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A B S T R A C T

Passive acoustic monitoring and machine learning are increasingly being used to survey threatened species. 
When automated detection models are applied to large novel datasets, false-positive detections are likely even for 
high-performing models, and arbitrary thresholds may result in missed detections. Manual validation of outputs 
is time consuming, and additional fine-scale annotation of individual notes is impractical for large datasets and 
difficult to automate when using passive field recordings. This research presents an acoustic monitoring pipeline 
which employs a multi-stage hybrid approach: initial detection using a convolutional neural network classifier, 
followed by segmentation and iterative unsupervised clustering of extracted acoustic features using UMAP and 
HDBSCAN to remove label noise. We applied the pipeline to a large acoustic dataset comprised of 2764 h of 
environmental recordings and test the utility of the approach on territorial calls of Australia’s largest owl: the 
threatened Powerful Owl (Ninox strenua). The pipeline reduced the large acoustic dataset into 10,116 annota
tions, of which 9399 (93 %) were correctly annotated individual notes of the target species. The clustering 
process also eliminated 88 % of false positive detections while retaining 95 % true positives (F1 = 0.94). The 
approach is highly scalable, can be applied to very large acoustic datasets, and can rapidly collect note-level 
annotations from noisy field recordings. The acoustic features derived from this methodology identified popu
lation differences in our test dataset and enable further exploration of song structure, geographic variation, and 
vocal individuality. The clustering process also facilitates a semi-supervised learning approach, allowing rapid 
selection of uncertain examples for model improvement. The pipeline helps to address two key challenges in 
bioacoustic monitoring: the need for manual validation of automated detections and the difficulty of obtaining 
accurate note-level annotations in noisy field recordings. Adaptation of these methods to other species and 
vocalisations may facilitate improved detection and investigation of vocal characteristics across different pop
ulations or regions.

1. Introduction

Passive acoustic monitoring and machine learning are becoming 
essential tools for ecological research and conservation (Manzano-Rubio 
et al., 2022; Shonfield and Bayne, 2017a; Stowell, 2022; Teixeira et al., 
2019). One of the most promising applications of this technology is the 
monitoring of vocal cryptic species, particularly for rare or nocturnal 
species, and those that inhabit remote areas (Duchac et al., 2020; Pic
ciulin et al., 2019; Shonfield et al., 2018; Wood et al., 2019, 2024; Yan 
et al., 2019). Machine learning approaches for automated detection 
have become widely available, and tools like BirdNET or Google Perch 

are increasingly being applied to large datasets (Ghani et al., 2023; Kahl 
et al., 2021; Manzano-Rubio et al., 2022; Stowell, 2022; Znidersic et al., 
2020). Even high performing models are still likely to exhibit false- 
positive detections when applied to large datasets and the use of arbi
trary thresholds can result in missed detections and biased data 
(Lostanlen et al., 2019; Navine et al., 2024; Pérez-Granados, 2023). As 
such, a limiting factor of automated acoustic detection is the need for an 
expert to validate the output. Birdsong studies also often require 
vocalisations to be annotated in fine detail to allow elucidation of 
species-specific behaviours, population dynamics, or even individual 
vocal signatures (Backhouse et al., 2021; Kershenbaum et al., 2016; 
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Terry et al., 2005). As the use of acoustic monitoring expands, so too 
does the need for efficient methods to handle the increasing volume of 
acoustic data without sacrificing accuracy or detail. Manual validation 
and annotation are time-consuming and resource-intensive, rendering 
large datasets impractical for detailed manual scrutiny (Shaw et al., 
2022).

