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Context. Sedimentation in the rivers and on the coasts of Timor-Leste has increased since 
deforestation, affecting floods and probably living aquatic resources. Aims. To provide scientifically 
based estimates of long-term and short-term erosion rates to assess the apparent role of deforesta-
tion, a  topic that has  not received sufficient quantitative attention in the Coral Triangle. Methods. Short-
term erosion rates have been estimated from regional relationships between river sediment yield 
and catchment areas and cosmogenic nuclides for long-term rates. An attempt has also been made 
to estimate changes in rates of delta progradation to determine whether recent increases have 
occurred following deforestation. Key results. The major scientific finding is that reduction in 
vegetation cover for agriculture and timber harvesting, particularly in the mountains, increased 
sediment yield by factors up to 120, mainly by landsliding. And there has been a large amount of 
sediment exported to the delta and offshore from river-channel change. Implications. Impacts on 
living resources are likely both in rivers and on the coast, but require assessment. Revegetation of 
hillslopes is likely to reduce these impacts and improve the livelihoods of local people. 
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OPEN ACCESS 

The research question that will be partially answered in this paper is as follows: has land 
cover reduction in Timor-Leste increased rates of erosion and sediment transport, with 
impacts on rivers and the coastal zone, as a prelude to investigating the impacts on human 
livelihoods? To answer this question, a catchment to coast approach has been adopted, in 
which long-term rates of river catchment erosion, modern erosion rates, the sources of 
sediment reaching the river, delta and offshore, and impacts of increased erosion on river 
dynamics, delta growth, and mangroves were assessed. These phenomena are considered in 
relation to vegetation-cover change in Timor-Leste. It is acknowledged that in this country, 
where data are extremely limited, our methods produce uncertain estimates. Nonetheless, 
we contend that these estimates can guide not only future research but also catchment 
management targets. 

As a contributor to both food insecurity and natural hazards, erosion and sediment 
transport have long been identified as major problems facing Timor-Leste (Ormeling 
1955; Gonçalves 1963; Metzner 1977; Sandlund et al. 2001; National Directorate of 
Forestry and Water Resources and Ministry of Agricuture, Forestry and Fisheries 2004). 
But the combination of tectonically induced uplift, high and often intense rainfall, short 
and often steep rivers, major changes in land cover, and intensive land use in Timor-
leste makes the identification of a role for land-cover change challenging, involving a 
broad range of investigative tools to provide sound results. This problem also applies to 
Indonesia, Malaysia, Philippines and Papua New Guinea, an area that produces some of the 
world’s highest rates of erosion and sediment discharge to the oceans (Milliman et al. 1999; 
Milliman and Farnsworth 2011; Alongi et al. 2013a). 
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Suárez-Castro et al. (2021) found that of the 82 countries 
with coral reefs, the vast majority of catchments with the 
highest sediment exports to the oceans are in South-east Asia. 
Catchments in central and eastern Indonesia and Timor-Leste 
account for 39% of sediment export to the Coral Triangle. As 
Earth warms, more intense rain is likely to accentuate erosion 
(Barnett et al. 2007; Asian Development Bank 2014) and 
increase the transport of sediment into rivers, to the coast 
and into the sea (see Neverman et al. 2023 for a modelling 
framework to estimate such fluxes, which could be applied 
in the future). Increased sediment transport will have impacts 
on deltas, coral reefs, sea-grass, mangroves and associated 
food resources important to local people. Sedimentation in 
the coastal zone is a major threat (and possibly a partial 
benefit by enlarging deltas) in the Coral Triangle (which 
includes Timor-Leste). This is a region of high marine 
biodiversity (Hughes et al. 2002; Coral Triangle Initiative 
2009; Asian Development Bank 2014; Coral Triangle Initiative 
on Coral Reefs, Fisheries and Food Security Secretariat 2022). 
Burke et al. (2012)  found that 45% of the coral reefs in the 
Coral Triangle are threatened from land-based pollution, 
including sediment, nutrients and pollutants, and 15% are 
highly threatened. The call by both the Coral Triangle Initiative 
(CTI) and the Arafura Timor Seas Ecosystem Action (ATSEA) 
Program Phase 2 (see https://atsea-program.com, accessed
20 July 2023) for evidence-based management is one to which 
this paper contributes. 

Land-based sediment affects coral reefs by reducing coral 
cover, diversity, colony size and structural complexity, and 
increases bioerosion and coral disease (Carlson et al. 2019; 
Naciri et al. 2023). Bleaching can be reduced by sediment 
deposition but reductions in mortality by this process are 
outweighed by mortality from low-light periods (Fisher et al. 
2019). Orlando and Yee (2017) found that high sediment 
delivery to coral reefs decreased most ecosystem services, 
including bioprospecting discovery, fisheries and recreational 
opportunities. 

Restoration of coral reefs is in part dependent on restora-
tion of adjacent catchments to reduce sediment output 
(Delevaux et al. 2019). The land-sea, ridge-to-reef or catchment-
to-coast approach is clearly needed, given that forest cover in 
catchments has a positive statistical relationship with coral 
condition, showing that restoration of catchments will have 
a beneficial effect on coral (Carlson et al. 2019). The same 
conclusion may also apply to seagrass ecosystems (Al-Asif 
et al. 2022). Suárez-Castro et al. (2021) found that the 
greatest opportunity for catchment restoration worldwide is 
in the Coral Triangle. 

The research by Suárez-Castro et al. (2021) is important 
but their erosion model calculates erosion rates only from 
rill and sheet processes, although they noted the possible 
importance as sediment sources of gully erosion and stream-
bank erosion but did not mention landslides. Among many 
modelled catchments, their model underestimates the sediment 
yield from the measured loads in the Purari and Fly rivers in 

Papua New Guinea by factors of 8 and 33 respectively. 
Landslides are common in both catchments (Blong 1986; Pickup 
and Marshall 2008), which explains the underestimation of 
sediment yield. The same conclusion may apply to many 
catchments in the Coral Triangle, thereby underscoring the 
need not just for modelled estimates based on simplifying 
assumptions, but also empirical studies of sediment sources. 
Otherwise, restoration projects will not be able to target the 
major sediment sources and will be ineffective. The focus 
on land cover is important because it can be changed by 
land management, whereas many of the other phneomena 
that contribute to erosion and sedimentation, such as 
tectonic uplift, cannot be changed. 

The study site and drivers of change 

Timor-Leste is the eastern part of the island of Timor, part of 
the Lesser Sunda Islands. It has an area of nearly 15,000 km2, a  
mountainous backbone rising to 2963 m above sea level, and 
short steep rivers draining to either side of the mountains in 
the western half of the country, and lower gradient rivers in 
the eastern part where the relief is smaller. River deltas occur 
mainly on the southern coast. The climate is tropical with 
distinct wet and dry seasons and little temperature variation, 
strongly influenced by the West Pacific Monsoon. ENSO can 
vary annual rainfall by up to 50% (see https://climate 
knowledgeportal.worldbank.org/country/timor-leste/climate-
data-historical, accessed 9 October 2024). 

The main drivers of change in the erosion–sediment 
transport–sedimentation cascading system of Timor-Leste are 
uplift, the natural background erosion rate, vegetation-cover 
change, climate, streamflow, coastal currents, and waves. 

