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Abstract

Health Social Networks (HSN) provide rich medical knowledge bases that are scalable and sustainable, while IoT provides
non-invasive, pervasive, and low-cost methods to collect patient data. However, receiving relevant information from HSN is
time consuming and challenging for users, such as searching for the right relevant information using keywords and filtering.
On the other hand, healthcare IoT has limited access to the vast medical knowledge bases, such as HSN, to interpret the
collected data. To address these challenges, we propose Keyword-based Integrated HSN of Things (KIHoT), an approach
that combines the strengths of both HSNs and IoT to overcome their limitations. In this method, data (biosignals) collected
via IoT devices are converted to human readable keywords using word embedding vector features and CNN (Convolutional
Neural Network) predictors. The CNN predictors are trained to predict keywords that individuals search within an HSN to
extract relevant information of the given biosignals. Those keywords are encoded as word embedding for searching relevant
information. KIHoT utilizes contrast learning techniques to extract latent feature representations of electrocardiogram (ECG)
signals, which are then used to predict disease-related keywords. The proposed method was evaluated using 11,936 ECG
signals from patients with heart disease and achieved an accuracy of 98% for disease prediction. Our results suggest that
KIHoT can effectively extract relevant information from HSN portals, making it easier for researchers and clinicians to
access valuable medical knowledge.
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Introduction HSN comprise patient-driven healthcare that provides

rich medical information, as social media allows millions of

Common chronic medical conditions, such as heart and res-
piratory diseases, are the leading causes of global death [1,
2]. Persistent care and monitoring are required to prevent
these deaths. However, rising cost of healthcare in the aging
population remains a significant challenge to those essential
healthcare services [3]. The training of medical profession-
als is responsible for the rising medical cost. For example,
in the U.S., training a General Practitioner (GP) costs more
than US$300,000 [4]. Health Social Networks (HSNs) are
the potential solutions to the low access to healthcare.
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users to upload their data, such as status updates and images
[3]. Health portals in the U.S. alone have more than 40,000
active members and 1.5 million unique monthly visits [3].

Healthcare Social Networks (HSNs) have the poten-
tial to be an invaluable source of medical information for
researchers, clinicians, and patients alike. However, the large
amounts of data contained in HSNs can make it difficult
for users to find relevant information. Furthermore, current
automated diagnosis tools based on machine learning are
limited in their ability to provide detailed diagnoses and
are often trained using expensive, time-consuming labeled
data. As a result, these tools are only able to treat a limited
number of diseases, limiting their usefulness to patients and
clinicians.

On the others hand, the Health Internet of Things (IoT)
provides low-cost, pervasive, and objective health moni-
toring [5]. The current methods for automated diagnosing
heart disease are based on heart sounds or electrocardiogram
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(ECG). ECG provides information about heart function,
such as heart rthythm [6]. Furthermore, some approaches
also utilize IoT for heart diagnosis using ECG [7]. However,
healthcare IoT has limited access to the vast medical knowl-
edge bases, such as HSN, to interpret the collected data.

To address these issues, we propose a machine learning
framework for automated diagnosis that integrates HSNs
and IoT. Specifically, we present Keyword-based Integrated
HSN of Things (KIHoT), an approach that utilizes
electrocardiogram (ECG) signals to predict disease-related
keywords and make it easier for researchers and clinicians
to access valuable medical knowledge. By automating data
collection, data labeling, and model training processes,
the proposed system expands accessibility to healthcare
information and helps users to retrieve relevant information
from HSNs based on their biosignals objectively. The
proposed system aims to provide an end-to-end HSN service
with no expert knowledge required from users, significantly
expanding accessibility to healthcare information.

The proposed method was evaluated using 11,936 ECG
signals from patients with heart disease and achieved an
averaged accuracy of 98% for disease prediction. The rate
of valid keywords, namely sensitivity of keyword extraction,
was over 90% for all instances and over 95% for 80% of
instances. Our results suggest that KIHoT can effectively
extract relevant information from HSN portals, making
it easier for researchers and clinicians to access valuable
medical knowledge.

The major contributions of this paper are as follows. First,
the study presents a feasible solution to take advantage of
HSNss via novel IoT approaches, converting biosignals to
human readable keywords using word embedding vector
features and CNN predictors. Second, the labels for training
this model have the potential to be collected from the internet
without any expert knowledge. Third, in this approach, the
large amounts of data from IoT and HSNs are integrated to
provide a cost-efficient method for health monitoring.

The rest of paper is organized as follows. We summarize
the previous approach and analyze the requirements of

this approach, as shown in Sect. “Problem Statement and
Objective of the Study”. Then, we propose a keyword
prediction framework based on word embedding, as
shown in Sect. “Literature Review”. Next, we compare
the proposed approach with conventional approaches, as
shown in Sect. “Research Design/Methodology”. Finally, we
conclude by discussing the impact of the proposed approach
in Sect. “Discussion/Analysis of Research Findings”.

