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Abstract
Shellfish allergy, triggered by immune reactions to crustacean and mollusk proteins upon consumption/inhalation, is one of 
the most severe and persistent food allergies, affecting approximately 1%–3% of the general population worldwide. Shellfish 
is among the “big nine” food allergens responsible for over 90% of food allergy cases worldwide. Its diagnosis poses major 
challenges due to regional species diversity and a lack of reliable diagnostic tools. Management strategies generally empha-
size strict avoidance and provision of emergency adrenaline autoinjectors; however, these approaches are inconvenient and 
insufficient for both patients and healthcare providers. Given the rising prevalence of shellfish allergy, there is an urgent need 
for targeted therapies that focus on key allergens, particularly tropomyosin—a major pan-allergen. As the primary target in 
current immunotherapy approaches, tropomyosin plays a central role in driving shellfish-induced immune responses. Recent 
advancements in immunotherapy are exploring alternatives beyond avoidance, aiming for long-term desensitization. This 
review discusses progress with allergen-specific immunotherapy, hypoallergenic allergen variants, DNA-based vaccines, and 
innovative approaches involving immunoregulatory peptides and probiotics. These strategies collectively strive to desensitize 
patients, reduce allergic symptoms, and enhance quality of life. Although some therapies are in active trials, most are in the 
investigational stages and offer promising directions for effective, patient-centered long-term management of shellfish allergy.

Keywords  Shellfish allergy · Food allergy · Crustacean · Allergen-specific immunotherapy · Tropomyosin

Introduction

Food allergies markedly reduce quality of life and place a 
significant economic burden [1–3] on approximately 8% of 
children [4] and 11% of adults, as reported in the USA [5]. 
Unlike many other food allergies, shellfish and fish (seafood) 

allergy is rarely outgrown, and a high risk of severe allergic 
reactions persists throughout life, significantly impacting 
quality of life [5–8]. In regions such as the Asia–Pacific, 
where shellfish consumption is high, shellfish allergy is not 
only more prevalent and clinically significant, but symp-
toms may also develop at an earlier age compared to Western 
countries [9, 10]. Managing shellfish allergy is particularly 
challenging due to the major allergen, tropomyosin (TM), 
which exhibits significant cross-reactivity not only among 
various types of shellfish—such as crustaceans, mollusks, 
and cephalopods—but also with mites and other arthropods. 
This high degree of cross-reactivity can complicate skin 
testing, often necessitating multiple oral food challenges 
to accurately identify true clinical sensitivity. Furthermore, 
shellfish allergies may be specific to certain species [11, 
12]. The primary approach for managing shellfish allergy 
remains strict avoidance [13]. Oral immunotherapy (OIT), 
a form of allergen-specific desensitization that increases 
the threshold for allergic reactions upon exposure, has been 
recommended by the European Academy of Allergy and 
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Clinical Immunology (EAACI) for certain food allergies 
such as peanut, egg, and milk, primarily to reduce the risk 
of reactions from accidental exposure [13]. However, OIT 
is not without limitations, including adverse effects and 
variability in treatment outcomes depending on the criteria 
used to define success [14, 15]. However, it has not been 
developed for shellfish allergy. Most of the existing literature 
concentrates on peanut immunotherapy, resulting in the pea-
nut allergen becoming the first and only treatment for food 
allergy approved by the United States (US) Food and Drug 
Administration [16]. The urgent need for effective treatments 
to mitigate these risks has driven advancements in immu-
notherapy, biologics, and other innovative therapies, paving 
the way for safer and more effective food allergy treatments 
[17]. This review will highlight key advancements in the 
immunotherapy of shellfish allergies.

Overview of Shellfish Allergy

Shellfish allergy is one of the most prevalent food aller-
gies worldwide, with region-specific high rates of severe 
(fatal) allergic reactions, including nearly half of affected 
US children experiencing life-threatening episodes [18]. The 
prevalence of shellfish allergy appears to range from 0.5% to 
2.5% in the general population, with significant variations 
across different regions and age groups, and consumption 
habits [19, 20]. A systematic review by Moonesinghe et al. 
highlights a broad variation in the prevalence of shellfish 
allergies, ranging from less than 1% to 10.3%, depending on 
the method of diagnosis [21]. Unlike peanut and egg aller-
gies, which arise in early childhood, shellfish allergy typi-
cally develops later in life [22]. In the USA, shellfish allergy 
affects approximately 3% (2.9%; 95% CI, 2.7%–3.1%) of 
adults, making it the most common food allergy among 
adults, affecting an estimated 7.2 million US adults [5]. In 
Europe, shrimp allergy prevalence rates vary, with a high of 
10% in Italy and 7% in France [23], and as low as 0.3% in 
Denmark [24]. Additionally, shellfish allergy is a major con-
tributor to food allergies in several regions of Asia, includ-
ing Thailand, Taiwan, Hong Kong, Vietnam, and Singapore, 
where shellfish is a dietary staple [19, 25].

Shellfish generally refers to both groups of edible crus-
taceans (shrimp, crab, and lobster) and mollusks (oyster, 
mussels, snails, octopus, squid) [26] and is one of the “big 
nine” food categories that account for more than 90% of 
all incidents of food allergies [27, 28]. Among shellfish, 
shrimp is the most frequently reported allergenic species 
[29]. Shrimp and prawn are often used interchangeably, with 
prawn common in the UK and Australia, and shrimp in the 
USA and Europe [29]. Crustacean allergy is generally more 
common than mollusk allergy, with some studies reporting 
rates as high as 10% among Italian adults [23]. In contrast, 

the prevalence of mollusk allergy appears lower, particu-
larly when confirmed through objective diagnostic meth-
ods. Nevertheless, co-allergy to both groups has been docu-
mented, with a combined prevalence of 6% among French 
children and 9% among American adults [21]. Similarly, a 
cross-sectional study in Vietnamese children reported self-
reported crustacean and mollusk allergy at 3.8% and 1.3%, 
respectively [30]. In a physician-diagnosed adult popula-
tion, seafood was identified as the predominant food allergen 
[31]. The increased awareness of the nutritional value of 
seafood has led to a surge in its consumption, reaching a 
global average of 20.5 kg per capita in 2020 [32] and 20.7 kg 
per capita in 2022 [33], according to the Food and Agricul-
ture Organization (FAO). This increase has been associated 
with more frequent reports of allergic reactions. Shellfish-
allergic individuals are suffering from a wide spectrum of 
symptoms, ranging from mild oral allergy syndrome (with 
limited oral symptoms of pruritus, rash, and swelling) to 
life-threatening anaphylaxis. Shellfish anaphylaxis stands 
as the leading cause of food-related fatalities in Australia, 
as reported by the Australian Bureau of Statistics, and has 
exhibited a concerning increase over the past decades [34, 
35]. In Singapore [36, 37], Hong Kong [38], and Thailand 
[39], shellfish is the main food-related cause of anaphylaxis 
in adults. Shellfish allergies tend to be persistent, with low 
rates of resolution in the few studies available on the natural 
history of shellfish allergy [29, 40].