Birdsong analyses have greatly benefited from advanced computa
tional techniques, with unsupervised classification emerging as a useful 
tool. UMAP (Uniform Manifold Approximation and Projection) and 
HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applica
tions with Noise) are becoming recognised as powerful tools for bird
song analysis. UMAP is a dimensionality reduction algorithm that can 
effectively capture the complex, non-linear relationships often present 
in birdsong data, allowing researchers to visualise high-dimensional 
acoustic features in a lower-dimensional space (McInnes et al., 2020). 
HDBSCAN is a clustering algorithm that excels at identifying meaningful 
groups within the data, even when these groups have varying densities 
or irregular shapes (Campello et al., 2015; McInnes et al., 2017). When 
used together, these techniques can reveal patterns in birdsong reper
toires, help identify distinct song types and assist in tracking changes in 
vocalisations across populations and individuals (Best et al., 2023; Bravo 
Sanchez et al., 2024; Zhao et al., 2023). Studies are increasingly 
demonstrating the effectiveness of combining UMAP and HDBSCAN for 
birdsong analysis. UMAP in particular has been shown to substantially 
improve the performance of clustering algorithms (Allaoui et al., 2020). 
Sainburg et al. (2020) noted that UMAP effectively produces “more 
meaningful data representations” across natural science datasets when 
compared with other counterparts such as t-distributed stochastic 
neighbor embedding. This study also reported that HDBSCAN clusters 
most closely matched human labelling. Similar reports have been found 
in multiple studies applying HDBSCAN to UMAP projections (Best et al., 
2023; Blanco-Portals et al., 2022; Koch et al., 2024).

The automated segmentation and annotation of birdsong has 
advanced significantly in recent years, driven by the application of 
machine learning techniques and the development of specialised soft
ware tools. Traditional methods rely heavily on manual spectrogram 
analysis, but these have gradually been supplanted by more efficient 
automated approaches (Neal et al., 2011). Improved segmentation 
methods and the introduction of deep learning models has markedly 
improved the accuracy and efficiency of birdsong annotation (Cohen 
et al., 2022). Notable contributions include the scikit-maad package, 
TweetyNET, Deep Audio Segmenter and AVN (Cohen et al., 2022; Koch 
et al., 2024; Steinfath et al., 2021; Ulloa et al., 2021). Despite ad
vancements, challenges persist in areas such as generalisability across 
species, robustness to background noise, and adaptation to varying 
recording conditions (Wood et al., 2023). Segmentation and annotation 
pipelines based on deep neural networks have already been shown to 
work well in laboratory settings, but often struggle to translate effec
tively to field conditions and natural populations (Coffey et al., 2019; 
Cohen et al., 2022; Recalde, 2023; Steinfath et al., 2021). ‘Label noise’ is 
a notable issue for segmentation methodologies, which refers to when a 
sound other than the sound of interest is annotated (Denton et al., 2022; 
Henkel et al., 2021). Michaud et al. (2023) combat this issue by seg
menting the sound, computing the acoustic features of each sound unit, 
and then applying an unsupervised DBSCAN algorithm. This approach 
has been applied to Xeno Canto data and demonstrated significant 
reduction in the initial label noise present in the dataset but the authors 
note that “further developments are still required to adapt such facilities 
to soundscape recordings where the sounds of interest of several species 
are mixed”. There are relatively few studies using similar approaches 
and automatically extracting acoustic features from field data. Denton 
et al. (2022) demonstrate the utility of a hybrid approach, applying an 
unsupervised sound separation approach prior to bird classification. 
Deep embeddings from neural network outputs are also increasingly 
being used in unsupervised approaches following birdsong classifica
tion, and are used to facilitate active learning, remove false-positives 

and improve datasets (Bravo Sanchez et al., 2024; McGinn et al., 
2023; Tolkova et al., 2021). High background noise in recordings, 
however, can impact the quality of unsupervised clustering methods and 
it has been suggested that signal-aware methods for reducing noise 
before projecting the data could be beneficial (Sainburg et al., 2020). 
Stowell (2022) notes that the use of deep learning to drive clustering is 
not heavily studied.

In this study, we focus on detecting the calls of the Powerful Owl 
(Ninox strenua), a key predator species in Australia. Owls are an ideal 
candidate for passive acoustic monitoring. They occur in low densities, 
are highly cryptic, and are difficult to locate in the wild (Duchac et al., 
2020; Johnsgard, 1988). Powerful Owls are the largest owl found in 
Australia, are highly cryptic and can take up to 20 visits using traditional 
survey approaches to detect (Loyn et al., 2001). They are found in 
eucalypt forests along the east coast of Australia and generally roost in 
dense riparian forest vegetation (Bradsworth et al., 2017). They are 
listed as threatened in three Australian states and are highly reliant on 
old-growth trees for breeding hollows (Fauna and Flora Guarantee Act, 
1988 (Vic), Queensland Nature Conservation Act 1992 (Qld), Biodiversity 
Conservation Act 2016 (NSW)). The typical adult vocalisation is a ‘double 
hoot’ which typically occurs between 200 and 600 Hz (Fig. 1; Alexander, 
2022).

