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Barramundi (Lates calcarifer) is an important aquaculture species extensively farmed throughout its natural distribution of
Australia and Southeast Asia, as well as being increasingly farmed in the Middle East, USA, and Europe. Barramundi has a
firm, pink-white flesh; however, fillets from farmed barramundi often exhibit grey colouration. This grey colouration detracts from
its market appeal, leading to challenges in consumer acceptance and competitiveness of the product against other white fillet fish.
Selective breeding, environmental manipulation, and dietary adjustments are being investigated to reduce grey flesh colouration.
Yet, the absence of a rapid, noninvasive approach to predict greyness in flesh means that large numbers of samples cannot be
quickly evaluated, and issues cannot be mitigated preharvest and noninvasively to preserve the fish. To address this issue, rapid
analysis of flesh greyness was developed using noninvasive near-infrared (NIR) spectroscopy through the fish skin. Thirty fish were
purchased from a barramundi farm, filleted, and divided into 3 cm sections, yielding a total of 335 samples from both dorsal and
ventral fillet regions. NIR spectral data were obtained from the skin side of all samples, and colouration data were collected from
the flesh side of the same samples. Data were randomised into a training set (256 spectra) and a validation set (79 spectra).
Predictive models were developed using flesh colour as the training input for skin NIR spectra. The refined partial least squares
regression model explained 78% of the variation in the medial flesh colour (R2

pe of 0.776, an RMSEP of 2.820, and an RPDpe of
2.122) demonstrating the ability to adequately predict the flesh quality through skin spectra. This highlights the potential of NIR
spectroscopy as a dependable, noninvasive tool, enabling the rapid evaluation of large samples and offering the potential to address
flesh colouration issues in barramundi preharvest.
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1. Introduction

Barramundi (Lates calcarifer), also known as Asian seabass,
is an important aquaculture species in southeast Asia and tropi-
cal Australia and is widely distributed in the Indo-Pacific
region [1]. The global production of barramundi has under-
gone more than fivefold growth in the 20 years since 2000,
with 105,800 tonnes produced in 2020 [2]. Wild barramundi
generally has a firm, pink-white flesh; however, farmed barra-
mundi fillets often exhibit greyness (Figure 1). Market analyses
indicate that the appearance of grey colouration in barramundi

flesh decreases the attractiveness to customers when the product
is sold alongside white filleted produce and in some instances
imported barramundi [3]. Thus, measuring the greyness of
barramundi flesh as a commercial trait and identifying those
fish with excessive greyness are important to the industry, as it
will allow them to investigate the potential of selective breed-
ing to reduce flesh greyness, as well as other management
options such as diet and environmental manipulation. How-
ever, currently, the only way to quantify flesh greyness is
through slaughtering and filleting the fish, which is invasive
and labour-intensive. While noninvasive sampling not only
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allows for the rapid sampling of higher numbers of fish, but it
also reduces impact and improves animal ethics outcomes in
research [4]. From a commercial standpoint, identification of
fish with grey flesh by a through skin approach will facilitate
the assessment of potential downgrades. Industry can also
supply barramundi fillet with differentiated colouration to
different markets to obtain optimal returns.

In the past, the degree of grey colouration in fish flesh has
been quantified through the L

