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Climate-driven global redistribution of  
an ocean giant predicts increased threat 
from shipping

Climate change is shifting animal distributions. However, the extent to 
which future global habitats of threatened marine megafauna will overlap 
existing human threats remains unresolved. Here we use global climate 
models and habitat suitability estimated from long-term satellite-tracking 
data of the world’s largest fish, the whale shark, to show that redistributions 
of present-day habitats are projected to increase the species’ co-occurrence 
with global shipping. Our model projects core habitat area losses of 
>50% within some national waters by 2100, with geographic shifts of over 
1,000 km (∼12 km yr−1). Greater habitat suitability is predicted in current 
range-edge areas, increasing the co-occurrence of sharks with large ships. 
This future increase was ∼15,000 times greater under high emissions 
compared with a sustainable development scenario. Results demonstrate 
that climate-induced global species redistributions that increase exposure 
to direct sources of mortality are possible, emphasizing the need for 
quantitative climate-threat predictions in conservation assessments of 
endangered marine megafauna.

Global warming is one of the most pervasive facets of human-driven 
climate change, with the magnitude of projected temperature rises 
over the 21st century comparable to that of the largest global changes 
in the past 65 million years1,2. Biological responses to warming are 
already apparent across terrestrial3, freshwater4 and marine taxa5,6. 
As environments change, species must either adapt, tolerate, move or 
face extinction7–9. A series of commonly articulated hypotheses have 
emerged in relation to movement, whereby species are expected to 
shift their distributions under warming to greater elevations (altitude), 
higher latitudes or deeper ocean depths to remain within suitable envi-
ronmental conditions10–12.

Marine taxa, in particular, are highly responsive to temperature 
change, and can closely follow isotherms with fewer physical barriers to 
dispersal compared with their terrestrial counterparts5,13,14. As a result, 
marine species are moving poleward as much as six times faster15, with 
global redistributions projected for over 12,000 species16. The general 
expectation is that polar and temperate regions will act as ‘sinks’ and 
tropical regions as ‘sources’16–20. Profound alterations to ecosystem 

structure and function can result from these shifts in marine socioeco-
logical systems, ultimately impacting human communities21.

For highly mobile marine megafauna that can travel hundreds 
or thousands of kilometres annually22, these hypotheses have only 
recently begun to be addressed due to logistical difficulties in their 
monitoring23. There is some evidence for potential habitat losses, core 
habitat displacement and divergent responses among species with dif-
fering life histories24,25. However, the location of many species’ future 
habitats remains an open question. In addition, it remains unknown 
how climate-driven habitat redistribution will affect their exposure 
to existing anthropogenic threats such as collisions with ships26,27 
or fishing exploitation28, even though such impacts may exacerbate 
population declines already occurring.

Ocean climate changes may shift marine megafauna into new 
habitats with busier shipping activity, increasing their vulnerability to 
collisions and potentially compounded by predicted future increases 
in shipping traffic29,30. Alternatively, habitats may shift into safer areas 
with less activity, providing refuge. Quantitative understandings of 
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and decreasing chlorophyll a in east Pacific38 mid-latitudes point to 
declining biomass, shallower depths and lower migration proportion of 
mesopelagic prey. Under these more oligotrophic conditions in future, 
large areas around the equatorial upwelling may become unsuitable 
for whale sharks by the end of the century.

In addition to poleward extensions, north Atlantic habitats show 
a pronounced shift away from presently important Gulf of Mexico 
regions into equatorial waters (Fig. 1a and Supplementary Fig. 1). 
Exploring this further, an AquaMaps environmental envelope model, 
based on parameters from our tracking dataset, and two independent 
datasets confirmed increasing habitat suitability in equatorial waters 
across all tests (Extended Data Fig. 2). This suggests that, unlike other 
less mobile tropical marine species13,39,40, the whale sharks tagged 
in this study do not occupy their entire fundamental thermal niche 
and can perhaps tolerate warmer oceans than they currently occupy. 
The maximum surface temperature experienced by sharks tracked 
in this region was 31 °C compared with 34 °C in the northwest Indian 
Ocean. In contrast, it appears that some future surface salinity condi-
tions will exist outside of current preferences. Salinity is projected to 
increase within the north Atlantic subtropical gyre and surrounding 
areas under climate change, reflecting an expansion of surface waters 
characteristic of the gyre, as was seen in the Middle Eocene Climatic 
Optimum41. Low surface productivity driven by climatic and oceano-
graphic processes indicates that the surface waters of subtropical gyres 
are currently unfavourable habitat for whale sharks, given the sparse 
foraging opportunities; indeed, movements of other Atlantic migra-
tory sharks across this area appear infrequent42 although whale sharks 
may occur there at deeper depths43. Taken together, the expansion of 
currently unfavourable surface waters in the north central Atlantic, 
and the fact that present-day upper temperature limits may not have 
been reached by the sharks tracked in this region, might explain why 
this species is not expected to conform to commonly held climate 
change-response hypotheses in all areas across its global geographic 
range. The influence of localized conditions is an important caveat 
with all global modelling approaches: our results exemplify a general 
global trend but with various factors affecting regional patterns (Sup-
plementary Information 4.6).

Habitat change patterns observed in mid-century ssp126 (also 
known as the ‘sustainable development’ scenario) increased in intensity 
across ssp370 and ssp585 through to the end of the century (Fig. 1b,d, 
Extended Data Fig. 3 and Supplementary Figs. 1–15), suggesting that 
under sustainable development habitat shifts will be less extreme for 
whale sharks.