The primary allergen in shellfish is TM, a highly con-
served muscle protein across species. This conserva-
tion results in considerable clinical, serological, and skin 
prick test (SPT) cross-reactivity among different shellfish 
types, complicating allergy diagnosis and management for 
affected individuals. Assessment of TM-specific IgE levels 
in shrimp-allergic individuals has shown that 72%–98% of 
patients have positive IgE binding to purified TM [11, 29, 
41–43]. Despite being recognized as the primary allergen 
among shrimp-sensitized individuals, recent findings have 
reported sensitization rates to Pen m 1 of less than 50%, 
including 31% in Australian infants [44], 37% in Japanese 
[45], 42% in Austrian [46], 41.2% in Chinese [47], and 
41% in Italian [48] shrimp-allergic populations. Addition-
ally, studies on TM cross-reactivity with mites and insects 
underscore TM’s role in IgE cross-reactivity, although recent 
research indicates that T-cell cross-reactivity is limited 
and appears to depend more on protein structural stability 
than on amino acid sequence identity [49]. While TM is 
recognized as a pan-allergen, the presence of other aller-
gens, such as arginine kinase (AK), sarcoplasmic calcium-
binding protein, and hemocyanin, may influence individual 
clinical reactivity, as some patients may react solely to these 
allergens rather than the pan-allergen [46]. Identifying such 
novel allergens further facilitates the development of specific 
animal models through molecular cloning and recombinant 
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allergen production [50–53]. Table  1 provides general 
information about all shrimp and crab allergens listed by 
the World Health Organization (WHO) and the International 
Union of Immunological Societies (IUIS) allergen nomen-
clature databases (www.​aller​gen.​org). Compared to crusta-
ceans, knowledge of major allergens in mollusks remains 
limited. TM, a key allergen identified in mollusks such as 
abalone [54], shows a sequence identity of only 55% to 65% 
with TM from crustaceans, insects, mites, and fish [29]. 
While TM-crustacean exhibits strong immunological cross-
reactivity due to a 91% conservation of IgE epitopes, mol-
lusks display less than 20% conservation, resulting in mini-
mal cross-reactivity between this group [55]. Additionally, 
we previously demonstrated in a murine model that mollusk 
TM can independently induce a strong IgE response, even 
without prior sensitization to crustacean allergens. However, 
this was achieved using intraperitoneal injections with alum 
adjuvant, which likely contributed to the observed immuno-
genicity [56].

Diagnosis of Shellfish Allergy 
and Challenges

Effective diagnosis of shellfish allergy relies on obtaining a 
detailed medical history, including information on the type 
of shellfish consumed, the timing and nature of symptoms, 
and any treatments received [57, 58].

SPTs are commonly used as the initial diagnostic tool 
to assess sensitization by applying shellfish extract to the 
skin and monitoring for allergic reactions. While SPTs offer 
high sensitivity, their specificity can be limited due to cross-
reactivity among shellfish species and variability in allergen 

content among commercial extracts [29, 59]. Moreover, 
some commercial SPT extracts do not contain a sufficient 
amount or diversity of shellfish allergens, potentially lead-
ing to false-negative results in sensitized individuals [60]. 
When commercial extracts are unavailable or doubtful, 
SPT using fresh shellfish—either raw or cooked—has been 
shown to improve diagnostic sensitivity, as heat treatment 
can affect allergen stability and IgE reactivity. However, this 
approach may introduce variability and requires cautious 
interpretation [60–62]. Serum-specific IgE testing quantifies 
the immune response to whole shellfish extracts or single-
component allergens such as TM. Elevated IgE levels sug-
gest sensitization, though they may not always correlate with 
clinical reactivity [63]. Sensitization can occur directly to 
shellfish allergens or through cross-reactivity with similar 
allergens found in other invertebrates such as cockroaches 
and house dust mites.

Additionally, although shellfish and finfish are taxonomi-
cally distant, limited cross-reactivity has been reported, pri-
marily due to structurally conserved proteins like TM [29]. 
This may result from overlapping IgE responses, highlight-
ing the need for cautious interpretation of test results, par-
ticularly in individuals sensitized to multiple seafood types 
[58, 64].

The gold standard for diagnosis is an oral food challenge 
(OFC), ideally a double-blind placebo-controlled food chal-
lenge (DBPCFC). However, the risk of severe allergic reac-
tions and the time-consuming nature of these treatments limit 
their routine use [65]. The diagnostic process is complicated 
by the diverse range of shellfish species and the potential for 
cross-reactivity between them, necessitating the need for 
multiple oral food challenges. Emerging techniques such 
as basophil activation tests (BAT) and component-resolved 

Table 1   List of WHO-IUIS-registered shellfish allergens (www.​aller​gen.​org) on May 2025—allergic reactions have been reported after both 
ingestion and inhalation

Biochemical name Allergen (shrimp and crab) Molecular weight Function Heat stable

1 Tropomyosin Cra c 1, Mac r 1, Mel l 1, Exo m 1, Lit v 
1, Met e 1, Pan b 1, Pen a 1, Pen i 1, Pen 
m 1

35–40 kDa Muscle contraction Stable

2 Arginine kinase Cra c 2, Lit v 2, Pen m 2, Mac r 2 40–45 kDa Energy metabolism Labile
3 Myosin light chain 2 Lit v 3, Pen m 3 20 kDa Muscle contraction Stable
4 Sarcoplasmic calcium-binding protein Cra c 4, Lit v 4, Pen m 4 20–25 kDa Calcium ion binding Stable
5 Myosin light chain 1 Art fr 5, Cra c 5 18 kDa Muscle contraction Stable
6 Troponin C Cra c 6, Pen m 6 17–21 kDa Muscle contraction Unknown
7 Hemocyanin Pen m 7 76 kDa Oxygen transport Labile
8 Triosephosphate isomerase Cra c 8, Pen m 8 27–28 kDa Glycolytic enzyme Labile
9 Filamin C Scy p 9 90 kDa Cytoskeletal protein Labile
10 Fructose bisphosphate aldolase Cha f 10 41 kDa Glycolysis Unknown
11 Mitochondrial malate dehydrogenase Para c 11 39 kDa Citric acid cycle Unknown
12 Cytosolic fatty acid binding protein Lit v 13, Pen m 13 15–20 kDa Lipid binding Stable
13 Glycogen phosphorylase-like protein Pen m 14 95 kDa Glycogen breakdown Unknown

http://www.allergen.org
http://www.allergen.org


	 Clinical Reviews in Allergy & Immunology           (2025) 68:65    65   Page 4 of 22

diagnostics (CRD) show promise in improving diagnostic 
accuracy without the need for confirmatory OFC [66–69]. 
CRD enhances shellfish allergy assessment by identifying 
IgE responses to specific allergens, such as TM, which shows 
high specificity for shrimp allergy prediction [70]. Studies 
indicate that recombinant shrimp allergens, like rPen a 1, are 
highly effective in identifying shrimp-allergic patients [43]. 
CRD methods provide detailed sensitization profiles, with 
singleplex approaches demonstrating higher sensitivity than 
multiplex assays in detecting shrimp-specific IgE [71]. How-
ever, CRD still requires improvement; research has primarily 
focused on TM, leaving many other shellfish allergens poorly 
characterized. Additionally, only a limited number of shellfish 
species have been studied, representing just a small portion of 
the global variety consumed. Thus, while existing diagnostic 
methods for shellfish allergy offer valuable insights, ongoing 
research is needed to enhance their reliability and standardi-
zation, ultimately improving patient management and safety.

