
Vol.:(0123456789)

SN Computer Science           (2024) 5:596  
https://doi.org/10.1007/s42979-024-02886-2

SN Computer Science

ORIGINAL RESEARCH

Indexing ECG for Integrated Health Social Networks Predicting 
Keywords from ECG to Access Online Information

Yi Huang1   · Insu Song1

Received: 14 May 2022 / Accepted: 9 April 2024 
© The Author(s) 2024

Abstract
Health Social Networks (HSN) provide rich medical knowledge bases that are scalable and sustainable, while IoT provides 
non-invasive, pervasive, and low-cost methods to collect patient data. However, receiving relevant information from HSN is 
time consuming and challenging for users, such as searching for the right relevant information using keywords and filtering. 
On the other hand, healthcare IoT has limited access to the vast medical knowledge bases, such as HSN, to interpret the 
collected data. To address these challenges, we propose Keyword-based Integrated HSN of Things (KIHoT), an approach 
that combines the strengths of both HSNs and IoT to overcome their limitations. In this method, data (biosignals) collected 
via IoT devices are converted to human readable keywords using word embedding vector features and CNN (Convolutional 
Neural Network) predictors. The CNN predictors are trained to predict keywords that individuals search within an HSN to 
extract relevant information of the given biosignals. Those keywords are encoded as word embedding for searching relevant 
information. KIHoT utilizes contrast learning techniques to extract latent feature representations of electrocardiogram (ECG) 
signals, which are then used to predict disease-related keywords. The proposed method was evaluated using 11,936 ECG 
signals from patients with heart disease and achieved an accuracy of 98% for disease prediction. Our results suggest that 
KIHoT can effectively extract relevant information from HSN portals, making it easier for researchers and clinicians to 
access valuable medical knowledge.

Keywords  Health social networks · Internet of things · Remote diagnosis · Electrocardiogram · Word embedding

Introduction

Common chronic medical conditions, such as heart and res-
piratory diseases, are the leading causes of global death [1, 
2]. Persistent care and monitoring are required to prevent 
these deaths. However, rising cost of healthcare in the aging 
population remains a significant challenge to those essential 
healthcare services [3]. The training of medical profession-
als is responsible for the rising medical cost. For example, 
in the U.S., training a General Practitioner (GP) costs more 
than US$300,000 [4]. Health Social Networks (HSNs) are 
the potential solutions to the low access to healthcare.

HSN comprise patient-driven healthcare that provides 
rich medical information, as social media allows millions of 
users to upload their data, such as status updates and images 
[3]. Health portals in the U.S. alone have more than 40,000 
active members and 1.5 million unique monthly visits [3].

Healthcare Social Networks (HSNs) have the poten-
tial to be an invaluable source of medical information for 
researchers, clinicians, and patients alike. However, the large 
amounts of data contained in HSNs can make it difficult 
for users to find relevant information. Furthermore, current 
automated diagnosis tools based on machine learning are 
limited in their ability to provide detailed diagnoses and 
are often trained using expensive, time-consuming labeled 
data. As a result, these tools are only able to treat a limited 
number of diseases, limiting their usefulness to patients and 
clinicians.

On the others hand, the Health Internet of Things (IoT) 
provides low-cost, pervasive, and objective health moni-
toring [5]. The current methods for automated diagnosing 
heart disease are based on heart sounds or electrocardiogram 
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(ECG). ECG provides information about heart function, 
such as heart rhythm [6]. Furthermore, some approaches 
also utilize IoT for heart diagnosis using ECG [7]. However, 
healthcare IoT has limited access to the vast medical knowl-
edge bases, such as HSN, to interpret the collected data.

To address these issues, we propose a machine learning 
framework for automated diagnosis that integrates HSNs 
and IoT. Specifically, we present Keyword-based Integrated 
HSN of Things (KIHoT), an approach that utilizes 
electrocardiogram (ECG) signals to predict disease-related 
keywords and make it easier for researchers and clinicians 
to access valuable medical knowledge. By automating data 
collection, data labeling, and model training processes, 
the proposed system expands accessibility to healthcare 
information and helps users to retrieve relevant information 
from HSNs based on their biosignals objectively. The 
proposed system aims to provide an end-to-end HSN service 
with no expert knowledge required from users, significantly 
expanding accessibility to healthcare information.

The proposed method was evaluated using 11,936 ECG 
signals from patients with heart disease and achieved an 
averaged accuracy of 98% for disease prediction. The rate 
of valid keywords, namely sensitivity of keyword extraction, 
was over 90% for all instances and over 95% for 80% of 
instances. Our results suggest that KIHoT can effectively 
extract relevant information from HSN portals, making 
it easier for researchers and clinicians to access valuable 
medical knowledge.