∗
of Commission Internationale

de l’Éclairage (CIE) L
∗
a

∗
b

∗
colour space by taking images of

fish fillet, where L
∗
represents the lightness. However, this

analysis is time-consuming, laborious, and destructive. Alter-
natively, near-infrared (NIR) spectroscopy is a powerful ana-
lytical tool for measuring biochemical information that has
been applied in a wide range of different fields, including food
science, agriculture, and medicine [5–7]. The range of elec-
tromagnetic wavelengths within the NIR spectrum is from
780 to 2565 nm, which is beyond the range of visible wave-
length [8]. Within the delineated spectral range, molecules
exhibit absorption at characteristic wavelengths, where the
absorption is highly related to molecular vibrational modes
based on their structural configurations and specific func-
tional groups, such as the carbon–hydrogen (C─H) and
nitrogen–hydrogen (N─H) bonds [8–10]. Thus, analysis
of NIR spectral signatures can provide information on the
presence and concentration of organic compounds in the
sample. Similar approaches have yielded effective through
skin measurement of fat and moisture in Atlantic salmon and
rainbow trout [11, 12]. NIR technology also has the ability
to detect the bruises of avocado and predict colouration of
pork muscle and peach flesh, where the colouration could be
affected by more than one chemical compound [13–15]. This
gives NIR technology the advantage to predict degree of grey
colouration without knowing which exact chemicals are caus-
ing the grey colouration. Melanin is a pigment that has been
linked to grey colouration in several species and was initially
suspected to be the factor for grey colouration in barramundi

flesh [16, 17]. While melanin has been identified in barramundi
flesh, its concentration explains approximately 18% of the
variation in grey colouration in dorsal flesh indicating that
further unknown factors influence grey colouration in barra-
mundi flesh [3].

NIR measurements are inexpensive and much faster than
wet chemistry for the quantification of organic compounds
[18, 19], and the use of NIR is increasingly being applied
into high-throughput phenotyping systems [20]. Further,
NIR possesses a greater penetration depth compared to mid-
infrared spectroscopy [21]. NIR light with wavelengths ranging
from 900 to 1600 nm has been shown to penetrate up to
3.9mm in chicken breast tissue [22] and approximately
3.3mm in avocado at a wavelength of 1076 nm [23]. Reflec-
tance spectral measurements in the 900–1600 nm range gen-
erally achieve penetration depths between 1 and 5mm [24].
This indicates the potential for NIR spectroscopy to effectively
analyse the flesh beneath the skin of barramundi. Even if the
NIR does not penetrate deep into the flesh, there can be
correlations between the spectral signature of the skin and
flesh interface that relate to the chemical properties below
the skin. All of these advantages make NIR spectroscopy a
potential tool for predicting barramundi flesh greyness in a
rapid, cheap, and noninvasive manner.

Therefore, the aim of this research was to develop a reli-
able, rapid, and nondestructive method of flesh greyness
determination in barramundi by using NIR spectroscopy.
Here, NIR measurements were taken from selected locations
on the barramundi skin and correlated with the flesh coloura-
tion (L

∗
) at the same location in the fillet to build a predictive

model.

2. Methods and Materials

2.1. Sample Preparation and Collection. A total of 30 com-
mercially grown barramundi were obtained from a local farm
in North Queensland, Australia. The weight of each barra-
mundi varied from 1 to 3 kg, and the length was between 40
and 55 cm. In case culture environment influenced flesh grey-
ness and in order to potentially capture a broader range of
flesh colouration, 30 barramundi were sourced from two dis-
tinct freshwater ponds, with 15 fish from each pond. From
each fish, two whole fillets were excised, and then from this
fillet, vertical cuts were made starting at the site of the anus
every ~ 3 cm anteriorly from this cut. From each vertical flesh
strip, horizontal cuts were then excised that followed the red
muscle line in the fillet. Depending on the size of each barra-
mundi, between five (a–e) and seven (a–f) sections could be
sampled from each fillet strip (Figure 1).

2.2. Reference Measurement of Colouration. The L
∗
value of

CIE L
∗
a

∗
b

∗
colour space has become a standard measure of

the inverse of grey colouration since L
∗
represents the per-

ceptual lightness by the human eye [25–27]. Hence, L
∗
was

selected to describe the level of grey colouration in barra-
mundi flesh in this study.

Images of deep flesh colouration (medial surface of fil-
lets) were taken under standardised light conditions [28]. All
flesh samples were placed in a white tray in the centre of field

FIGURE 1: Barramundi fillet showing present of flesh greyness and
example of how the fillet was cut into multiple samples for NIR and
colour measurements.
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of view surrounded by four colour checker passports (X-Rite
Pantone, USA). A digital camera (Sony a5000 ILCE-5000,
Japan) was used to take images with settings: ISO= 100, focal
length= 16mm, f-stop= F/10, exposure time= 1/60 s, and
focus= 0.8m.