Problem Statement and Objective
of the Study

The largest barrier is to search for information from HSN.
Data from HSN is huge and this is a challenge for users
to find related information. HSNs often rely on user input
keywords to search for information, which can lead to
incomplete and inaccurate descriptions due to users' lack
of professional knowledge and experience with internet
searches.

Finding right information requires in-depth knowledge
about diseases and experience in Internet search, but cur-
rent HSNs rely on users to describe their conditions based
on subjective feelings. This can result in inaccurate analy-
ses and a time-consuming process of refining keywords to
find the correct information. Furthermore, information in
HSNSs also contains mistakes and informal terms [8, 9]. The
resulting incomplete descriptions usually lead to inaccurate
analysis (Fig. 1). Thus, users end up needing to refine their
keywords by finding how others describe their conditions.
This can be time consuming and ineffective since other users
of the internet may not have similar conditions and may be
equally lacking in knowledge. Also, it does not search auto-
matically requiring extensive user involvement and time to
find the right information. The difficulty lies in users’ lack of
accuracy in choosing suitable keywords for searching related
information. As a result, HSN is time consuming and chal-
lenging to search the right relevant information.

Fig.1 Common usage of Health Informal
Social Network (HSN) Keywords
S h \symploms) Online Health
N earc nline Healt
Keyword Social Network
User
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Another problem is that the existing automated diagnosis
tool based on machine learning does not solve the prob-
lem either. We still lack tools that can provide an accurate
diagnosis for people to find the exact information using the
diagnosis term. The current automated diagnosis model is
trained with labeled data, which is expensive and slow for
collection. The number of labeled data as well as certain
types of disease labels are limited. As a result, only a limited
number of diseases can be treated (Fig. 2). This limits the
ability of automated diagnosis to provide information and
keywords to users for searching more information.

To solve the above-mentioned problems of HSN, a
machine learning framework for automated diagnosis can be
proposed for fully automating data collection, data labeling,
and model training processes based on the exploding amount
of data from both HSNs and IoT. From the perspective of
HSNGs, our approach helps users refine their keywords based
on their biosignal objectively.

The proposed system aims to provide an end-to-end HSN
service, which requires no expert knowledge from users
(Fig. 3). This study develops Keyword based Integrated
HSN of Things (KIHoT) for integrating HSNs and IoT. This
approach provides related keywords to users via Electro-
cardiogram (ECG). The keyword prediction model can be

trained with association between keywords and ECG. Hence,
they can be used to search for related information from exist-
ing HSN portals. With no human intervention, the proposed
integrated HSNs significantly expand accessibility to HSN.

Literature Review

Collection of Condition-Related Expression
from HSNs

Social media data sharing has caused a data explosion, which
facilitates data mining and Al. Compared to traditional data
gathering approaches, data mining in social networks is fast
and low-cost. Many studies have collected data on mental
health issues [10, 11], influenza epidemics [12, 13] and
Adverse Drug Reactions (ADR) [8, 9, 14-16] from social
media such as Twitter.

Data collection from HSN is faster and cheaper
than traditional data collection methods and provides
large amounts of data on mental health issues [10, 11],
influenza [12, 13] and Side Effects (ADR) [8, 9, 14-16].
For example, manually collecting data from a doctor to
monitor the flu results in a delay of one to two weeks

Fig.2 Common usage of Inter- Biosignal
net of Things (IoT) Health-l1oT
g —> (Body Cloud Service
Sensors)
User
Assessment
by Experts
Information, support < Automated Diagnosis
and assessment Result
Fig. 3 Common usage of our ECG,
proposed Integrated Health Heart sound
Social Network Bowel sound,
Lung sound,
Health-loT Breath sound Health Social
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[12]. However, the data from HSN is too much to process
manually. To process large amounts of data, natural
language process (NLP) approaches are applied[8, 9].

The approaches for detecting mental disorders are
Linguistic Inquiry, Word Count [10, 17], quantifying
mental health signals in Twitter posts with NLP features
[10], and indexing anonymous keywords for autism
and ADHD [3]. Discovering ADR is an important
part in postmarketing surveillance [11]. The common
approaches for extracting an ADR-related phrase in
HSNs are conventional machine learning (SVM) [8, 14],
the linguistic approach [15], deep learning (RNN) [11]
[16] and Conditional Random Fields (CRFs) [9, 11].
Using social media to detect the spread of influenza focus
on filtering internet content to extract disease-related
expressions, mostly conditions, from HSNs [12, 13].

