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Improving the automatic and timely recognition of construction and demolition waste composition is crucial for
enhancing business returns, economic outcomes and sustainability. While deep learning models show promise in
recognizing and classifying homogenous materials, the current literature lacks research assessing their perfor-
mance for mixed, contaminated material in commercial material recycling facility settings. Despite the
increasing numbers of deep learning models and datasets generated in this area, the sub-domain of deep learning
analysis of construction and demolition waste piles remains underexplored. To address this gap, recent deep
learning algorithms and techniques were explored. This review examines the progression in datasets, sensors and
the evolution from object detection towards real-time segmentation models. It also synthesizes research from the
past five years on deep learning for construction and demolition waste management, highlighting recent ad-
vancements while acknowledging limitations that hinder widespread commercial adoption. The analysis un-
derscores the critical requirement for diverse and high-fidelity datasets, advanced sensor technologies, and
robust algorithmic frameworks to facilitate the effective integration of deep learning methodologies into con-
struction and demolition waste management systems. This integration is envisioned to contribute significantly
towards the advancement of a more sustainable and circular economic model.

significant obstacle in improving the recycling rate (proportion of ma-
terials recycled or recovered). Current research in sorting and segrega-

1. Introduction

The amount of construction and demolition waste (CDW) sent to
landfills or material recycling facilities (MRFs) is a dynamic issue
influenced by a combination of economic, environmental and regulatory
factors. The global trend of increasing CDW poses significant challenges
for existing MRFs in maintaining efficient sorting, processing and re-
covery rates. In Australia, 29 million tons (38 % of total waste) of CDW
were generated between 2020-21, representing a 24 % increase over the
previous 4-year period (Pickin et al., 2022). The sheer volume and di-
versity of waste materials is a challenge for the scalability of recycling
systems and the efficiency of processing materials. Significant invest-
ment in MRF infrastructure, equipment, advanced sorting technologies
and or sensors or regulatory changes may be required to meet this de-
mand (Ali and Courtenay, 2014).

Identifying the types of waste in the waste stream has been a

tion largely focuses on advances in optical sensor technology (image,
spectroscopic, spectral, etc.), artificial intelligence (AI) or a combination
of both (Pucnik et al., 2024). Deep learning (DL) models for recognition
and classification of CDW show promising results with high levels of
accuracy; however, these are usually trained on datasets without com-
plex backgrounds or heterogeneity of source material (Shahab et al.,
2022). Challenges to successful implementation for commercial use
include varying accuracy, lack of high-quality datasets for training and
dynamic nature of construction sites (Majchrowska et al., 2022).
Intelligent detection and or segmentation using optical sensors or DL
of waste in highly cluttered collections remains only a small fraction of
the CDW research in the past decade; even fewer studies have examined
these in actual commercial MRFs (Prasad and Arashpour, 2024). Adding
to the complexity is the diversity of the waste streams, which may also
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include a wide range of contaminants, making generalization across
different sorting scenarios or locations difficult. Real-world sorting or
transfer centers can be harsh, with physical and environmental factors
influencing accuracy. Sensor degradation can occur due to high dust,
debris and moisture levels, lighting variability and interference from
other systems and equipment, for example, vibration, affecting perfor-
mance (Kroell et al., 2022).

In Australia, most companies use skip bins to collect CDW material. A
top-down or surface assessment can be problematic (Driouache et al.,
2024). Bins may have lighter material, such as pallets, stacked on top of
heavier mixed waste (Davis et al., 2021). Relying on surface features
alone may also introduce bias; contractors may load trucks in a partic-
ular way depending on accessibility to the waste or stage of demolition
(Chen et al., 2021). Fig. 1(a) shows a skip bin being delivered to an MRF,
with its contents ready to be tipped. The waste pile is then spread using
an excavator (Fig. 1(b)) before being loaded onto a conveyor belt by a
hydraulic grab. Fig. 2 demonstrates the subsequent processes of that
waste in the MRF. The colored box is the focus of this review. This step
often requires manual inspection to check for prohibited or bulky items
that pose a safety risk to personnel or equipment downstream. Analysis
of this pile not only informs operational decisions but also highlights the
critical need for advanced technologies, such as deep learning, to
enhance the accuracy and efficiency of material identification and
processing. Given the importance of these advancements, a compre-
hensive review is necessary to understand the current state of the field
and identify pathways for future progress.

This review aims to systematically examine and synthesize existing
literature on DL applications for CDW management, with a particular

(b)

Fig. 1. Real world example of CDW waste. (a) an example of a typical mixed
CDW-containing skip bin. (b) Pile waste being spread and examined with
an excavator.
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focus on object detection and segmentation for real-time implementa-
tion in MRFs. Current research mainly focuses on discrete, homogenous
waste piles or mixed waste streams on conveyor belts. In contrast, this
paper reviews advancements in DL technology and examines case
studies of DL-assisted CDW recycling, highlighting successes and
persistent challenges limiting commercial adoption. This review un-
derscores the need for future research to harness DL methods, driving
significant improvements in CDW recycling processes and supporting
the industry’s shift towards a circular economy.