All images were calibrated for colour using the colour
checker passport in MATLAB [27]. This image calibration
ensured that the colouration information of each image was
not affected by any unexpected changes in ambient temper-
ature and light irradiance [29]. The average lightness value
(L

∗
) of the central area of each fillet was measured on the

calibrated image by the software ImageJ [30]. The range of
L

∗
value is from 0 (pure black) to 100 (pure white).

2.3. NIR Spectral Acquisition. NIR spectral data were col-
lected 3mm above the skin side of each fillet via a portable
MicroNIR device (N1-00148, VIAVI Solutions). The spot
diameter of theMicroNIR device was 1 cm, and the wavelength
range was between 908 and 1676 nm, with a resolution of
6.2 nm. Three independent NIR spectral readings were obtained
for each location. The spectral data from these three readings
were then averaged and used in regression analyses. A total of
335 spectra and corresponding lightness (L

∗
) were obtained

and were randomised into training set (256 spectra) and
validation set (79 spectra). The impacts of external lighting
were minimised, and all measurements were taken at a
consistent standard room temperature (22°C).

2.4. Chemometric Methods in NIR Spectra Analysis. Partial
least squares regression (PLSR), principal component regres-
sion (PCR), and multiple linear regression (MLR) methods
were applied to the data using HYPER-Tools Version 3.0
within the MATLAB environment [31] to create a predictive
model by using the preprocessed data and reference data
(L

∗
value of barramundi flesh) [32]. Cross-validation was

used to optimise the regression model for better prediction
when using PLSR, PCR, and MLR methods. The number of
latent variables or principal components was determined
with two different methods. Initial models were developed
using the lowest root mean square error of cross-validation
(RMSECV) to ascertain the number of latent variables or
principal components for regression analysis [10, 19]. Raw
spectra were preprocessed by three different methods where
necessary to enhance the spectral features, including Savitzky–
Golay (SG) smoothing, standard normal variate (SNV, [33,
34]), multiplicative signal correction (MSC, [18]), and first
and second derivative [21].

The performances of initial models developed by the
training set were assessed based on four essential regression
indicators (the coefficient of determination for calibration
(R2

ca), root mean square error of calibration (RMSEC),
coefficient of determination for cross-validation (R2

cv), and
RMSECV) [10]. Models that showed a similar value between
R2

ca and R2
cv with lower RMSEC and RMSECV and higher

R2
cv were selected [35, 36]. |R

2
ca–R

2
cv| vs R

2
cv plot was used to

further determine the optimal number of latent variables
or principal components for higher R2

cv and smaller differ-
ence between R2

ca and R2
cv which can avoid overfitting and

capturing the noise in spectral data [37, 38]. From this analy-
sis, a predictive model was created.

Calculated and experimental responses from the initial
models were used to create a studentized residual plot. Any
studentized residual bigger than 2 in absolute value was con-
sidered an outlier and removed. The total number of outliers
might be different for each model due to different preproces-
sing methods and regression methods. Final models were
established using the same method but with the training
set after the removal of outliers. Then, the models were tested
by the validation set and calculated corresponding R2

pe, root
mean square error of prediction (RMSEP), and the ratio
of performance to deviation of the prediction (RPDpe). The
RPDpe was employed to inform the predictive quality and
robustness of the regression model [23, 39–41].

Last, the beta coefficient plot of the best-performed model
was used to illustrate the crucial wavebands in the prepro-
cessed spectrum that were significantly contributed to the
prediction of grey colouration [42, 43]. Subsequently, based
on the preprocessing method, the important wavebands iden-
tified in the preprocessed spectrum could facilitate an approx-
imate identification of the corresponding wavebands in raw
spectra.

