 1
2
𝜌𝐴𝑉 3𝐶𝑝1𝐶𝑝2 , (2)

where 𝜌 is the air density, A is the wind turbine cross-sectional area,
V is the wind velocity, 𝐶𝑝1 is the wind energy conversion coefficient
(maximum 59%), and 𝐶𝑝2 is the device power coefficient. Wind speed
data is collected to calculate wind power.

We use Eq. (3) to calculate wind power from average wind speed.

𝑃 = 1 6 𝜌𝐴𝑉 3 𝐶 𝐶 , (3)
𝑊 𝑖𝑛𝑑 2 𝜋 𝐴𝑣𝑒 𝑝1 𝑝2
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Table 1
A wind turbine power output and wind speed.

Wind turbine power output Wind speed

P𝑊 𝑖𝑛𝑑 = 0 0 < 𝑉 < 𝑉𝐶𝐼

P𝑊 𝑖𝑛𝑑 = 𝑃𝑅
𝑉 3 − 𝑉 3

𝐶𝐼

𝑉 3
𝑅 − 𝑉 3

𝐶𝑂

V𝐶𝐼 < 𝑉 < 𝑉𝑅

P𝑊 𝑖𝑛𝑑 = 𝑃𝑅 V𝑅 < 𝑉 < 𝑉𝐶𝑂
P𝑊 𝑖𝑛𝑑 = 0 V𝐶𝑂 < 𝑉

Performance evaluation uses the wind turbine power curve provided
y the turbine manufacturer in the presence of wind speed information.
q. (4) determines wind turbine power output using cut-in and cut-out
ind speed.

𝑊 𝑖𝑛𝑑 = 𝑃𝑅
𝑉 3 − 𝑉 3

𝐶𝐼

𝑉 3
𝑅 − 𝑉 3

𝐶𝑂

, (4)

where 𝑃𝑅 is rated turbine power, 𝑉𝐶𝐼 is cut-in wind speed, 𝑉𝑅 is rated
wind speed, and 𝑉𝐶𝑂 is cut-out wind speed, which is the maximum
wind speed to use power generation.

Table 1 defines wind power in different wind speed categories.

6. Performance evaluation with Weibull probability density func-
tions

Probability density functions describe the wind speed frequency
distribution. Wind speed distribution over wind speed determines op-
erating conditions for a wind turbine. Two probability density func-
tions, Weibull, and the Rayleigh probability density functions are most
common in the wind power industry [51].

We can estimate delivered energy from Weibull statistics using
average wind speed and available parameters shape parameter 𝛼 and
the scale parameter 𝛽.

A Weibull probability density function is formulated as shown
in Eq. (5) [20].

𝑓 (𝑣) = 𝛼
𝛽
( 𝑣
𝛽
)𝛼−1𝑒

−(
𝑣
𝛽
)𝛼
, (5)

here Weibull probability density parameters are the shape parameter
and the scale parameter 𝛽. Weibull probability density functions are

sed to estimate the wind turbine power output in Fig. 3. The mean
nnual wind speed and the measured Weibull parameters (𝛼 and 𝛽) at
ub heights of 10 and 30 m are reported [52].

An empirical battery cycle aging model for V2G operation, includ-
ng driving patterns, and estimated annual battery wearing cost [25].

comparison of the research regarding cycle life models and V2G
perations reveals that the majority of the literature typically covers
easurements and models. Typically, driving patterns, battery lifetime,

nnual range, and gridconnected operations are not considered. The
tudy integrated battery aging, driving pattern, and V2G operations into
he cycle aging model. This model is previously developed empirical
attery cell cycle aging model [25].

Only a few studies [25,53,54] discussed battery lifetime in years,
alculated lifetime driving distance, and provided V2G operations.
herefore, future development could perform V2G operations through
ggregation schemes, involving an agent and multi-agent logic, and
rid operators will probably avoid using a direct real-time control
cheme. The Rayleigh probability distribution function can be used
o estimate wind turbine power output. The target axial induction
actor is determined by the blade element momentum theory applied
o determine the blade shape. The chord distribution, twist angle,
nd cross-sectional airfoil shape increase lift and decrease drag for
he maximum lift to drag ratio [55] and also some improved stall or
ost-stall characteristics [56]. The performance of variable speed wind
urbines was investigated [57] for horizontal axis rotor systems. One
tudy [58] applied the blade element momentum theory to analyze the
4

Fig. 3. Weibull Probability Density Functions for 𝛼 = 1, 2, 3, 4 and 𝛽 = 8.

variable speed wind turbines, which operate continuously at maximum
power coefficient.

The Weibull probability density function for shape parameter 𝛼
= 2 Weibull probability density function is known as the Rayleigh
probability density function shown in Eq. (6) [20]. With average wind
speed, we can use Rayleigh statistics to estimate a wind turbine power
output.

𝑓 (𝑣) = 2
𝛽
( 𝑣
𝛽
)2−1𝑒

−(
𝑣
𝛽
)2
= 2𝑣

𝛽2
𝑒
−(
𝑣
𝛽
)2
. (6)

Average wind speed

𝑉𝐴𝑣𝑒 = ∫ 0𝑣𝑓 (𝑣)𝑑𝑣 =

√

𝜋
2

𝛽 , (7)

thus

𝛽 = 2
𝑉𝐴𝑣𝑒
√

𝜋
, (8)

Wind speed can be derived from scale factor 𝛽 providing estimation
for a wind turbine power output.