2. Research methodology

This paper reviews DL technologies in CDW management to better
understand the progress towards real-time composition analysis and
object detection/segmentation. This literature review relied heavily on
the quality of its initial search terms. To identify the most relevant
keywords, a preliminary review was conducted on construction and
demolition waste recycling, artificial intelligence, circular economy,
computer vision, sensors, material recycling facilities, and deep
learning. Fig. 3 illustrates the flowchart of the paper selection process.

Scopus was selected as the primary database due to its extensive
coverage of peer-reviewed journals in relevant fields and its frequent use
in construction engineering research (Pal and Hsieh, 2021). The search
encompassed article titles, abstracts, and keywords within the specified
timeframe (2004-2025). The same search criteria were also used for Web
of Science (WoS) core collection. Google Scholar was also searched to
identify reports, technical papers, and other materials that may not be
indexed in traditional databases like Scopus or Web of Science. The
bibliograph of these reports was examined to find relevant references.
Although only peer reviewed sources were analyzed, this was crucial for
accessing potentially valuable research in this rapidly evolving area.

The search field in Scopus was set as “Article title, Abstract, Key-
words”. The first set of searches consisted of “construction AND demo-
lition AND waste (management OR recycling)” and deep learning OR
CNN OR transformer OR object detection OR segmentation OR conv* OR
artificial intelligence. The second keyword set consisted of “construction
waste AND learning” AND sensor OR dataset. The keywords within each
set were combined with ‘AND’ or “OR” operators with ‘*” symbol used
for related word variants. The third key word search consisted of “ma-
terial recovery facility” AND recycling AND deep learning OR sensors.
The same searches were conducted in WoS using ‘All Fields’ and Google
Scholar.

The initial search retrieved 692 papers from Scopus and 94 from
WoS. The lists were integrated by removing duplicate entries, condi-
tional formatting applied to the ‘Article Title’ and a manual review of
each abstract for relevance performed. Document types such as articles,
conference papers, conference reviews, reviews, and book chapters
written in English were used for this review. The integration process
retained 121 papers for analysis, excluding those on solid or municipal
waste and deep learning studies unrelated to CDW recycling or man-
agement. These 121 papers served as a foundation for the review helping
to understand the landscape of CDW research; however, given the focus
on deep learning, only research from the past five years on segmentation
and object detection was considered, resulting in 27 papers listed in
Table 1.

Table 1 presents the information retrieved from the relevant papers
organized for clarity and comparison. The fields include type of CDW
materials, sensors used to collect the data, method or models investi-
gated, research setting, image resolution (if reported), and dataset size.
Each publication year has been noted to highlight the increasing volume
of publications in recent years. Analysis of Table 1 highlights the diverse
CDW material datasets, sensors, and deep learning models used for ob-
ject detection and segmentation. The following sections examine each of
these topics, exploring their opportunities and challenges.
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Fig. 2. Overview of the CDW recycling stream with various processing stages, including sorting and shredding. The colored box is the focus of this review.
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Fig. 3. Flowchart of paper selection process.
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Table 1

Recent studies (since 2019) for C&DW object detection and segmentation assessment.