The island of Timor (which includes West Timor in 
Indonesia) is the result of collision between the Australian 
continent and the Banda Volcanic Island Arc (Tate et al. 
2017). The area from just west of Timor to near 135°E is a 
small tectonic plate, bounded to the south by the Timor 
Trough and to the north by the Flores–Wetar Thrust, which 
is a nascent subduction zone (Rangin et al 1999; Bird 2003; 
Nugroho et al. 2009). Collision occurred at c. 8 million years 
ago (Coudurier-Curveur et al. 2021), producing thrust slices 
from both Australian continental rocks and seafloor igneous 
and sedimentary rocks. Deformation of these rocks occurred 
between 9.8 and 5.5 × 106 years ago (Keep and Haig 
2010). Uplift was by either isostatic adjustment of the 
northward-moving subduction slab from c. 4.5 million years 
ago (Kaneko et al. 2007) or by overlapping of Australian 
continental thrust sheets below Banda Arc rocks to produce 
crustal thickening (Tate et al. 2017). 

Timor-Leste may have emerged from the sea ~3.1 × 106 years 
ago (Keep and Haig 2010) or earlier  at  c. 4.4  × 106 years ago 
(Tate et al. 2017).  Given that the  highest land is ~3 km above
sea level and, if we assume that there has been no loss of rock 
from above the highest point, the uplift rate after emergence 
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has been between 0.7 and 1 mm year –1, depending on when 
emergence occurred. However, it is almost certain that 
erosion has removed rock from above the highest point, and 
so the uplift rate has been >1 mm year–1. Standley and Harris 
(2009) calculated a rock uplift rate of 1.5–2 mm year –1 

for parts of Timor. Given the young age of the uplift, it is 
unlikely that erosion is in equilibrium with uplift and erosion 
rates, and therefore cannot be calculated from uplift rates 
(Willett and Brandon 2002). Erosion is therefore most 
likely to be <1–2 mm year –1. To deal with this uncertainty, 
direct estimates of erosion are provided here on the basis 
of beryllium-10 (10Be) measurements in river sediments. 

The uplift of Timor-Leste was accompanied by complex 
tectonics where high-angle faults have created large scarps, 
such as the northern side of Mount Cablaci, on Mount Perdido 
and Mount Laritame, and probably the steep northern coast 
opposite Ata’Uro Island where, just offshore, the Wetar Strait 
reaches a depth of 3 km (Keep and Haig 2010). Earthquakes 
occur in the vicinity of Timor-Leste and uplift is probably still 
occurring (Gageonnet and Lemoine 1958; Nugroho et al. 
2009). The Timor Trough off the southern coast is a possible 
location for great earthquakes (Major et al. 2013; Harris and 
Major 2016; Coudurier-Curveur et al. 2021), which could 
have devastating effects on both Timor-Leste and northern 
Australia. 

Information about more recent uplift and deformation is 
also available. Uplifted coral terraces are common along the 
northern coast of Timor-Leste and less common on the southern 
coast (Kaneko et al. 2007). On the northern coast, Chappell and 
Veeh (1978) showed that over the past ≤150,000 years, 
average uplift rates have been ~0.3 mm year –1 near Dili, and 
~0.5 mm year –1 between Manatuto and Lautem. Cox (2009) 
showed that over the same period, a rate of ~0.5–0.6 mm year –1 

occurred over a distance of ~170 km east of Dili, with local 
rates being as high as 1.6 mm year–1 over distances of <15 km. 
The rate of ~0.5 mm year–1 at the mouth of the Laclo River at 
Manatuto is higher than the catchment erosion rate of 
0.12 mm year –1 (averaged over 3800 years: see Table 1), 
probably because of spatial variation in uplift rate or 
disequilibrium between uplift and erosion. On the southern 

coast, there are no estimates of uplift rate. However, in both 
the Laclo and Caraulun-1 catchments (Fig. 1), there are river 
terraces up to ~150 m above the modern river, suggesting 
uplift on both sides of the country. 

In 1989–1999, the areas of land-cover type in Timor-Leste 
were agriculture (36%), degraded woodland (22%), woodlands 
(19%), 12% forest and dense forest, heath or scrub 5% and 
other 6% (Bouma and Kobryn 2004). Shifting agriculture, 
settled agriculture, logging and fire have substantially 
altered the vegetation cover (Gageonnet and Lemoine 1958; 
Metzner 1977; Benevides 2003). Closed-canopy forests are 
now limited to hilltops and deep ravines where clearing 
and fire have had little effect. 

Human land use has clearly had a profound effect on the 
vegetation of the country, the first evidence for which are 
the remains of pottery and domesticated animals that first 
appeared c. 3800–3600 years ago, after a long period of 
hunting and gathering (Spriggs et al. 2003; O’Connor 2006). 
The first use of cereals occurred after the introduction of 
pottery (Oliveira 2008). Clearing, burning and use of timber 
presumably increased after the introduction of agriculture. 
Maize was probably introduced by the Portuguese in the 
16th century CE, and rice was already being grown at that 
time (Pigafetta 1969; Oliveira 2008), but it is not clear how 
widespread these crops were. Sandalwood was an important 
commodity for trade by 1436 CE when Chinese ships were 
travelling to Timor-Leste (McWilliam 2005), although the 
Chinese knew of Timor as early as 1250 CE (Ptak 1983). 
The quantities traded and effects of sandalwood removal on 
the landscape are unrecorded. 

In 1861 CE, the English naturalist Alfred Russell Wallace 
(1869, chapt. 13) described the hills from the back of Dili 
to Balibar as ‘bare hills, whose surface was covered with small 
pebbles and scattered over with Eucalypti’. He went further to 
observe that: 

: : : the Indigenous vegetation of Timor is poor and 
monotonous. The lower ranges of the hills are everywhere 
covered with scrubby Eucalypti, which only occasionally 
grow into lofty trees. Mingled with these in smaller 

Table 1. Rates of denudation and erosion for seven catchments. 

Catchment Area (km2) Average catchment Long-term denudation Averaging Bedload (%) Modern erosion 
slope (°) (erosion) rate (mm year–1) time (years) rate (mm year–1) 

Laclo 1369 13.7 0.16 ± 0.03 (0.12) 3800 27 2.5 

Caraulun-1 579 15.2 0.53 ± 0.16 (0.41) 1200 31 3.6 

Caraulun-2 36 9.0 0.11 ± 0.05 (0.09) 5500 34 10.8 

Be Lulic-1 352 16.5 0.07 ± 0.02 (0.06) 8600 31 4.4 

Be Lulic-2 8 14.0 0.23 ± 0.20 (0.18) 2600 39 21.3 

Tafara 339 13.6 0.58 ± 0.26 (0.45) 1000 31 4.5 

Rai Ketan 80 13.3 0.54 ± 0.21 (0.42) 1100 30 7.6 

Long-term erosion data were corrected for solution loss. Be Lulic-2 is the upper part of Be Lulic-1. 
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Fig. 1. Location map showing the catchments of the Laclo, Aileu, Caraulun-1 and -2, Be Lulic-1 and -2, Tafara, and 
Rai Ketan rivers, the Tafara and Caraulun-1 deltas, and key towns. Be Lulic-2 is the upper part of the Be Lulic 
catchment, which is Be Lulic-1. 

quantities are acacias and the fragrant sandalwood, while 
the higher mountains, which rise to six or seven thousand 
feet [~1830–2125 m], are either covered with coarse 
grasses or are altogether barren. In the lower grounds are 
a variety of weedy bushes. In some of the valleys where 
the vegetation is richer, thorny shrubs and climbers are so 
abundant as to make the thickets quite impenetrable. 