The major contributions of this paper are as follows. First, 
the study presents a feasible solution to take advantage of 
HSNs via novel IoT approaches, converting biosignals to 
human readable keywords using word embedding vector 
features and CNN predictors. Second, the labels for training 
this model have the potential to be collected from the internet 
without any expert knowledge. Third, in this approach, the 
large amounts of data from IoT and HSNs are integrated to 
provide a cost-efficient method for health monitoring.

The rest of paper is organized as follows. We summarize 
the previous approach and analyze the requirements of 

this approach, as shown in Sect. “Problem Statement and 
Objective of the Study”. Then, we propose a keyword 
prediction framework based on word embedding, as 
shown in Sect.  “Literature Review”. Next, we compare 
the proposed approach with conventional approaches, as 
shown in Sect. “Research Design/Methodology”. Finally, we 
conclude by discussing the impact of the proposed approach 
in Sect. “Discussion/Analysis of Research Findings”.

Problem Statement and Objective 
of the Study

The largest barrier is to search for information from HSN. 
Data from HSN is huge and this is a challenge for users 
to find related information. HSNs often rely on user input 
keywords to search for information, which can lead to 
incomplete and inaccurate descriptions due to users' lack 
of professional knowledge and experience with internet 
searches.

Finding right information requires in-depth knowledge 
about diseases and experience in Internet search, but cur-
rent HSNs rely on users to describe their conditions based 
on subjective feelings. This can result in inaccurate analy-
ses and a time-consuming process of refining keywords to 
find the correct information. Furthermore, information in 
HSNs also contains mistakes and informal terms [8, 9]. The 
resulting incomplete descriptions usually lead to inaccurate 
analysis (Fig. 1). Thus, users end up needing to refine their 
keywords by finding how others describe their conditions. 
This can be time consuming and ineffective since other users 
of the internet may not have similar conditions and may be 
equally lacking in knowledge. Also, it does not search auto-
matically requiring extensive user involvement and time to 
find the right information. The difficulty lies in users’ lack of 
accuracy in choosing suitable keywords for searching related 
information. As a result, HSN is time consuming and chal-
lenging to search the right relevant information.

Fig. 1   Common usage of Health 
Social Network (HSN)
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Another problem is that the existing automated diagnosis 
tool based on machine learning does not solve the prob-
lem either. We still lack tools that can provide an accurate 
diagnosis for people to find the exact information using the 
diagnosis term. The current automated diagnosis model is 
trained with labeled data, which is expensive and slow for 
collection. The number of labeled data as well as certain 
types of disease labels are limited. As a result, only a limited 
number of diseases can be treated (Fig. 2). This limits the 
ability of automated diagnosis to provide information and 
keywords to users for searching more information.

To solve the above-mentioned problems of HSN, a 
machine learning framework for automated diagnosis can be 
proposed for fully automating data collection, data labeling, 
and model training processes based on the exploding amount 
of data from both HSNs and IoT. From the perspective of 
HSNs, our approach helps users refine their keywords based 
on their biosignal objectively.

The proposed system aims to provide an end-to-end HSN 
service, which requires no expert knowledge from users 
(Fig. 3). This study develops Keyword based Integrated 
HSN of Things (KIHoT) for integrating HSNs and IoT. This 
approach provides related keywords to users via Electro-
cardiogram (ECG). The keyword prediction model can be 

trained with association between keywords and ECG. Hence, 
they can be used to search for related information from exist-
ing HSN portals. With no human intervention, the proposed 
integrated HSNs significantly expand accessibility to HSN.

Literature Review

Collection of Condition‑Related Expression 
from HSNs

Social media data sharing has caused a data explosion, which 
facilitates data mining and AI. Compared to traditional data 
gathering approaches, data mining in social networks is fast 
and low-cost. Many studies have collected data on mental 
health issues [10, 11], influenza epidemics [12, 13] and 
Adverse Drug Reactions (ADR) [8, 9, 14–16] from social 
media such as Twitter.

Data collection from HSN is faster and cheaper 
than traditional data collection methods and provides 
large amounts of data on mental health issues [10, 11], 
influenza [12, 13] and Side Effects (ADR) [8, 9, 14–16]. 
For example, manually collecting data from a doctor to 
monitor the flu results in a delay of one to two weeks 

Fig. 2   Common usage of Inter-
net of Things (IoT)

Fig. 3   Common usage of our 
proposed Integrated Health 
Social Network
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[12]. However, the data from HSN is too much to process 
manually. To process large amounts of data, natural 
language process (NLP) approaches are applied[8, 9].

The approaches for detecting mental disorders are 
Linguistic Inquiry, Word Count [10, 17], quantifying 
mental health signals in Twitter posts with NLP features 
[10], and indexing anonymous keywords for autism 
and ADHD [3]. Discovering ADR is an important 
part in postmarketing surveillance [11]. The common 
approaches for extracting an ADR-related phrase in 
HSNs are conventional machine learning (SVM) [8, 14], 
the linguistic approach [15], deep learning (RNN) [11] 
[16] and Conditional Random Fields (CRFs) [9, 11]. 
Using social media to detect the spread of influenza focus 
on filtering internet content to extract disease-related 
expressions, mostly conditions, from HSNs [12, 13].