Passive acoustic monitoring provides an alternative survey meth
odology that is non-invasive and has the potential to significantly reduce 
survey efforts, requiring far fewer trips to a site to obtain multiple nights 
of data. Bioacoustic recorders have been applied successfully for large- 
scale owl monitoring programs, and are even being used for invasion 
surveillance in instances where owl populations are expanding in an 
undesired manner threatening other native fauna (Rognan et al., 2012; 
Wood et al., 2019, 2024). Owls have been suggested as a taxon that may 
exhibit vocal individuality, with evidence of individually distinct 
vocalisations (Madhavan and Linhart, 2024). It is possible that vocal 
individuality and geographic variation studies could allow individual 
owls or owls from certain locations to be automatically detected in 
passive audio (Grava et al., 2008; Tseng et al., 2024).

In this paper, we present a machine learning pipeline that addresses 
the challenges of extracting and annotating vocalisations from noisy 
field recordings. Our research explores the integration of neural network 
classification with segmentation, acoustic feature extraction and unsu
pervised clustering as a post-processing approach. This methodology 
aims to serve two key purposes: first, to efficiently filter out false- 
positive detections from classifier output (and equally to investigate 
potential missed detections ‘underneath’ the chosen threshold) and 
second, to enable rapid, accurate extraction of individual note annota
tions from field recordings. This approach has broader implications for 
acoustic monitoring of other cryptic species, potentially offering a more 
scalable solution for analysing large acoustic datasets and rapidly col
lecting note annotations for geographic call variation or vocal in
dividuality studies.

Fig. 1. Typical spectrogram of a Powerful Owl Territorial Call.
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2. Materials and methods

2.1. Data acquisition and pre-processing

Seven study sites in south-east Queensland, Australia (Fig. 2), were 
selected based on historical records and survey data provided by Birdlife 
Australia’s ‘Powerful Owl Citizen Science Program’. All sites were 
located in dry sclerophyll forest and most sites featured riparian habitat 
sections with old growth forest in the vicinity. Initial listening surveys 
were conducted to determine approximate roosting locations of the owls 
where possible. These surveys were undertaken in late March and early 
April, periods which are known to have high calling activity at dawn and 
dusk (Debus, 1995). These surveys were conducted approximately one 
hour prior to dusk and continued until an owl vocalisation was heard, or 
until approximately one hour after dusk. If owl calling was detected at a 
site, daytime visits were conducted to ascertain the roost location. This 
was determined by walking and searching for whitewash (owl faeces) 
and pellets. All surveys were conducted by the same observer.

Two acoustic recorders (Audiomoth v1.0, Hill et al., 2018, Song
meter SM2) were placed together within a potential Powerful Owl ter
ritory (see Fig. 2). The recorders were strapped to a tree at head height. 
The devices were programmed to record from one hour before dusk until 
dawn and produced .wav files of one-hour duration. The Audiomoths 
were programmed to record at 48 kHz at medium-high gain. The 
Songmeters were set to 22.1 kHz and default gain settings. Two re
corders were used to function as a backup in case of failure, and to 
provide a mixture of sample rates and noise-floors. The recorders were 
placed within 100 m of the most recently located roost spot where 
possible. If owls could not be located, the recorders were deployed near 
the last known roosting location, or near fresh whitewash, or failing 
either of those options were placed in likely habitat. This was repeated at 
seven study sites, batteries and SD cards were replaced every three 
weeks.

2.2. Manual processing

Manual processing of the audio data was undertaken to identify 
Powerful Owl vocalisations and build an initial training dataset. 100 h of 
dawn and dusk recordings from multiple sites were aurally verified 
using random sampling. One-hour files from each site were selected and 
manually annotated in Raven Pro v1.6.1 (Charif et al., 2010) and 5 s 
audio snippets were generated for each annotation. The recording time 
before the annotation begins was randomised within the snippets, to 
avoid the vocalisation being at the exact start of each file. Random 5 s 
snippets of negative data (not containing owl vocalisations) were also 
selected from recordings not containing any owl vocalisations. 

Annotated files and negative snippets were transformed into 5 s spec
trograms by applying a Fast Fourier Transform (FFT) with a window size 
of 4096 and a hop length of 512, which were then mapped onto the mel 
scale. These spectrograms were subsequently enhanced for brightness 
and contrast and resized to 224 × 224 pixels.