By 2050 the most important habitat area—characterized by the 
90th percentile current habitat suitability per region, hereafter core 
habitat—is expected to decrease in the east Pacific, east Indian Ocean 
and south Atlantic, and to increase in the western Pacific, southwest 
Indian Ocean, northwest Indian Ocean and north Atlantic under all 
scenarios (Fig. 2b and Supplementary Table 1). The same was found for 
the 2100 projections, but with a greater degree of variation between 
scenarios, where increases and decreases of >5 million km2 (an area 
larger than the European Union) are expected in the north Atlantic 
(greater area of core habitat than baseline) and east Pacific (lower 
area), respectively (Fig. 2b). Our models show that these core habitats 
may shift latitudinally in future, with changes in distribution limits—
expressed in kilometres as the difference between the current and 
projected latitudinal core habitat limits—differing among regions 
(median northerly shift, 555 km; mean, 586 ± 496 s.d.; Kruskal–Wallis 
rank-sum, χ² = 20.68, P = 0.00037; Extended Data Fig. 4 and Supple-
mentary Table 2). The most pronounced northerly shift was found in 
the west Pacific, with an overall core habitat northward displacement 
of >1,300 km expected by 2050, even under scenario ssp126 (Supple-
mentary Figs. 16 and 17 and Supplementary Information 4.7). This is 
driven by new core habitat areas located around coastal Japan. In the 
north Atlantic, core habitat limits shifted south when thresholds were 

the interactions between wildlife movement, human activities and 
climate change are now needed for incorporation into conservation 
assessments, as well as into global strategic planning frameworks (for 
example, cbd.int/cop). However, global insights based on dynamic 
animal movements are still lacking31.

To address this, we tested whether a highly mobile, globally dis-
tributed marine megafauna species—the world’s largest fish, the whale 
shark (Rhincodon typus)—conforms to commonly held distributional 
hypotheses under climate change across its entire range (for exam-
ple, ocean basin-scale poleward shifts32), while quantifying changes 
in co-occurrence with shipping. The whale shark serves as a model 
species to test these ideas for marine megafauna because of its cir-
cumtropical distribution and expected climate responses32,33, and is 
classified as ‘Endangered’ in the International Union for Conservation 
of Nature (IUCN) Red List34. Recent evidence suggests that the species 
is particularly vulnerable to ship collisions due to its extensive use of 
surface waters and the high overlap of its habitat with marine traffic26. 
Therefore, it is possible that relatively small climate-induced changes 
in distribution could have a disproportionate impact on collision vul-
nerability for whale sharks, and potentially other marine megafauna30.

To explore potential climate responses and co-occurrence with 
shipping, we used a whale shark satellite-tracking dataset spanning 
15 years, including tagging sites in all major oceans they inhabit 
(348 individuals collectively tracked for >15,000 days). Using these 
data, together with oceanographic variables and global climate models 
from the Coupled Model Intercomparison Phase 6 (CMIP6), distribu-
tion models were developed to (1) generate a first-order approxima-
tion of global habitat suitability and (2) project the distribution of 
whale sharks in two future decades under three mitigation scenarios. 
These were then used to (3) assess habitat changes and horizontal 
co-occurrence with shipping traffic.

Results
Whale shark habitat suitability maps—defined as areas where a given 
environment has the capacity to support whale sharks, thus determin-
ing the likelihood of their presence—were generated using a series of 
correlative distribution models based on a suite of oceanographic 
variables and tracked animal movements. Data preparation, model 
algorithm and oceanographic variable selection followed careful pro-
cedures with sensitivity checks (Supplementary Information 3.3, 3.4 
and 4.4). Final models performed well in quantitative and qualitative 
validation tests and were used to explore current and projected future 
habitat areas for whale sharks (Supplementary Information 4.2 and 4.3). 
Future habitats were based on CMIP6 data for the years 2050 and 2100 
under the shared socioeconomic pathways (SSPs) ssp126, ssp370 and 
ssp585 (Supplementary Information 3.5).

Ocean-scale habitat shifts
Current regions of whale shark habitat suitability were predicted 
circumglobally within tropical, subtropical and temperate waters 
(2005–2019; Extended Data Fig. 1a and Supplementary Information 
4.5). Using our models to project these habitats into the future, based 
on changing oceanographic variables, we found increasing habitat 
suitability at the range edges of current distributions in all decade and 
scenario combinations (Fig. 1). However, habitat shift patterns varied 
across regions (Supplementary Figs. 1–7). By the end of the century, 
under ssp585—also known as the ‘high-emissions’ scenario—the east 
Pacific shows a habitat reduction in equatorial waters, with potential 
losses in some currently suitable areas coinciding with expansion into 
new regions such as the Southern California Bight (Fig. 1c and Supple-
mentary Fig. 7). These changes are related to the unique present-day 
baseline oceanography of the region and the severity or direction of 
projected shifts in oceanographic conditions. For example, chloro-
phyll a in the tropical Pacific is linked to the depth of deep scatter-
ing layers35 within which whale sharks probably forage36,37. Warming 
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calculated within each map (for example, >800 km for 2100 ssp585; 
Extended Data Fig. 4), and north when thresholds from the baseline 
years were used (for example >200 km; Supplementary Fig. 17b). This 
suggests that current core-quality habitats are expanding poleward, 
but that the most important relative core areas are shifting south.

Overall, northerly core habitat cold edges shifted at a rate of 
12 km yr−1 (mid-century, 15 km yr−1; end of century, 9 km yr−1), in keep-
ing with projected responses of chondrichthyan (cartilaginous) fishes15, 
and 2.5 times faster than southerly cold edges (overall, 5 km yr−1; 
mid-century, 6 km yr−1; end of century, 3 km yr−1), probably driven by 

the greater rate of ocean warming expected in the Northern Hemi-
sphere44. Poleward climate responses are already being empirically 
validated for whale sharks from new records of individuals45,46 and 
other ectothermic ocean migrants47, with more frequent sightings at 
cold distribution edges, possibly linked to acute warming events48–51.

Ocean-scale temporal trends
We explored how these shifting habitat dynamics might influence 
nations currently supporting suitable whale shark environments. 
Both mean habitat suitability and core habitat coverage—that is, the 
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Fig. 1 | Habitat suitability for whale sharks under current and projected 
environmental conditions. a,b, Regions of high (yellow) and low (blue) habitat 
suitability are indicated for the north Atlantic (NA), east Indian Ocean (EIO) and 
east Pacific (EP) based on current climatologies (2005–2019) (a) and their sum 
weighted latitudinal density distributions coloured by decade and scenario 
(b). c,d, Regions of increase (red), decrease (blue) and no change (white) are 
indicated for NA, EIO and EP based on 2086–2095 ssp585 climatologies (c) and 