Those condition related expressions can be used to label
ECG or other biosignals. By collecting the disease-related
expressions in HSNs together with the associated ECG
from same users, a keyword recommendation model can
be trained without any manual labelling. The labelling is
done based on existing information in HSNs. Our previous
approach [18] also labels the ECG with emulated keywords.
The information extracted from HSNs can be used to replace
the emulated keywords and give more realistic results.

Word Embedding

In this study, diseases were associated as sets of keywords.
Word embedding is a widely used vector space word
projection method of natural language processes. Unlike
one hot annotation, word embedding represents important
semantic features. Similar words, such as cough and
breathless, have word embedding with higher cosine
similarity. In contrast, no such similarity exists in their
one-hot representation. The most important feature of
word embedding is that the vectors of words with similar
semantics have higher cosine similarity as (1).

aeb

Claby = 422
@0 = aial M

Word embedding are learnt by neural network that
predicts words given the context [19]. Vector representations
can be stored and used like a dictionary. Table 1 shows the
performance (by default is F-measure; using accuracy when
F-measure is not available) of previous approaches using
Word Embedding. Some studies show a promising result for
using word embedding as a feature.
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Table 1 Performance of HSN Approaches Using Word Embedding

Reference Performance (F-measure) Sample Number
[8] 80.3% 6320

[16] 81.41% (accuracy) 1250

[20] 85.2% (accuracy) 1824

[21] 65% 33,332

[22] 50% 33,332

[9] 79.4% 1250

Weighted Average 60.8% 77,308

Table 2 Performance of Previous CNN Approaches

Feature Performance Dataset size Reference
MFCC 84.0% 3240 [23]
DWT 82% 3240 [24]
MEFCC 81.3% 3240 [25]
MFCC 81.4% 3240 [26]
FT 95.2% 3240 [27]
RGB image 94.2% 3240 [28]
Sonogram 94.2% 3126 [29]
Spectrogram 89.8% 50 [30]
Spectrogram 86% 1630 [31]
Spectrogram 98.5% 50 [32]
STFT Spectrogram 98.2% 817 [33]
Spectrogram 74.0% 176 [34]
ECG Time Domain 86.4% 12,186 [6]
87.0%

Convolutional Neural Network

The conventional approaches to biosignal-based diagno-
sis are pre-processing, segmentation, feature extraction,
and classification. A segmentation algorithm is usually
required to select the parts of the whole biosignal which
contain more information, such as a heartbeat or a bowel
activity. Many hand-crafted feature extraction methods
are also needed for researchers to summarize the features
of the signal, such as frequency information (methods
based on Fourier transformation, such as FFT, STFT,
MEFCC), wavelets, and the derivatives of those features.
The extraction, configuration, and selection need a high
degree of expert knowledge and manual work. Fortunately,
deep learning methods provide end-to-end approaches,
which accept raw signals of ECGs [6] or spectrograms
of audio as input and generate features based on tasks.
Some approaches also do not require segmentation, as
deep learning approaches are able to locate the informa-
tion from raw signals automatically and discard unre-
lated information [6]. Table 2 shows the performance of
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previous CNN approaches with biosignal. The good per-
formance shows that CNN is reliable for fitting biosignal
models.

The convolutional layer consists of a set of convolution
kernels. A convolution kernel is a set of trainable shared
weights which detect elementary features from the
previous layer with a sliding window, forming a feature
map. The exact position in a feature map is less critical
and can be harmful when there is a shift in the input.
Afterwards, a pooling layer down samples the feature map
with the maximum value and makes CNN less sensitive to
the exact position.

In previous CNN approaches, the Fourier Transform-
based spectrogram is the most common feature used in
CNN for sound diagnosis [27] [30] [31] [32] [29] [34].
The STFT (Short Time Fourier Transform) spectrogram
is an example of an implementing spectrogram [33].
Likewise, DWT is used for CNN Classification [24]. The
MFCC spectrogram feature is also commonly used [23]
[25] [26]. On the other hand, Deperlioglu [28] converts
heart sound data into RGB images to reduce computation
requirements. Xiong et al. [6] also proposed an ECG
classification for cardiac arrhythmias’ detection with 1D
CNN, achieving 86.4% F1 accuracy.

The current approaches to diagnosis of heart disease
are based on heart sounds or ECG; it is used for automatic
diagnosis of heart disease [5]. ECG provides information
about heart function, such as heart rhythm, and there are
approaches that use ECG readings for classification of
heart rhythms [6]. In addition, some approaches apply IoT
to heart diagnosis using ECG as well [7]. The state-of-the-
art of ECG diagnosis are atrial fibrillation detection with
CRNN [35], heart disease classification using DBLTSM
[5], arrhythmia classification using CNN [36] and heart
disease classification Self-supervised representation
learning with LSTM + MLP [37].