Resources, Conservation & Recycling 217 (2025) 108218

Reference Year CDW Materials Camera/Sensor Method/Model(s) Setting Image Dataset Size
Specification Resolution
(Prasad and 2024 concrete, rock, stone, bricks; RGB-D Object Material 1280 x 720 train: 2500, validation
Arashpour, deformed cardboard, high density segmentation/ recovery 713, test 355 (3568
2024) polyethylene (HDPE) materials; RGB-DL depth facility images)
metals (copper, aluminum, steel, fusion strategy
iron); translucent polyethylene
(LDPE) materials; waste timber and
wood
(Sirimewan 2024  concrete and aggregates; wood and ~ RGB Object detection; Material Non-disclosed train: 75 %, validation 15
et al., 2024) timber; hard plastic; soft plastic; segmentation/ recovery %, test: 10 % (430 images)
steel; cardboard and paper; mixed DuoSeg++ facility
waste DeepLab3-+
Unet
(Demetriou 2024  concrete; brick; tile; foam; general RGB Object detection; Conveyor belt 1920 x 1200 train: 1984, test: 573,
et al., 2024) waste; plaster board; pipes; plastic; segmentation/ validation: 570 (3127
wood; stone YOLOv8 images)
(Kronenwett 2024  brick; sand-lime brick Line-Scan Camera Object detection/ Conveyor belt 300 x 300 train: 5000, test: 500,
et al., 2024) SSD,YOLOvV3 validation: 500
Faster R-CNN
(Demetriou 2023  concrete; brick; tile RGB Object detection/ Conveyor belt 1920 x 1200 train: 4230, test 1727
et al., 2023) SSD,YOLO (4230 images)
Faster R-CNN
(Wang et al., 2023 rebar; bricks; PVC pipes, plastic RGB Object Construction 620 x 770 train: 1696, test: 200,
2023) wires; debris. segmentation/ site (average) validation 23. (1919
Swin Transformer, images - different data
Twins sources, synthetic images)
Transformer, K-Net
(Lux et al., 2023 concrete grains; natural stones; RGB Object Conveyor belt 8192 x 4096 train: 8000, test: 800,
2023) ceramics; bituminous grains; glass classification; (database 2) validation: 800 (images —
and others segmentation; mass from 2 datasets)
regression/
RACNET
K. (Lin, 2022 concrete; brick; stone; ceramic tile; RGB Object Construction Non-disclosed train: 36,711, validation:
Kunsen glass; metal scrap; gypsum board; classification/ site (scaled to 224 4080, test: 10,203 (2836
et al., 2022) wood; plastic and paper ResNet based x 224) original images -web
crawling/Image
augmentation)
(Bashkirova 2022  cardboard; soft plastic; rigid plastic; ~ RGB Object detection; Conveyor belt 1920 x 1080 train: 3002, test: 929,
et al., 2021) metal segmentation/ validation 572, unlabeled:
RetinaNet, Mask- 6212 (10,715 images)
RCNN, TridentNet
(Zhou et al., 2022 brick; wood; stone; plastic RGB Object detection/ Construction Non-disclosed train: 80 %, test: 10 %,
2022) Faster-RCNN, YOLO site validation 10 % (3046
images)
(Na et al., 2022 concrete; brick; lumber; board; RGB Object detection; Construction 512 x 512 (500 images construction
2022) mixed waste segmentation/ site site, 288 web crawling)
YOLACT
(Sunwoo 2022 concrete; brick; board; mixed RGB Object Construction 512 x 512 (599 images construction
et al., 2022) waste; wood classification; site site, web crawling)
detection;
segmentation/
YOLACT
(Dong et al., 2022 rock; gravel; earth; packaging; RGB Object Weigh bridge 1980 x 1080 (5366 images)
2022) wood; other non-inert, and mixed segmentation/ top-down view
Boundary aware
Transformer
(Li et al., 2022  concrete; machine made brick; fired ~ RGB-Depth Object Conveyor belt Non-disclosed train: 70 %, test: 30 %
2022) brick; wood; plaster; plastic; classification; (scaled to 640 (3367 images)
ceramic; carton detection/ x 640)
Mask R-CNN based
fusion models
(Ko et al., 2022 rebar; bricks; PVC pipes; wires; RGB Object Construction Non-disclosed (858 images)
2022) cementitious debris segmentation/ site
Detectron2,
YOLACT and
MMDetection
(Luetal, 2022  rock; gravel; earth; packaging; RGB Object Weigh bridge 1980 x 1080 train: 3515, validation:
2022) wood; other non-inert, and mixed segmentation/ top-down view 754, test: 753 (5366
DeepLabv3+ images)
(Chen et al., 2022 cotton gloves; wood blocks; small RGB-Depth; 3D Object detection; Construction 640 x 480 Train: 454, validation:
2022) ferrous; plastic pipe, bamboo; LiDAR. segmentation/ site 151, test: 151 (756
corrugated paper; rebar Mask R-CNN images)

(continued on next page)
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Table 1 (continued)
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Reference Year CDW Materials Camera/Sensor Method/Model(s) Setting Image Dataset Size
Specification Resolution

(Song et al., 2022 brick; woods; plastics; concretes; RGB Object Conveyor belt Non-disclosed 125 pictures of each class.

2022) foams classification/ train: 100 samples, test:
VGG-16, ResNet-50, 25 samples of each type
and Transformer

(K. Lin, K. 2022 concrete; brick; stone; ceramic tile; RGB Object Construction Non-disclosed train: 36,711, validation:
et al., 2022) glass; metal scrap; gypsum board; classification/ VGG site (scaled to 224 4080, test: 10,203 (2836

wood; plastic and paper based models x 224) original images- web
crawling/Image
augmentation)

(Davis et al., 2021 Second fix timbers; shuttering/ RGB Object Skip bin top- 3000 x 2250 (525 images; 84 images
2021) formwork timbers; shuttering/ classification/ VGG down view empty skip bins)

formwork ply and particle boards; based models
hard plastics; soft plastics; brick;
concrete; cardboard; polystyrene
(Chen et al., 2021 Inert (concrete and bricks) and non- RGB Percentage of inert Weigh bridge Non-disclosed train: 70 %, validation 15
2021) inert (wood, plastic and bamboo) waste exceeds top-down view %, test: 15 %
certain level (e.g. 50 (1127 records: images,
%)/ physical properties such
DenseNet169 as net weight, weight
depth)

(Lau Hiu 2020  concrete grains; white stones; grey RGB Object Laboratory 6000 x 4000 train: 2000, test: 500 in
Hoong et al., stones; light colored stones; slate; classification/ setting (scaled to 256 each of 9 subclasses
2020) clay bricks; ceramic tiles; ResNet x 256) (36,000 labelled database

bituminous grains; glass; wood; images)
plastics; steel; paper and cardboard;
other

(Xiao et al., 2020  wood; rubber; brick; concrete NIR hyperspectral Object Conveyor belt 100 x 100/ (750 samples)

2020) classification/ wavelength
CNN (class not 900-1700 nm.
defined)

(Wang et al., 2020  Concrete; bricks; plastic bottles; Hyperspectral Object detection/ Conveyor belt 160 x 160 train:test 4:1 ratio, (2500
2019) rubber; wood camera, laser RCNN grasping rectangles)

beam, 3D camera Autoencoder

(Ku et al., 2020 Bricks; concrete; plastic; metal; NIR hyperspectral/ Object detection Conveyor belt 640 x 640 train: 75 %, test 25 %
2020) wood; rubber 3D camera (2500 samples)