their latitudinal density distributions for cells containing positive (>0.5, red) or 
negative (<−0.5, blue) change values separated by decade and scenario (d). Each 
map shows outputs from GAMs built from tracking data from the respective 
region projected at the ocean basin scale, and the current IUCN distribution 
limits are displayed in each map as greyed-out boundaries. Mapped results for 
other regions are given in Supplementary Figs. 1–7.
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percentage of exclusive economic zone (EEZ; Supplementary Fig. 18b) 
waters classed as core habitat—shifted latitudinally across years in the 
Atlantic and, to a lesser extent, in the Pacific and Indian Oceans (Sup-
plementary Figs. 19–21). National waters predominantly located in the 
Atlantic with currently high mean habitat suitability show increases in 
the future, exceptions being the Nicaraguan, Colombian and Cuban 
EEZs where declines in ssp370 and ssp585 by 2100 are expected, reflect-
ing habitat losses in the Gulf of Mexico (Fig. 3b). Many currently less 
suitable EEZs were also projected to increase in mean habitat suit-
ability in the future, among the most pronounced being the Guinean, 
Gambian and Senegalese EEZs on the west coast of Africa (Fig. 3b). 
In contrast, reductions are apparent in several Pacific EEZs currently 
supporting suitable habitats. To explore intra-annual habitat trends, 
we calculated the same metrics within large marine ecosystems (LMEs; 
Supplementary Fig. 18a), finding that seasonal trends in suitability may 
expand and strengthen in future—for instance in the Guinea Current 
LME—with increased mean habitat suitability from November to March 
compared with a more restricted season in the current period (Fig. 3a). 
The opposite trend is expected in the Southeast US Continental Shelf 
LME, where the season contracts and weakens by 2100 following a loss 
of suitable habitats under ssp585 (Fig. 3a).

In some cases, intra- and interannual future projections were 
similar to trends potentially attributed to past climatic events. For 
example, the extent of whale shark habitat suitability and its seasonal 
pattern identified in 2010 had similarities to our projected future in the 
Atlantic, such as the increasing core habitat coverage in lower-latitude 
EEZs and relatively strong boreal and austral summer seasons in the 
Southeast US Continental Shelf and Guinea Current LME, respectively 
(Fig. 3a,b and Supplementary Fig. 22). This suggests that events such as 
the documented 2010 Northern Hemisphere heatwave52 may predict 
some future conditions in the Atlantic. Past habitat suitability patterns 
with similarities to future predictions were also evident in other regions 
(Supplementary Figs. 23–25 and Supplementary Information 4.8).

Global redistribution
Across the global ocean, model projections indicate a more general 
redistribution of whale sharks from current known centres into cur-
rent range-edge, or fringing, habitats. Current LMEs with low habitat 
importance (defined as mean habitat suitability <0.05 based on visual 
segregation) will remain largely unchanged in the future according to 
our models, whereas medium-importance areas (mean habitat suit-
ability 0.05–0.5) will become more suitable and high-importance areas  
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(2005–2019) and predicted future averages coloured by decade and scenario. 
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and ‘high’ (>0.5) current habitat suitability (see Supplementary Fig. 18a for 
LME climate zones). b, Change in total area of habitat suitability (million square 

kilometres) within the north Atlantic, south Atlantic (SA), northwest Indian 
Ocean (NIO), southwest Indian Ocean (SIO), east Indian Ocean, west Pacific (WP) 
and east Pacific between present and future predictions, coloured by decade and 
scenario, with the periods 2046–2055 and 2086–2095 shown in the left and right 
panels, respectively, and symbols denoting negative (blue minus) and positive 
(red plus) change.
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(mean habitat suitability >0.5) will become less suitable. This change 
in habitat differed across decade and scenario combinations (Kruskal–
Wallis rank-sum, χ² = 42.30, P = 5.13 × 10−8 for n = 28 LMEs with current 
habitat suitability >0.01; Fig. 2a). For medium-importance regions, the 
greatest absolute difference in projected habitat suitability means was 
between the 2050 ssp126 and 2100 ssp585 groups (n = 14 LMEs, Kruskal– 
Wallis rank-sum, χ² = 32.00, P = 5.93 × 10−6; Dunn’s multiple comparisons, 
Z = −4.20, P = 0.0004; Fig. 4a). However, in high-importance regions the 
difference for each decade and scenario combination was less substantial 
(n = 11 LMEs, Kruskal–Wallis rank-sum test, χ² = 15.08, P = 0.0101), sug-
gesting that the greatest variation in expected absolute change across 
possible future conditions will occur in currently medium-importance 
habitats (Fig. 2a), with these areas most impacted by whether we follow 
a high-emissions or sustainable development scenario.

Under the high-emissions scenario, globally, 57.5% of EEZs will have 
suitable habitat losses >50% and 76.5% will have core habitat coverage 
reductions >50% by 2100 (n = 200). These losses were greatest in Asia 
(where loss is projected for 88.0% of countries with Asian sovereignty, 
n = 25) and least in Europe (42.1%, n = 38; Extended Data Fig. 5). Under 
ssp126, 65.5% of EEZs will gain core habitat coverage of >50% (n = 200), 
with the greatest mean habitat suitability gains apparent in Europe 
(73.7%, n = 38) and least in Asia (28%, n = 25; Extended Data Fig. 5). 
This reshuffling suggests amendment of the currently recognized 
IUCN range for this species, to account for acute climate events and 
conservation planning in the future (Extended Data Fig. 6).

Implications of redistributions
To test whether whale shark vulnerability to ship-strike may change 
in the future, we applied a previously validated whale shark–ship col-
lision risk index26 to the distribution maps and recalculated this as a 
ship co-occurrence index (SCI; Methods) based on current predicted 
and future projected habitat suitability and shipping traffic density 
(Fig. 4b). SCI was calculated within all EEZ marine regions within the 
range of whale sharks (n = 367) for the 2005–2019 baseline and com-
pared with future projections. Here, increases in SCI are driven by  
(1) habitat suitability increases in new marine regions that overlap 
with high shipping activity and (2) increases in currently suitable or 
new regions with lower activity. For example, increased SCI in the US 
part of the north Pacific Ocean by a factor of 95 can be explained by an 
increase in newly suitable habitat overlapping busy shipping routes 
(Fig. 4c). This is also the case in the Japanese part of the eastern China 
Sea and Sierra Leonian part of the north Atlantic Ocean, where SCI 
is projected to increase by 272 and 689%, respectively (Fig. 4d,e). In 
contrast, a SCI increase of 236% in the Somali part of the Indian Ocean 
is driven by habitat suitability gains expanding into more offshore 
waters where shipping remains low. Our models suggest that, while 
these SCI increases occur in some areas, decreases are apparent in 
others. Similarly, decreases in SCI are driven by both habitat suitability 
reductions where current habitats overlap high shipping activity, and 
overall habitat reductions. For example, SCI reductions of 76% in the 
Mexican part of the Gulf of Mexico result from habitats shifting into 