Lead Il CNN

ECG l——I ECG Segment

Predictor

Patient TextRank

onli ) Keyword
nline Disease
Disease ST BLER Extraction Search
labels ympto Keywords
Descriptions

ECG-Word Vector

Research Design/Methodology

The proposed method aims to automatically convert
ECG signals into meaningful and readable keywords by
contrast learning. Thus, HSN content can be searched using
automatically generated keywords from ECGs instead of
users’ keying in keywords. As a result, the autonomous
nature of HSNs is improved by integrating with biosignals
from IoT.

Figure 4 illustrates the overall process involved in this
approach. First, the ECG signals and labels are collected
from PTBDB dataset. Each record in PTBDB dataset con-
tains a diagnosis report and a ECG recording with varying
length. The ECG signals are then segmented by beats and
normalized as pre-process for model training and disease
prediction. The sampling rate of ECG in PTBDB dataset
is 1000 per seconds. We select each heart beats based on R
peaks. Each beat includes ECG 251 ms before R peak and
400 ms after R peaks.

We then label the ECG with keywords that describes
the symptom. In a previous study [38], the researchers
extracted keywords based on similarity, and the keywords
were manually chosen. In this study, the keywords were
automatically chosen based on the description on the
internet, and the keywords were predicted with a greedy
search method instead. Symptoms in the disease expression
are selected as keywords.

The keywords are then converted into word embedding
vectors, and the sums of the word embedding vectors
(SOWE) are calculated. The normalized ECG and SOWE
are used to train the CNN predictor. After that, CNN predicts
the SOWE given ECG. To verify the performance of CNN,
we also compare CNN with linear regression to predict
the SOWE. The linear regression approach uses a single
linear layer instead, takes the raw signal as input and output
SOWE.

earc!
Word Vector reedy Search of Keywords

Keywords

Evaluate Word
Vector Prediction

Word Vector

Evaluate Keyword
Prediction

Word
Embedding
and Merging

Fig.4 The labels in PTB database were converted into keyword
sets. The keyword sets were then converted into SOWEs. The CNN
encoder was trained with ECG as input and the SOWE as output.
After that, the CNN encoder was able to predict the most likely

SOWE given ECG. The predicted SOWEs were then converted
into keywords, to compare with the original keyword sets. Also, the
SOWEs were also used to predict diseases by the cosine similarities
between the original SOWE
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The predicted keywords are then extracted from SOWE
using a greedy algorithm. Predicted SOWE are also used to
predict disease with cosine similarity.

Dataset

Since there was no ECG data associated with the symptom
expression in HSNGs, this study used made-up data for testing
the approach. A new evaluation model needed to be used
for this study. Data were collected from a Physionet dataset
called PTBDB. This database contains 70,207 heart beats
from 268 subjects with diagnostic results. Diagnostic labels
include cardiomyopathy, bundle branch block, hypertrophy,
myocarditis, myocardial infarction, valvular heart disease,
dysrhythmia, and healthy controls. Each recording in
PTBDB contains 15 signals: 12 conventional leads with 3
Frank lead ECG. The sampling rate of the signal is 1000.

In the HSN, patients are not expected to know their
diseases. They are only expected to know their symptoms
and write related posts. Since there is still no such dataset
with associated condition related posts and actual diagnosis
result, a dataset is mocked up based on the PTBDB. For each
disease, a description of its symptoms is chosen from the
internet to use as the posts for each disease. The symptoms
for patients with the same disease were assumed to be the
same. We also assumed the patients’ description of their
conditions was accurate. Thus, we extracted keywords from
the symptom description of each condition on the Internet,
as symptom description is more common in HSN. The
description was from the top search result of the disease.
The details of the description are in the Appendix.

Table 3 shows detailed statistics of samples and the
distribution of study subjects for each class. Physionet
toolkit is used to select QRS peak based on lead I. We
selected ECG beats from lead II since lead II is widely used
in other approaches. To balance the dataset, under sampling
is used. Due to some classes have too few samples, they
are not included in this study. Only 5% of MI and 20% of
healthy ECG beats were evenly selected from each subject.
The classes with too few samples were discarded.

Table 3 Number of Beats in the Dataset

Disease Original Dataset Selected Dataset
myocardial infarction 52,326 2496 (5%)
healthy control 10,551 2110 (20%)
valvular heart disease 499 499 (100%)
Dysrhythmia 1290 1290 (100%)
Cardiomyopathy 2227 2227 (100%)
Hypertrophy 991 991 (100%)
bundle branch block 2323 2323 (100%)

SN Computer Science
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Sum of Word Embedding (SOWE)

The main contribution of this study is to generate keywords
given ECG. The model predicts the keywords in the form
of SOWE instead of one-hot label. Thus, the SOWE
represents the disease as well as the bag of keywords.
Compared to one-hot annotation, word embedding has
two advantages: it supports a huge amount of candidate
keywords, and it maintains the semantic meaning of the
bag of keywords to make disease prediction easier for a
given vector.