(W. Xiao, Wen 2019 foam; plastic; brick; concrete; wood RGB/NIR Object Conveyor belt 640 x 480/ train: 250, test 150
et al., 2019) hyperspectral classification/ wavelength (samples)

Single hidden-layer 900-1700 nm.
forward neural
network

(W. Xiao, W. 2019  Wood; plastic; bricks; concrete; NIR hyperspectral Object classification Conveyor belt wavelength train: 150 samples each

et al., 2019) rubber; black bricks 900-1700 nm. type, test: 166 pieces of

woods, 130 pieces of
plastics, 142 pieces of red
bricks,

150 pieces of concretes,
198 pieces of rubbers, and
158 pieces of

black bricks

3. Challenges and opportunities in developing CDW in-the-wild
datasets

DL algorithms require large, varied datasets to extract high-level,
complex abstractions; no single algorithm can guarantee the same re-
sults across all datasets. The growth of datasets designed for CDW
recycling has evolved over the years since the early benchmark for waste
analysis were proposed in 2016 (Yang and Thung, 2016). Early ap-
proaches dealt with single-stream datasets, which were too simple for
commercial applications and did not reflect the variety of CDW mate-
rials. Table 1 highlights not only the evolution and complexity of these
datasets but also the challenges of comparing research results. There
exists a wide range of dataset diversity including vary image quality and
resolution, location settings and types of material included (Lu and
Chen, 2022).

MRF specific datasets remain a small part of the current research
domain and have only started to appear in recent years. The Construc-
tion and Demolition Waste Object Detection (CODD) (Demetriou, 2022)
and ZeroWaste Datasets (Bashkirova et al., 2021) attempt to capture the
composition complexities of CDW through high levels of clutter and

variation. However, these may still fail to provide realistic performance
of model assessment in an MRF due to lack of variation in recyclable
classes. These datasets may have limited utility in assessing CDW in
mixed piles (Prasad and Arashpour, 2024). The annotation and
expertise-related expenses associated with developing fully supervised
DL algorithms can be prohibitive (Munappy et al., 2022). To fill this gap,
techniques such as data augmentation and synthetic data creation may
be necessary to develop commercially viable algorithms.

3.1. Data augmentation

Data augmentation is a technique to artificially expand a training
dataset by creating additional, slightly modified versions of existing
data. The process involves applying a set of transformations or manip-
ulations of the original data that preserves its label or class while
creating new data points that are similar but not identical to the original.
Image augmentation can include transformations such as rotation, flips,
color jittering, geometric transformations, cropping and changes in
brightness or contrast. The technique helps deep learning by increasing
the data to train models effectively, reducing overfitting and improving
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robustness through training a model on a more extensive and diverse
dataset (Shorten and Khoshgoftaar, 2019). In one study, increasing the
amount of CDW data through augmentation using transfer learning
increased the mAP by 16 % (Na et al., 2022).

3.2. Synthetic CDW data

Synthetic data refers to artificially generated data that mimics the
statistical properties of a real-world dataset. It is often used when real-
world data is challenging to obtain, expensive, or private and sensitive
(Nikolenko, 2021). It can also be used to augment existing datasets or to
create simulations for testing and training purposes. Privacy is less of a
consideration for CDW datasets than in other fields, such as medicine;
however, these may be commercially sensitive (Rajotte et al., 2022).

Software, including Blender 3D and Unity, have been used to create
3D synthetic data for DL models for PET recycling and waste sorting
(Fescenko et al., 2023). A gaming engine (Unreal Engine 4) was used to
generate synthetic data with similar distance, orientation, camera
rotation, texture and light source to balance classes for image detection
using CNN-based YOLOv5. The model utilized purely synthetic data to
identify several categories of objects, including pallets and crates, on a
portable Jetson Nano single-board computer with a RealSense Depth
Camera D435i (Rasmussen et al., 2022). Although this work shows
promising results using synthetic data in the CDW visual analysis, some
limitations should be considered. Models trained purely on synthetic
data may not generalize well if the data does not capture the complexity
and variability of real-world conditions; however, fine-tuning models
trained on large synthetic datasets on a few real images may increase
real-world performance (Baaz et al., 2022).

3.3. Large language models (LLM) and segment anything (SAM)

Recently, the release of several computer vision foundation models,
such as Segment Anything (SAM) (Kirillov et al., 2023), SAM-2 (Nikhila
et al., 2024), DINOv2 (Oquab et al., 2023), and CLIP (Radford et al.,
2021), have greatly stimulated research in the CV community and have
tremendous implications for CDW modelling. Although some examples
focus on text and language, these models can also assist segmentation
through zero-shot recognition or generate images through prompts such
as speech-to-text-to-image/video. Given their strong generalization ca-
pabilities, LLMs (Frei and Kramer, 2023) may offer significant advan-
tages for developing or utilizing assisted segmentation techniques to
efficiently create datasets for contaminated CDW.

Meta’s SAM is a foundation CV model for segmentation and has been
applied to numerous domains, from medical (Zhang et al., 2023) to the
construction industry (Ahmadi et al., 2023). The potential to automate
labelling CDW datasets makes model development easier and may
improve the time and accuracy of resultant datasets. SAM’s zero-shot
abilities across various tasks are impressive as an out-of-the-box tool,
but CDW introduces nuances not seen in everyday images. It is currently
unknown if domain-specific fine-tuning, incorporating expert annota-
tions, domain-adaptive techniques or modification to the algorithm
structure, through methods such as patch inference, is needed to
improve for specific circumstances or datasets (Xie et al., 2024).