Current Treatments

The most recent guideline for diagnosing and treating shell-
fish allergy has been established by EAACI [13]. The pri-
mary strategy for managing shellfish allergy is currently 
strict allergen avoidance. Individuals diagnosed with shell-
fish allergy are advised to eliminate all forms of shellfish 
from their diet, including both crustaceans and mollusks 
[72]. Although the majority of individuals with shrimp aller-
gies do not exhibit respiratory symptoms from exposure to 
cooking steam, highly sensitive individuals may experience 
severe reactions to airborne allergens [73]. Therefore, it is 
advisable for individuals to avoid inhaling cooking fumes, 
steam, and vapors containing shellfish proteins, as well as 
refrain from touching or handling shellfish. Awareness and 
education play crucial roles in promoting allergen avoidance. 
Patients and their families should receive comprehensive 
information about the condition, its implications, and how 
to recognize allergic reactions. They should also be informed 
about carefully reading food labels, as shellfish can be pre-
sent in various processed foods, which must be thoroughly 
assessed by the food industry and regulators. In addition to 
dietary restrictions, it is recommended to have emergency 
action plans and to carry personal adrenaline auto-injectors 
in case of severe reactions [74–76].

Effects of House Dust Mite Immunotherapy 
on Shellfish Allergy

House dust mite (HDM) immunotherapy can affect shellfish 
allergy, highlighting the potential cross-reactivity between 
HDM and shellfish and the complexities in treating these 
overlapping sensitivities. Reports have emerged of patients 

who developed shrimp allergies after undergoing HDM 
immunotherapy, confirmed by positive SPT and food chal-
lenges. Notably, the clinical symptoms in these cases were 
primarily limited to oral mucosa consistent with the oral 
allergy hypothesis [77].

Several studies have raised concerns about potential 
adverse or limited effects of HDM immunotherapy for 
shellfish-allergic individuals. Additional insights come from 
studies on allergies to snail, a mollusk with cross-reactivity 
to HDM [78, 79]. In some cases, HDM immunotherapy has 
exacerbated respiratory symptoms in snail-allergic patients, 
even leading to anaphylaxis in individuals who previously 
exhibited mild symptoms [79, 80].

However, other studies have shown no significant impact 
of HDM immunotherapy on shellfish sensitization. For 
example, sublingual immunotherapy (SLIT) trials have 
reported no new sensitization to shrimp tropomyosin [81, 
82]. One study examined the effect of immunotherapy with 
Dermatophagoides pteronyssinus extract on shrimp allergy. 
Among 35 patients with positive SPT, those receiving 
immunotherapy showed reduced skin reactivity and lower 
IgE levels for both mite and shrimp. After 1 year, four of ten 
patients with positive SPT converted to negative, and six 
of nine patients with shrimp-specific IgE became negative. 
However, no significant changes in clinical sensitivity to 
shrimp were observed, suggesting that mite immunotherapy 
may not substantially alter shrimp allergy sensitivity [83].

In contrast, some case reports and studies have high-
lighted potential benefits of HDM immunotherapy in 
improving shrimp tolerance. Evidence suggests that SLIT 
with HDM can increase shrimp tolerance in patients with 
prior anaphylaxis. This improvement was attributed to the 
higher dose of TM administered, as the patient received 
double the standard dose of SLIT [84]. Additionally, HDM 
SCIT has been linked to a reduction in specific serum IgE 
levels and, in some cases, a sustained resolution of shrimp 
and squid allergy symptoms, as confirmed by OFC, and 
maintained over a 4-year follow-up period [85]. A case 
report highlights a 40-year-old woman with combined 
allergies to mites and shrimp who underwent subcutane-
ous immunotherapy (SCIT) for Dermatophagoides farinae. 
After 6 months, she exhibited significant reductions in skin 
reactivity and serum-specific IgE levels, indicating that 
mite immunotherapy may aid in desensitizing patients with 
shrimp allergies [86]. However, the absence of a clinical 
challenge leaves the effect on shrimp tolerance unclear.

The opposing outcomes of HDM immunotherapy—wors-
ening shellfish allergy in some individuals while improving 
it in others—highlight the need for further research to clarify 
the underlying pathophysiological and molecular mecha-
nisms and to identify patient phenotypes that may benefit, 
before this approach can be considered a viable treatment 
for shellfish allergy.
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Allergen‑Specific Immunotherapy 
Approaches

Shellfish allergy immunotherapy aims to induce tolerance 
and minimize allergic reactions through strategies such 
as allergen-specific immunotherapy (AIT), hypoaller-
genic allergen variants, monoclonal antibodies, and DNA 
vaccines. These methods modulate immune pathways by 
enhancing regulatory T cells (Treg) and regulatory B cells, 
increasing IgG4 and IgA, and suppressing IgE-mediated 
activation (Fig. 1).

Allergen‑Specific Immunotherapy

The concept of AIT originates in the early twentieth century 
and remained largely unexplored for several decades due 
to the high risk of severe reactions and anaphylaxis. How-
ever, recent advancements offer promising safe possibilities 
for achieving desensitization and long-term management 
of food allergies [87, 88]. AIT involves regular exposure 
to increasing doses of the allergen—in this case, shellfish 
proteins—to induce desensitization and tolerance. Initially, 

allergen-specific IgE levels may rise, but they typically 
decline below baseline over time. The maintenance phase 
generally requires daily consumption of a target dose of 
the allergen, aiming to raise the threshold of reactivity and 
reduce the severity of allergic reactions in cases of acci-
dental exposure. While the exact mechanism remains under 
investigation, current evidence suggests that AIT first sup-
presses basophils and mast cells, followed by a shift towards 
the formation of allergen-specific Tregs, the depletion of 
reactive mediators, and the stimulation of allergen-specific 
IgG production. Over time, Th2 cell activity diminishes, 
while regulatory cells, such as Tregs and Bregs that produce 
IL-10, become more prominent [87, 88]. Allergen-specific 
IgG, particularly IgG4, is believed to act as a “blocking anti-
body” by binding to the allergen before it interacts with IgE 
on effector cells, thereby preventing mast cell and basophil 
activation (Fig. 2).