more coastal waters away from the busiest shipping routes in the centre 
of the Gulf. However, reductions of almost 100% in the Clipperton part 
of the north Pacific Ocean, where shipping is low across the region, are 
driven by general habitat losses.
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Fig. 3 | Temporal trends in habitat suitability. a, Monthly habitat suitability 
in which high (yellow) and low (blue) means are summarized within LMEs in the 
north Atlantic. Upper and lower panels show predicted future for each decade 
and scenario and present-day annual (2005:2019), respectively, within the 
Southeast US Continental Shelf LME (left) and Guinea Current LME (right). Axis 
labels 55 and 95 refer to decadal subsets 2046–2055 and 2086–2095, respectively. 
b, Interannual habitat suitability metrics where high (yellow) and low (black) 
means and high (large) and low (small) percentage coverage of core habitat area 
are summarized within EEZs, which are predominately located in the Atlantic 
Ocean. Left, middle and right, present-day annual (2005–2019), present-day 
average (2005–2019) and projected future (for each decade and scenario), 
respectively. Red boxes denote years referenced in the text when past climatic 
events of note occurred.
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Overall, SCI increased in all future decade and scenario combina-
tions (Fig. 5 and Extended Data Figs. 7 and 8), even when the number of 
ships was held at current levels compared with the predicted increase 
in capacity of up to 1,200% by 2050 (ref. 29). When regions with mean 
SCI <0.1 in both the baseline and projected years were removed (n = 295 
remaining EEZ marine regions), SCI was >15,000 times greater by the 
end of the century in the high-emissions scenario (ssp585) compared 
with present-day habitats based on mean change within EEZs (Fig. 5b). 
Under sustainable development (ssp126) this fell to ~20 times greater, 
on average. When SCI was averaged across EEZs in the present day and 
compared with future scenarios, an overall increase of 41.2% by 2100 
under high emissions was halved (19.2%) under sustainable develop-
ment (Fig. 5c). Furthermore, the change from baseline levels was asym-
metrical, with substantial increases in SCI projected for most regions 
(>66%, n = 295; Fig. 5a). This is a concerning threat trajectory for the 
species, considering that there are currently no measures in place to 
protect whale sharks from shipping53. Collision threat for whale sharks 
also depends on their diving behaviour26,28, and moving to address the 

vertical dimension is an essential next step for assessing the effects of 
compound climate change events on marine megafauna54 (Supple-
mentary Information 4.9).

Discussion
Using dynamic, individual-animal tracking data, oceanographic variables 
and state-of-the-art climate models, our study projects habitat changes of 
the world’s largest fish in two future decades up to 2100 and three climate 
change scenarios. Projections across worldwide regions showed poleward 
shifts of over 1,000 km and areas of increasing habitat suitability at latitu-
dinal fringes of current distributions, which were most extreme at the end 
of the century under the high-emissions scenario. Resultant global-scale 
redistribution from current centres into fringing, range-edge habitats is 
possible for this species, with varied ocean basin-scale patterns in direc-
tion and location of future habitats relative to present-day distributions. 
Such a global reshuffling could potentially lead to core habitat losses in 
national waters currently supporting the species and increased levels of 
ship co-occurrence as oceans continue warming and other variables shift.
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Fig. 4 | Future redistributions in the context of global shipping. a, Projected 
change in habitat suitability from baseline (absolute, 2005–2019) for 14 LMEs 
defined as medium importance, in which the result from a Kruskal–Wallis rank-
sum test is shown at top left (χ² = 32.00, P = 5.93 × 10−6). Circles denote individual 
LME values, the thick line denotes the median and boxes bound the interquartile 
range (25th to 75th percentile), with whiskers extending to the maximum and 
minimum values. Upper and lower boundaries of violin plots extend to the 
maximum and minimum values, respectively, and width represents the density 
of observations. b, Global distribution of areas of high (yellow) and low (purple) 

shipping traffic density defined as the total count of vessels from a 2019 monthly 
average. c–e, These areas are shown in close-up in c–e, respectively. c–e, Areas 
of high (yellow) and low (purple) shipping traffic density from a 2019 monthly 
average (left) and areas of habitat suitability gain (red) and loss (blue) predicted 
from GAMs (right) shown in the national waters in the United States of America, 
marine region identification (ID), US part of the north Pacific Ocean (c); Sierra 
Leone, marine region ID, Sierra Leonian part of the north Atlantic Ocean (d); 
Japan, marine region ID, Japanese part of the eastern China Sea (e).
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Whale shark ecology and life history mean that habitat shifts 
may have complex consequences. These are large-bodied, highly 
mobile ectotherms, closely associated with temperature at multiple 
scales36,55–57. We tracked individuals in surface waters, where they are 
known to spend large amounts of time26, with relatively high tempera-
tures between 18 and 34 °C. Warming of both surface and subsurface 
layers58 will expand the lower temperature limits of the whale sharks’ 
range polewards, and our models predict that currently suitable habitat 
areas will follow a similar pattern. This could mean that key aggregation 
sites53—crucial for juveniles and subadults to forage on high prey densi-
ties—become difficult to access or remote in the context of individuals’ 
annual movements. Alternatively, unexpected ocean conditions in new, 
unfamiliar environments may lead to mortality, as suggested for whale 
sharks off South Africa59. When coupled with the potential reduction 
in habitat quality expected in some currently suitable regions, these 
shifting dynamics could have population-level consequences. For 
example, although it is not yet known where mature adults breed or 
where females birth their young, shifting habitats could alter these 
locations, subjecting neonatal whale sharks to increased predation 
levels or insufficient foraging opportunities.