This a passable description of the present vegetation. When 
Forbes (1889) passed through Turiscai, in the upper Laclo 
River catchment, in the late 19th century, he observed that 
‘The mountains of Turskain [sic] were everywhere covered 
with a rich carpet of green grass’. Some eucalypts grow 
there today, showing that the area is suitable for this genus. 
We can conclude therefore that deforestation of much of 
this area had already occurred by c. 130 years ago. 

Coffee plants were introduced by Governor Celestino da 
Silva in the late 19th century CE after Portuguese control 
was secured following the final defeat of Dom Boaventura in 
Manufahi (Pelissier 1966). Significant areas were converted 
to coffee plantations thereafter, but the area and rate of 
development are unrecorded. 

Erikstad et al. (2001) and Bouma and Kobryn (2004) 
quantified vegetation-cover change. Between 1983 and 1995, 
40% of the existing forest cover of Timor-Leste was removed, 
woodland was reduced by 39%, degraded woodland 

increased by 214%, heath and shrub increased by 40% and 
agriculture decreased by 8%. Bouma and Kobryn (2004) 
attributed the changes to forest and woodland to commercial 
logging and policies of relocation of people during the 
Indonesian occupation, which increased pressure on timber 
resources by local people. Increased areas of degraded 
woodland are attributed to increased swidden agriculture as 
a consequence of increased population under the transmigra-
tion and relocation policies of the time. 

McWilliam (2001) concluded ‘that inexorable encroach-
ment and conversion of natural forest resources into swidden 
garden lands and secondary bushlands’ is the long-term 
history of forest in the island of Timor. The nature of the 
undisturbed vegetation is poorly known, except that the drier 
northern side of Timor-Leste was dominated by eucalyptus 
woodlands, the high peaks by heath, and the wetter southern 
side by mixed eucalyptus forest and broad-leaf rainforest. 
Away from villages, patches of dense closed-canopy forest 
and woodland in riparian zones still occur. Closer to villages, 
riparian forest has been replaced by swidden agriculture, 
settled agriculture, and shrubby secondary vegetation. 

Climate is dominated by the Australian–Asian monsoon 
with a single wet season of 4–6 months beginning in 
December on the northern side of the country and two wet 
seasons on the southern side lasting in total for 7–9 months 
with peaks in December and May (Barnett et al. 2007). Annual 
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rainfall is <1000 mm on the northern side, 1500–2000 mm in 
central and elevated areas, >2500 mm in the highest areas, 
and 1500–2000 mm on the southern slopes. Intense rainfall is 
common, and although tropical cyclones rarely affect Timor 
(Durand 2006) cyclone Seroja on 5 April 2021 produced 
many landslides and widespread flooding (Duffy et al. 2022). 
Variability of rainfall is largely related to the phases of ENSO 
with reduction of up to 50% in annual rainfall in El Ni ̃no years 
at some locations. 

Trends in rainfall are difficult to detect because most 
records are short. The longest record is from 1952 to 2011 at 
Dili airport, with data missing for 1975, 1976, 2001–2003. At 
this station, there is no evidence for a trend in annual totals 
(Asian Development Bank 2014). For nine other stations in 
the period 2004–2012, rainfall was, on average, 19% lower 
than in the period 1954–1974 (from Portuguese and the 
records of Ministry of Agriculture and Fisheries, Government 
of Timor-Leste). 

Portuguese records of streamflow are available for the 
period 1952–1974 (Alongi et al. 2012). For the Laclo River, the 
mean annual discharge was 29.3 m3 s –1 (range, 49.3–11.8), for 
the Be Lulic-1 River it was 11.85 m3 s –1 (range, 32.9–2.2), 
for the Caraulun-1 River 12.25 m3 s –1 (range, 22.5–5.8), and 
for the Tafara River 6.9 m3 s –1 (range, 20.4–0.3) (Fig. 1). Data 
are not available for the Caraulun-2, Be Lulic-2, or the Rai 
Ketan rivers. The mean annual suspended sediment concentra-
tions for these rivers range from 12 to 20 kg m –3, calculated
from the mean monthly discharges and the estimated sediment 
loads in Table 1; see below for explanation of these data. It is 
highly likely that much higher concentrations occur at or near 
peak flows that are not recorded in the summary data. 

Coastal currents and waves that can interact with riverine 
flows to affect the growth of beaches and deltas, with impacts 
on coastal ecosystems, are also drivers of change. The recently 
increased erosion rates that are documented in Table 1 are 
likely to have increased the rate of coastal progradation, 
especially on the deltas of the Caraulun-1 and Tafara rivers 
that are symmetrical about their river mouths. In the absence 
of measured coastal currents or waves and their transport of 
sediment, the symmetrical deltas are taken as evidence of 
dominance by riverine input (Bhattacharya and Giosan 2003) 
rather than by alongshore transport of sediment. Also, the 
sandy beach ridges on the deltas are evidence that waves have 
transported sediment of riverine origin onto the delta fronts. 

Materials and methods 

Erosion rates and sediment yields 
Most analysis has been in the following two river catchments: 
the Laclo on the northern coast, which enters the sea at 
Manatuto, and Caraulun-1 on the southern coast, which enters 
the sea a little west of Betano. Additional data have been 
obtained in the catchments of the rivers Be Lulic-1 and 2, 
Caraulun-2, Tafara and Rai Ketan (Fig. 1). 

Natural rates of denudation on medium to long time scales 
have been determined from the 10Be content of quartz in the 
sediment of the rivers listed above. The concentration of 10Be 
in the quartz fraction of river sediment is a function of the 
ratio of 10Be production (in soil and bedrock in a catchment) 
and denudation (Granger and Riebe 2014). Cosmic ray 
production of 10Be by nuclear spallation and negative muon 
capture by oxygen nuclei essentially occurs in the upper 
few metres of rock and soil. Quartz has abundant O and is 
resistant to chemical alteration, and so is an ideal material 
for this analysis. The 10Be concentration (C10) is inversely 
proportional to the denudation rate (ε), as follows: 