It is very difficult to determine the number of possible
keywords to describe a condition, while word embedding
can represent a huge number of keywords with a fixed
number of attributes. When the number of keywords grows
in the real HSN application, the word embedding approach
will have better efficiency.

An existing word embedding dictionary [9] was used to
represent the keywords. This dictionary is based on CBOW
with 200 attributes. This dictionary was trained with
2.5 million unlabeled comments from online social networks
and scientific lectures. This word embedding model projects
each word into a vector with 200 dimensions. The model was
trained with Gensim library.

Given the emulated post dataset as label, keywords are
needed to be selected to remove unnecessary stop words.
Key parses were extracted by TextRank algorithm [39].
The top five keywords for each condition were selected via
this approach. For the health subjects, keyword “health”
was chosen instead. For each keyword, the word vector
is selected from the existing dictionary mentioned above.
Since there is more than one keyword for each disease, the
keyword vector is summed up.

The SOWE of all the diseases also forms a matrix for
disease diagnosis. The reason for labelling ECG with
SOWE directly is that it is easy to add new keywords, if they
appear in the word embedding dictionary. This procedure
is also equivalent to a classification model when SOWE
are compared with other conditions using cosine similarity
measurement as in Egs. (2), (3), and (4):

Output(X) = WyX + b, )
Classification(X) = W, Output(X) 3)
Classification(X) = W, WX + W, - b 4)

where W,,, W, are learnable weight, b is learnable bias and
X is input.

In addition, each hidden node represented an interpretable
meaning by extracting the related bag of keywords. The
activation function of classification was SoftMax, and the
loss function for classification was cross entropy.
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Keyword Extraction from SOWE

For extract the keywords from word embedding, a greedy
search algorithm [40] was used in this approach, which also
was expected to extract most important keywords given a
sum of word embedding vector. The keyword extraction
method has two steps: greedy searching step and refining
step.

For the greedy searching step, the Bag of Words (BOW)
is initialed as an empty set. In each step, the candidate words
that can minimize the Euclidian distance between the SOWE
of selected keyword set and given keyword vectors are
selected and added into the keyword set. This step repeats
until no further keyword could minimize the difference
between the SOWE of keyword set and given word vector.

The refining step attempts to replace each chosen
keyword with any other candidate words. For each keyword,
they are firstly removed from the BOW. Then each candidate
word is added into the BOW to calculated if the difference
could be further minimized. If a candidate word is found to
minimize the difference, this candidate word is then retained.
Otherwise, this refining step will be reversed. This step will
keep repeating until no further improvement to the Euclidian
similarity or reach maximum repeating limit.

CNN ECG-Word Vector Predictor

A CNN from a previous study is trained to convert an ECG
signal segment into a word embedding vector with 200
attributes. Figure 5 shows the architecture of CNN in our
study. This CNN had three convolution blocks, which were
feature extracting layers for extracting abstract features from
raw signals. The feature extractors were used to extract the
fundamental features from previous layers. The ECG signals
are inputted into the first convolutional block directly. The
input size of ECG raw signal is 651. In the end, a dense
layer performed the regression of 200 attributes of word
embedding vectors with linear kernels. The loss function for
regression was mean square error. As a baseline, an identical
CNN is trained to predict the keyword with one-hot label
as a disease classifier. The only difference between the two
CNN is the output layer.

Fig.5 Structure and Detailed
Arguments of The Purposed
CNN

Conv 3
signal (64) (128)

Input Conv 5

Percentage split was the evaluation method in our
approaches. We used 70% of the samples for training and
30% of the samples for evaluation. We trained two different
CNNs with 50 epochs and batch sizes of 64. The first CNN
was the proposed approach, which predicted the keyword
vector of a condition given ECG. The other CNN has output
layer as a conventional multiclass classifier, serving as a
benchmark.

Evaluation Matrices

We evaluated the proposed method in two ways. The first
form of evaluation is to measure the ability of the model to
predict vectors. The second form of evaluation measures
the accuracy of retrieving keyword back from predicted
vector. The third form of evaluation involved measuring
the difference between the predicted vectors and target
vectors. The measurement of difference was done by a
classification task of the diseases. For each predicted vector,
the most similar vector from the conditions was selected.
The condition was then compared with the actual condition
for evaluation of the prediction. This task evaluated the
likelihood of confusion among the conditions.

To evaluate the advantage of SOWE over one-hot label,
leave-one-class-out testing was done. The procedure of
the leave-one-class-out is to remove one class completely
from the training set but still attempt to predict the class in
the testing set. This evaluates the ability of the proposed
model to predict unknown diseases which do not exist in
the training data.