Those condition related expressions can be used to label 
ECG or other biosignals. By collecting the disease-related 
expressions in HSNs together with the associated ECG 
from same users, a keyword recommendation model can 
be trained without any manual labelling. The labelling is 
done based on existing information in HSNs. Our previous 
approach [18] also labels the ECG with emulated keywords. 
The information extracted from HSNs can be used to replace 
the emulated keywords and give more realistic results.

Word Embedding

In this study, diseases were associated as sets of keywords. 
Word embedding is a widely used vector space word 
projection method of natural language processes. Unlike 
one hot annotation, word embedding represents important 
semantic features. Similar words, such as cough and 
breathless, have word embedding with higher cosine 
similarity. In contrast, no such similarity exists in their 
one-hot representation. The most important feature of 
word embedding is that the vectors of words with similar 
semantics have higher cosine similarity as (1).

Word embedding are learnt by neural network that 
predicts words given the context [19]. Vector representations 
can be stored and used like a dictionary. Table 1 shows the 
performance (by default is F-measure; using accuracy when 
F-measure is not available) of previous approaches using 
Word Embedding. Some studies show a promising result for 
using word embedding as a feature.

(1)C(a, b) =
a ∙ b

‖a‖‖b‖

Convolutional Neural Network

The conventional approaches to biosignal-based diagno-
sis are pre-processing, segmentation, feature extraction, 
and classification. A segmentation algorithm is usually 
required to select the parts of the whole biosignal which 
contain more information, such as a heartbeat or a bowel 
activity. Many hand-crafted feature extraction methods 
are also needed for researchers to summarize the features 
of the signal, such as frequency information (methods 
based on Fourier transformation, such as FFT, STFT, 
MFCC), wavelets, and the derivatives of those features. 
The extraction, configuration, and selection need a high 
degree of expert knowledge and manual work. Fortunately, 
deep learning methods provide end-to-end approaches, 
which accept raw signals of ECGs [6] or spectrograms 
of audio as input and generate features based on tasks. 
Some approaches also do not require segmentation, as 
deep learning approaches are able to locate the informa-
tion from raw signals automatically and discard unre-
lated information [6]. Table 2 shows the performance of 

Table 1   Performance of HSN Approaches Using Word Embedding

Reference Performance (F-measure) Sample Number

[8] 80.3% 6320
[16] 81.41% (accuracy) 1250
[20] 85.2% (accuracy) 1824
[21] 65% 33,332
[22] 50% 33,332
[9] 79.4% 1250
Weighted Average 60.8% 77,308

Table 2   Performance of Previous CNN Approaches

Feature Performance Dataset size Reference

MFCC 84.0% 3240 [23]
DWT 82% 3240 [24]
MFCC 81.3% 3240 [25]
MFCC 81.4% 3240 [26]
FT 95.2% 3240 [27]
RGB image 94.2% 3240 [28]
Sonogram 94.2% 3126 [29]
Spectrogram 89.8% 50 [30]
Spectrogram 86% 1630 [31]
Spectrogram 98.5% 50 [32]
STFT Spectrogram 98.2% 817 [33]
Spectrogram 74.0% 176 [34]
ECG Time Domain 86.4% 12,186 [6]

87.0%
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previous CNN approaches with biosignal. The good per-
formance shows that CNN is reliable for fitting biosignal 
models.

The convolutional layer consists of a set of convolution 
kernels. A convolution kernel is a set of trainable shared 
weights which detect elementary features from the 
previous layer with a sliding window, forming a feature 
map. The exact position in a feature map is less critical 
and can be harmful when there is a shift in the input. 
Afterwards, a pooling layer down samples the feature map 
with the maximum value and makes CNN less sensitive to 
the exact position.

In previous CNN approaches, the Fourier Transform-
based spectrogram is the most common feature used in 
CNN for sound diagnosis [27] [30] [31] [32] [29] [34]. 
The STFT (Short Time Fourier Transform) spectrogram 
is an example of an implementing spectrogram [33]. 
Likewise, DWT is used for CNN Classification [24]. The 
MFCC spectrogram feature is also commonly used [23] 
[25] [26]. On the other hand, Deperlioglu [28] converts 
heart sound data into RGB images to reduce computation 
requirements. Xiong et  al. [6] also proposed an ECG 
classification for cardiac arrhythmias’ detection with 1D 
CNN, achieving 86.4% F1 accuracy.