C10 = Po ÷ ðλ + ρε ÷ ΛÞ (1) 

where Po is the surface production rate of 10Be, which depends 
on the intensity of secondary cosmic rays, which in turn is a 
function of latitude, altitude and topographic shielding (see 
Schaller et al. 2001); λ is the decay constant of 10Be, ρ is the 
density of rock, and Λ is the attenuation length, a measure of 
the exponential attenuation of cosmic rays with depth. For 
current purposes λ can be ignored. 10Be was extracted using 
the method of Kohl and Nishiizumi (1992) and measured 
by accelerator mass spectrometry (AMS) at the Australian 
National University (Fifield et al. 2010). Using geological 
maps and topographic data in a geographic information 
system, a correction was applied for the non-quartz-rich rock 
(limestone) in the catchments, but the calculated denudation 
rates are likely to apply to the entire catchments because the 
relief between the quartz-rich and quartz-poor areas is similar. 
The variation of 10Be production with altitude was taken 
into account from topographic data within a Geographical 
Information System, by using the altitude-scaling factors of 
Lal (1991). A potential complication is that alluvium stored 
in river terraces will have higher 10Be concentrations in the 
upper 1 m because of irradiation by cosmic rays during 
sediment storage. When released by erosion, these deposits 
could bias the denudation rate calculations. However, 
alluvial terraces occupy small areas in the catchments and 
are therefore unlikely to affect the calculations (see Granger 
and Riebe 2014). Extreme erosion events may have occurred 
because of rainfall or earthquakes and may bias the calculated 
long-term denudation rates by diluting cosmogenic nuclide 
concentrations in river sediments. This is an unlikely 
problem in Timor-Leste according to the analysis by Schide 
et al. (2022) because of high background erosion and long-
term landsliding rates and high connectivity of hillslopes to 
river channels. Dilution of cosmogenic nuclides is therefore 
unlikely, meaning that cosmogenic tracers will not detect 
extreme events in this landscape. However, further analysis 
using the methods of Deng et al. (2021) could be beneficial. 

Modern (i.e. decadal) rates of sediment transport have 
been determined from the following relationship for 
South-east Asia (Milliman et al. 1999): 
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5.3x0.62y = (2) 

where r2 = 0.77, y is mean annual suspended sediment load 
and x is catchment area (103 km2). The catchments from 
which this equation has been derived have sizes similar to 
those in Timor-Leste and the land-use impacts are also 
substantial. This is the only available method for this calcula-
tion because of a lack of measred river discharges and 
sediment concentrations. 

In Timor-Leste, the bedload component is likely to be more 
than the usually assumed 10% because of landslides that 
entrain coarse sediment, incision of bedrock by upland 
channels, and erosion of river terraces that contain previously 
deposited bedload. Also, at the Caraulun-1 River irrigation 
headworks in the lowland reach, <5% of the sediment in 
the riverbed is silt and clay, and the remainder is sand and 
gravel with a maximum of 20 cm (Snowy Mountains 
Engineering Corporation 2002). Further upstream, boulders 
several metres in diameter are common in the riverbed, and 
in all other rivers examined. The suspended loads calculated 
from Eqn 2 have been converted to kilograms per second to 
enable estimation of the bedload percentages from the global 
compilation of data by Turowski et al (2010). The mean 
bedload fraction for all of the catchments in Table 1 is 32 ± 5%. 

Sediment-source tracing 
Sediment sources were determined by using the tracers 137Cs 
and 210Pb(ex) to estimate the proportion of the suspended 
load derived from sheet and rill erosion of hillslope topsoil 
(Wallbrink and Murray 1993; Wallbrink et al 1998) and, by 
difference, the proportion from other sources (landslides, 
gullies, roads, footpaths and riverbanks). The nuclides 137Cs, 
210Pb, 226Ra were measured at the Environmental Research 
Institute of the Supervising Scientist (see https://www. 
dcceew.gov.au/science-research/supervising-scientist/ranger-
mine/research) in Darwin in the <20-μm fraction by high-
resolution gamma spectrometry (using the methods of Marten 
1992). Although the activities are low, none was below the 
detection limit. Each sample from hillslopes consisted of 
~100 subsamples over an area of ~100 m2 from the upper 
1 cm of sediment recently mobilised by sheet erosion on 
hillslopes. Each riverbed sample also consisted of ~100 
subsamples from pockets of mud between gravel particles 
taken over a distance of approximately five times the channel 
width to obtain a representative sample. Twenty samples 
were taken each from hillslopes and riverbeds. 

On hillslopes, from near the coasts to the mountains in the 
two catchments, 80% of samples were from uncultivated and 
grazed sites, and 20% from cultivated sites; approximately in 
the proportions of uncultivated and cultivated areas in the 
two catchments. A more systematic sampling approach, such 
as that suggested by Wilkinson et al. (2015), was not possible 
because of access problems. That said, the sampling is 

believed to be representative of the major landscape and 
land-use types. 

River-channel changes 
Changes to the rivers in the Caraulun-1 catchment and delta 
were determined by comparison of Landsat thematic mapper 
25- × 25-m moderate-resolution satellite images for 1986,
1996 and 2006. The images were orthorectified and an
atmospheric correction applied to subtract dark objects,
ocean water was masked out, and spectral enhancement
applied by break-point analysis. The normalised difference
vegetation index (NDVI) was calculated using density slicing 
and Erdas IMAGINE software (ver. 9.3.2, HEXAGON, 
Stockholm, Sweden) and checked using 70 ground points. 
The classes ‘riverbed’ and ‘bare’ were used to digitise the 
Caraulun River and tributaries to detect any changes of 
width and location. 

Delta changes 
Beach ridges on the Caraulun-1 delta at Betano (Fig. 2, 3) and 
on the delta of the Tafara River (Fig. 3) were sampled for 
optically stimulated luminescence (OSL) dating to derive 
estimates of changes to delta progradation rates, from which 
can be inferred changes in transport of riverine sediment to 
the coast. OSL ages for the Caraulun-1 delta samples were 
calculated from infrared stimulated luminescence (IRSL) signals 
from large aliquots of polymineral samples (90–180 μm). 
These samples unexpectedly showed no response to standard 
green-light OSL (indicating an absence of responsive quartz) 
by using the standard single aliquot regeneration (SAR) 
protocol (Murray and Roberts 1998). Anomalous fading is 
likely to be a small effect, given the low doses. However, 
the possibility of some laboratory-induced bleaching cannot 
be excluded because the samples were prepared under 
conditions appropriate for standard quartz OSL rather than 
feldspar IRSL. Burial doses were calculated using the 
probability density function (Gaussian) technique of Pietsch 
(2009). An internal dose rate from feldspars of 0.5 grays 
per thousand years has been assumed. Burial doses were 
calculated using the PDF (Gaussian) technique of Pietsch 
(2009). Dosimetry was based on high-resolution gamma 
spectrometry and calculated cosmic ray doses (Prescott and 
Hutton 1994). An external dose rate from feldspars of 
0.5 grays per thousand years has been assumed. Given the 
unexpected lack of responsive quartz in these samples, and 
the uncertainty around the appropriateness of the laboratory 
conditions for feldspar, these results are indicative only. 

For the samples from the Tafara delta (Fig. 4, 5), 
carbonates, the organic fraction and heavy minerals were 
removed using hydrochloric acid (HCl) and hydrogen 
peroxide (H2O2), and by density separation with sodium 
polytungstate. Thereafter, the 150–210 μm fraction was 
used to obtain quartz grains. These were etched in 40% 
hydrofluoric acid (HF) for 80 min followed by a treatment 
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Fig. 2. Delta of the Caraulun-1 River. The Old River Channel is being reoccupied by the modern river 
through a breach in the riverbank. 