3. Results

3.1. Barramundi Flesh Colour Reference. Lightness (L
∗
) values

for barramundi flesh ranged from 59.6 (darkest) to 94.1
(lightest). Flesh lightness (L

∗
) across all ventral samples was

from 64.7 to 94.1, and the range across all dorsal samples was
from 59.6 to 90.3.

3.2. Spectral Features of Raw Spectra and Preprocessed Spectra.
The trend in absorption spectra was similar between samples
when evaluated grossly across the entire measured wave-
length with prominent absorption peaks at approximately
1440–1460 nm, 1165–1180 nm, and 960–990 nm (Figure 2a).
A baseline shift was apparent in this data, where the spectral
absorption characteristics of each sample were offset across
the spectral range. This was rectified through applying SNV
clarifying absorption peaks at 900–1050 nm, 1160–1370 nm,
and 1550–1660 nm (Figure 2b). The predictive model based
on the PLSR method demonstrated the best predictive abil-
ity when preprocessed using the first derivative in conjunc-
tion with the SG smoothing technique (window size= 5,
polynomial degree= 2). This approach outperformed other
preprocessing techniques applied to PCR or MLR methods
(Table 1). After applying the SG smoothing technique fol-
lowed by the first derivative, both obvious and subtle features
in the raw spectra were significantly enhanced, resulting in
sharper and more distinct peaks and valleys. This improve-
ment was particularly noticeable in the spectral regions from
930 to 1100 nm and from 1200 to 1400 nm (Figure 3).

3.3. Calibration, Cross-Validation, and Validation of the Best
Models. The optimal number of latent variables was 13 for
the PLSRmodel based on its low RMSECV and small difference
between R2

ca and R2
cv (Supporting Information 2). After

removing outliers, the final PLSRmodel trained with 13 latent
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variables had a R2
cv of 0.783 and a RMSECV of 2.992. While

R2
cv of the final PCRmodel was 0.768, which was smaller than

the R2
cv of PLSR model by 1.91%, the RMSECV was bigger

than the RESECV of the PLSR model by 3.41% (Table 1). The
difference between R2

cv and R2
cv of best MLR model was the

largest among the best PLSR, PCR, and MLR models, and it
had a low R2

cv of 0.640 and large RMSECV of 3.857. When
using independent data to validate the model, the final PLSR
model had the biggest R2

pe of 0.776 and smallest RMSEP of
2.820 (Figure 4). Meanwhile, the quality of the regression
model was described by RPDpe, and the highest RPDpe was
2.122 from the final PLSR model.

3.4. Beta Coefficient Analysis. Beta coefficient plots provide
physical insights into the importance of each waveband on
the prediction of the flesh greyness. In the beta coefficient
plot of the best predictive PLSR model, the lowest beta coef-
ficient was 0.98, and it was located at 1372.7 nm, which
meant the spectral reading at 1372.7 nm had a strong nega-
tive relationship between the lightness of the flesh (Figure 5).
In other words, it demonstrated a strong positive relationship
with the grey colouration in barramundi flesh. Other notable
valleys were located at 1007, 1137, 1242, and 1533nm. While
the two dominant peaks were located at 1335 and 1397 nm
with a beta coefficient of 0.85 and 1.03, respectively. So, the
lightness of barramundi flesh had a strong positive relation-
ship with spectral reading at the wavelength of 1335 and
1397 nm. The rest obvious peaks were located at 939, 1106,
1211, 1502, and 1626 nm.

4. Discussion

The best prediction model for assessing the greyness in bar-
ramundi fillets utilised the PLSR method, combined with
preprocessing techniques of SG smoothing and first deriva-
tive. In this predictive model, around 78% of the measured
colouration could be explained by the predicted colouration
in the validation. The RMSEP of the PLSR model indicated

that the average magnitude of the error between measured
and predicted lightness was 2.820, which was acceptable
compared with the given scale of fish colouration and
mean lightness of 74.94. This represents a significant
advancement in noninvasive methods, as the application of
NIR spectra collected from the skin for predicting fillet grey-
ness in fish is shown to have high prediction power for this
trait. Previous studies with other food commodities have
explored similar methodologies, such as using spectroscopy
to determine peach flesh colour from the skin [14], but this is
the first time such an approach has been used in fish.