The implications of the diverse distribution changes we present are 
highly relevant to conservation. Shifts among national waters could alter 
protection levels for key demographics and may also impact income 
for countries with whale shark tourism operations60. The potential for 

increased ship co-occurrence in future highlights the importance of 
factoring climate change into discussions around endangered species 
management. The methods developed here to estimate these trends can 
be adopted for other species to help inform national and international 
initiatives to conserve biodiversity. This could be by identifying priority 
areas where effects of compound stressors (for example, ocean heat 
waves and deoxygenation54) are minimized, assessing the resilience 
of current Marine Protected Area coverage to climate change61,62 or 
designing protection networks that encompass the full range of future 
habitats, including aggregations, hotspots and refugia63,64.
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Methods
Study regions and tag deployment
The study used a dataset of tracked whale sharks (n = 348; Supplemen-
tary Fig. 26) tagged in seven large-scale ocean regions; north Atlantic 
(n = 39 individual tracks), south Atlantic (n = 14 tracks), northwest 
Indian Ocean (n = 44 tracks), southwest Indian Ocean (n = 26 tracks), 
east Indian Ocean (n = 74 tracks), west Pacific (n = 62 tracks) and east 
Pacific (n = 89 tracks). This dataset covers 15 years (2005–2019), with 
15,508 collective transmission days from field campaigns undertaken 
by researchers involved in the Global Shark Movement Project (www.
globalsharkmovement.org). Details of tag types and deployment meth-
ods are provided in ref. 26, and ethical approvals and permits are given 
in Supplementary Information 8.

Tracked location processing
Tracking data were relayed through the Argos Data Collection and Loca-
tion System (www.argos-system.org). Argos provides geographic loca-
tions estimated via Doppler-shift calculations for ARGOS transmitter tags. 
For pop-off satellite archival transmitter tags, calculations of light level, 
temperature and swimming depth were used to estimate geographic 
locations. The filtering approach described in ref. 26 was applied to the 
tracking data to address spatial error and sampling interval inconsisten-
cies, following which gaps in transmission were interpolated across sec-
tions of track having no location estimates, up to a maximum of 3 days. 
Locations recorded after December 2019 (due to lags in environmental 
data availability) or that were deemed erroneous due to technology 
failure or early detachment—determined on a case-by-case basis using 
an algorithm to detect transmissions indicative of a floating device as 
opposed to one attached to the animal—were removed from the dataset, 
resulting in 18,745 regularized daily location estimates across regions 
(north Atlantic, 2,017; south Atlantic, 331; east Indian Ocean, 4,342; north-
west Indian Ocean, 986; southwest Indian Ocean, 946; east Pacific, 3,090; 
west Pacific, 7,033) (Supplementary Table 3 and Supplementary Fig. 26).

Species distribution modelling
To identify the environmental drivers important for whale shark move-
ments and space use, we built a series of species distribution models 
that were used to generate a first-order approximation of present-day 
(hereafter current) whale shark distribution and project their future 
distribution under two decade and three climatic scenario combina-
tions (Supplementary Fig. 27). The six-step procedure comprised the 
components described below.

Model data preparation. To characterize the biophysical environment 
at observed tracking locations, a suite of 28 dynamic and physical 
essential ocean variables (EOVs) were explored as potential drivers of 
whale shark distribution (Supplementary Table 4 and Supplementary 
Information 3.1). First, we performed a background sampling selec-
tion where locations were generated for each track within its assigned 
region, sampled at the basin scale cropped to 40° north and south of 
the Equator (Supplementary Fig. 26). The minimum convex polygon 
of presence locations, which represents the geographic extent used 
by individuals tracked in the study—including the spatial error field 
associated with tracking technologies42,65—was masked off within 
each region and allocated as a buffer extent within which background 
locations could not be sampled (see Supplementary Information 3.4 
and Extended Data Fig. 9 for details on other methods tested)66,67. 
This method of sampling background environments from within the 
entire accessible range of whale sharks captured essential aspects of 
the species’ life history (that is, the tendency to aggregate coastally) 
whilst also allowing for biologically realistic broad-scale extrapolation 
into current and future oceans. However, it may not be suited to all 
species and analyses situations, and background sampling selection 
should be carefully considered on a case-by-case basis in future studies 
(Supplementary Information 3.4).

For each daily time stamp along a whale shark track, 100 back-
ground locations were randomly generated outside of this buffer area 
up to the latitudinal limits and within a maximum of 40° (ref. 66). Then, 
to avoid potential overfitting and artificially inflated model metrics 
related to an excessive number of background locations relative to the 
number of presences in the modelling dataset, background locations 
were further sampled to obtain a 1:10 presence:background ratio in 
the models32,67,68. For each presence and background location, 28 EOVs 
(Supplementary Table 4) were extracted from the closest point in space 
and time using interpolation methods. First, 100 randomized locations 
were generated within a radius around each original shark location, 
calculated as the normal distribution plus half the standard deviation 
of the error radius associated with ARGOS tags (0.12° latitude, 0.12° 
longitude)26 and pop-off satellite archival tags (1.08° latitude, 0.53° 
longitude)26. For each randomized location, a spiral of cells rotating 
outwards were averaged up to the analysis resolution (0.25°), before 
all 100 locations were averaged to give a single value per location. 
Second, to obtain the closest value in time for each location we used a 
temporal interpolation method, where each consecutive day between 
downloaded environmental data time stamps was assigned a value 
based on time differences between available data. Extracted EOVs were 
windsorized (truncated to percentile) where necessary before being 
centred and scaled for each region.

Model training and oceanographic variable selection. To deter-
mine the most important EOVs for predicting the presence of the spe-
cies, we then developed and compared a set of presence-background, 
case-control classification models. We used generalized additive mod-
els (GAMs; see Supplementary Information 3.3 and Extended Data Fig. 9 
for details on other methods tested), applying the bam function with 
the fast maximum-likelihood method within the mgcv R package69, 
and discretized covariates to improve storage and efficiency70. To 
avoid overfitting, we added a gamma value of 1.4 into all models, 
which assigns a higher value to penalize lambda (or smoothness) of 
the parameter relationships71, and ensured low k-values. To reduce 
spatiotemporal autocorrelation, we also performed a data-thinning 
procedure by subsetting locations that were at least 2 days apart and 
thus removed consecutive daily locations72 (Supplementary Table 5). 
We built models with a reduced number of EOVs to test ecologically rel-
evant driver combinations important for whale shark movements42,73,74 
(Supplementary Information 3.2).