2.3. Model configuration and training

The MobileNetV2 architecture, initially pre-trained on the ImageNet 
dataset, was adapted for binary classification of the owl vocalisations. 
The model was optimised using the Adam optimiser with a learning rate 
of 0.0005, trained for 50 epochs with binary cross-entropy loss. Data 
augmentation techniques were employed to enhance the generalisability 
of the model including time and frequency shifting (see supplementary 
materials for full code). An iterative process was applied, similar to that 
used in Eichinski et al. (2022), whereby several versions of the model 
were produced using different subsets of the training data and collecting 
more negative examples until training performance was satisfactory. 
The initial model consisted of 4003 positive examples and 4173 negative 
examples. The model was evaluated and tested on two datasets. The first 
consisted of ~10 % of the training data that was randomly excluded 
from training (half positive and half negative examples). The second 
dataset was intended to replicate field conditions and comprised 10 h of 
field audio. This audio contained 5-min chunks of randomly selected 
audio from a separate Powerful Owl study. These recordings were taken 
from the same locations, but at different recording points and at a 
different time of year (Spring 2020). This dataset contained 263 vocal
isations, many of them faint and obscured by road, wind and rain noise.

2.4. Inference

The trained model made predictions on 2764 h of acoustic data 
spanning seven sites. The number of hours per site differed slightly due 
to battery variability but all recordings were taken from April and May 
2020 between dusk and dawn (Table 1). All recordings were from the 
SM2 recorders (largely due to longer battery life resulting in more hours 
available) except for the ‘whites hill’ site where Audiomoth recordings 
were also used due to a SM2 recorder failure.

Hour-long audio recordings were processed using the Python librosa 
library (McFee et al., 2015). Each recording was divided into 5 min 
chunks, which were further segmented into 5 s intervals with a 2.5 s 
overlap. Mel-spectrograms were generated for each segment using a 
2048-sample window size and 256 mel bands. The spectrograms were 
converted into 224 × 224 pixel images and were then input into the 
trained model for classification. Predictions were made in batches, with 
each segment receiving a score indicating the confidence of the model in 
the presence of an owl call. A sigmoid activation function was applied at 
the end of the network to produce an uncalibrated confidence score 
between 0 and 1 (see Wood and Kahl, 2024).

2.5. Manual validation of output

All classified outputs with a confidence greater than 0.1 were 
extracted. This was deemed to be the lowest confidence score for the 
dataset at which manual ground-truthing of all detections was 

Fig. 2. Map of study locations in South-east Queensland.

Table 1 
Number of recording hours per site.

Subfolder # days hours

chapelhill 34 452
hilliards 34 439
slaughter 22 291
tingalpa 31 417
toohey 29 389
venman 31 411
whiteshill 31 365
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logistically feasible. Each of these segments was exported as a 5 s .wav 
file containing the site name, data, time and confidence score in the file 
name. The segments were then manually verified in Raven Pro (approx. 
14 h of recordings). The segments were verified by importing all seg
ments concurrently into Raven Pro and annotating all the false-positive 
segments with the ‘Begin File’ measurement included in the annotation 
table. The resulting .csv file then contained a list of incorrectly classified 
.wav files. The files are then programmatically sorted into true-positive 
and false-positive folders. This provides a ‘segment ground-truth’ data
set, detailing which outputs from the classifier were correctly classified 
across all confidence thresholds.

2.6. Feature extraction and clustering with ROI segmentation

The sci-kit maad Python package (Ulloa et al., 2021) was used to 
automate a ‘region of interest’ (ROI) segmentation process to isolate 
relevant acoustic features from the background noise within the outputs 
of the binary owl classifier. This process automatically tagged any 
vocalisations or other noise in segments above a selected confidence 
level. This was achieved by first applying a low-pass filter to the audio at 
1000hz, removing the background of the image using a median filtering 
approach, followed by applying a binary mask that thresholds the 
spectrogram based on relative energy levels. Identified ROIs were then 
processed to extract 31 acoustic features, including frequency, duration 
and shape attributes.

2.7. ROI or segment label

For clarity we will define ‘segment’ vs ‘ROI. ‘Segment’ refers to the 
entire five second .wav file and corresponding spectrogram that has 
been assigned a confidence score by the classifier. ‘ROI’ refers to the 
region of interest extracted by the segmentation process. Each segment 
may contain multiple ROIs. Each ROI consists of a value for each of the 

extracted acoustic features (see Figs. 3 and 7 for ROI examples).