To address this question, Panizza et al. studied five classes of mate-
rial (bricks, concrete, PVC pipes, plastic wire and rebars) obtained from
the Site Object Detection Dataset (SODA), Google and synthetic model
generators (Shutterstock, 2024) and Sketchfab (Sketchfab Inc, 2024).
The dataset consisted of 1276 images, divided into training (80 %) and
testing (20 %) fractions. The images were labelled using LabelMe (Wada,
2018) and SAM. The authors concluded that SAM improved the ease of
labelling but with a maximal IoU loss ranging from 6.6 % to 28.35 %,
depending upon the material (Panizza et al., 2024). This is consistent
with similar studies from other domains, for example, medicine
(Ferreira and Arnaout, 2023).

LLMs came into prominence in 2018 with subsequent iterations,
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including Open AI ChatGPT and Google’s Gemini (Schalkwyk et al.,
2023). These perform well on diverse tasks in domains including busi-
ness and education; however, little work has been done in the field of
CDW recycling (Saka et al., 2024). Multi-modal LLMs can also generate
images; text prompting can allow precise control over image content,
allowing modification or customization of backgrounds, styles and
content. This may enable the rapid generation of larger CDW datasets
whilst reducing costs and allowing the visualization of desired mixtures
or components. While improving dataset creation times, these synthetic
images might still have subtle artifacts or unrealistic elements that
source content experts can identify (Cao et al., 2024). Fig. 4(a) illustrates
an image generated with Google’s Gemini. The text prompt was “show
an image, using an overhead top-down view, of a waste tipped from a
skip bin onto the floor, which has been spread out, with construction
waste consisting of 50 % concrete and 50 % wood”. Fig. 4(b) demon-
strates the same text prompt using DeepSeek (Lu et al., 2024). Other
settings included natural lighting, realistic art style and neutral mood.

4. Sensors for CDW analysis

The use of different sensors in DL systems for CDW recycling has
progressed notably. Initially, the emphasis was on traditional imaging
methods, where approaches centered around basic visual checks for
recycling processes. However, as technology evolved, more advanced
sensors have been utilized to boost the accuracy of material identifica-
tion in MRFs (Chen, L. et al., 2024). As early as 2002, edge detector
algorithms were used to detect pixels that belong to the target object
(concrete, steel, timber, aluminum) by comparing the RGB value of the
pixel with the RGB range of the material from which the target is made.

(b)

Fig. 4. Synthetic images generated by (a) Google’s Gemini, and (b) DeepSeek,
asked to create an image of CDW waste pile containing concrete and wood.
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Once the edges have been detected, the pixels were grouped inside them
to form an object (Abeid Neto et al., 2002).

In 2010, the detection of concrete in construction site images relied
upon predefined color/texture value ranges for material recognition
with varying thresholds. With manual color and texture features, auto-
matic concrete detection correctly identified concrete using neural
networks and SVMs with an average precision and recall of around 80 %.
Missing classification of small regions (< 200 pixels) occurred as part of
the pre-processing and image segmentation process (Zhu and Brilakis,
2010); however, small object identification remains a problem today
with even more complex and sophisticated object detection algorithms
(Chen, X. et al., 2024).

By 2014, accuracy of greater than 97.1 % were obtained using the
SVM classifier on images from the Construction Materials Library (20
typical construction classes) for high-quality 200 x 200-pixel color
images. It averaged above 90 % for small 30 x 30 pixels and 92 % for
highly compressed, low-quality images under real-world conditions,
improving upon previous results of 70 % (Dimitrov and Golparvar-Fard,
2014). The relationship between sensor technologies and DL suggested
the potential of integrating real-time data gathering with DL models to
enhance sorting and recovery processes in CDW recycling. This trend
reflects an increasing acknowledgment of the significance of advanced
sensor technologies in boosting deep learning capabilities, ultimately
leading to better material recovery solutions (Choi et al., 2023).

4.1. RGB-depth cameras

RGB cameras are widely used visual sensors in many DL applications;
in many scenarios, providing enough information for a DL model to
perform a recognition task properly (Qiao et al., 2024). In MRFs, dust
may cover object surfaces, reducing camera recognition accuracy.
Adding in depth information, which is not easily affected by dust, color,
or lighting changes, may improve detection rates. However, in one
model using laser line scanning for depth information, classification
accuracy was only modestly increased by 1.92 ~ 2.27 % (Li et al., 2022).

A further problem for RGB cameras in CDW identification is het-
erogeneous sample composition within a single category. Wood, for
example, can be derived from natural or engineered sources. Pheno-
typically similar materials such as aerated, lightweight and porous
concrete may have different optical properties. Similar-looking mate-
rials, such as natural aggregates, have higher water adsorption with a
lower grain strength than concrete (Anding et al., 2011). Therefore,
these similarly looking materials cannot be easily identified by visible
spectrum (i.e., RGB) necessitating other sensor types.