All raw spectra displayed notable baseline shifts, which
could be possibly caused by the scattering effect, changes in
light conditions/source temperature, or differences in sample
thickness [44, 45]. Three notable absorption peaks were
observed at 1440–1460nm, 1170−1190 nm, and 960–990 nm
(Figure 2a). Significant absorption peaks around 980 nm and
1450nm have been reported in previous research when col-
lecting NIR spectra from the flesh samples of different species,
such as barramundi, salmon, and chicken, which has been
identified and attributed to moisture content [35, 46]. The
absorption peaks around 980 and 1450 nm correspond to
the second and first overtone of the O─H stretching vibra-
tion from the water molecule [47, 48]. So, the wavelength
which ranges around 980–1450 nm may not be significant
for grey colouration since they have been representing more
to moisture, which makes the absorption variation between
1000 and 1400 nm and the wavelength range between 1500
and 1670 nm (Figure 2a) the potential indicators of the
chemical components contributing to flesh greyness. This
was confirmed later in the beta coefficient plot of the PLSR
model that the three lowest beta coefficients were in these
two ranges (Figure 5).

Since there is no specific rule about how to find the best
preprocessing methods for a specific raw spectral data and
regression method [34], many possible preprocessing tech-
niques were tested on PCR, PLSR, and MLR methods,
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FIGURE 2: (a) Raw skin NIR spectral data from the MicroNIR (pinpoint) device. Three spectral data were recorded in each sample, and each
curve line in the plot represented an average NIR spectrum from one fillet sample. (b) Spectral data are preprocessed only by SNV.
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respectively. Overall, first or second derivative preprocessing
techniques could get relatively more robust models (smaller
difference in R2) than the models that use SNV or MSC
(Supporting Information 1). In research studying NIR spec-
tra of thawed pork, better regression models were also
obtained by using first derivative preprocessing method
instead of SNV or MSC [19]. This could be because that first
or second derivative could solve the baseline shift issue like
SNV and MSC and reduce the problem of overlapping peaks
in raw spectral data [49]. For example, more specific peaks or
valleys with narrow wavelength ranges could be observed at
957, 1025, 1330, and 1508 nm in Figure 3.

This study aimed to build a robust model for prediction
of flesh greyness based on skin spectral data, thus avoiding
overfitting noise and outliers in the NIR spectra was essential

[50]. A higher R2
cv is more critical than R2

ca because it indi-
cates how good a predictive model can explain the response
variables (skin spectra) in the new data set. Meanwhile,
a small difference between R2 of calibration and cross-
validation model was important as well when selecting the
best predictive model [37]. This was because a bigger differ-
ence in R2 between calibration model and cross-validation
model revealed a potential problem of overfitting the calibra-
tion model, which might not be predictive in an unseen data
set. The PLSR models trained with more than 14 latent vari-
ables were therefore not selected for training due to the
higher deviation between R2

ca and R2
cv value despite slightly

higher R2
cv (Figure 5).

For a predictive model, it is essential to determine the
model’s reliability and the error when measuring. RPD is a
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(Savitzky–Golay, window= 7, polynomial= 2), which was used in the PLSR and PCR model.
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measure which looks at the estimated error to the standard
deviation of the training samples. If the error of prediction is
large compared to the standard deviation, then the model
should not be used in prediction [23]. It was first used the
quality of the calibration model for prediction with NIR
spectra in the field of food science and suggested that RPD
between 2 and 3 was adequate for rough screening [51]. As
expected, the PLSR model with the highest R2

pe and smallest
RMSEP had the biggest RPDpe, while the MLR model with
obvious overfitting issues in calibration had a smaller RPDpe

that was smaller than 2 (Table 1). Judging from multiple
indexes that were related to the performance, such as high
R2

cv, small RMSECV, high RPDpe, and slight difference between
R2

ca and R2
cv, the best predictive model in this study was the

PLSR model preprocessed by smoothing and the first deriva-
tive (Table 1). Despite uncertainty about the specific factors or
organic compounds causing the grey colouration in barra-
mundi fillets, it was possible to predict the trait of flesh grey-
ness using the skin NIR spectral data.