2.8. Dimensionality reduction and clustering

UMAP was chosen for dimensionality reduction, combined with 
HDBSCAN for unsupervised clustering (McInnes et al., 2017; 2018). An 
initial clustering grid-search was conducted on the ROI dataset using 
both silhouette score and DBCV to broadly tune the UMAP and 
HDBSCAN clustering parameters. After high-scoring parameters were 
found, adjustments were made alongside manual inspection of data
points to determine final cluster settings. All clustering was undertaken 
on the 31 extracted acoustic features, with each ROI represented as a 
single point on the projection.

2.9. Manual validation

100 segments from each cluster were manually inspected using a 
simple cluster-inspection tool GUI (available in the supplementary ma
terials) which allows the user to view and listen to segments from a 
selected cluster. Clusters were labelled either positive or negative 
depending on whether they contained primarily (>50 %) owl vocal
isation ROIs (see Fig. 3). The threshold and number of ROIS to validate 
was arbitrarily selected and could be adjusted in future work, however 
in practice for this dataset each cluster contained very high percentages 
of either TP or FP segments.

Segments were only retained if they contained at least one ROI in a 
positive cluster. Any segments containing only ROIs from negative 
clusters were removed. This removal was then compared with the 
‘segment ground-truth’ dataset, to determine how accurately true and 
false positive detections were separated by the clustering process. After 
the negative clusters were removed, a second iteration of clustering was 
conducted on the remaining ROIs (see Fig. 4).

Fig. 3. Example of cluster validation interface: yellow annotation shows the boundary of a ROI. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
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2.10. ROI ground truthing and iterative clustering

An ‘ROI ground truth’ dataset was developed after the segments were 
removed in the first round of clustering. The remaining 13,099 ROIs 
were manually verified by an expert labelling either as ‘First Note’, 
‘Second Note’ ‘Double Note’ (both notes tagged together in one ROI 
instead of separately), ‘FP’ (false-positive) or ‘Boobook’ (Ninox boobook, 
a species with a similar vocalisation). As such, every ROI remaining in 
the dataset was validated with a ground truth to allow for comparison to 
additional clustering iterations. The UMAP and HDBSCAN clustering 
was then repeated and an additional manual inspection of clusters was 
undertaken. Segments without positive clusters (>50 % owl vocalisation 
ROIs) were again removed. The number of ground-truthed ROIs was 
then compared before and after clustering. UMAP and HDBSCAN clus
tering was then repeated for a third and final time on the remaining 
ROIs.

2.11. Semi-supervised learning and model testing

Improvements were then made to the initial model using a semi- 
supervised approach, using the clustered data to rapidly select low- 
confidence detections and high confidence false-positives and return
ing them to the training data. This was conducted by selecting all 
negative clusters (known to contain >50 % false positive files) and 
sorting by confidence score to select the most confident detections. The 
same approach was conducted for clusters containing >50 % true pos
itive files and locating the files with the lowest confidence score. This 
was repeated until 1000 low-confidence (<0.3) positive and 1000 high 
confidence (>0.8) negative examples were selected. These examples 
were manually verified using the same approach as segment validation 
and sorted into TP or FP folders. All training parameters were kept the 
same and the model was retrained with the additional data included in 

the training dataset. The initial model and subsequent model were 
evaluated on two datasets.

3. Results

3.1. Manual validation and segmentation

After inference using the 2764 h dataset, the binary classifier labelled 
11,475 segments (0.28 %) as potential owl vocalisations with a confi
dence >0.1. These segments were manually validated to form the 

Fig. 4. Diagram depicting field recording iterative clustering process.

Fig. 5. Number of verified true vs false positive owl call detections at each 
confidence score.
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‘segment ground-truth’. 6817 of these segments were identified as true- 
positives and 4658 were false-positives. Fig. 5 details the number of true 
vs false-positive ground truths at each confidence score. After applica
tion of threshold segmentation 28,215 ROIs were extracted from the 
classified segments.

3.2. Dimensionality reduction and unsupervised classification

Manual validation of the cluster analysis using UMAP and HDBSCAN 
on the 28,215 ROIs revealed three clusters (9, 10 and 11) that consisted 
of >50 % owl vocalisations, and the remaining clusters were primarily 
false-positive detections (see Fig. 6). This manual inspection took an 
expert observer approximately 1.5 h. Fig. 7 demonstrates how ROIs 
appear in a spectrogram and are assigned to different clusters.