The current approaches to diagnosis of heart disease 
are based on heart sounds or ECG; it is used for automatic 
diagnosis of heart disease [5]. ECG provides information 
about heart function, such as heart rhythm, and there are 
approaches that use ECG readings for classification of 
heart rhythms [6]. In addition, some approaches apply IoT 
to heart diagnosis using ECG as well [7]. The state-of-the-
art of ECG diagnosis are atrial fibrillation detection with 
CRNN [35], heart disease classification using DBLTSM 
[5], arrhythmia classification using CNN [36] and heart 
disease classification Self-supervised representation 
learning with LSTM + MLP [37].

Research Design/Methodology

The proposed method aims to automatically convert 
ECG signals into meaningful and readable keywords by 
contrast learning. Thus, HSN content can be searched using 
automatically generated keywords from ECGs instead of 
users’ keying in keywords. As a result, the autonomous 
nature of HSNs is improved by integrating with biosignals 
from IoT.

Figure 4 illustrates the overall process involved in this 
approach. First, the ECG signals and labels are collected 
from PTBDB dataset. Each record in PTBDB dataset con-
tains a diagnosis report and a ECG recording with varying 
length. The ECG signals are then segmented by beats and 
normalized as pre-process for model training and disease 
prediction. The sampling rate of ECG in PTBDB dataset 
is 1000 per seconds. We select each heart beats based on R 
peaks. Each beat includes ECG 251 ms before R peak and 
400 ms after R peaks.

We then label the ECG with keywords that describes 
the symptom. In a previous study [38], the researchers 
extracted keywords based on similarity, and the keywords 
were manually chosen. In this study, the keywords were 
automatically chosen based on the description on the 
internet, and the keywords were predicted with a greedy 
search method instead. Symptoms in the disease expression 
are selected as keywords.

The keywords are then converted into word embedding 
vectors, and the sums of the word embedding vectors 
(SOWE) are calculated. The normalized ECG and SOWE 
are used to train the CNN predictor. After that, CNN predicts 
the SOWE given ECG. To verify the performance of CNN, 
we also compare CNN with linear regression to predict 
the SOWE. The linear regression approach uses a single 
linear layer instead, takes the raw signal as input and output 
SOWE.

Fig. 4   The labels in PTB database were converted into keyword 
sets. The keyword sets were then converted into SOWEs. The CNN 
encoder was trained with ECG as input and the SOWE as output. 
After that, the CNN encoder was able to predict the most likely 

SOWE given ECG. The predicted SOWEs were then converted 
into keywords, to compare with the original keyword sets. Also, the 
SOWEs were also used to predict diseases by the cosine similarities 
between the original SOWE
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The predicted keywords are then extracted from SOWE 
using a greedy algorithm. Predicted SOWE are also used to 
predict disease with cosine similarity.

Dataset

Since there was no ECG data associated with the symptom 
expression in HSNs, this study used made-up data for testing 
the approach. A new evaluation model needed to be used 
for this study. Data were collected from a Physionet dataset 
called PTBDB. This database contains 70,207 heart beats 
from 268 subjects with diagnostic results. Diagnostic labels 
include cardiomyopathy, bundle branch block, hypertrophy, 
myocarditis, myocardial infarction, valvular heart disease, 
dysrhythmia, and healthy controls. Each recording in 
PTBDB contains 15 signals: 12 conventional leads with 3 
Frank lead ECG. The sampling rate of the signal is 1000.

In the HSN, patients are not expected to know their 
diseases. They are only expected to know their symptoms 
and write related posts. Since there is still no such dataset 
with associated condition related posts and actual diagnosis 
result, a dataset is mocked up based on the PTBDB. For each 
disease, a description of its symptoms is chosen from the 
internet to use as the posts for each disease. The symptoms 
for patients with the same disease were assumed to be the 
same. We also assumed the patients’ description of their 
conditions was accurate. Thus, we extracted keywords from 
the symptom description of each condition on the Internet, 
as symptom description is more common in HSN. The 
description was from the top search result of the disease. 
The details of the description are in the Appendix.

Table 3 shows detailed statistics of samples and the 
distribution of study subjects for each class. Physionet 
toolkit is used to select QRS peak based on lead I. We 
selected ECG beats from lead II since lead II is widely used 
in other approaches. To balance the dataset, under sampling 
is used. Due to some classes have too few samples, they 
are not included in this study. Only 5% of MI and 20% of 
healthy ECG beats were evenly selected from each subject. 
The classes with too few samples were discarded.

Sum of Word Embedding (SOWE)

The main contribution of this study is to generate keywords 
given ECG. The model predicts the keywords in the form 
of SOWE instead of one-hot label. Thus, the SOWE 
represents the disease as well as the bag of keywords. 
Compared to one-hot annotation, word embedding has 
two advantages: it supports a huge amount of candidate 
keywords, and it maintains the semantic meaning of the 
bag of keywords to make disease prediction easier for a 
given vector.