The NIR spectral wavelength range offered valuable insights
into the wavebands corresponding to the first, second, and
third overtones of organic functional groups, as well as their
combination bands [21]. The wavelengths of the two highest
positive and one lowest beta coefficient were located between
1335.5 and 1397.5 nm. The absorption wavebands of combi-
nation C─H stretching are around 1300 to 1420 nm [52],
which indicated that the greyness of flesh was highly related
to some organic compounds. Another group of wavelengths
with notable beta coefficients was located at 1502 and 1533.7 nm.
This could be caused by the N─H first overtone with an
absorption range from 1450 to 1550 nm or overtone bands
of secondary amides that have an absorption waveband from
1350 to 1550 nm. The rest of the wavelengths with notable
beta coefficient at 1007 nm could be explained by the second
overtone N─H or O─H stretching, while the wavelength at
1106 and 1137 nmmight be because of the second overtone of
C─H stretching based on the summary of Stuart [52]. It was
difficult to identify specific organic compounds that are cor-
related to the grey flesh in barramundi based only on NIR

spectra, so further analysis should be focused on MIR or IR
spectra because it can detect organic functional groups with
higher sensitivity and specificity and providing more distinct
absorption peak instead of broad absorption wavebands in
NIR spectra [53].

Applying NIR spectral technology to measure the trait of
flesh colour in barramundi can be cost-effective and a rapid
analytical method because there is no need for filleting the
fish and taking images. The successful results from the por-
table NIR device suggested the potential of using a hyper-
spectral camera to predict and map out the flesh colour of the
whole barramundi fillet and correlate to the spatial variation
of the NIR spectra. High-throughput phenotyping of barra-
mundi flesh colour can also be achieved by combining hyper-
spectral camera technology. In the past, a selective breeding
programme that studied the composition of Atlantic salmon
required over 8000 fish, and with the help of the NIR device,
it could sample up to 400 fish per day [54]. Hence, the
practical application of barramundi skin NIR spectra to mea-
sure the colouration trait can be useful when the experiments
require sampling a lot of fish. This technology is also essen-
tial when studying how barramundi flesh colour changes
over a period of time under different environmental condi-
tions or nutrients in feed. Without the tool for noninvasive
quantification of barramundi flesh colour, the experiment
would have to measure the change of flesh colour from dif-
ferent fish through a period of time or only measure the
colour at the beginning and ending of the experiment, which
could cause either less data or not independent observations
for analysis.

5. Conclusions

This study has shown the utility of using a portable NIR
device with a scan range from 900 to 1670 nm to predict
the flesh colour of barramundi through scanning the skin
NIR spectra. The best-performed PLSR model could give a
predictive accuracy of 78% with an average error of 2.820
(L

∗
) between predicted colour and experimental colour in the

validation, indicating a strong correlation between the pre-
dicted flesh colour and skin NIR spectra. RPDpe was 2.122,
which demonstrated the robustness and reliability of apply-
ing this model in barramundi for rough colour prediction.
Nevertheless, in contexts demanding higher precision, such
as aquaculture research, enhancing the predictive model’s
accuracy is crucial. This improvement can be achieved by
incorporating a larger and more diverse set of barramundi
samples, particularly with a wider range of flesh colouration
variation into training data sets.
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number of latent variables for PLSR model. The Y-axis repre-
sents the rootmean square error of the cross-validationmodel,
and the X-axis represents the number of latent variables used
in training the PLSR model. Figure S2: | R2
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cv | versus
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sented the coefficient of determination for calibration, and R2
cv

was the coefficient of determination for cross-validation.
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