Fig. 3. Transect on the delta of the Caraulun-1 River, the location of which is shown on Fig. 2. 

with 12 N HCl and sieved again to get the fraction >150 μm. 
These quartz grains gave appreciable IRSL despite repeat 
HF etching and therefore a double-SAR protocol was used 
(Banerjee et al. 2001; Jain and Singhvi 2001) in a  five point 
SAR protocol. Small aliquots of a few tens of grains each were 
used because the low sensitivity and the relatively young ages 
of the samples did not permit single-grain analysis. The 
typical recycling ratio was 1 ± 0.1 and the thermal transfer 
signal was negligible. Dose recovery tests gave values within 
10% of the imparted dose. The regeneration growth curves 
were fit to a saturating exponential. The distribution of 
equivalent doses on histograms indicated that the samples 
were partially bleached, so the minimum equivalent doses 
(average of minimum paleodose and doses lying within a 
minimum ±2σ range) were used to derive the ages (Juyal 

et al. 2006). Some results have been derived from these 
dates (see below). 

Results and discussion 

Erosion rates 
Distinguishing between natural and human-induced erosion 
and sedimentation in tectonically active landscapes of high 
relief is challenging (National Research Council 2010). The 
approach here is to use the only two data sources to make 
comparisons of erosion rates over different time scales. 

The millennial denudation rates based on 10Be range from 
0.07 ± 0.02 mm year –1 (Be Lulic-1) to 0.58 ± 0.26 mm year–1 
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Fig. 4. Delta of the Tafara River. 

(Tafara) (Table 1). These rates include both physical erosion 
and solute loss. The high total denudation rates in Table 1 are 
in a regime where weathering is limited by the kinetics of 
chemical reactions rather than the supply of weatherable 
minerals (Gabet and Mudd 2009). In this regime, solute loss 
is approximately constant and averages ~20% of the total 
denudation rate. In Table 1, the long-term denudation rates 
have been reduced by 20% to enable comparison with the 
modern rates, which are for sediment only. The long-term 
erosion rates are in parentheses after the long-term denuda-
tion rates in Table 1. 

The millennial rates are averages over 1000–8600 years, 
known as integration times or the time for 60 cm of 
denudation to occur (Granger and Riebe 2014). Although 
there were undoubtedly some human influences in the 
catchments over these time periods, apparently land-cover 
change has been substantial only in the past ~100 years, a 
period representing an average of 5% of the integration times. 
These erosion rates are therefore either close to or at the 
natural rate and provide a baseline against which to compare 
modern rates. By using non-parametric Spearman correlation 
(see Zar 2005 for the background and method of calulation), 
statistically significant relationships between the natural and 
millennial denudation rates and catchment area, relief (not 
shown in Table 1), and catchment slope (calculated by the 
method of Montgomery and Brandon 2002) exist  only  between  

modern rates and catchment area because that relationship is 
the basis of the estimates of sediment yields (Eqn 1). 

The average long-term erosion rate for the seven 
catchments in Table 1 is 0.25 ± 0.07 mm year –1. This value 
is lower than any of the estimated uplift rates, suggesting 
that erosion and uplift are not in equilibrium, a conclusion 
supported by a lack of relationship between long-term erosion 
rates and topographic measures, albeit based on few data. 

Additional factors need to be considered. First, the 
millenial erosion rates are averaged over periods during 
which climate change has occurred in Timor-Leste (Haberle 
and David 2004; Bourke et al. 2007). Therefore, erosion 
rates have probably varied over the same periods. Second, 
the various estimates of uplift rate are insufficient to be 
definitive about their spatial variability, although it seems 
to be large (Tate et al. 2014). 

The likely high spatial variability of uplift, relief and 
vegetation cover appears to be reflected in the difference 
between modern erosion rates and natural rates. Modern 
rates are higher than natural rates by factors between 9 and 
120 (Table 1). The estimated specific sediment yields range 
from ~180 to 1400 Mg km–2 year –1. 

Sediment sources 
According to a qualitative account by Audley-Charles (1968), 
the major erosion forms in the Laclo and Caraulun-1 
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Fig. 5. Hillslope angles in the Laclo and Caraulun-1 catchments. 

catchments are landslides, gullies, sheet erosion, stream bank 
failure and earthflows. Landslides, usually only a few metres 
deep, of various types are common, as found in a quantitative 
analysis by Soares (2007) who found that most landslides 
occurred on sedimentary rocks, and were infrequent on 
igneous, metamorphic (e.g. Aileu Formation) and volcanic 
rocks and associated soils. Soares et al. (2011) found, in two 
areas that include parts of the southern catchments in Fig. 1, 
that most landslides occurred in clay-rich rocks and soils on 
steep slopes and areas of cultivation. They also found that 
most landslide erosion occurs by infrequent large events. 
Duffy et al. (2022) mapped more than 2000 landslides across 
the country and found that they mostly occur on steep areas 
where weak schists, shales and mélange (blocks of rock in 
scaly clay) occur. Soares (2007) also found that most slope 
failures occurred on bare or grassed land, and least under 
woodland. Most failures occurred on slopes between 12 and 
36°, with fewer occurring on slopes of 6–12°, and also on 
slopes of 36–48° where bedrock dominates. From the observa-
tions of the authors of this paper, gullies occur on all rock 
types but are rare, whereas streambank erosion of floodplains, 
river terraces and bedrock is common. Evidence of sheet 
erosion occurs on all formations except the Ainaro Gravels 
and Alluvial Terraces. 

Quantitative estimates of the sources of modern river 
sediments were determined first by calculating the proportion 
of topsoil in the fine-grained fraction of deposited material in 
riverbeds. This fraction is derived mostly by sheet and rill 
erosion of hillslopes that are connected to the channel network. 
Of the 20 hillslope surface soil samples analysed for 137Cs and 
210Pb(ex), 19 were from the Laclo and Caraulun-1 catchments, 
and one from a hillslope above Hera, a few kilometres east of 
Dili. The values for the sample from near Hera were within the 
range of the other samples and were therefore included in the 
analysis. 

The weighted average value of 137Cs activity for the 
hillslope samples was 2.11 ± 0.26 Bq kg–1 for the <20μm 
fraction. The lowest value was 0.76 ± 0.09 Bq kg–1 on a 
grassed, grazed slope of ~9° on Mount Fleisha in the Caraulun-1 
catchment. The highest value was 33.3 ± 3.0 Bq kg–1 on a 
scrub-covered slope of ~24° near Maubisse, also in the 
Caraulun-1 catchment. The concentration of 137Cs  at a particular  
site appeared to depend on enrichment or depletion as a result 
of local erosion and deposition, rather than on rainfall and the 
orographic effect. This conclusion is based on the absence of a 
significant correlation (at P = 0.05, using a Spearman 
correlation) between nuclide concentration and either 
elevation or position relative to rainfall gradients. However, 
there was a weak positive correlation (P = ~0.05) between 
concentration and local slope, suggesting that most soil loss 
occurs on steep slopes but is not restricted to such slopes. 
The weighted average 210Pb(ex) value for the hillslopes was 
247.5 ± 0.07 Bq kg–1 and had the same statistical relation-
ships with slope and elevation as did the 137Cs results. 