It is very difficult to determine the number of possible 
keywords to describe a condition, while word embedding 
can represent a huge number of keywords with a fixed 
number of attributes. When the number of keywords grows 
in the real HSN application, the word embedding approach 
will have better efficiency.

An existing word embedding dictionary [9] was used to 
represent the keywords. This dictionary is based on CBOW 
with 200 attributes. This dictionary was trained with 
2.5 million unlabeled comments from online social networks 
and scientific lectures. This word embedding model projects 
each word into a vector with 200 dimensions. The model was 
trained with Gensim library.

Given the emulated post dataset as label, keywords are 
needed to be selected to remove unnecessary stop words. 
Key parses were extracted by TextRank algorithm [39]. 
The top five keywords for each condition were selected via 
this approach. For the health subjects, keyword “health” 
was chosen instead. For each keyword, the word vector 
is selected from the existing dictionary mentioned above. 
Since there is more than one keyword for each disease, the 
keyword vector is summed up.

The SOWE of all the diseases also forms a matrix for 
disease diagnosis. The reason for labelling ECG with 
SOWE directly is that it is easy to add new keywords, if they 
appear in the word embedding dictionary. This procedure 
is also equivalent to a classification model when SOWE 
are compared with other conditions using cosine similarity 
measurement as in Eqs. (2), (3), and (4):

where W0, W1 are learnable weight, b0 is learnable bias and 
X is input.

In addition, each hidden node represented an interpretable 
meaning by extracting the related bag of keywords. The 
activation function of classification was SoftMax, and the 
loss function for classification was cross entropy.

(2)Output(X) = W0X + b0

(3)Classification(X) = W1Output(X)

(4)Classification(X) = W1W0X +W1 ⋅ b0

Table 3   Number of Beats in the Dataset

Disease Original Dataset Selected Dataset

myocardial infarction 52,326 2496 (5%)
healthy control 10,551 2110 (20%)
valvular heart disease 499 499 (100%)
Dysrhythmia 1290 1290 (100%)
Cardiomyopathy 2227 2227 (100%)
Hypertrophy 991 991 (100%)
bundle branch block 2323 2323 (100%)
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Keyword Extraction from SOWE

For extract the keywords from word embedding, a greedy 
search algorithm [40] was used in this approach, which also 
was expected to extract most important keywords given a 
sum of word embedding vector. The keyword extraction 
method has two steps: greedy searching step and refining 
step.

For the greedy searching step, the Bag of Words (BOW) 
is initialed as an empty set. In each step, the candidate words 
that can minimize the Euclidian distance between the SOWE 
of selected keyword set and given keyword vectors are 
selected and added into the keyword set. This step repeats 
until no further keyword could minimize the difference 
between the SOWE of keyword set and given word vector.

The refining step attempts to replace each chosen 
keyword with any other candidate words. For each keyword, 
they are firstly removed from the BOW. Then each candidate 
word is added into the BOW to calculated if the difference 
could be further minimized. If a candidate word is found to 
minimize the difference, this candidate word is then retained. 
Otherwise, this refining step will be reversed. This step will 
keep repeating until no further improvement to the Euclidian 
similarity or reach maximum repeating limit.

CNN ECG‑Word Vector Predictor

A CNN from a previous study is trained to convert an ECG 
signal segment into a word embedding vector with 200 
attributes. Figure 5 shows the architecture of CNN in our 
study. This CNN had three convolution blocks, which were 
feature extracting layers for extracting abstract features from 
raw signals. The feature extractors were used to extract the 
fundamental features from previous layers. The ECG signals 
are inputted into the first convolutional block directly. The 
input size of ECG raw signal is 651. In the end, a dense 
layer performed the regression of 200 attributes of word 
embedding vectors with linear kernels. The loss function for 
regression was mean square error. As a baseline, an identical 
CNN is trained to predict the keyword with one-hot label 
as a disease classifier. The only difference between the two 
CNN is the output layer.

Percentage split was the evaluation method in our 
approaches. We used 70% of the samples for training and 
30% of the samples for evaluation. We trained two different 
CNNs with 50 epochs and batch sizes of 64. The first CNN 
was the proposed approach, which predicted the keyword 
vector of a condition given ECG. The other CNN has output 
layer as a conventional multiclass classifier, serving as a 
benchmark.

Evaluation Matrices

We evaluated the proposed method in two ways. The first 
form of evaluation is to measure the ability of the model to 
predict vectors. The second form of evaluation measures 
the accuracy of retrieving keyword back from predicted 
vector. The third form of evaluation involved measuring 
the difference between the predicted vectors and target 
vectors. The measurement of difference was done by a 
classification task of the diseases. For each predicted vector, 
the most similar vector from the conditions was selected. 
The condition was then compared with the actual condition 
for evaluation of the prediction. This task evaluated the 
likelihood of confusion among the conditions.