Various administration routes and dosing strategies are 
considered in AIT for food allergies, including OIT, SLIT, 
SCIT, and epicutaneous immunotherapy (EPIT) [89, 90]. 
Among these, OIT has shown potential as a treatment for 
food allergies such as peanut and milk; however, concerns 
about its safety and tolerability remain major obstacles to 

Fig. 1   Future directions in 
shellfish allergy therapy. 
This figure illustrates various 
therapeutic approaches being 
developed to manage shellfish 
allergy by promoting immune 
tolerance and reducing allergic 
reactions. These strategies aim 
to increase regulatory cells and 
the production of IgG4 and IgA 
to minimize allergic symptoms
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its wider application [91, 92]. In comparison, SLIT offers 
a safer option with fewer side effects, though it is generally 
less effective [92, 93]. Currently, no clinical data currently 
exists for the use of SCIT or EPIT in shellfish immuno-
therapy. This review focuses on recent advancements in OIT 
and SLIT for shellfish allergy.

Oral Immunotherapy

Despite the high prevalence of shellfish allergy, studies 
investigating shellfish OIT remain limited in scope and spe-
cies (only shrimp). OIT has shown promise as a treatment 
for food allergies, including shellfish, but its application is 
constrained by safety concerns. While most reactions during 
OIT are mild, severe reactions can occur, particularly during 
the initial and buildup phase. Chronic symptoms, such as 

abdominal pain potentially linked to eosinophilic esophagitis 
(EoE), are a common reason for discontinuation of therapy 
[91]. Recent advancements, such as combining OIT with 
biologics such as omalizumab, aim to enhance both safety 
and efficacy [94]. Evidence indicates that initiating treat-
ment early, particularly in patients with high IgE levels, may 
enhance the likelihood of achieving long-term desensitiza-
tion and remission [95]. Although new protocols have been 
developed to improve safety, further research is necessary 
to refine OIT and maximize its effectiveness for managing 
shellfish allergies.

Nguyen et  al. examined the effectiveness of OIT for 
shrimp-allergic patients in a multi-food OIT trial that 
included omalizumab as an adjuvant [96]. This case series, 
which involved three patients—two of whom were children 
under 18—provided initial evidence suggesting that shrimp 

Fig. 2   Overview of immune responses in baseline allergy and aller-
gen-specific immunotherapy (AIT). A At baseline, allergen exposure 
activates dendritic cells (DCs), which prime naive T cells towards a 
Th2 response. Th2 cells release cytokines (IL-4, IL-5, IL-9, IL-13), 
inducing IgE production by B cells. IgE binds Fcε receptors on mast 
cells and basophils, triggering degranulation and allergic reactions 
upon re-exposure. B During AIT, repetitive low-dose allergen expo-
sure over weeks to months induces a shift towards Tregs that suppress 

Th2 responses and increase IL-10, IL-27, and TGF-β production. B 
cells switch from IgE to IgG4 production, with IgG4 functioning as 
a blocking antibody that prevents IgE from binding Fcε receptors, 
thereby inhibiting mast cell and basophil degranulation. Prolonged 
high-dose allergen exposure over months to years further enhances 
Treg responses and stabilizes IgG4-mediated blocking, resulting in 
long-term tolerance and reduced allergic responses
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OIT may be a viable strategy for managing shrimp aller-
gies, despite the small sample size. In another recent study, 
a novel shrimp OIT approach was explored, which focused 
on bypassing the traditional build-up phase and proceed-
ing directly to a maintenance dose [97]. This case series 
involved 17 mild shrimp-allergic or shrimp-sensitized pedi-
atric patients, who were administered a maintenance dose 
of 300 mg shrimp protein (equivalent to 1.6 g of cooked 
shrimp) without the initial low-dose build-up phase. The 
study hypothesized that due to shrimp’s higher reaction 
threshold compared to other allergenic foods, this approach 
could be safe for patients with mild shrimp allergies. A 
Phase 2 trial assessed the safety and efficacy of OIT for 
cashew and shrimp allergies by administering a 1000 mg 
maintenance dose over 52 weeks [98]. The trial demon-
strated that OIT safely desensitized individuals with mild to 
moderate adverse reactions, primarily gastrointestinal symp-
toms. Mechanistic analyses showed significant increases in 
allergen-specific IgG4 and alterations in allergen-reactive 
CD4 + T cells, indicating effective desensitization.

New shrimp allergy models are being developed to 
improve the understanding of allergic mechanisms and 
advance diagnostic and therapeutic tools for shellfish allergy 
[99–101]. In a mouse model of gastrointestinal allergies, the 
potential of Pacific white prawn (Litopenaeus vannamei) as 
an allergen extract for immunotherapy was explored [102]. 
Mice were divided into groups and treated with varying 
doses—high, moderate, and low—of the shrimp extract, 
undergoing sensitization, desensitization, and subsequent 
oral challenges. Shrimp allergen extract (SAE) immunother-
apy reduced systemic allergic symptoms across all dosages, 
with persistent effects after multiple challenges. Notably, 
high-dose treatment significantly increased IgG2a levels 
and IL-10 mRNA expression, highlighting a dose-dependent 
immunotherapy effect.

The lack of standardized allergen thresholds often cre-
ates confusion and risky decisions for individuals with food 
allergies. Without sufficient data on minimum doses unlikely 
to trigger reactions, developing effective allergen manage-
ment strategies becomes challenging for both clinicians and 
patients [103].

A key consideration in OIT is the threshold at which aller-
gic reactions are triggered. Previous studies have suggested 
that shrimp exhibits a higher reaction threshold compared 
to other allergenic foods, likely due to its relatively lower 
allergenic protein content (9,10). Houben et al. demonstrated 
that mustard is the most potent allergenic food, whereas soy 
and shrimp have the lowest allergenic potential [104], mak-
ing shrimp allergies unique in the context of OIT protocols.

To further investigate this threshold, DBPCFCs were 
conducted with shrimp-allergic adults. Participants received 
increasing doses of shrimp mixed in a seasoned beef matrix, 
ranging from 100 µg to 4 g. The study revealed that the most 

sensitive individuals reacted at 2.5 mg of shrimp protein. 
Additionally, the estimated dose predicted to provoke reac-
tions in 5% of the shrimp-allergic population (ED05) was 
with 73.6–127 mg higher than those for other common food 
allergens, such as peanut, milk, and egg. These findings sug-
gest that shrimp-allergic individuals generally have a higher 
reaction threshold, though further challenges are needed to 
confirm these results [105].