4.2. Near-infrared

Near-infrared (NIR) spectroscopy, encompassing wavelengths from
700 to 2500 nanometers, elucidates the chemical composition of a
sample by analyzing the characteristic vibrational transitions induced
by the absorption of infrared radiation (Emsley et al., 2022). NIR may
improve plastic identification compared to standard image identifica-
tion but may have some shortcomings, particularly in identifying black
materials, as these are less distinguishable. Adding NIR spectral recog-
nition increases the cost and complexity of systems. In the context of
CDW, many inorganic substances in construction waste do not contain
distinct functional groups absorption spectra, making NIR spectroscopy
difficult without initial pre-processing of the spectral curve (W. Xiao, W.
et al., 2019).

4.3. Hyperspectral imaging

Hyperspectral imaging (HSI) is an emerging rapid and non-
destructive technology that may have promising applications for the
identification of CDW. HSI offers a potential advantage over NIR by
integrating spectroscopic and visible imaging capabilities within a single
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system. This unique approach enables simultaneous acquisition of both
spectral and spatial information (Tahmasbian et al., 2021). It has been
used to separate different types of plastics in municipal solid wastes and
to recover and recycle concrete, mortar aggregates, bricks, tiles and
wood (Castro-Diaz et al., 2023). HIS images are costly due to the
complicated apparatus required to acquire a wide continuous spectrum.
Still, they are also more robust to solar reflections, a significant concern
for RGB cameras. Reconstruction of HIS from single RGB images using
convolutional neural networks (CNNs) offers a portable, low-cost
alternative (Gao et al., 2021), which can be adopted in the CDW
domain but requires significant research and development.

4.4. Multi-sensor fusion

The composition of CDW may be complex, resulting in equally
complex spectral features obtained from NIR or HIS techniques. In such
cases, multi-sensor fusion and the internet of things (IoT) may provide
agile solutions for classification and real-time monitoring of municipal
solid waste (MSW) (Mookkaiah et al., 2022). Such techniques may also
be introduced into CDW recognition. Emerging 5G and 6G networks
enable IoT infrastructure that will allow higher resolution images and
integration of wireless sensor networks to track the CDW at the source
and direct it to the appropriate MRF (Jagan and Jayarin, 2022).

4.5. Other sensors

Other sensors that can be fused for CDW recognition include
infrared, ultrasonic, line and laser scanning, weight and chemicals. Lidar
sensor fusion leverages detailed 3D information, whereas ultrasonic can
provide high precision distance measurement capability to improve
waste sorting and efficiency (Aliew, 2022). Combining multiple sensors
can provide a more comprehensive understanding of waste streams but
at increased expense to integrate into existing infrastructure and may be
subject to calibration, data synchronization and complexity or process-
ing issues. Algorithms using sensor fusion can require significant tech-
nical expertise. Sound recognition, metal detection and weight were
used to detect glass and metal in trash bases based on spectrograms in
highly controlled circumstances with an accuracy of 98 % (Funch et al.,
2021); however, this is impractical for a large MRF.

5. Deep learning for visual CDW analysis

The application of DL technologies for CDW analysis in recycling
facilities has evolved significantly over the past decade. Initial studies
focused on traditional CV techniques, which often struggled with the
complexities and variabilities inherent to CDW streams (K. Lin, K. et al.,
2022). Early work highlighted the need for enhanced detection meth-
odologies to manage the processing of diverse materials effectively
(Lopes et al., 2024). As the field matured, researchers began to explore
machine learning approaches that could automate the classification and
sorting of CDW with improved accuracy, laying the groundwork for
subsequent innovations in deep learning (Wang et al., 2020).

5.1. Object detection for visual CDW analysis

In a short space of time, driven by the increasing speed of object
detection algorithms and the need for real-time sorting, classification
has given way to object detection and segmentation algorithms (Diwan
et al., 2023). MaskRCNN has been used with robot models for CDW
detection. In one study, using an RGB-Depth camera, a real-time sorting
robot was able to analyze CDW on a conveyor belt with a speed of 0.25 m
per second and inference time not exceeding 1920 milliseconds (Li et al.,
2022). Despite its accuracy, MaskRNN’s two stage architecture makes it
less suitable for real-time applications compared with single stage al-
gorithms (YOLO, SDD). Classifying materials from 15 to 25 m was also
challenging for RGB cameras; this poses a problem for cameras placed
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too far from the load drop off zone, or if those zones vary on the MRF
floor (Wolff et al., 2021).

In the last few years, the research landscape has expanded beyond
object detection to include comprehensive analyses of CDW composi-
tion. Demetriou et al. assessed 18 models, both single-stage (SSD, YOLO)
and two-stage (Faster-RCNN) detector architectures coupled with
various backbones feature extractors (ResNet, MobileNetV2, Effi-
cientDet) on 6600 CDW samples belonging to brick, concrete and tile
under working conditions with normal and heavily stacked adhered
samples. YOLOv?7 attained the best accuracy (mAP50:95 ~ 70 %) at the
highest inference speed of less than 30ms (Demetriou et al., 2023).

5.2. Object segmentation for visual CDW analysis

Compared to object detection, segmentation can provide more pre-
cise information about mixed objects or regions within the image. Se-
mantic segmentation performs classification at the pixel level, which
may provide more granularity on waste composition compared with
classification/object detection models. It is currently one of the most
popular research fields in CV. It underlies technology in autonomous
vehicles, medicine, image search engines, industrial inspection and
augmented reality (Yu et al., 2023).