All clusters apart from 9, 10 and 11 were removed from the dataset. 
The remaining segments (those containing at least one ROI from a 
positive cluster) were then compared with the ‘segment ground-truth’ 
(see Table 2). This clustering step reduced false positives by 88 % (4658 
to 550) while retaining 6479 of the 6817 validated true positives. This 
method retrieved 775 more owl vocalisations than the classifier oper
ating at its optimal confidence threshold with less false-positive de
tections (F1 = 0.94 vs 0.83, Table 2).

The clustering process (Fig. 6) separated vocalisations detected by 
the Audiomoths which contained a subtle background noise artifact, and 
these were primarily found in cluster 10. Cluster 3 largely contained a 
mixture of false-positives that were very similar shape to owl vocal
isations, but also a high number of Australian Boobook vocalisations (a 
species which makes a similar call to the Powerful Owl). The remaining 
clusters were primarily background noise and other non-owl noises, 

with SM2 and Audiomoth noise floors also largely being separated (SM2 
background noise in cluster 1, Audiomoth in cluster 0).

After removing all negative clusters (all except 9,10 and 11) the 
number of ROIs was reduced from 28,215 to 13,099. The remaining 
ROIs were then manually verified (see Table 3). A second iteration of the 
clustering was conducted on these ROIs (see Fig. 8). Cluster 0 identified 
instances where the segmentation had annotated two notes together 
instead of separately, cluster 2 consisted of mostly non-owl ROIs. Cluster 
3 and 4 consist primarily of owl vocalisations, with cluster 3 only 
featuring calls recorded on Audiomoth devices. Label noise and inac
curate labels were reduced from 3568 to 755, a reduction of approxi
mately 78.84 % by clustering (Table 3) with a loss of less than 2 % of the 
TP labels. The actual reduction in label noise is likely much higher as 
this value only includes the ground-truthed ROIS and does not factor in 
the reduction from 27,771 to 13,099 in the initial cluster.

The third iteration of clustering was conducted on HDBSCAN cluster 
3 and 4 from Fig. 8. reveals one of the main utilities of segmentation for 
feature extraction as part of the automated detection pipeline. Individ
ual notes are annotated and can be inspected for site differences or even 
vocal individuality. Fig. 9 indicates that unsupervised clustering can 
distinguish certain sites and suggests that there may be geographic or 
individual variation for this species. UMAP dimensionality reduction 
scores indicate that the most important features in separating notes from 
the ‘tingalpa’ site differ most are min_f_shape and min_f_centroid (see 
Appendix 1). Vocalisations from the ‘slaughter’ and ‘venman’ sites also 
cluster together, although not sufficiently enough to form distinct 
clusters. Clusters 0 and 2 are potentially splitting male and female 
vocalisations, but this requires further investigation.

Fig. 6. UMAP projection of acoustic features for all regions of interest. Clusters and example spectrograms are coloured according to HDBSCAN classification. 
HDBSCAN clusters 9, 10 and 11(in red) consist of predominantly owl vocalisation ROIs. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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3.3. Binary classifier performance

The initial model (v1) exhibited similar ROC-AUC values in both test 
datasets (0.956 vs 0.961). The second model performance improved 
from 0.961 to 0.975 on the field data and 0.961 to 0.999 on the 
randomly selected held-out validation set (see Fig. 10).

From a practical detection standpoint, the v2 model outperformed v1 
on the field dataset (see Fig. 11b). At the optimal threshold levels model 
v2 detected 219/263 vocalisations in the dataset with 18 false-positives 
(F1 = 0.876) compared to 202/263 with 43 false-positives (F1 = 0.795). 
v1 demonstrates a higher recall across thresholds, but with a higher 
number of false positives (see Fig. 11a, c & d).