Of the 20 samples from riverbeds, 15 came from the Laclo 
and Caraulun-1 catchments and 5 from the Caraulun-2, Tafara, 
Be Lulic, Rai Ketan and Susane (near Hera) catchments. All the 
values from rivers other than the Laclo and Caraulun-1 
catchments fell within the range of the values in these two 
catchments. The weighted average for 137Cs in the riverbed 
samples was 0.13 + 0.09 Bq kg–1 (<20 μm) and for 210Pb(ex) 
is 10.95 ± 0.09 Bq kg–1. Using the methods of Wallbrink and 
Murray (1993), the topsoil component of the fine-grained river 
sediment is therefore ~5% on the basis of 137Cs and ~4% based 
on 210Pb(ex). This estimate of 4–5% topsoil fraction of the fine-
grained (suspended load) sediment in the rivers may be a slight 
overestimate of the sheet and rill erosion input because 
landslides and gullies produce sediment with a quantity of 
topsoil labelled by the two tracers. The best available estimate 
is that ~3% of the total sediment load is from topsoil, taking 
bedload into account, and therefore ~97% of the total load 
of the Laclo and Caraulun-1 rivers is derived by processes other 
than sheet and rill erosion, that is, from landslides, gullies, 
riverbank erosion, and roads and footpaths, each of which 
will now be considered. These calculations assume there is 
no 137Cs or 210Pb(ex) in the subsoils, a reasonable assumption 
given that most of the soils susceptible to erosion are Ultisols 
and Alfisols (Thompson 2011) that have dense clay B horizons 
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into which the fallout nuclides are unlikely to penetrate. Most 
landslides are at most 2 m deep, as are gullies. 

Landslides in Timor-Leste are produced by both earth-
quakes and rainfall. There are no measured rates of landsliding, 
therefore the earthquake-induced landslide quantity was 
estimated using the approach of Malamud et al (2004). Using  
their eqn 29: 

ð Þh = 3:08 × 10−6 × I4 × 100:52 b 

where h is the erosion rate (mm year–1) triggered by landslides 
and b = (Mmax ± 1), an assumed seismic intensity (I4) of 1–2, 
and a maximum earthquake magnitude of 6 (see Das 2004; Ely 
and Sandiford 2010). The data on which this equation is based 
do not extend over millennia but probably relate to the past 
century, during which most deforestation occurred. 

For the modern erosion rates, earthquake-induced 
landslides produce <1% of the total erosion rates in Table 1. 
These could be underestimates if great earthquakes can occur 
in the Timor Trough as suggested by Coudurier-Curveur et al. 
(2021). The United Nations Development Programme (2012) 
found that 50% of the country falls into a medium earthquake-
landslide hazard zone and 1% in a high zone. The methods by 
which these estimates have been made are not clear, so will 
not be considered further. 

From Rouwenhorst (2013), riverbank erosion in the 
Caraulun-1 catchment has been estimated from comparison 
of river areas between 1986 and 2006 by using satellite 
imagery. A differential analysis between Landsat images 
was combined with riverbank heights to estimate volumes 
of erosion. The average riverbank height was 2.8 ± 0.8 m on 
the basis of 48 measurements along both banks of the main 
river channel. Widening of tributaries is very small because 
they are in narrow steep-walled valleys, mostly in bedrock. 
They have therefore not been included in the estimate of 
channel erosion. The overall consumer’s accuracy for the 
land-cover classification on which this estimation was based 
was 88.6%. When calculating areas of erosion on the basis of 
pixels, there is inevitably a bias due to pixel size, methods 
used for classification, terrain (as reflected in the chosen 
DEM), and spectral resolution. Quantifying this bias is complex 
and requires detailed statistical modelling (Waldner and 
Defourny 2017), which requires another project. However, 
considering the river length and the size of the pixels, the 
error margin for the calculated areas of erosion is likely to 
be between ±10 and 30%, varying along the river network. 
The best estimate of riverbank erosion and, therefore, channel 
widening over the 20-year period is 2.9 ± 0.3–0.8% of the total 
annual average erosion rate of 3.6 mm year –1. 

Roads and footpaths erode and some of the sediment 
reaches river channels. However, the spatial density of 
these sources is low, and therefore they are not considered 
further. 

Sediment sources in the Caraulun-1 catchment 
Sufficient data exist for a preliminary sediment-source budget 
for only one catchment, namely, Caraulun-1. The estimates 
apply to about the past century. The best estimates of the 
contributions to riverine sediment of different sources in this 
catchment are as follows: sheet and rill erosion produces 
~3%, earthquake-induced landslides <1%, and the difference 
of 96% is mostly attributable to rainfall-induced landslides, 
gullies, roads and footpaths. As argued earlier, gullies, roads 
anf footpaths have low spatial density and it is therefore likely 
that rainfall-induced landslides are the major sediment 
source. Riverbank erosion contributes ~81 ± 10–33% of the 
total erosion in this catchment, most of the sediment from 
which has been deposited on the delta or transported offshore. 

The assumption that all earthquake-induced landslide 
debris reaches channels, although unlikely, makes no sub-
stantial difference to the calculation given that this is a minor 
source, unless there have been great earthquakes in the Timor 
Trough in the past few millennia. From currently available 
data, ~96% of the river sediment is from rainfall-induced 
landslides, footpaths, roads and gullies. Gullies are rare and 
mostly in landslide scars and, therefore, can be thought of 
as part of the landslide contribution. Roads and footpaths 
are sparse and probably contribute very little sediment. 
Therefore, rainfall-induced landslides contribute most sediment 
to the river, a conclusion that probably applies to all of the 
high relief catchments in the western half of Timor-Leste. 
This conclusion is supported by clear evidence in the 
landscape of landslide scars. Duffy et al. (2022) produced a 
preliminary inventory and map of landslides from which an 
apparent inverse power law distribution appears to fit a  
graph of landslide area and frequency of occurrence (Soares 
et al. 2011), but not frequency in time. A major project 
would be required to estimate temporal frequency, on the 
basis of dated geomorphic evidence because there are no 
long-term documentary records. That river-channel change has 
contributed most of the erosion was unexpected, and calls for 
better documentation of the distribution of that material on the 
delta and offshore. It also invites an understanding of likely 
future changes to river width. 

As a further step to refining the understanding of sediment 
sources, a slope map of the Laclo and Caraulun-1 catchments 
has been prepared (Fig. 5). The uppermost parts of the 
Caraulun-1 catchment and areas along the southern and 
south-eastern margin of the Laclo catchment have hillslopes 
of >30°. Such hillslopes are considered to be at the threshold 
of landsliding and controlled by the rate of uplift through the 
rate of vertical incision by rivers (Binnie et al. 2007), although 
Soares et al. (2011) argued that river incision is not a primary 
driver of landslide occurrence. Steep areas produce large 
quantities of sediment and may be the dominant sediment-
source areas in both catchments (cf. Montgomery and Brandon 
2002), particularly from slopes cleared of forest. Almost all this 
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steep land occurs on the Lolotoi Formation, the most erodible 
part of which is weathered schist (Audley-Charles 1968). 

The conclusion about increased sediment yield following 
deforestation in Timor-Leste could be tested by using dated 
fluvial deposits that record changes from before and after 
major land-cover change, similar to the approach of Wasson 
et al. (2008) in the central Himalaya. Similar deposits have 
not been found in Timor-Leste, but offshore deposits may 
provide an appropriate archive. The short, steep rivers, with 
gradients in the downstream 1 km of the studied rivers range 
from 0.0089 to 0.0105, probably transport sediment quickly 
from source to coast, and the time lag referred to earlier is 
likely to be small. 