The importance of dose and threshold was also explored 
in a BALB/c murine model for shrimp hypersensitivity, 
where varying doses of a recombinant shrimp tropomyosin 
(rMet e 1) were administered to assess allergic responses and 
immune changes. While all treated mice were desensitized 
and protected during subsequent challenges, high-dose treat-
ment caused severe systemic reactions. However, low and 
medium doses led to the upregulation of Treg-associated 
genes and an increase in Foxp3 + cells in gut tissues, sug-
gesting that low-dose immunotherapy promotes local regula-
tory T cell induction and regulatory cytokine upregulation. 
This finding highlights the potential safety and long-term 
efficacy of low-dose immunotherapy in managing shrimp 
allergy [106].

Sublingual Immunotherapy

SLIT is another promising approach that involves placing 
allergen extracts under the tongue, allowing for absorption 
through the oral mucosa. It has emerged as a safer alternative 
to OIT for food allergy, offering a less invasive and lower-
risk approach, albeit at the cost of reduced efficacy. A study 
conducted on 60 patients (aged from 5 to 50 years) with 
shrimp allergies evaluated the safety and efficacy of SLIT 
[107, 108]. Participants were divided into groups based 
on symptoms such as urticaria, rhinitis, and asthma and 
were treated with shrimp extract from two shrimp species 
(Penaeus semisulcatus and Metapenaeus stebbingi) admin-
istered sublingually. After 6 months of treatment, there was 
a significant reduction in allergic symptoms, accompanied 
by a decrease in specific IgE levels and an increase in IgG4 
levels. While the study provides valuable insights, certain 
methodological aspects require careful consideration, such 
as the uncommon presentation of isolated rhinitis and the 
absence of oral food challenges to confirm outcomes. Future 
studies with comprehensive clinical assessments should fur-
ther validate these findings.

A study conducted in a Midwest Allergy-Immunology 
practice included 66 patients with shrimp allergies, con-
sisting of both children and adults, mainly presenting with 
systemic or localized reactions to shrimp. Patients were 
treated with serially diluted shrimp extracts, starting at 
doses of 64–320 ng and gradually increasing to 0.5 mg/
dose three times a day over a treatment duration ranging 
from 5 to 72 months. A subset of patients (18/66) underwent 
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challenges, of whom 61% tolerated 42  g or more (~ 4 
shrimp) of shrimp. While some localized reactions occurred, 
no severe adverse events were reported, underscoring that 
SLIT could be a safe and effective desensitization approach 
for shrimp allergy in select patients [109].

Hypoallergen‑Based Immunotherapy

Oral desensitization has proven to be an effective strategy 
for achieving immune tolerance in individuals with food 
allergies. However, despite its effectiveness, conventional 
approaches using native allergens frequently lead to allergic 
reactions, underscoring the need for safer alternatives. One 
such approach involves the use of hypoallergenic allergens, 
which was first trialled for fish allergy [110]. Hypoallergens 
are designed to maintain immunogenicity while minimizing 
the risk of triggering allergic reactions, thus enhancing both 
the safety and efficacy of food allergy immunotherapy [111]. 
Modifying allergenic epitopes—regions of the protein that 
bind to IgE antibodies—has become a key area of focus for 
researchers and the food industry [112]. In shellfish aller-
gies, much of this work has centered on modifying TM, the 
primary allergen in many shellfish species [63].

Effect of Digestion and Food Processing on Allergenicity

Epitopes can be classified into two types: linear and confor-
mational [113]. Linear epitopes are continuous amino acid 
sequences, while conformational epitopes are composed of 
discontinuous sequences that fold together through the pro-
tein’s three-dimensional structure [114]. It has been reported 
that most IgE epitopes are conformational; however, food 
processing and digestion often disrupt these structures, leav-
ing linear epitopes more likely to reach the immune system 
in a reactive state. Nonetheless, under certain conditions, 
conformational epitopes may remain intact despite process-
ing and digestion [115, 116].

Although digestion primarily influences the natural aller-
genicity of food proteins by altering their structural integrity, 
understanding how digestion affects these allergenic epitopes 
can provide valuable insights for designing hypoallergenic 
variants for immunotherapy. During digestion, proteins 
are broken down into smaller fragments, which can alter 
both conformational and linear epitopes that are crucial for 
immune recognition [117, 118]. It has been shown that even 
peptides, despite often being unstable during digestion, may 
still induce sensitization. Structural changes, such as pro-
tein unfolding and aggregation, can either disrupt existing 
epitopes or create new ones, influencing the protein’s sen-
sitivity or resistance to gastric and gastrointestinal enzymes 
[119]. For example, a study on shrimp (Penaeus vannamei) 
demonstrated that while gastric digestion reduces allergic 
reactions, gastrointestinal digestion can actually increase 

the allergenic potential of shrimp proteins, likely due to the 
masking or exposure of specific epitopes during digestion 
[120]. TM from mud crab (Scylla serrata) demonstrated 
high resistance to digestion in simulated gastric and intes-
tinal fluids, unlike other proteins like myosin heavy chain 
and actin, which were rapidly degraded [121]. Similarly, TM 
from shrimp (Penaeus vannamei) and Chinese mitten crab 
(Eriocheir sinensis) showed resistance to digestive enzymes, 
although partial reductions in allergenicity were observed. 
Their digestion-resistant fragments retained allergic activity, 
highlighting anti-digestion as a critical factor in allergenicity 
[122, 123].

The processing of food allergens is another factor that 
influences allergenicity, as thermal treatments and gastro-
intestinal digestion often destroy conformational epitopes. 
However, linear epitopes can persist, making them a key 
factor in the allergenicity of shrimp, even after processing 
[124]. Some shellfish allergens, such as TM and sarcoplas-
mic calcium-binding protein from Litopenaeus vannamei, 
retained its IgE and IgG-binding capacities even after under-
going various cooking methods [125]. One study found that 
roasting shrimp (Penaeus vannamei) increased allergenicity 
by exposing more linear epitopes. However, when roasting 
was combined with reverse-pressure sterilization, aller-
genic responses were significantly reduced. This combina-
tion masked stable epitopes within protein aggregates and 
enhanced the gastrointestinal digestion of immunodominant 
epitopes. Mice treated with this combined method exhib-
ited a weaker anaphylactic response, lower levels of specific 
antibodies, and reduced signs of cell degranulation com-
pared to those treated with only roasted or reverse-pressure 
sterilized proteins [124]. Yadzir et al. investigated the effects 
of boiling, frying, and roasting on oyster allergenicity and 
found that thermal treatment generally reduced allergenicity 
by decreasing the number of IgE-reactive bands. Interest-
ingly, allergenicity was highest in raw extracts, followed by 
boiled, with fried and roasted extracts showing similar levels 
of allergenicity [126]. More recently, it was demonstrated 
that boiling shrimp can increase IgE reactivity, likely due to 
the preservation of digestion-resistant allergenic fragments 
[127]. Consistently, research on TM in shrimp and oysters 
revealed that cooking does not significantly reduce aller-
genic risk, as TM remains intact after heat treatment, leading 
to higher IgE reactivity in roasted extracts compared to raw 
forms [128, 129]. Also, thermal processing affects T-cell 
reactivity, as cooked extracts increase IgE reactivity and 
reduce Treg levels compared to raw extracts, highlighting 
the immune-modulatory effects of cooking [130].