Eight hypotheses, that included both surface (0 m depth) and 
subsurface (100 m depth) EOVs, were developed and run on the entire 
tracking dataset including whale shark positions from all regions (Sup-
plementary Table 6). Sex and size were included as random effects, 
and month of occurrence as a cyclic cubic regression spline, in all 
models. The relative performance for each global hypothesis was 
assessed using the weights of the Akaike information criterion (wAIC). 
EOVs included in the best-performing global model were then reor-
ganized into a further eight hypotheses to investigate independently 
within each region. For the region-based models, shark identity was 
also included as a random effect. This framework allowed for testing 
of hypotheses containing surface only (hereafter surface) or surface 
and subsurface (hereafter subsurface) EOVs built from those known 
to be important for the species generally (Supplementary Fig. 28). The 
most parsimonious version of each region-based model was chosen 
based on removal of non-significant EOVs (P > 0.05) and comparison 
of wAIC between model sets before selecting the best-performing 
model for surface and subsurface hypotheses using wAIC. Following 
inspection, surface models (comprising surface EOVs) were cho-
sen to take forward to ensure that shallow, near-shore regions were 
accounted for globally.

Then, to control for variable selection, we ran an automated 
hypothesis framework in which all non-collinear variables were included 
in each regional model (Supplementary Fig. 29) and removed epipelagic 
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micronekton for which there are currently no accurate future EOV pro-
jections and some current uncertainty (Supplementary Fig. 30). Finally, 
to control for algorithm selection, we repeated the best-performing 
region-based hypotheses using a second algorithm, Bayesian additive 
regression trees (BART), to compare the two modelled and mapped 
outputs and determine areas of regional model agreement to comple-
ment the main analyses based on GAM models (Extended Data Fig. 9, 
Supplementary Figs. 31–33 and Supplementary Table 7). Here, BART 
models were run using 200 trees and model defaults75.

Model validation. Final regional-based model generalization per-
formance was evaluated holistically by testing explanatory power, 
predictive skill and biological realism76. Explanatory power was evalu-
ated using the percentage deviance explained for each hypothesis 
(Supplementary Tables 8 and 9). Predictive skill was tested internally 
using tenfold cross-validation conducted on each regional dataset 
with the dismo package77 (measuring model accuracy, precision, sen-
sitivity, specificity, area under the curve, kappa and true skill statistic; 
Supplementary Table 10 and Supplementary Information 4.2), and 
on two external, independent datasets: observations of whale sharks 
downloaded from the Ocean Biodiversity Information System (OBIS, 
https://obis.org/; n = 9,379) and a set of verified observations of marked 
individuals from Sharkbook.ai for whale sharks (https://www.shark-
book.ai/; n = 13,437), with model performance measured with continu-
ous Boyce index (Extended Data Fig. 1). Biological realism was tested 
qualitatively by visual inspection of the prediction maps and evaluation 
of the ability of the models to predict known general patterns of species 
distributions throughout the course of the year (Extended Data Fig. 1 
and Supplementary Information 4.3). We assessed maps using valida-
tion areas that were beyond those used by tracked individuals in the 
model training dataset. Four regions were selected per ocean (Atlantic, 
Indian Ocean, Pacific), reviewed for seasonal habitat suitability and 
then compared with published literature, opportunistic news reports 
and expert knowledge (Supplementary Table 11). We also used the 
AquaMaps78 environmental envelope algorithm based on occurrence 
records from the Global Biodiversity Information Facility and OBIS, 
located in Food and Agriculture Organization major fishing area 31, 
to explore alongside our projected habitat maps in the north Atlantic 
and compare outputs. Here, we used these freely available occurrence 
records and our tracking data from the region to generate parameters 
for sea surface temperature (SST), bathymetric depth (DEPTH) and 
salinity (SAL) and fit into the envelope model. We then compared 
mapped outputs generated from the independent occurrences with 
those from our tracking data using the AquaMaps algorithm and our 
main analysis results (Extended Data Fig. 2). For this comparison, Aqua-
Maps projections for the year 2050 were generated based on a decadal 
average (2046–2055) for representative concentration pathway 8.5 
from the Max Planck Institute Earth System Model, using a debiasing 
approach similar to that applied in our main analysis78.

Predictions of current distribution. Monthly and overall predic-
tions from the final GAM model were generated to provide a map of 
the potential distribution of whale sharks within each region. Maps 
represented the probability (0–1) in each grid cell of those containing 
a presence (as opposed to a background) track location, reflecting a 
given environment’s capacity to support the species which, here, was 
interpreted as a relative measure of habitat suitability. For the overall 
habitat maps (with no monthly or annual component), EOV layers were 
averaged across the extent of tracking years available (2005–2019), 
and for monthly predictions averages for each month were taken from 
across the extent of tracking years available or from within a specific 
year accordingly. For independent dataset validation, region-based 
predictions were joined together by defined boundaries to create a 
single global map (Extended Data Fig. 1a). For the main analyses we 
used regional models to predict at the ocean basin scale; for example, 

the north Atlantic model was used to generate maps for the entire 
Atlantic cropped to within known species’ latitudinal distribution 
limits. In this case, predictions beyond region boundaries (Extended 
Data Fig. 1a) may represent potential overextrapolation and should be 
interpreted with caution due to distance of predicted habitats from 
tracked individuals included in the training dataset. As such, region 
boundaries were included in all visualizations to aid interpretation. Our 
method of predicting presence probability includes the effect of whale 
shark prevalence (proportion of presences) in the modelled dataset. To 
account for this, we standardized the presence background ratio across 
regions and compared only those mapped habitat suitability outputs 
based on the same tracking datasets such that the effect of prevalence 
remained consistent. In addition, we also calculated current habitat 
favourability by incorporating dataset-specific prevalence into the 
predicted outputs using the ‘fuzzySim’ package79, finding that habitat 
patterns remained consistent (Supplementary Fig. 34).

Predictions of future distribution. Data from the projected EOVs were 
extracted monthly and overall from two future global climate model dec-
adal means: mid-century (2050; 2046–2055) and end of century (2100; 
2086–2095), and under three SSPs: the most optimistic scenario (ssp126, 
reflecting most closely the 1.5 °C warming target under the Paris Agree-
ment), a medium–high-forcing scenario (ssp370) and the high-forcing 
scenario (ssp585, retaining a strong reliance on fossil fuels in the future) 
(Supplementary Information 3.5 and Supplementary Figs. 35–37). From 
CMIP6, ACCESS-ESM1-5, CanESM5, CESM2-WACCM, CMCC-ESM2, 
GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR and NorESM2-MM were 
applied in a delta change framework (see Supplementary Information 
3.5 for further details on calculations and Extended Data Fig. 10 for the 
methods schematic). Climatic projections of future distributions within 
each region were generated using these forecast maps.