To evaluate the advantage of SOWE over one-hot label, 
leave-one-class-out testing was done. The procedure of 
the leave-one-class-out is to remove one class completely 
from the training set but still attempt to predict the class in 
the testing set. This evaluates the ability of the proposed 
model to predict unknown diseases which do not exist in 
the training data.

Discussion/Analysis of Research Findings

Keyword Vector Prediction Result

Table 4 shows the training MSE, testing MSE and keyword 
extraction accuracy of CNN and linear regression. CNN 
have significantly higher performance to linear regression.

To measure the usefulness of the approach, an evaluation 
was performed by measuring the number of keywords cor-
rectly extracted with the predicted vector. The percentage of 
corrected extracted keywords was compared with original 

Fig. 5   Structure and Detailed 
Arguments of The Purposed 
CNN
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keywords. The predicted keywords are extracted with the 
above-mentioned greedy search algorithm. For example, an 
ECG with MI will output a vector with 200 dimensions.

After that, keyword is selected within a candidate 
keyword dictionary. The candidate keywords are symptoms 
for all known disease and prepared for keyword selection. 
The large difference in MSE results in different keyword 
extraction accuracy, which CNN extracted 98.6% of 
keywords correctly while linear regression only has 57.5% 
of accuracy.

The sensitivity is calculated as (5):

while the precision is calculated as (6):

The keywords, such as pain, dizziness, rhythms, and 
vomiting, are then selected with a greedy search of candidate 

(5)Sensitivity =
number of correct predicted keywords

number of ground truth keywords

(6)Precision =
number of correct predicted keywords

number of predicted keywords

keywords from the vector. Since the ground truth keywords 
for MI are Pain, dizziness, weakness, heaviness, and 
vomiting, this example gets three correct prediction out of 
five ground truth keywords, the sensitivity of this prediction 
is 60%. On the other hand, there are four keywords selected 
but only three is correct, so the precision is 75%.

Figure 6 (scale from 70 to 100%) shows the number of 
instances with different sensitivity of keywords correctly 
predicted, while Fig. 7 (scale from 0 to 100%) shows the 
result of the baseline approach. For all conditions, the model 
managed to extract all possible correct keywords for over 
70% of instances, and it also managed to extract over 80% 
correct keywords for over 95% of instances. Most of con-
ditions, except hypertrophy and health control, extracted 
over 95% of all keywords correctly. As a result, the model 
provided sufficient information for most instances. Figure 7 
shows the result of a conventional approach using linear 
regression. The conventional approach provided sufficient 
information for only very few instances.

Figure 8 (scale from 70 to 100%) shows the population of 
instances that met various performance standards to extract 
valid keywords, while Fig. 9 (scale from 0 to 100%) shows 
the results of the baseline approach. The rate of valid key-
words, namely sensitivity of keyword extraction, was over 
90% for all instances and over 95% for 80% of instances. In 
contrast, the baseline method was only able to provide useful 
keywords for a few conditions with a much lower sensitivity.

Tables 5 and 6 show the average sensitivity and specificity 
of keyword extraction of the CNN approach and the linear 
regression approach. Compared to linear regression, CNN 

Table 4   Training MSE, Testing MSE and Keyword Extraction Accu-
racy of CNN and Linear Regression

CNN Linear Regression

Training MSE loss 0.276 10.154
Testing MSE loss 0.468 12.903
Keyword Extraction Accuracy 98.604% 57.498%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

Sensitivity

dysrhythmia

bundle branch block

valvular heart disease

cardiomyopathy

healthy control

hypertrophy

myocardial infarction

Fig. 6   Sensitivity of keyword extraction of CNN
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achieved good performance for all conditions in both 
sensitivity and specificity.

Compared to conventional machine learning 
approaches, our deep learning approach achieved more 
stable results and provided more useful information. 

The CNN approach had a larger population of instances 
which had high sensitivity and specificity compared to 
the conventional machine learning approach.
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Fig. 7   Precision of keyword extraction of CNN
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Fig. 8   Sensitivity of keyword extraction of linear regression
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Disease Prediction Result

The classification performance of word embedding with lin-
ear kernel was compared with that of normal classification. 
To perform classification tasks with word embedding, the 

cosine similarities between the predicted vector and the sum 
of keyword vectors of each disease were calculated. Table 7 
shows the classification result of CNN classifier, while 
Tables 8 and 9 show the classification results of searching 
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Fig. 9   Precision of keyword extraction of linear regression

Table 5   Average Performance of Keyword Extraction by word 
embedding from CNN

Sensitivity Specificity

dysrhythmia 98.960% 94.345%
bundle branch block 99.481% 96.403%
valvular heart disease 99.036% 96.185%
cardiomyopathy 99.062% 99.005%
healthy control 99.830% 98.441%
hypertrophy 95.631% 99.710%
myocardial infarction 97.298% 95.327%

Table 6   Average Performance of Keyword Extraction word embed-
ding from linear regression