Among thermal processing methods, high-pressure 
steaming has emerged as a particularly effective way to 
reduce the allergenicity of TM in Penaeus monodon, sur-
passing the effectiveness of other heat treatments [131]. 
Gamma radiation combined with heat significantly reduced 
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shrimp allergen immunoreactivity, with higher radiation 
doses showing greater effects [132]. High-intensity ultra-
sound at 50 °C significantly reduced the major shrimp aller-
gen Pen a 1 and IgE binding, while no effect was observed at 
0 °C [133]. This study evaluated the effects of three process-
ing methods—boiling, combined ultrasound and boiling, and 
high-pressure steaming—on TM from crab. High-pressure 
steaming was the most effective in reducing TM’s IgE/IgG 
reactivity and enhancing its degradation during gastrointes-
tinal digestion, suggesting it as a promising method to lower 
crab allergenicity [134].

Glycation and Allergen Modification

Another promising approach to reduce allergenicity 
involves the glycation of shrimp TM. Glycation, the pro-
cess of bonding a protein with a sugar molecule, has been 
shown to reduce the allergenicity of TM in several stud-
ies: In a study using a mast cell degranulation system and 
a murine model, glycated TM with smaller saccharides led 
to significantly lower histamine release, reduced IgE lev-
els, and milder allergic symptoms. When combined with 
Al(OH)₃, glycated TM also promoted a shift towards regula-
tory and Th1 responses and milder anaphylactic symptoms 
after mice OFC, supporting its potential as a candidate for 
shrimp allergy immunotherapy. The study also showed that 
saccharide size was critical, with smaller saccharides pro-
ducing greater glycation and allergenicity reduction, while 
TM glycated with maltose had no significant effect [135]. 
Further research demonstrated that glycation of shrimp TM 
from species such as Penaeus aztecus [136], Litopenaeus 
vannamei [137], Exopalaemon modestus [138], and Penaeus 
chinensis [139] with various saccharides also shows poten-
tial as a method for developing hypoallergenic candidates 
for immunotherapy.

A meta-analysis on OIT found that processing methods, 
including Maillard-treated allergens and slightly processed 
crustacean meat, significantly reduced anaphylactic symp-
toms in mice and improved oral tolerance in clinical patients, 
supporting their potential role in OIT strategies [140].

Enzyme Treatments

In addition to glycation, enzymatic hydrolysis is a promis-
ing method for producing hypoallergenic shrimp products. 
Enzyme treatments, such as transglutaminase (TG) and 
tyrosinase, have been explored for their ability to reduce the 
allergenicity of TM by altering its structure and reducing 
its IgE-inducing capacity. Furthermore, TG-treated TM has 
been shown to promote Treg proliferation, contributing to its 
hypoallergenic properties and potential use in food produc-
tion and immunotherapy [141]. The use of papain, a com-
mon enzyme in the food industry, was shown to reduce the 

TM allergenicity in shrimp [142]. The study found that treat-
ing shrimp meat with 20U of papain, combined with 3 min 
of heating, decreased TM levels by up to 80%. Additionally, 
Fourier-transform infrared spectroscopy analysis revealed 
alterations in the secondary protein structure, highlighting 
this processing method’s potential to produce hypoallergenic 
shrimp products. In another approach, hypoallergenic vari-
ants of Cra g 1 were developed through epitope deletion and 
site-directed mutagenesis [143]. These variants showed sig-
nificantly reduced IgE reactivity, degranulation, and allergic 
mediator secretion, suggesting their potential for use in clini-
cal immunotherapy for shellfish allergies.

Innovative Strategies for Hypoallergens Under 
Investigation

Beyond these biological modifications, advancements in 
immunotherapy have extended to the development of novel 
delivery systems for hypoallergens. Recently, AP205-based 
virus-like particles (VLPs) were created using the SpyTag/
SpyCatcher system combined with the Pen m 1 allergen. 
These VLPs have shown reduced allergenicity while enhanc-
ing the production of TM-specific IgG-blocking antibod-
ies, further improving the safety profile of immunotherapy. 
Future studies are required to evaluate the efficacy of this 
method in preventing shrimp-induced anaphylaxis in animal 
models and eventually in human clinical trials [144, 145].

Efforts to create hypoallergenic variants of shrimp TM 
have also made significant progress. Research on shrimp 
TM, Met e 1, has identified specific IgE-binding epitopes 
and led to the development of two hypoallergenic variants, 
MEM49 and MED171. These variants exhibited significantly 
reduced IgE reactivity and allergenicity while inducing IgG 
antibodies that blocked IgE binding, making them promising 
candidates for shrimp allergy immunotherapy [146]. Epitope 
mapping studies on shrimp TM fragments revealed that the 
N- and C-terminal regions exhibit strong IgE-binding and 
receptor crosslinking, highlighting key allergenic domains 
that could inform hypoallergenic design strategies [147]. 
An evaluation of five Pen a 1 epitopes demonstrated that 
epitope 3 plays a crucial role in allergenicity, while epitope 
5 remained stable across all treatment conditions, includ-
ing irradiation and heat treatment [148]. Furthermore, Li 
et al. have shown that hypoallergenic derivatives of mud crab 
(Scylla paramamosain) allergens, specifically through the 
elimination of dominant linear epitopes in Scy p 1 and Scy p 
3, could be promising candidates for immunotherapy [116]. 
The Pen a 1 mutant VR9-1, carrying 12 amino acid substi-
tutions across major IgE-binding epitopes, demonstrated a 
remarkable 90%–98% reduction in allergenic potency, sug-
gesting its potential as a therapeutic agent in shellfish immu-
notherapy [149]. These derivatives, including mutant aller-
gens with deleted heat- and digestion-stable linear epitopes, 
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were unable to bind to IgE or induce basophil activation in 
some patients. Additionally, Chen et al. identified the aller-
gen AK in Oratosquilla oratoria and developed an epitope-
deleted derivative, mAK-L, which demonstrated reduced 
immunoreactivity compared to recombinant AK [150].

DNA Vaccine‑Based Immunotherapy

DNA vaccines can trigger TH1-dominant immune 
responses, which makes them suitable for allergen-specific 
therapies. This TH1 bias can be further amplified by co-
expressing TH1 cytokines alongside the vaccine antigens. 
IL-12, a robust TH1-inducing cytokine, has shown signifi-
cant potential as a DNA vaccine adjuvant in both small and 
large animal studies and has proven to be safe and effective 
in humans [151–153]. This innovative strategy involves the 
administration of plasmid DNA encoding specific shellfish 
allergens, intending to modulate the immune response and 
induce tolerance.