Overall change in habitat suitability was estimated as the differ-
ence between the area covered by current core suitable habitat (>90th 
percentile habitat suitability) and projected habitat (>90th percentile 
current habitat suitability). Relative change in the location of important 
core habitats within future projection maps was based on the >90th 
percentile habitat suitability within each projection subset. The 90th 
threshold was chosen as representative of the most important core 
habitat within each region, to ensure balanced datasets for compari-
sons. The 90th threshold also reflects the aggregative nature of the 
species that is known to form high relative-abundance ‘hotspots’ on 
an often seasonal basis80. Habitat change calculations were performed 
spatially (including within geopolitical boundaries; Supplementary 
Fig. 18) and across time. They were also explored as a binary output 
whereby the cells from GAM and BART model-predicted change were 
used to identify regions of model agreement. All area calculations 
were an estimate based on a uniform 0.25° grid calculated in the raster 
package81. Latitudinal change in northerly and southerly habitat shift 
was assessed by calculating the movement of whale sharks (expressed 
in kilometres) as the difference between the current latitudinal range 
and limits and the projected latitudinal range and limits in future, 
primarily based on the 90th percentile and rerun on the 50th, 75th and 
95th percentiles for additional support. The main results present shifts 
based on calculation of core habitat within each projection subset to 
determine where the most important areas have shifted irrespective 
of overall habitat changes. Shifts based on comparison of future core 
habitat limits with present-day thresholds are presented in Supple-
mentary Tables 2 and 12 and Supplementary Figs. 16 and 17. These were 
also explored quarterly. All statistical comparisons were checked for 
normality using the Shapiro–Wilk test.

Current and future shipping co-occurrence estimates. Global ship-
ping data were sourced from Global Fishing Watch (www.globalfish-
ingwatch.org) and comprised a total monthly count of all commercial 
vessels >300 gross tons transiting the ocean in 2019, which were then 
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aggregated into an annual average at 0.2° grid cell resolution. A SCI was 
calculated by adapting the collision risk index described in ref. 26, where 
shipping data were fixed to 2019 and whale shark spatial density used 
in that study was substituted for habitat suitability in the current study, 
which represents the probability of a whale shark occurring within a cell 
(0–1). SCI was then averaged spatially by calculating the mean of all cells 
within each EEZ marine region. Projected future difference in SCI was 
calculated as a percentage change from the 2005–2019 SCI baseline. 
This calculation is a measure of whale shark habitat suitability and ship 
co-occurrence and does not include dynamic movements of either 
ships or sharks. Shipping traffic density will probably shift in future 
in response to socioeconomic factors, including population growth, 
global trade and the worldwide transport of materials29. In addition, as a 
highly mobile species, whale sharks will not occupy all suitable habitats 
at all times of the year. This means that SCI does not represent absolute 
collision risk, but rather an estimate of where and to what extent these 
two groups may overlap in future compared with current oceans.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Environmental data are available at https://data.marine.copernicus.
eu/products. CMIP6 data are available at https://esgf-ui.ceda.ac.uk/
cog/search/cmip6-ceda/. Shipping data are available on request to 
Global Fishing Watch (https://www.globalfishingwatch.org). OBIS and 
SharkBook whale shark observation data are available at https://obis.
org (open) and https://www.sharkbook.ai/ (on request), respectively. 
AquaMaps data are available at https://www.aquamaps.org. EEZ bound-
ary data are available at https://www.marineregions.org/downloads.
php. LME boundary data are available at https://github.com/datasets/
lme-large-marine-ecosystems/. Land boundary data are available at 
https://www.naturalearthdata.com. IUCN boundary data are available 
at https://www.iucnredlist.org/ja/species/19488/2365291. Derived 
whale shark habitat suitability maps for the present day and future are 
available on GitHub82.

Code availability
Code used in this analysis to calculate SCI is available on GitHub82 with 
examples based on the derived open-access datasets (as listed in the 
Data Availability statement).
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Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-024-02129-5

Extended Data Fig. 1 | Model outputs and validation. a, Regions of high 
(yellow) and low (blue) habitat suitability are indicated globally where regions 
have been joined together at boundaries (white border) based on current 
climatologies (2005–2019). b, Encounter locations sourced from the Ocean 
Biodiversity Information System (OBIS, n = 9,379) and c, sharkbook.ai for whale 

sharks (n = 13,267). d, Locations of four qualitative validation regions per major 
ocean (Atlantic: 1–4, Indian Ocean: 5–8, Pacific: 9–12) with corresponding e, mean 
monthly habitat suitability trends. f, The most important core areas for whale 
sharks currently (2005–2019) indicated by regions within quantile bands (50th, 
dark blue; 75th light blue; 90th green; 95th, light green).
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Extended Data Fig. 2 | North Atlantic habitat shift comparison with 
AquaMaps. Regions of high (yellow) and low (blue) habitat suitability in the 
north Atlantic (NA) generated using the AquaMaps environmental envelope 
algorithm based on informed parameters from our tracking dataset (n = 1,021, 
left panel) and independent occurrences from Global Biodiversity Information 
Framework (GBIF) and Ocean Biodiversity Information System (OBIS) datasets 

from Food and Agriculture Organization (FAO) major fishing area 31 (n = 312, 
centre panel) projected into 2050 (decadal average of 2046–2055) under 
Representative Concentration Pathway (RCP) 5.8. Right panel shows our 
modelled projections for 2050 (decadal average of 2046–2055) under Shared 
Socioeconomic Pathway (SSP) 585. All models predict a band of habitats for 
whale sharks across the central Atlantic basin around equatorial latitudes.
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Extended Data Fig. 3 | Location and area of predicted changes in habitat 
suitability. a, Regions of positive (red), negative (blue) or no change (or 
agreement, white) identified by both Generalised Additive Model (GAM) and 
Bayesian Additive Regression Tree (BART) algorithms in the east Pacific (EP), 
north Atlantic (NA) and east Indian Ocean (EIO) with top panel showing all 
regions of either positive or negative model agreement, centre panel showing 
regions of positive or negative agreement >0.1 or <−0.1, respectively, and lower 
panel showing regions of positive or negative agreement >0.25 or <−0.25, 