4. Discussion

This study underscores the potential of combining acoustic feature 
extraction and unsupervised clustering with neural network-based bio
acoustic detection. Our approach, which integrates transfer-learning 
classification with segmentation and iterative UMAP and HDBSCAN 
clustering has demonstrated the capacity to rapidly extract individual 
note annotations from noisy field recordings. This ultimately facilitates 
large-scale data collection from soundscape recordings, providing the 
potential to up-scale bioacoustic studies. We tested our pipeline on a 
substantial dataset containing 2764 h of recordings, focusing on terri
torial calls of the threatened Powerful Owl (Ninox strenua). The process 
rapidly reduced the dataset into 10,116 annotations, with 9399 (93 %) 
of these being correctly annotated individual notes of the target species. 
Our methodology follows a similar approach to the one applied by 
Michaud et al. (2023) using segmentation and clustering to reduce label 
noise in Xeno Canto recordings. In our case, we apply segmentation and 
clustering to field data using a neural network as an initial filtering step. 
This method requires minimal manual validation and mitigates some of 
the challenges posed by noisy field recordings, as highlighted in previ
ous studies (Priyadarshani et al., 2018; Sainburg et al., 2020; Teixeira 
et al., 2024).

4.1. Key benefits

Threshold-agnostic validation: The clustering of extracted acous
tic features acts as a form of ‘threshold-agnostic’ validation. Navine et al. 
(2024) note that threshold choices may produce biased vocalisation 
counts which can vary across subsets of the data. Score thresholds 
applied to classifiers have been found affect the meaning and utility of 
processed data (Knight and Bayne, 2019). Clustering the features as a 
post-processing step was able to separate vocalisations of interest (across 
all thresholds) from other noise with high accuracy (Table 2; Fig. 6). In 
our dataset, the clustering process removed 88 % of false positive de
tections while retaining 95 % of the true positives (F1 = 0.94), out
performing the v1 model at the optimal threshold (F1 = 0.834) by 

Fig. 7. Example of ROI annotation resulting from the segmentation process, colouring corresponds with the assigned cluster in Fig. 6 (cluster 11 - pink for owl 
vocalisations, cluster 1 orange for the low frequency noise floor. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 2 
Number of ground-truthed owl call detections before and after cluster removal.

Scenario TP FP Precision Recall F1

Full validated dataset (baseline) 6,817 4,658
Post-cluster (only HDBSCAN 

clusters 9–11)
6,479 550 0.922 0.951 0.936

Threshold >0.2 5,940 1,571 0.791 0.871 0.829
Threshold >0.24 (optimal) 5704 1148 0.832 0.837 0.834
Threshold >0.3 5,396 806 0.870 0.792 0.829
Threshold >0.4 4,953 513 0.906 0.727 0.806
Threshold >0.5 4,587 363 0.927 0.673 0.780

Table 3 
Ground-truthed counts of ROIs before and after the second clustering iteration.

Label Before Clustering After Clustering

TP 9561 9399
FP 1382 430
Double Note 1303 231
Faulty Recorder 800 5
Boobook 53 51
Total 13,099 10,116
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detecting more vocalisations with fewer false positives (Table 2).
Individual note annotation: Unlike clustering of deep learning 

embeddings, our approach provides the added benefit of producing 
individually annotated notes. This approach allows for large amounts of 
fine-scale annotations to be ‘harvested’ quickly from field data. In this 
dataset, the methodology only required a few hours of expert validation 
time (1–2 h per clustering iteration) and is likely to annotate more 
consistently than a human observer. The process can easily be applied to 
larger datasets, enabling the collection of many annotations without the 

need for manual labelling. The process works by clustering ROIs based 
on their acoustic feature similarity. Undesired clusters are then 
removed, reducing label noise. Multiple iterations of clustering proved 
beneficial, as some label noise remained after the initial round. The 
second iteration reduced the remaining label noise by 78.84 % (Table 3, 
Fig. 8).

Semi-supervised learning: The clustering process allowed uncer
tain segment examples to be easily selected for a semi-supervised 
learning approach, noticeably improving model performance from an 

Fig. 8. UMAP projections of the second iteration of the clustering process consisting of clusters 9,10 and 11 from Fig. 6. Coloured by ground-truthed ROI labels (left) 
and HDBSCAN cluster labels (right).