Wai et al. introduced two shrimp hypoallergens, MEM49 
and MED171, and evaluated their effectiveness as DNA vac-
cines in reducing shellfish allergy symptoms in mice. The 
intradermal administration of pMED171 resulted in a sig-
nificant reduction of allergic responses, primarily through 
the induction of Treg, which are crucial for maintaining 
immune tolerance. This treatment notably decreased ana-
phylactic symptoms and intestinal inflammation following 
oral allergen challenges [154]. Another study utilized a DNA 
plasmid vaccine encoding shrimp antigens and a lysosomal-
associated membrane protein, demonstrating its ability to 
suppress anaphylactic reactions by inducing a strong Th1 
response characterized by increased levels of IgG2a, IL-10, 
and IFN-γ [155].

One of the most promising aspects of DNA vaccines is 
their ability to induce the production of allergen-specific 
IgG antibodies. These IgG antibodies play a dual role: (a) 
they can intercept allergens before they bind to cell surface-
bound IgE or (b) engage inhibitory receptors like FcγRIIb 
on effector cells, thus mitigating the allergic response. DNA 
vaccines delivered via Gene Gun targeting shellfish aller-
gens led to a significant increase in shrimp-specific IgG pro-
duction across several mouse strains, with C3H/HeJ mice 
showing the highest response. Importantly, the vaccine also 
induced IgG responses against lobster and crab allergens, 
indicating its potential for broader cross-reactivity in crus-
tacean allergies [152].

To enhance the efficacy of DNA vaccines, co-delivery 
of immunomodulatory molecules such as IL-12 has been 
explored. This method aims to further skew the immune 
response towards a TH1 phenotype, reducing the TH2-
driven allergic response [156]. While DNA vaccines show 
great promise in preclinical studies, challenges remain 
in optimizing delivery methods and ensuring long-term 

efficacy, particularly when translating findings from animal 
models to human clinical trials. Ongoing research is required 
to refine DNA vaccine strategies, addressing these issues 
to improve the safety and effectiveness of shellfish allergy 
treatments. Translating preclinical findings into effective 
patient treatments will necessitate further advancements in 
delivery methods and long-term efficacy.

Peptide‑Based Immunotherapy

Peptide-based immunotherapy (PIT) is an approach gain-
ing considerable attention for allergic diseases. This method 
uses short synthetic peptides containing allergen-specific 
CD4 + T cell epitopes, which induce tolerance by stimu-
lating Tregs and promoting a Th1 response [157]. These 
peptides have a significantly reduced capacity to crosslink 
IgE, and consequently, they do not activate mast cells or 
basophils, reducing the risk of allergic reactions [158, 159]. 
Recent research on TMs, including Pen m 1, demonstrated 
that T-cell cross-reactivity is influenced more by structural 
stability than by sequence similarity [49], providing insights 
for PIT development for shrimp allergies.

A key area of interest in PIT is to identify allergen-spe-
cific epitopes for different allergens. For instance, Ravkov 
et al. identified 17 epitopes from shrimp TM and validated 
them as capable of inducing T cell proliferation and cytokine 
release (IL-6 and IL-13) in shrimp-allergic individuals. 
These epitopes, restricted to common MHC class II alleles, 
are ideal candidates for PIT [160]. Similarly, Wai et al. 
evaluated immunodominant T cell epitopes of TM from 
Metapenaeus ensis (Met e 1) in a Balb/c mouse model. Mice 
treated with the peptide mixture exhibited reduced allergic 
symptoms, including a significant decrease in Th2-related 
antibodies and cytokines [161]. Furthermore, PIT using the 
T-cell epitope of AK encapsulated with the TLR9 agonist 
CpG-ODN in nanoparticles, demonstrated significant attenu-
ation of Th2-mediated allergic responses, reducing anaphy-
lactic symptoms and Th2 cytokines while enhancing Th1 
cytokine expression in a shrimp allergy model [162].

Beyond synthetic peptides, another approach involves 
mimotopes—short peptides that mimic allergenic epitopes—
which have been investigated for targeting shrimp allergens. 
A study used the one-bead-one-compound library to iden-
tify multiple mimotopes that bind TM-specific IgE. These 
mimotopes were validated through peptide ELISA, epitope 
mapping, and immunization in a Balb/c mouse model, dem-
onstrating their ability to induce TM-specific IgG without 
triggering allergic reactions [163].

Monoclonal Antibody‑Based Immunotherapy

Anti-IgE therapy has been under investigation for many 
years and has recently shown promising results in the 
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management of IgE-mediated food allergy. Omalizumab, 
a humanized monoclonal antibody targeting free IgE, has 
been evaluated for its ability to reduce allergic reactions fol-
lowing accidental food exposure [164]. Clinical trials have 
demonstrated that it can increase the tolerated dose of vari-
ous food allergens (including peanut, milk, and egg) both as 
monotherapy and in combination with OIT [165]. Beyond 
omalizumab, other anti-IgE monoclonal antibodies such 
as talizumab and ligelizumab have also been investigated. 
Talizumab showed dose-dependent increases in reactivity 
thresholds in early peanut allergy trials but was not further 
developed [166]. Ligelizumab, a next-generation anti-IgE 
with higher affinity for IgE, has shown potential in early 
studies; however, it has not yet demonstrated superior clini-
cal benefit to omalizumab in the context of food allergy 
[164, 167, 168]. To date, omalizumab remains the most 
extensively studied and the only anti-IgE biologic with Food 
and Drug Administration (FDA) approval for food allergy 
[164, 169].

However, data specific to shellfish allergy remain scarce. 
One pilot study involving 22 patients with asthma and con-
comitant IgE-mediated food allergy reported reduced reac-
tions to various foods, including shellfish, after six doses 
of omalizumab, with improvement observed in symptoms 
such as atopic dermatitis, urticaria, rhinosinusitis, and 
anaphylaxis [170]. Additionally, a recruiting clinical trial 
(NCT06369467) is evaluating linvoseltamab—a novel anti-
IgE monoclonal antibody—in combination with dupilumab 
in adults with severe IgE-mediated food allergies, includ-
ing shellfish, offering a potential avenue for future targeted 
therapies.

Adjuvant/Complementary Therapies

Probiotics

Probiotics, defined as live microorganisms that confer 
health benefits to the host when administered in adequate 
amounts, have been increasingly studied for their role in 
regulating both the immune system and gut microbiota 
[171–173]. These microorganisms have demonstrated sig-
nificant potential in providing preventive and therapeutic 
benefits for allergic conditions, including shellfish aller-
gies [174]. Schiavi et al. investigated the effects of the 
VSL#3 probiotic mixture in a shrimp TM-induced mouse 
model. The results showed that VSL#3 reduced allergic 
reactions, such as anaphylaxis and histamine release, by 
shifting the immune response from a Th2-dominated pro-
file to a more balanced Th1/T regulatory profile. This shift 
decreased pro-inflammatory cytokines like IL-4, IL-5, and 
IL-13, while increasing anti-inflammatory cytokines such 
as IL-10 and TGF-β [175]. Similarly, Fu et al. highlighted 

the potential of yogurt-sourced probiotic bacteria, Bifido-
bacterium longum and Bacillus coagulans, in mitigating 
shrimp TM-induced allergic responses in a BALB/c mouse 
model by restoring gut microbiota balance and regulating 
immune responses [176]. In another shrimp allergy model, 
Bifidobacterium infantis was shown to increase Tregs and 
balance Th2/Treg ratios, suggesting that probiotics may 
play a valuable role in managing shellfish allergies through 
immune modulation [177].