The design tip speed ratio is one of the initial design parameters
which depend on the blade numbers and it is generally taken as 6–8 in
modern wind turbines [59].

For wind turbine blade designers, as can be found in Eq. (4), the
rated wind speed and the rotor swept area are inversely related, which
means a larger rated wind speed selection in the design process will
result in smaller rotor diameter and vice versa. Smaller rotor size
and larger rated wind speed also mean higher rotational speed of
the electrical generator. Therefore, some compromise should be made
between the selection of rotational speed of an electrical generator and
the suitable rated wind speed to guarantee the maximum annual energy
output of the wind turbine for a specific site [60].

The lifetime of battery cells can be calculated. The annual V2G
compensation for battery cells with V2G cycles and the energy for
battery cells can be calculated. The electricity between the power grid
and EV batteries is transferred using V2G operations. The energy price
for V2G operations can be calculated [25].

It is worth noting that the optimization of a wind farm can increase
the annual energy production from 737.78 MWh to 756.16 MWh, an
increase of 2.5% annual energy production [61]. Therefore, the present
study shows great potential for improving wind farms’ efficiency based
on considering both the selected wind turbine power curves from real
infield technical data and wind speed distribution using a Weibull
distribution to find an optimum rated wind speed. However, the real-
time wind hours will affect the overall performance of annual energy
production [62], such economical analyses for 20–30 years can be
integrated with the present study to discover the long term merits of
reliable long term wind speed forecasting techniques such as [63–65]
are employed.
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Fig. 4. Monte Carlo experiments for wind speed. Calculations used Weibull probability
density functions.

In Eq. (6) we can replace scale factor 𝛽 with an average wind speed.
Rayleigh’s probability density function determines the link between
wind speed V and average wind speed. Eq. (9) calculates Rayleigh’s
probability density functions.

𝑓 (𝑣) = 𝜋 𝑣
2
𝑉 2
𝐴𝑣𝑒𝑒

−
𝜋
4
(

𝑣
𝑉𝐴𝑣𝑒

)𝛼
, (9)

Eq. (10) has another form of Rayleigh’s probability density func-
tions.

𝑉 =
𝑉𝐴𝑣𝑒
𝜋

√

−𝑙𝑛(1 − 𝑓 (𝑣)) . (10)

. The Monte Carlo experiments define available wind speed

Wind speed variation from Monte Carlo experiments is shown in
ig. 4. Eq. (11) determines wind speed using Weibull probability den-
ity functions. Random number 𝑁 gets values from 0 to 1.

=
𝑉𝐴𝑣𝑒
𝜋

√

−𝑙𝑛(1 −𝑁) . (11)

Battery lifetime equations [25] for renewable energy solutions are
mplemented for solar energy and wind power battery storage. The
robability function is shown in Fig. 5.

. Results

The electrical load varies between days and between seasons. This
tudy supplies power from conventional baseload and renewable en-
rgy sources. Baseload is considered constant whereas renewable en-
rgy sources vary over time. Battery storage and V2G operations are
sed to puffer energy flow to the power grid. Fig. 6 illustrates the
ombination of electrical load and generation. Results are shown in
ig. 6. At the bottom, the blue colors represent baseload and solar
nergy. In the middle, the yellow area represents the electric load.
n the top locates a red color area, variable wind power. Batteries

n battery storage and V2G operations absorb the power during low
emand periods and release the power in high peak demand times. The
alance between supply and demand without energy storage is shown
n Fig. 7.

. Interpretation and discussion

With a help of Rayleigh’s probability density function and Monte
arlo experiments, we can build a modeling approach for integrat-

ng renewable energy sources. V2G operations are a vital part of EV
evelopment. The increased number of EVs results in challenges to
he power grid. Network support utilizes V2G operations and smart
5

harging. Intermittent renewable energy requires energy storage and
Fig. 5. Weibull probability density function curve with Monte Carlo experiment bars.

Fig. 6. The electrical load (yellow), the constant electrical baseload generator including
the solar photovoltaic generator (blue), and the wind generator (red).

Fig. 7. Supply and demand balance without storage.

power regulation to keep demand and supply balanced. V2G opera-
tions along with battery storage increase the penetration of renewable
sources. EV batteries are appropriate for power regulation. The V2G op-
erations support the power grid to maintain a stable power frequency,
power quality, and reliability. Utilizing the V2G operations as a power
regulation, EVs can be a crucial part of the power utility [66].

Solar energy and wind power are intermitted power supplies and
require energy storage. V2G operations and battery storage are combi-
nations of energy storage. Battery storage provides ancillary services
to the power grid. These two battery systems are working simulta-
neously as energy storage for renewable energy supply. Solar energy,
wind power, battery storage, and Vehicle to Grid operations provide a
promising option for energy production.

10. Conclusions

The probability density function is used to build a model for re-
newable energy systems and power regulation may balance power
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supply and consumption. Battery storage and Vehicle to Grid opera-
tions are integrated into intermittent sources. The Solar photovoltaic
operation curve model and wind speed model were used to demonstrate
intermittent renewable energy sources. Weibull distribution equations
are utilized as an integral function of the rated wind speed through
the modeling of wind and power performance of variable speed wind
turbines. Battery storage and Vehicle to Grid operations increase the
balance and reliability of the renewable energy power supply. Inter-
mittent solar energy and wind power are increased power sources with
a demand for energy storage. The results of such studies are useful
for both wind turbine manufacturers and also wind farm developers to
choose the most economical wind turbines with maximal annual wind
energy production.
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