Sensitivity Specificity

dysrhythmia 43.762% 46.863%
bundle branch block 73.824% 76.047%
valvular heart disease 66.024% 61.228%
cardiomyopathy 65.191% 62.467%
healthy control 49.660% 19.694%
hypertrophy 62.935% 78.188%
myocardial infarction 45.033% 54.503%

Table 7   Classification Result by CNN Classifier with Softmax

Accuracy Sensitivity Specificity

dysrhythmia 90.347% 96.053% 99.528%
bundle branch block 98.268% 94.452% 98.615%
valvular heart disease 84.337% 97.902% 99.912%
cardiomyopathy 98.974% 89.286% 97.206%
healthy control 90.476% 93.662% 98.797%
hypertrophy 87.372% 96.241% 99.696%
myocardial infarction 89.139% 90.094% 97.381%
Meta-Average 91.273% 93.956% 98.734%

Table 8   Searching Performance of word embedding predicted by 
CNN

Nearest 2nd 3rd

dysrhythmia 99.505% 99.505% 100.000%
bundle branch block 99.711% 100.000% 100.000%
valvular heart disease 98.795% 99.398% 99.398%
cardiomyopathy 99.413% 99.413% 99.707%
healthy control 99.490% 99.490% 99.830%
hypertrophy 99.317% 99.317% 99.659%
myocardial infarction 99.603% 99.735% 99.735%
Meta-Average 99.405% 99.551% 99.761%
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based on cosine similarity of word vectors. Tables 8 and 9 
evaluate the performance of classifiers in finding the right 
condition in top N number of nearest conditions. Our cosine 
similarity-based classification achieved slightly better per-
formance compared to the CNN classifier. More importantly, 
for the linear regression approach, most of conditions still 
achieved acceptable performance given top 2 or top 3 similar 
conditions. This result shows that the sum of the symptom 
keyword vector had a positive effect in classification and 
diagnosis of diseases.

Table 10 shows that using SOWE as labels has the poten-
tial to predict the diseases which is not exist in training set. 
Unlike existing disease predictors, which can only output 
a finite number of labels, the proposed approach predicts 
a word embedding vector, which is related to symptoms. 
The proposed approach can theoretically predict disease-
related symptoms that do not appear in training data, since 
such new disease and the related symptom is given. To test 
the effect of predicting the symptoms of unseen disease, 
leave-one-class-out validation is done. Each disease is hold 
in training to produce a model and that model is used to pre-
dict the hold out disease. Despite the keywords set between 

different diseases can be very different, SOWE extract the 
semantics of the keywords set. Word embedding improve 
the performance of CNN and have acceptable result with 
linear regression. This improvement shows that the embed-
ding dictionary contains the information of the similarities 
of the diseases for models to build relations between signal 
and embedding. Our method could be a zero-shot learning 
approach because it learns semantic embeddings of ECG 
rather a particular class. Therefore, the semantic embeddings 
have the potential to predict unknown disease given the dis-
ease description.

Table 11 compares our approach with the recent state-of-
the-art ECG deep learning approaches. Our approach shows 
outstanding performance compared to both supervised 
classification and self-supervised learning.

Discussion

The result shows that when predicting diseases given the 
sum of word embedding instead of one-hot annotation of 
Bag-of-Words, the distributed representation is also more 
robust. The sum of the keyword vector provides an easy 
method for estimating disease given keywords. This model 
has potential to predict unknown diseases which do not 
exist in the training set. This provides a scalable diagnostic 
framework using information in HSNs. Similar symptoms 
have similar values in word embedding; so, the sum of word 
embeddings is a robust method for differentiating diseases 
based on their symptoms.

Recommendation

With an average accuracy of 98% for disease prediction, 
KIHoT has the potential to become a valuable tool for 
researchers, clinicians, and patients alike. The integration of 
HSNs and IoT provides an innovative method for collecting 
data and labels without requiring expert knowledge. The pro-
posed system expands accessibility to healthcare information 
while simplifying the data collection and analysis processes. 
KIHoT's success in predicting relevant keywords from ECG 
signals makes it a promising solution for monitoring health 

Table 9   Searching Performance predicted by linear regression

Nearest 2nd 3rd

dysrhythmia 57.426% 76.238% 91.337%
bundle branch block 92.496% 98.990% 99.567%
valvular heart disease 63.253% 68.675% 78.313%
cardiomyopathy 78.299% 81.671% 86.217%
healthy control 13.095% 18.027% 25.510%
hypertrophy 78.157% 93.857% 98.294%
myocardial infarction 62.384% 81.192% 87.550%
Meta-Average 63.587% 74.093% 80.970%

Table 10   Searching Performance (Leave One Class Out)

Nearest 2nd 3rd

dysrhythmia 0.000% 27.228% 81.931%
bundle branch block 0.000% 13.131% 71.573%
myocardial infarction 0.000% 9.536% 48.079%

Table 11   Comparison with 
state-of-the-art ECG deep 
learning approaches

Approach Task Performance

CRNN [35] Atrial Fibrillation Detection 90.6% Score
DBLTSM [5] ECG Classification 100.0% Macro F1 score
CNN [36] Arrhythmia classification 98.96%
Self-supervised representation learning 

with LSTM + MLP [37]
Disease classification 94.18%

SOWE regression with CNN (Ours) Disease classification 99.40%
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conditions and providing timely interventions. Overall, we 
believe that KIHoT has the potential to significantly improve 
healthcare services by making reliable health information 
more easily accessible to all users.