Additionally, oxidative stress has been identified as a 
factor in the sensitization to allergens. Probiotics, which 
contain antioxidant enzymes such as glutathione peroxi-
dase and superoxide dismutase, may help reduce oxidative 
stress by scavenging reactive oxygen species and regulat-
ing DCs. This modulation, in conjunction with immune 
regulation, positions probiotics as a promising therapeutic 
approach for shellfish allergies [178]. Studies indicate that 
children with shrimp or crab sensitization have signifi-
cantly lower GPx activity, further linking oxidative stress 
to allergic responses [179].

Traditional Chinese Medicine

Research on traditional Chinese medicine (TCM) for treat-
ing food allergies remains relatively rare [180]. However, 
TCM is being explored as a therapeutic option for allergic 
diseases, including food allergies. Li et al.’s [181] study 
on a combination of 11 herbs in a mouse model of peanut 
allergy demonstrated promising results. Ongoing clinical 
trials are exploring the therapeutic use of Chinese herbal 
formulations for various food allergies, with encourag-
ing findings reported for several types, including shellfish 
allergy [182]. The clinical investigation of Food Allergy 
Herbal Formula-2 (FAHF-2) began after its approval as an 
investigational new drug by the US FDA in 2007, based 
on successful murine studies. A phase I trial involving 
18 participants with peanut, tree nut, fish, and shellfish 
allergies demonstrated that FAHF-2 was well tolerated and 
showed significant immune-modulating effects, including 
reduced IL-5 and increased IFN‐γ. In the phase II trial, 
extended over 6 months, FAHF-2 continued to show long-
term tolerability and BAT reduction. The main outcome 
was the change in reaction threshold during OFCs before 
and after treatment. Although the treatment was well toler-
ated and in vitro studies showed that FAHF-2 suppressed 
IL-5, induced IL-10, and increased Tregs, indicating a 
shift to a non-allergic immune response, the primary end-
point was not achieved, possibly due to poor adherence 
by 44% of participants [182–184]. In another study using 
a murine model of multiple food allergies, FAHF-2 also 
protected against allergen-induced anaphylaxis in multiple 
food allergies (peanut, fish, and egg) [180, 185].
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Clinical Trials

Multiple clinical trials have investigated potential immuno-
therapy treatments for shellfish allergies, as summarized in 
Table 2. This table includes 10 trials on shellfish immunother-
apy, encompassing OIT, Chinese herbal formulas, monoclonal 
antibodies, and alternative techniques. Key findings suggest 
that OIT is generally safe, with mild to moderate adverse 
events, and shows promise for desensitization and increased 
IgG4 levels. Chinese herbal formulas, such as FAHF-2, dem-
onstrated favorable in vitro effects but require further clinical 
validation. Monoclonal antibodies such as linvoseltamab and 
omalizumab are being studied for their potential to enhance 
safety and efficacy. In contrast, alternative approaches like 
Nambudripad’s Allergy Elimination Techniques—a non-
conventional method combining acupressure and muscle 
testing—have been proposed but lack scientific validation or 
robust clinical evidence [186]. These studies demonstrate pro-
gress in shellfish immunotherapy but underscore the need for 
continued research to establish long-term safety and efficacy.

Future Directions

The future of shellfish immunotherapy will likely be shaped 
by advancements in precision diagnostics and personalized 
treatment strategies, aimed at enhancing both safety and 
efficacy for patients with severe allergies. Shellfish OIT is 
a promising option; however, several key questions remain 
unsolved, including optimal dosing, the duration of mainte-
nance, and how to optimize treatment for patients who are 
allergic to multiple species of shellfish. Currently, most aller-
gen-specific immunotherapy research for shrimp and shellfish 
allergy are largely confined to animal models and proof-of-
concept studies, limiting their progression to clinical trials 
and practical application in clinical settings. A major chal-
lenge in advancing these therapies is the absence of standard-
ized protocols and comprehensive safety data, both of which 
are critical for ensuring the reproducibility, scalability, and 
clinical effectiveness of treatments in human patients.

Given the significant cross-reactivity observed between 
crustaceans and mollusks, modifying key allergens, such 
as TM, may offer the potential for broader desensitiza-
tion across various shellfish species. However, further 
research is essential to fully elucidate the structural and 
molecular characteristics of major shellfish allergens. This 
includes identifying specific T- and B-cell epitopes and 
analyzing the interactions of IgE with their allergen bind-
ing sites. Precision medicine approaches, such as diag-
nostic tests that assess an individual’s specific allergen 
recognition profile, could enhance the understanding of 

shellfish allergies and improve the efficacy of therapeutic 
interventions.

Another key challenge is the considerable diversity of 
shellfish allergens. As noted, most allergen-specific immu-
notherapy strategies focus on TM, despite its variable preva-
lence across different geographical regions, where it is not 
always the dominant allergen. This variability complicates 
the development of universal immunotherapy approaches, 
as they must account for regional and individual differences 
in allergen sensitization patterns.

Advances in allergen modification, such as the development 
of hypoallergenic variants through epitope deletion or structural 
alterations, hold promise for inducing tolerance without trigger-
ing severe allergic reactions. The combination of immunotherapy 
with biologic agents, including anti-IgE, anti-IL4, and anti-IL13 
antibodies, may further enhance both safety and efficacy, par-
ticularly in patients with multiple allergies. Emerging strategies, 
such as microbiome modulation and targeted delivery systems, 
also show significant potential for reshaping immune responses. 
Altering the microbiome through interventions such as probiot-
ics may help promote tolerance, while novel approaches such as 
virus-like particles or DNA vaccines could offer targeted, long-
term desensitization with minimal side effects.

Conclusion

Shellfish allergy continues to present ongoing challenges 
due to its severity, lifelong persistence, and the diversity of 
allergenic proteins across various species. Although strict 
avoidance remains the primary management strategy, emerg-
ing immunotherapeutic approaches such as allergen-specific 
immunotherapy, hypoallergenic variants, DNA vaccines, and 
microbiome-based interventions are reshaping future treat-
ment paradigms. These innovations hold promise for induc-
ing long-term tolerance, but their clinical application is lim-
ited by regional variability, insufficient standardization, and 
a lack of human trials. Advancing shellfish immunotherapy 
will require the integration of precision diagnostics, targeted 
interventions, and robust clinical validation to ensure safe, 
effective, and individualized care.
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