Fig. 9. UMAP projection of acoustic features comprising of clusters 3 and 4 from Fig. 8. Shown are ground-truthed labels (top left), HDBSCAN cluster labels (top 
right) and site labels (bottom).
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ROC-AUC of 0.961 to 0.975 on a noisy field dataset (Figs. 10 and 11). 
The second model improved detection at the optimal threshold 
(improving F1 from 0.795 to 0.876) and substantially reduced false- 
positives across thresholds, albeit with a slight reduction in recall 
(Fig. 10). It is worth noting that the performance improvement of the 
model here is not the focus of this study, rather an additional utility 
produced as a by-product of the approach. State-of-the-art models 
trained on global birdsong datasets provided with similar training data 
would likely outperform both models (Ghani et al., 2023). The Mobi
leNet binary classifier was largely selected in this instance as a rapid way 
to demonstrate the utility of clustering the acoustic features as a post- 
processing step. As with the reduction of false positives, clustering of 
embeddings produced by deep learning species classifiers would likely 
provide similar utility for the purpose of a self-supervised approach, 
however the additional step of segmentation and clustering acoustic 
features could assist in reducing the influence of background sounds and 
has the additional potential benefit of producing annotations for each 
additional note.

4.2. Recorder differences

An unexpected result from this study was the noticeable difference in 
output from different passive recorders. Our study revealed variations in 
noise profiles between the two different devices, and the clustering 
process was able to distinguish between vocalisations and noise profiles 
recorded on different recorders (see Fig. 8). We suggest that care should 

be taken when interpreting results when different recorder types are 
used in acoustic studies, and a similar UMAP and HDBSCAN approach 
on outputs could provide useful information regarding the way in which 
recorder types may be influencing detection. Potenza et al. propose an 
equalisation method for soundscape recordings from multiple recorder 
sources (Potenza et al., 2024).

4.3. Limitations and future direction

While this methodology proved effective for Powerful Owl moni
toring, future studies could expand its applicability to other species with 
more complex vocalisations or explore regional and individual varia
tions in owl calls, as regional vocal dialects have been observed in many 
avian species (Baker and Cunningham, 1985). As owls tend to call at 
night, they avoid acoustic competition with diurnal birds, and therefore 
owl vocalisations tend to be more obvious in the spectrogram as there is 
less interference from simultaneously calling species. However owl 
vocalisations provide a different set of challenges as their low frequency 
vocalisations can also make their calls prone to being obscured by 
anthropogenic noise, as well as wind and rain in passive recordings 
(Shonfield and Bayne, 2017b).

This methodology has only been applied to one vocalisation from the 
Powerful Owl repertoire, and future work should investigate whether 
this approach translates effectively to other vocalisations and species. 
This methodology can be used with multi-class classifiers, and there is 
potential to apply it to the outputs of existing models such as BirdNET or 

Fig. 10. Validation plots comparing performance of both models against two test datasets.
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Perch. In the future, this approach should be applied to larger Powerful 
Owl datasets spanning broad geographic areas in order to investigate 
regional variation in calling behaviour, repertoire classification, sexual 
dimorphism and vocal individuality. It will enable rapid collection of 
data, significantly reducing the large amount of manual annotation 
typically required for a study of this nature. Future research could focus 
on refining these methods for multi-species detection or for analysing 
individual vocal repertoires, thereby further advancing the field of 
bioacoustics and its conservation applications. It is plausible that clus
tering approaches could be used to identify when species from certain 
geographic locations are expanding into new areas, and could be used in 
correlation with biological surveillance methodologies similar to those 
described in Wood et al. (2024).

5. Conclusion

This study found that unsupervised clustering of extracted acoustic 
features was a highly effective post-processing step following neural 
network classification. UMAP and HDBSCAN clustering contributed to a 
significant reduction in false-positive detections and label noise. Using 
this approach, 9399 individual notes of Powerful Owl vocalisations 
obtained from noisy field data were automatically annotated with 
minimal manual input required. This approach not only enhances 
detection accuracy but also provides a scalable solution for processing 

large datasets, reducing the labour-intensive task of manual annotation. 
The resulting clustering outputs can also support semi-supervised 
learning workflows and improve model performance. Overall, this 
study contributes to the growing body of work highlighting the impor
tance and utility of passive acoustic monitoring and machine learning 
approaches for conservation research (Duchac et al., 2020; Kahl et al., 
2021). By enabling the rapid collection of annotations, particularly in 
data-deficient regions, this approach can open the door to exploring 
geographic call variation, vocal individuality, and behavioural ecology.
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Pérez-Granados, C., 2023. BirdNET: applications, performance, pitfalls and future 
opportunities. Ibis 165 (3), 1068–1075. https://doi.org/10.1111/ibi.13193.
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