Discussion/Analysis of Research Findings
Keyword Vector Prediction Result

Table 4 shows the training MSE, testing MSE and keyword
extraction accuracy of CNN and linear regression. CNN
have significantly higher performance to linear regression.
To measure the usefulness of the approach, an evaluation
was performed by measuring the number of keywords cor-
rectly extracted with the predicted vector. The percentage of
corrected extracted keywords was compared with original

Output

Convl Conv 13
Conv 13 Conv 7 (64) (256)
(128) (256)

Adaptive
Pooling
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Table 4 Training MSE, Testing MSE and Keyword Extraction Accu-
racy of CNN and Linear Regression

CNN Linear Regression
Training MSE loss 0.276 10.154
Testing MSE loss 0.468 12.903
Keyword Extraction Accuracy 98.604% 57.498%

keywords. The predicted keywords are extracted with the
above-mentioned greedy search algorithm. For example, an
ECG with MI will output a vector with 200 dimensions.

After that, keyword is selected within a candidate
keyword dictionary. The candidate keywords are symptoms
for all known disease and prepared for keyword selection.
The large difference in MSE results in different keyword
extraction accuracy, which CNN extracted 98.6% of
keywords correctly while linear regression only has 57.5%
of accuracy.

The sensitivity is calculated as (5):

number of correct predicted keywords

Sensitivity =
enstivity number of ground truth keywords )
while the precision is calculated as (6):
. number of correct predicted keywords
Precision = 6)

number of predicted keywords

The keywords, such as pain, dizziness, rhythms, and
vomiting, are then selected with a greedy search of candidate

keywords from the vector. Since the ground truth keywords
for MI are Pain, dizziness, weakness, heaviness, and
vomiting, this example gets three correct prediction out of
five ground truth keywords, the sensitivity of this prediction
is 60%. On the other hand, there are four keywords selected
but only three is correct, so the precision is 75%.

Figure 6 (scale from 70 to 100%) shows the number of
instances with different sensitivity of keywords correctly
predicted, while Fig. 7 (scale from 0 to 100%) shows the
result of the baseline approach. For all conditions, the model
managed to extract all possible correct keywords for over
70% of instances, and it also managed to extract over 80%
correct keywords for over 95% of instances. Most of con-
ditions, except hypertrophy and health control, extracted
over 95% of all keywords correctly. As a result, the model
provided sufficient information for most instances. Figure 7
shows the result of a conventional approach using linear
regression. The conventional approach provided sufficient
information for only very few instances.

Figure 8 (scale from 70 to 100%) shows the population of
instances that met various performance standards to extract
valid keywords, while Fig. 9 (scale from 0 to 100%) shows
the results of the baseline approach. The rate of valid key-
words, namely sensitivity of keyword extraction, was over
90% for all instances and over 95% for 80% of instances. In
contrast, the baseline method was only able to provide useful
keywords for a few conditions with a much lower sensitivity.

Tables 5 and 6 show the average sensitivity and specificity
of keyword extraction of the CNN approach and the linear
regression approach. Compared to linear regression, CNN

Sensitivity
100.00% — mree—— A R R i A =
95.00% - \
[ dysrhythmia
90.00%
————— bundle branch block
85.00% valvular heart disease
— - = cardiomyopathy
80.00% healthy control
75.00% hypertrophy
— - - myocardial infarction
70.00%
\gq\e q90\0 oS QQ\Q b90\0 (OQQ\Q ng\o A QQ\e QQ\Q K QQ\e S QQ\Q

Fig. 6 Sensitivity of keyword extraction of CNN
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Precision
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Fig.7 Precision of keyword extraction of CNN
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Fig. 8 Sensitivity of keyword extraction of linear regression

achieved good performance for all conditions in both
sensitivity and specificity.

Compared to conventional machine learning
approaches, our deep learning approach achieved more
stable results and provided more useful information.

The CNN approach had a larger population of instances
which had high sensitivity and specificity compared to
the conventional machine learning approach.
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Fig.9 Precision of keyword extraction of linear regression

Table5 Average Performance of Keyword Extraction by word Table 7 Classification Result by CNN Classifier with Softmax
embedding from CNN

Accuracy Sensitivity Specificity

Sensitivity Specificity

dysrhythmia 90.347% 96.053% 99.528%
dysrhythmia 98.960% 94.345% bundle branch block 98.268% 94.452% 98.615%
bundle branch block 99.481% 96.403% valvular heart disease ~ 84.337%  97.902% 99.912%
valvular heart disease 99.036% 96.185% cardiomyopathy 98.974% 89.286% 97.206%
cardiomyopathy 99.062% 99.005% healthy control 90.476%  93.662% 98.797%
healthy control 99.830% 98.441% hypertrophy 87.372%  96.241% 99.696%
hypertrophy 95.631% 99.710% myocardial infarction ~ 89.139%  90.094% 97.381%
myocardial infarction 97.298% 95.327% Meta-Average 91.273% 93.956% 08.734%
Table 6 Average Performance of Keyword Extraction word embed- Table 8 Searching Performance of word embedding predicted by
ding from linear regression CNN