River-channel change 
The results in Table 1 show that the modern erosion rates are 
9–120 times the millennial rates. Because of the short 
averaging times for the millennial rates, adjustment for 
the different averaging times for the millennial and modern 
rates by using the method of Gardner et al. (1987) would 
produce little difference. 

The increase is a factor of 21 in the Laclo catchment and 9 
in the Caraulun-1. This increase should be reflected in both 
the rivers and at the coast because most of the sediment 
comes from landslides and therefore the sediment delivery 
from source to river is likely to be efficient (Knighton 1989; 
Sarker and Thorne 2006; cf. Madej et al. 2009). Alongi 
et al. (2006) showed that the Laclo River at Manatuto has 
shallowed and widened by erosion of riverbanks. The people 
living near the lower reaches of the Caraulun-1 River have 
also observed river-channel shallowing and widening, and 
the evidence for erosion of riverbanks is commonplace. 
Indeed, comparison of satellite images from 1986 to 2006 
shows an increase of 31% in total river-channel area in the 
Caraulun-1 catchment from 8.2 to 10.7 km2, at an average 
rate of 0.13 km2 year –1. Some of this change has removed 
parts of floodplains that are used for cultivation and grazing. 
The shallowing and widening of these rivers is a common 
response to elevated rates of sediment input (see Wasson 
et al. 2022 for examples). 

An attempt to estimate the rate of sediment accumulation 
on a flood plain of the Laclo River near Manatuto by 210Pb(ex) 
dating produced a result relevant to the question of riverbank 
erosion. There was no 210Pb(ex) in this deposit (sampled from 
the surface to a depth of 80 cm), showing that the deposit is 
≥120 years old (5× the half-life of 210Pb) and the surface 
(which would have received direct atmospheric fallout even 
after decay of 210Pb in the older and deeper deposit) has 
probably been eroded. This conclusion is consistent with 
migration of the riverbank by lateral erosion of the floodplain 
into material ≥120 years old and scouring of the floodplain 
surface by more frequent and deeper overbank flows as the 
channel bed shallowed, all of which have been observed by 
the local people. An alternative explanation of the lack of 

210Pb(ex) at this site is the addition of 226Ra in groundwater. 
Analysis of 226Ra, 228Ra, 230Th, and 232Th of two samples 
showed an excess of 226Ra and 228Ra over their Th parents, but 
the 228Ra excess was only 14% and there was no evidence of 
negative 210Pb(ex) (J. Pfitzner, pers. comm., 2018). Therefore, 
groundwater does not appear to have played a role. 

Coastal impacts of increased sediment loads 
River sediments add little to the northern coast because most 
of the sediment is transported directly to the ocean down a 
very steep gradient into the Wetar Strait. Small patches of 
mud occur on the coast near the mouth of the Laclo River, and 
to its west where mangroves are found (e.g. at Metinaro). 
There are a few symmetrical deltas on the northern coast, 
at the mouths of the Loes and Comoro rivers in particular. 
Sandy beaches are common, but their sediments probably 
come from the many small streams along the coastal ranges, 
not just from the large rivers, and are redistributed by 
longshore drift. 

On the southern coast, deltas are common, many of which 
are symmetrical about river mouths whereas others are 
strongly asymmetrical showing evidence of preferential 
sediment transport to the east; particularly at Beco and 
coastward of Viqueque. Offshore of the delta front of the 
Caraulun-1 River, the seafloor is sandy to ~10 m, downslope 
of which it is muddy (Wayne 2004; Alongi et al. 2013b). 
Offshore ~5 km from Suai, the Mola-1 oil well intersected 
a 3-km-thick sequence of Pliocene–Quaternary sediments 
that are clay-dominated (Keep et al. 2005), showing that 
most sediment transported offshore is fine-grained. The well 
penetrated one of the small offshore sedimentary basins 
described by Crostella and Powell (1975). 

There are no known comparable data from wells off the 
northern coast, but it is a reasonable assumption that the 
dominantly fine-grain sediment load of the Laclo River 
(Table 1) and other rivers in the area contribute to muddy 
deposits offshore. Observations by the authors after floods in 
this area showed that the suspended sediment plume extends 
several hundred metres offshore where it has a sharp edge, 
suggesting a plume plunge point (Lamb et al. 2010). 

Mulder and Syvitski (1995) found that small mountain 
catchments with mean annual discharges of <460 m3 s –1 in 
the tropics are likely to produce hyperpycnal density currents 
offshore. Calculations using their eqn 6 indicated that all of 
the rivers of Timor-Leste, for which there are discharge 
estimates, are likely to produce hyperpycnal flows, with 
suspended sediment concentrations of >590 kg m –3, which 
is well above the critical concentration of 36 kg m –3. These 
density flows are likely during floods which, in the case of 
the Timor-Leste rivers, could be up to 1600 times the mean 
annual discharge based on eqn 1 of Mulder and Syvitski 
(1995). If convectional instability is present, much lower 
suspended sediment concentrations in river flows can generate 
hyperpycnal flows (Parsons et al. 2001). 
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The likely occurrence of hyperpycnal flows offshore from 
river mouths in Timor-Leste has several implications. The 
sediment plumes produced by hyperpycnal flows have a 
sharply defined outer edge. Beyond this is clear water with 
high light penetration, unlike in hypopycnal flows that 
spread turbid water much further from the coast. The N, P 
and dissolved organic matter in the clear water, only a few 
hundred metres offshore, enhances primary production of 
phytoplankton and secondary production of zooplankton 
and fish (Alongi et al. 2013b). Interviews with local people 
indicated greater fish catches in proximity to seasonal 
plumes. These fisheries are of major importance because of 
the small contribution to fisheries from mangroves along 
most of the northern and southern coasts. That is, the area of 
mangrove lagoon waters where fish communities ordinarily 
reside is small (Alongi 2013). 

The fluvial transport of particulate organic carbon (POC) is 
strongly correlated with the transport of mineral sediment 
(Hilton et al. 2008). High-standing islands such as Timor in 
South-east Asia and Oceania produce ~33% of the mineral 
sediment transported to the world oceans (Milliman and 
Syvitski 1992), and a similar proportion of organic carbon 
comes from the area (Hilton et al. 2008). There are no 
measured loads of POC in the rivers of Timor-Leste, but 
applying the relationship between POC yield and catchment 
area for the region (Lyons et al. 2002, Fig. 1) to the Laclo, 
Caraulun-1 and 2, Be Lulic-1, Tafara and Rai Ketan rivers, 
the annual POC loads ranged from 6500 to 72,000 Mg year–1
(1.6–2.3% of suspended sediment). A surprising uniformity in 
estimates of the non-fossil component of POC in this area 
(Hilton et al. 2008) suggests that ~60% of POC from Timor-
Leste rivers is non-fossil. Of this, a conservative estimate 
suggests that 10% would be deposited offshore in sediment 
protected from oxidation. 