YOLACT is a real-time instance segmentation algorithm that extends
the YOLO framework by predicting object masks alongside bounding
boxes and class labels. It has shown promising results in some studies,
but its performance may be limited by the size and augmentation of the
training dataset (Ko et al., 2022). Vision Transformers, a relatively new
class of models, have demonstrated strong performance in various image
recognition tasks, including object detection and semantic segmenta-
tion, and are considered a promising avenue for future research in
construction and CDW applications (Dong et al., 2022).

The current leading segmentation algorithm for 'real-time’ analysis
of highly cluttered CDW, YOLOv9e-seg, achieves a mean average pre-
cision (mAP50:95) of 49.92 while processing at 125 frames per second.
However, the mAP for small recyclable objects (<322 pixels) is signifi-
cantly lower compared to medium (322-962 pixels) or large (>962
pixels) materials. The authors revealed that the examined models
exhibited a bias towards objects situated within less visually complex
environments. This preference could be attributed to the enhanced ease
of object identification and segmentation within such contexts. The
implementation of a patch-based inference strategy mitigated the
detrimental impact of visual clutter on object detection performance,
resulting in a mAP of 56.34. Notably, this improvement in detection
accuracy was achieved without a significant compromise in classifica-
tion accuracy or inference speed (Prasad and Arashpour, 2024).

6. Challenges and opportunities for DL in commercial CDW
MRFs

6.1. Dataset challenge

A look at existing literature, as outlined in Table 1, shows numerous
themes tied to the challenges of CDW dataset generation. Generating
standardized datasets for this industry is difficult and expensive; the
makeup of waste shifts over time and varies by location, indicating the
need for flexible and thorough datasets that can accurately capture these
changes. The challenges of annotating these datasets highlight not only
the technical hurdles in identifying and categorizing materials but also
the demanding and sometimes subjective nature of the labeling process
(Demrozi et al., 2023). Despite advancements in automated data
collection methods like image recognition and sensor fusion, there is still
a notable lack of standardizing datasets for deep learning in CDW waste
recycling.

The lack of a common standard results in datasets being developed
inconsistently, which can negatively impact the performance and
adaptability of deep learning models in various recycling settings (Liang
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et al., 2020). Moreover, existing research often fails to address the dif-
ferences found in real-world scenarios, where environmental factors and
operational conditions can affect the accuracy and usefulness of the
generated datasets. These issues stress the urgent need for more research
to create best practices for dataset production, focusing on data quality,
diversity and integration of both multi-modal and emerging sensor
technologies with real-world recycling operations. Increased collabo-
ration among academics, industry players, and policymakers could
support the creation of standardized data collection protocols and pro-
mote the sharing of datasets across research and practical environments.

6.2. Generative Al and domain specific prompt engineering opportunities

Annotating complex CDW images is challenging due to the presence
of small, innumerable, and difficult-to-identify materials. Stable Diffu-
sion offers solutions by generating synthetic CDW images with
controlled composition, augmenting existing datasets with label-
preserving techniques, and even generating initial labels for human
refinement (Valvano et al., 2024). Moreover, the rise of multi-modal Al
(Barua et al., 2023), including the potential for CDW-specific models,
combined with the increasing integration of IoT devices, promises to
revolutionize CDW management by providing more comprehensive and
accurate insights into recovery processes.

The advent of prompt engineering enables the use of pre-trained
models for tasks by using customized prompts, which helps the
models understand context better without needing a large amount of
labeled data or complete retraining. Combining techniques like the
YOLO system with infrared imaging shows how prompt engineering can
improve detection accuracy in certain conditions by using different data
enhancement methods (Yang et al., 2024). Overall, these strategies not
only make the annotation process more efficient and cheaper but also set
the stage for scalable solutions in many deep learning applications.

6.3. Business case challenges and opportunities

A business case supporting the purchase, development, installation,
maintenance and use of a DL system should include an analysis of the
expected costs and benefits. Al projects can be expensive and may not
provide an immediate return on investment (ROI). The business case
should start with a clearly defined problem that the model will solve and
how it will improve efficiency, reduce costs, or open new opportunities.
It should also quantify the problem, providing data demonstrating the
extent and impact of the problem e.g., losses due to errors, time wasted
on manual tasks, potential gains from new services or efficiency in
current ones. The proposed solution should also outline the model
functionality (classification, detection and segmentation) and the
hardware or software services required (Enholm et al., 2021).

There are some spectacular examples of Al implementation failure
(Olavsrud, 2024). Hence, knowing what an Al investment is worth and
how to measure that value is a prerequisite for intelligent
decision-making. An estimated 87 % of data science projects fail to make
it into production (VentureBeat, 2019). Simply investing money and
expecting a high-tech solution at the end of the project does not happen
without the proper leadership support and conditions for success. The
costs for development can be considerable and vary significantly; small
to medium-scale projects can cost from $10,000 to $500,000 (CHI
Software, 2024). Development considerations include data collection
and annotation, model development (engineers, data scientists), infra-
structure, and services. Deployment costs may include integrating
models into existing systems and other expenses, for example cloud
computing. Maintenance considerations include model updates,
retraining, monitoring performance drift, ongoing technical support,
and hardware replacement (edge devices, routers, power supplies)
(Smith, 2023).