Sensitivity Specificity Nearest 2nd 3rd

dysrhythmia 43.762% 46.863% dysrhythmia 99.505% 99.505% 100.000%
bundle branch block 73.824% 76.047% bundle branch block 99.711% 100.000% 100.000%
valvular heart disease 66.024% 61.228% valvular heart disease 98.795% 99.398% 99.398%
cardiomyopathy 65.191% 62.467% cardiomyopathy 99.413% 99.413% 99.707%
healthy control 49.660% 19.694% healthy control 99.490% 99.490% 99.830%
hypertrophy 62.935% 78.188% hypertrophy 99.317% 99.317% 99.659%
myocardial infarction 45.033% 54.503% myocardial infarction 99.603% 99.735% 99.735%

Meta-Average 99.405% 99.551% 99.761%

Disease Prediction Result

cosine similarities between the predicted vector and the sum
The classification performance of word embedding with lin-  of keyword vectors of each disease were calculated. Table 7
ear kernel was compared with that of normal classification. ~ shows the classification result of CNN classifier, while
To perform classification tasks with word embedding, the =~ Tables 8 and 9 show the classification results of searching
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Table 9 Searching Performance predicted by linear regression

Nearest 2nd 3rd
dysrhythmia 57.426% 76.238% 91.337%
bundle branch block 92.496% 98.990% 99.567%
valvular heart disease 63.253% 68.675% 78.313%
cardiomyopathy 78.299% 81.671% 86.217%
healthy control 13.095% 18.027% 25.510%
hypertrophy 78.157% 93.857% 98.294%
myocardial infarction 62.384% 81.192% 87.550%
Meta-Average 63.587% 74.093% 80.970%

Table 10 Searching Performance (Leave One Class Out)

Nearest 2nd 3rd
dysrhythmia 0.000% 27.228% 81.931%
bundle branch block 0.000% 13.131% 71.573%
myocardial infarction 0.000% 9.536% 48.079%

based on cosine similarity of word vectors. Tables 8 and 9
evaluate the performance of classifiers in finding the right
condition in top N number of nearest conditions. Our cosine
similarity-based classification achieved slightly better per-
formance compared to the CNN classifier. More importantly,
for the linear regression approach, most of conditions still
achieved acceptable performance given top 2 or top 3 similar
conditions. This result shows that the sum of the symptom
keyword vector had a positive effect in classification and
diagnosis of diseases.

Table 10 shows that using SOWE as labels has the poten-
tial to predict the diseases which is not exist in training set.
Unlike existing disease predictors, which can only output
a finite number of labels, the proposed approach predicts
a word embedding vector, which is related to symptoms.
The proposed approach can theoretically predict disease-
related symptoms that do not appear in training data, since
such new disease and the related symptom is given. To test
the effect of predicting the symptoms of unseen disease,
leave-one-class-out validation is done. Each disease is hold
in training to produce a model and that model is used to pre-
dict the hold out disease. Despite the keywords set between

different diseases can be very different, SOWE extract the
semantics of the keywords set. Word embedding improve
the performance of CNN and have acceptable result with
linear regression. This improvement shows that the embed-
ding dictionary contains the information of the similarities
of the diseases for models to build relations between signal
and embedding. Our method could be a zero-shot learning
approach because it learns semantic embeddings of ECG
rather a particular class. Therefore, the semantic embeddings
have the potential to predict unknown disease given the dis-
ease description.

Table 11 compares our approach with the recent state-of-
the-art ECG deep learning approaches. Our approach shows
outstanding performance compared to both supervised
classification and self-supervised learning.

Discussion

The result shows that when predicting diseases given the
sum of word embedding instead of one-hot annotation of
Bag-of-Words, the distributed representation is also more
robust. The sum of the keyword vector provides an easy
method for estimating disease given keywords. This model
has potential to predict unknown diseases which do not
exist in the training set. This provides a scalable diagnostic
framework using information in HSNs. Similar symptoms
have similar values in word embedding; so, the sum of word
embeddings is a robust method for differentiating diseases
based on their symptoms.