The offshore impacts of riverflows are not restricted to 
input of freshwater, sediments and POC. Dissolved and 
particulate nutrients must also affect offshore biogeochemical 
cycles on the adjacent shelf margin as identified on the 
southern coast (Alongi et al. 2013b). Measurements of nutrients 
in river water are restricted to low flows in the Laclo River 
(Alongi et al. 2006), with an N:P ratio between 17 and 22, 
within the range of both freshwater and seawater unpolluted 
by  human or animal wastes or fertiliser (Alongi et al. 2014). 
This conclusion is also likely to apply to high flows. 

The symmetrical deltas of the Caralaun-1 and Tafara rivers 
(Fig. 2, 4) consist at the surface of fine sandy beach ridges 
separated by muddy swales. If the increased sediment supply 
documented in Table 1 has increased the rate of progradation 
of the deltas, this should be detectable by age-dating the 
beach ridges. Beach ridges can be seen on aerial photos of the 
Caraulun-1 delta (Fig. 2), most of which could not be safely 
found in the crocodile-inhabited thick swamp forest. The only 
set of beach ridges that could be found on the ground occur at 
the eastern edge of the delta, near Betano. Here, the ridges 
consist of fine sandy loam, suggesting sandy sediment input 

both from offshore onto beaches and mud from floodwaters 
from inland. 

OSL ages for the ridges are shown in Fig. 3. Pit 1 is in the 
modern beach and Pits 2 and 3 are in the first beach ridge 
inland with an age of 0 ± 50 years. Further inland, the only 
other detectable beach ridge is 2200 ± 300 years old. A 
sample from Pit 4, in alluvium that has probably buried other 
beach ridges, has an age of 900 ± 100 years at a depth 
of 40 cm. The rate of progradation from 2200 ± 300 to 
0 ± 50 years of age is 0.02 m year –1. Between the ridge 
dated to 0 ± 50 years of age and the modern beach, the rate 
of progradation is 1.6 m year –1, a rate ~80 times faster than 
the other rate. Both calculations assume that the second ridge 
from the coast is 50 years old, given that mangroves at least 
20–25 years old (Alongi et al. 2012; Alongi 2013) grow 
between this ridge and the modern beach. Beach ridges are 
easily found on the ground on the Tafara River delta (Fig. 4 
and 5). However, the OSL ages (Fig. 5) have such large 
uncertainties that progradation-rate changes cannot be 
detected. The data are provided for the benefit of others who 
may wish to use this approach and further dating is warranted. 

Comparison of satellite images shows a complicated 
pattern for the entire delta coast between 1986 and 2006. 
Some areas have eroded while others prograded. Some areas 
on the western side of the river have eroded by up to 65 m, and 
areas close to the river have prograded by up to 45 m. In the 
vicinity of the beach ridges dated by OSL, the beach has 
almost doubled in width at a rate of 2.5 m year –1, compa-
rable with the rate from 50 years ago. Changes of the area 
of sedimentation at the river mouth suggest greater input of 
sediment between 1996 and 2006 than during 1986–1996 
when erosion occurred. 

At Betano, mangroves have been partially buried by beach 
deposits (Alongi et al. 2009; Alongi 2013), whereas further 
west, along the delta front, swamp forest and palm forest 
are in places being inundated by sand washed over the crest 
of the modern beach. Whereas the satellite imagery shows a 
complex pattern of change, the washover sand provides 
some evidence of increased sedimentation along the delta 
front within the past few decades. This additional sand is 
presumably a result of increased riverine inputs to the coast, 
given that, as argued earlier, the symmetrical shape of the 
delta is evidence of river sediment dominance. 

The zonal patterns of mangroves along the southern coast 
are abrupt, in agreement with the supposition that increases 
in sedimentation are recent. For instance, the mangroves are 
either remnants of once more extensive forests or have 
remained stunted and marginalised as mid- or high-intertidal 
edge stands within a sandy lagoon (Alongi 2013). At Betano, 
mangrove peat was found at 1 m depth in cores taken seaward 
of the existing mangrove stands, suggesting smothering by 
modern riverine deposits. Further, the surface water of the 
mangroves is highly saline, but significant groundwater is 
tapped by mangroves with very deep roots, again a probable 
adaptation to either very rapid sand deposition in beach 
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barriers or shifting, unstable sediments (Alongi 2013). These 
conditions have also led to physical conditions in which the 
ratio of forest area to total lagoonal area is small, with little 
ponding of seawater behind the beach barriers. 

Extreme rainfall and riverflows are of great concern to the 
people of Timor-Leste (Alongi et al. 2009), triggering 
landslides and floods, washing away agricultural land, 
depositing sand and gravel on agricultural land, destroying 
houses and bridges, and causing death of both people and 
livestock. These extremes are likely to be the most important 
agents in erosion and sediment transport, although this has 
not been quantified. Future changes to hydrologic extremes 
(Bates et al. 2008) may therefore be of considerable concern 
(e.g. Ahmed et al. 2009), worsening soil erosion, sediment 
transport and flooding, and increasing hyperpycnal flows. 
Hyperpycnal flows may have positive effects by storing more 
POC offshore and, in combination with increased dissolved 
nutrient fluxes, increasing primary productivity offshore. 

Conclusions 

The question whether land-cover change has affected rates of 
erosion and sediment transport, with impacts on rivers and 
the coastal zone, can now be partially answered by taking 
as far as possible a catchment-to-coast approach. 

The increase of erosion rates in the seven studied catch-
ments by factors up to 120 is attributed mainly to land-
cover change in the past century. This increase has led to 
aggradation of river channels that has removed agricultural 
and grazing land, and exacerbated flooding. Enough data 
exist only in the Caralulun-1 catchment to determine the 
main sediment source for the increased river sedimentation. 
Rainfall-induced landslides in steep areas cleared of native 
forest or areas of forest thinning produce the largest amount 
of sediment. Increased erosion and river sedimentation is 
therefore attributed to human factors. Channel aggradation 
has been accompanied by channel widening and riverbank 
erosion, a set of responses known to occur in braided rivers 
that have received a large input of sediment. 

The increase of channel sedimentation is also reflected on 
the southern coast by increased delta progradation, although 
further research on this topic is required. This progradation 
has buried and partially extinguished mangroves and palm 
forests. The increased river-sediment loads may have increased 
the areas of turbid plumes that deposit sediment and POC 
offshore. The plumes appear to have increased primary 
productivity in the clear water beyond the plumes. 

Future increases of extreme rainfall and discharge as 
climate changes may increase landsliding, channel change, 
and sediment input to the coast if revegetation does not occur. 
Limited revegetation efforts are underway, but they need to 
be accelerated. 

The Coral Triangle Initiative (CTI) was designed to support 
people-centred biodiversity conservation, sustainable develop-
ment, poverty reduction and equitable benefit sharing from 
natural resources. One of the principles of the CTI is that it 
should ‘be based on solid science’. Given that the phenomena 
and issues considered in this paper have received limited 
attention in the Coral Triangle, there is an urgent need to 
evaluate the role of erosion and sediment transport in 
ecosystem-based management for biodiversity conservation 
and sustainable riverine and coastal livelihoods over as 
much of the Coral Triangle as possiblely using a catchment-
to-coast approach. The approach adopted here will produce 
results in years rather than decades if traditional monitoring 
methods are used. 
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