respectively for 2050 ssp585. b, Area (in million km2) of predicted change in 
habitat importance (>0.1 or <−0.1) identified by both GAM and BART models 
in the NA, south Atlantic (SA), northwest Indian Ocean (NIO), southwest Indian 
Ocean (SIO), EIO, west Pacific (WP) and EP coloured by decade and scenario were 
values on the left of each panel denote total area of change and points denote 
area of positive (red) and negative (blue) change. Mapped results for other 
regions are given in the Supplementary Figs. 9–15.
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Extended Data Fig. 4 | Latitudinal shifts in habitat suitability. Arrows 
(left panel) indicate shifts in the geographic mean of the relative 90th habitat 
suitability quantile (core habitat), with the grey mapped points indicating the 
current geographic mean, and the arrowheads the future geographic mean 
coloured by decade and scenario. Lines indicate the maximum and minimum 
latitudes where core habitat was projected, with the grey line indicating the 

current geographic limits and the future geographic limits coloured by decade 
and scenario. The lollipop plots (right panel) indicate the corresponding 
northerly (right upper panel) and southerly (right bottom panel) core habitat 
limit shifts (distance, km) within each region. Thresholds for core habitat are the 
relative percentile, calculated from the habitat suitability within each projection 
subset.
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Extended Data Fig. 5 | Changing habitats in national waters. a, Percentage 
of Exclusive economic zones (EEZs, n = 200) summarised by continent where 
positive or negative changes in habitat suitability are projected for the low 
(blue, ssp585) and high (orange, ssp126) climate mitigation scenarios. b, EEZs 
ordered by the mean habitat suitability showing reshuffling from the baseline 
(2005–2019) under high mitigation/ sustainable development (ssp126, left to 

centre panel) and low mitigation/ high emissions (ssp585, centre to right panel) 
scenarios in 2086–2095. Individual EEZ trajectories are shown with Asia (orange) 
and Europe (blue) highlighted, demonstrating reshuffling under climate change 
with examples on the right (for example, where the Portuguese waters increase in 
relative habitat suitability scores, Papua New Guinean waters decrease).
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Extended Data Fig. 6 | Global known whale shark distribution. The current global extant distribution of whale sharks as defined by the International Union for 
Conservation of Nature (IUCN) (grey) with expanded range (orange) mapped to identify current predicted and future projected regions where the species is likely to 
occur based on our models.
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Extended Data Fig. 7 | Change in ship co-occurrence index within national 
waters. Exclusive economic zone (EEZ) marine regions coloured by degree of 
change in shipping co-occurrence index (SCI) from the 2005–2019 baseline 

years. Red reflects an increase in SCI and blue a decrease. Scenarios ssp126 and 
ssp585 are shown for the 2046–2055 (rows 1 and 2) and 2086–2095 (rows 3 and 4) 
decadal averages.
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Extended Data Fig. 8 | Ship co-occurrence index within national waters. Exclusive economic zone (EEZ) marine regions coloured by shipping co-occurrence index 
(SCI, relative units where yellow is high and black is low) in the 2005–2019 baseline years (top panel) and 2086–2095 decadal average for ssp585 (bottom panel).
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Extended Data Fig. 9 | See next page for caption.

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-024-02129-5

Extended Data Fig. 9 | Model controls and performance. a, Map of simplified 
whale shark (presences, yellow) and background (blue) location dataset 
in the north Atlantic used in the algorithm control procedure detailed in 
Supplementary Fig. 27 0a. b, Regions of high (yellow) and low (blue) habitat 
favourability in the north Atlantic identified by each algorithm. c, Internal 
validation performance metrics coloured by algorithm with the chosen method 
(Generalised Additive Models, GAM) in yellow. Note that after high Random 
Forest (RF) scores were disregarded due to concerns with data overfitting in 
mapped outputs (b), GAMs had high correct classification rate (CCR), precision, 
kappa and specificity scores second only to Bayesian Additive Regression 
Trees (BART), whereas Generalised Linear Models (GLM), Generalised Boosted 
Models (GBM) and Maximum Entropy (MXT) were better at correctly predicting 
presences (sensitivity and recall). d, Cross-fold validation performance metrics 
based on five spatial folds coloured by test where the black line denotes the 
median, boxes bound the interquartile range (IQR) (25th to 75th percentile) and 
whiskers extend to the smaller quantity of data extremes or medians ± 1.5× 
IQR with outliers shown as open circles and a red asterisk positioned above 

the chosen method (GAM). GAMs performed well across measures and 
outperformed BART (which showed better internal validation scores (c)), when 
measuring the true skill statistic (TSS) and Millers calibration statistic (MCS), 
with the closest MCS value to 1 across all models tested. e, Map of simplified 
whale shark (presences, yellow) and background (blue) location dataset in the 
north Atlantic used in the background sampling selection procedure detailed in 
Supplementary Fig. 27 0b. f, Internal validation performance metrics coloured by 
sampling method with the chosen method (MCP) in yellow. MCP had the highest 
score across tests. g, Cross-fold validation performance metrics based on five 
spatial folds coloured by test where the black line denotes the median, boxes 
bound the interquartile range (IQR) (25th to 75th percentile) and whiskers extend 
to the smaller quantity of data extremes or medians ± 1.5× IQR with outliers 
shown as open circles and a red asterisk is positioned above the chosen method 
(MCP). The MCP method performed well across measures. h, Regions of high 
(yellow) and low (blue) habitat favourability in the north Atlantic identified by 
each sampling method. The abbreviations in a–d refer to the algorithms tested 
and in e–h to the background sampling methods tested.
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Extended Data Fig. 10 | Projection method framework. Steps taken to 
prepare global climate model (GCM) data for use in the study. Steps 1 to 6 were 
undertaken first to prepare the data for section 5 in Supplementary Fig. 27. Steps 
7 and 8 are a summarised version of section 0a to 2b in Supplementary Fig. 27.  

Steps 1 to 5 were undertaken for each essential ocean variable (EOV) which 
were then stacked in steps 5 and 6, all of which was repeated for each decade 
and scenario combination. See Supplementary Information 3.5 for detailed 
description and equations used.
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