Recommendation

With an average accuracy of 98% for disease prediction,
KIHoT has the potential to become a valuable tool for
researchers, clinicians, and patients alike. The integration of
HSNs and IoT provides an innovative method for collecting
data and labels without requiring expert knowledge. The pro-
posed system expands accessibility to healthcare information
while simplifying the data collection and analysis processes.
KIHOT's success in predicting relevant keywords from ECG
signals makes it a promising solution for monitoring health

Table 11 Comparison with

N Approach
state-of-the-art ECG deep
learning approaches CRNN [35]
DBLTSM [5]
CNN [36]

Self-supervised representation learning

with LSTM +MLP [37]

SOWE regression with CNN (Ours)

Task Performance

Atrial Fibrillation Detection 90.6% Score

ECG Classification 100.0% Macro F1 score
Arrhythmia classification 98.96%

Disease classification 94.18%

Disease classification 99.40%
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conditions and providing timely interventions. Overall, we
believe that KIHoT has the potential to significantly improve
healthcare services by making reliable health information
more easily accessible to all users.

KIHOT can provide valuable insights into patient health
status and diagnose diseases more accurately, leading to
better-informed medical decisions and improved patient
outcomes. By automating data collection, data labeling, and
model training processes, KIHoT expands accessibility to
healthcare information and helps users refine their keywords
based on their biosignals objectively. This can lead to cost-
efficient healthcare services while maintaining the quality
of care.

Future Research Focus

While this study offers a feasible solution for integrating
HSNs and IoT for cost-efficient healthcare services, there are
limitations to our approach that require further investigation,
such as the accuracy of the disease-related keyword
prediction model and the quality of extracted keywords
and the word embedding dictionary. The limitations of
the present study were that the data were emulated, which
may render the proposed approach unsuitable in real social
network environments. The prediction of keywords and
disease also depends on the quality of extracted keywords
and the word embedding dictionary. This may be the
reason for the good result on certain diseases while have
a lower accuracy for the other diseases. For further study,
the performance can be further improved by using better
keyword extraction methods. Thus, a new, more robust
model may still be required. Future research also should
focus on expanding KIHoT's capabilities to cover a wider
range of diseases and investigate its scalability with larger
amounts of data from multiple sources.

Conclusion

In conclusion, this study proposes an automated diagnosis
framework that integrates HSNs and IoT to address the
challenges of rising healthcare costs, limited accessibility
to healthcare information, and the difficulty of finding
relevant medical knowledge in HSNs. The proposed
approach, KIHOT, utilizes electrocardiogram (ECG) signals
to predict disease-related keywords and expand accessibility
to healthcare information. The study demonstrates that
KIHoT can effectively extract relevant information from
HSN portals, achieving an averaged accuracy of 98% for
disease prediction and a high rate of valid keywords.

The proposed KIHoT provides a cost-efficient method
for health monitoring, automating data collection, data

SN Computer Science
A SPRINGER NATURE journal

labeling, and model training processes, and requires no
expert knowledge from users, significantly expanding
accessibility to healthcare information. By integrating
pervasive and autonomous IoT data feeds with HSN
information and a community network, (a) usability of
HSNs will be significantly improved; (b) cost of medical
care will be significantly reduced; and (c) efficiency and
effectiveness of medical services will be significantly
improved. This approach focuses on helping users to search
about their health condition on the Internet. Based on the
highly active users in HSN, the integrated HSN could handle
more diseases compared to normal automated diagnosis
approaches.

Appendices

The word embedding model used in our study:

https://github.com/dartrevan/ChemTextMining/blob/
master/word2vec/Health_2.5mreviews.s200.w10.n5.v15.
cbow.bin

Extracted Keywords for Each Disease:

Dysrhythmia

Source: https://www.webmd.com/heart-disease/atrial-
fibrillation/heart-disease-abnormal-heart-rhythm#3

Keyword: Beats, chest, heart headedness, breath

Bundle Branch Block

Source: https://www.webmd.com/heart-disease/
what-is-heart-block#1

Keywords: Pain, breath, feeling, heart, beat

Valvular Heart Disease

Source: https://www.webmd.com/heart-disease/guide/
heart-valve-disease#1

Keywords: Chest, weight, flip, beats, breath

Cardiomyopathy

Source: https://www.mayoclinic.org/diseases-conditions/
cardiomyopathy/symptoms-causes/syc-20370709

Keywords: Abdomen, buildup, exertion, rest, legs

Healthy Control

Keywords: Health

Hypertrophy

Source: https://www.webmd.com/heart-disease/guide/
hypertrophic-cardiomyopathy#1

Keywords: Exercise, thythms, heart, breath, dyspnea

Myocardial Infarction

Source: https://www.webmd.com/heart-disease/guide/
heart-disease-heart-attacks#1

Keywords: Pain, dizziness, weakness, heaviness,
vomiting
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at the following URL: https://physionet.org/content/ptbdb/1.0.0/. All
the documents related to this database are publicly available through
the provided link.
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