KIHoT can provide valuable insights into patient health 
status and diagnose diseases more accurately, leading to 
better-informed medical decisions and improved patient 
outcomes. By automating data collection, data labeling, and 
model training processes, KIHoT expands accessibility to 
healthcare information and helps users refine their keywords 
based on their biosignals objectively. This can lead to cost-
efficient healthcare services while maintaining the quality 
of care.

Future Research Focus

While this study offers a feasible solution for integrating 
HSNs and IoT for cost-efficient healthcare services, there are 
limitations to our approach that require further investigation, 
such as the accuracy of the disease-related keyword 
prediction model and the quality of extracted keywords 
and the word embedding dictionary. The limitations of 
the present study were that the data were emulated, which 
may render the proposed approach unsuitable in real social 
network environments. The prediction of keywords and 
disease also depends on the quality of extracted keywords 
and the word embedding dictionary. This may be the 
reason for the good result on certain diseases while have 
a lower accuracy for the other diseases. For further study, 
the performance can be further improved by using better 
keyword extraction methods. Thus, a new, more robust 
model may still be required. Future research also should 
focus on expanding KIHoT's capabilities to cover a wider 
range of diseases and investigate its scalability with larger 
amounts of data from multiple sources.

Conclusion

In conclusion, this study proposes an automated diagnosis 
framework that integrates HSNs and IoT to address the 
challenges of rising healthcare costs, limited accessibility 
to healthcare information, and the difficulty of finding 
relevant medical knowledge in HSNs. The proposed 
approach, KIHoT, utilizes electrocardiogram (ECG) signals 
to predict disease-related keywords and expand accessibility 
to healthcare information. The study demonstrates that 
KIHoT can effectively extract relevant information from 
HSN portals, achieving an averaged accuracy of 98% for 
disease prediction and a high rate of valid keywords.

The proposed KIHoT provides a cost-efficient method 
for health monitoring, automating data collection, data 

labeling, and model training processes, and requires no 
expert knowledge from users, significantly expanding 
accessibility to healthcare information. By integrating 
pervasive and autonomous IoT data feeds with HSN 
information and a community network, (a) usability of 
HSNs will be significantly improved; (b) cost of medical 
care will be significantly reduced; and (c) efficiency and 
effectiveness of medical services will be significantly 
improved. This approach focuses on helping users to search 
about their health condition on the Internet. Based on the 
highly active users in HSN, the integrated HSN could handle 
more diseases compared to normal automated diagnosis 
approaches.

Appendices

The word embedding model used in our study:
https://​github.​com/​dartr​evan/​ChemT​extMi​ning/​blob/​

master/​word2​vec/​Health_​2.​5mrev​iews.​s200.​w10.​n5.​v15.​
cbow.​bin

Extracted Keywords for Each Disease:
Dysrhythmia
Source: https://​www.​webmd.​com/​heart-​disea​se/​atrial-​

fibri​llati​on/​heart-​disea​se-​abnor​mal-​heart-​rhythm#3
Keyword: Beats, chest, heart headedness, breath
Bundle Branch Block
Source: https://​www.​webmd.​com/​heart-​disea​se/​

what-​is-​heart-​block#1
Keywords: Pain, breath, feeling, heart, beat
Valvular Heart Disease
Source: https://​www.​webmd.​com/​heart-​disea​se/​guide/​

heart-​valve-​disea​se#1
Keywords: Chest, weight, flip, beats, breath
Cardiomyopathy
Source: https://​www.​mayoc​linic.​org/​disea​ses-​condi​tions/​

cardi​omyop​athy/​sympt​oms-​causes/​syc-​20370​709
Keywords: Abdomen, buildup, exertion, rest, legs
Healthy Control
Keywords: Health
Hypertrophy
Source: https://​www.​webmd.​com/​heart-​disea​se/​guide/​

hyper​troph​ic-​cardi​omyop​athy#1
Keywords: Exercise, rhythms, heart, breath, dyspnea
Myocardial Infarction
Source: https://​www.​webmd.​com/​heart-​disea​se/​guide/​

heart-​disea​se-​heart-​attac​ks#1
Keywords: Pain, dizziness, weakness, heaviness, 

vomiting
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