Several frameworks (Bevilacqua et al., 2023) have been published to
help estimate ROI, but what seems clear is that the productivity dividend
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of AI does not materialize immediately (Pandey et al., 2021). Specif-
ically, for CDW processing, tangible benefits include reducing labor
costs through task automation and reducing errors, increasing revenue
through less plant downtime, speeding up processing times, and pro-
ducing a cleaner product for marketing. Intangible benefits include
improved safety or compliance, potential competitive advantage in the
CDW recycling market and enhanced customer experience by providing
more detailed and accurate information for billing and reporting
purposes.

7. Discussion and conclusion

The study of CV and DL technologies in mixed CDW analysis at MRFs
shows new innovations but also points out major challenges that limit
their effective use. Key results from this review show that while DL
models, especially convolutional neural networks, have improved ma-
terial classification accuracy, the diverse nature of mixed CDW waste
creates serious problems. Differences in material types and insufficient
training datasets reduce the effectiveness and widespread use of these
technologies in practical commercial situations such as MRFs. More
large volume, high-quality, and varied datasets that represent the
complexities of mixed waste streams to enable strong algorithm training
are needed.

Reinforcing the main point, it is evident from literature that
combining computer vision, sensors, and DL in CDW analysis is a critical
area in waste management technology. Additionally, it highlights the
importance of interdisciplinary approaches that mix engineering, envi-
ronmental science, and waste management to develop better and more
sustainable solutions. Developing an international collaborative data
repository for CDW images may help to address issues around dataset
standardization, sensors modality and model performance (Kras et al.,
2020), if commercial barriers can be overcome. The environmental
benefits of recycling efforts can also be better assessed using the data-
base. By studying trends and patterns in CDW disposal, regions could
pinpoint their most pressing waste streams and customize strategies
accordingly. For instance, areas with high amounts of materials, like
concrete or metal, can fine-tune their recycling facilities to focus more
on these materials.

The synthesis of this literature also highlights future directions for
research. The current focus is largely on the recyclable waste stream;
however, components such as fire extinguishers, gas cylinders, lithium
batteries, for example, are highly relevant, but largely absent from the
current literature. In 2024, the annual report from the recycling industry
fire protection firm found that there were 373 fires at MRFs and transfer
stations across all recycling facility types, including CDW (Staub, 2024).
The number of MREF fires is becoming increasingly more common. In the
US and Canada, the number of major fires had increased by more than
one third since 2017, numbering 390 in 2022. It is estimated that this
figure is likely to be much higher as smaller fires often go unreported.
These fires are due to several factors including the growing number of
plants to deal with demand, major new hazards in the waste streams,
and global shifts in policy and attitudes towards CDW management.
Finally, a hotter and dryer climate will make it easier for fires to start
and spread, destroying millions of dollars in infrastructure (Nugent,
2023).

Despite the extensive information available on CDW waste and its
recycling potential, there remain gaps, especially regarding practical
applications and stakeholder involvement. Much of the research has
focused on measuring material types and volumes, often ignoring the
social and economic factors that shape recycling practices. There is a
deficit of comprehensive studies that assess how consumer knowledge
and habits impact recycling outcomes. Future research could look at pile
composition, as it is delivered to the MRF, to feed back to customers in
real-time. This is essential for developing effective strategies to divert
CDW waste, enhance recovery rates, reduce costs and improve overall
environmental results.
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The wider implications of these findings suggest that solving the
identified issues could improve CDW waste management, enhancing
material recovery efficiency and supporting sustainable practices that
align with current environmental objectives. Applying advanced CV and
DL technologies could automate complex sorting tasks, cut operational
costs, and improve the quality of recovered materials, contributing to
the circular economy. Successful use of these technologies can also lead
to a better understanding of waste composition, guiding future regula-
tions and aligning industry practices with sustainability standards.

The costs involved in generating large-scale datasets are not insig-
nificant (ul Hassan et al., 2022). The literature demonstrates that a wide
range of sensors and resolutions have been used previously (see Table 1).
However, maintenance schedules are usually not listed. For example,
cameras installed in the roof of MRFs may require special access
equipment, such as a scissor lift, and trained staff for access and clean-
ing. Access may be difficult during business hours if there are technical
issues. The video quality may degrade during the week if weekend
cleaning schedules, during downtime, are adopted. This may affect the
outcome or efficiency of the DL models. Furthermore, there would need
to be a clear cost benefit for adopting these models as part of the
deployment of new digital technologies for assessing and processing
CDW.

To tackle these challenges, several areas of exploration are recom-
mended, such as hybrid models that combine different data sources, like
sensor data and CV results, to improve classification accuracy.
Furthermore, collaborative frameworks involving industry, academia,
and tech developers can drive innovation by creating feedback loops
that enhance machine learning algorithms based on real-world experi-
ences. There is also a need for studies on the ethical implications of Al in
sorting tasks, as this technology is adopted, to ensure that automation
does not reduce human oversight and accountability (Joseph et al.,
2024).

In conclusion, the literature review gives a thorough overview of the
critical issues facing CV and DL in analyzing mixed CDW in MRFs. By
detailing both the progress made and the challenges that still exist, it
underscores the pressing need for concerted research to realize the full
potential of these technologies in achieving sustainable waste manage-
ment practices.
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