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A B S T R A C T

Improving the automatic and timely recognition of construction and demolition waste composition is crucial for 
enhancing business returns, economic outcomes and sustainability. While deep learning models show promise in 
recognizing and classifying homogenous materials, the current literature lacks research assessing their perfor
mance for mixed, contaminated material in commercial material recycling facility settings. Despite the 
increasing numbers of deep learning models and datasets generated in this area, the sub-domain of deep learning 
analysis of construction and demolition waste piles remains underexplored. To address this gap, recent deep 
learning algorithms and techniques were explored. This review examines the progression in datasets, sensors and 
the evolution from object detection towards real-time segmentation models. It also synthesizes research from the 
past five years on deep learning for construction and demolition waste management, highlighting recent ad
vancements while acknowledging limitations that hinder widespread commercial adoption. The analysis un
derscores the critical requirement for diverse and high-fidelity datasets, advanced sensor technologies, and 
robust algorithmic frameworks to facilitate the effective integration of deep learning methodologies into con
struction and demolition waste management systems. This integration is envisioned to contribute significantly 
towards the advancement of a more sustainable and circular economic model.

1. Introduction

The amount of construction and demolition waste (CDW) sent to 
landfills or material recycling facilities (MRFs) is a dynamic issue 
influenced by a combination of economic, environmental and regulatory 
factors. The global trend of increasing CDW poses significant challenges 
for existing MRFs in maintaining efficient sorting, processing and re
covery rates. In Australia, 29 million tons (38 % of total waste) of CDW 
were generated between 2020–21, representing a 24 % increase over the 
previous 4-year period (Pickin et al., 2022). The sheer volume and di
versity of waste materials is a challenge for the scalability of recycling 
systems and the efficiency of processing materials. Significant invest
ment in MRF infrastructure, equipment, advanced sorting technologies 
and or sensors or regulatory changes may be required to meet this de
mand (Ali and Courtenay, 2014).

Identifying the types of waste in the waste stream has been a 

significant obstacle in improving the recycling rate (proportion of ma
terials recycled or recovered). Current research in sorting and segrega
tion largely focuses on advances in optical sensor technology (image, 
spectroscopic, spectral, etc.), artificial intelligence (AI) or a combination 
of both (Pučnik et al., 2024). Deep learning (DL) models for recognition 
and classification of CDW show promising results with high levels of 
accuracy; however, these are usually trained on datasets without com
plex backgrounds or heterogeneity of source material (Shahab et al., 
2022). Challenges to successful implementation for commercial use 
include varying accuracy, lack of high-quality datasets for training and 
dynamic nature of construction sites (Majchrowska et al., 2022).

Intelligent detection and or segmentation using optical sensors or DL 
of waste in highly cluttered collections remains only a small fraction of 
the CDW research in the past decade; even fewer studies have examined 
these in actual commercial MRFs (Prasad and Arashpour, 2024). Adding 
to the complexity is the diversity of the waste streams, which may also 
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include a wide range of contaminants, making generalization across 
different sorting scenarios or locations difficult. Real-world sorting or 
transfer centers can be harsh, with physical and environmental factors 
influencing accuracy. Sensor degradation can occur due to high dust, 
debris and moisture levels, lighting variability and interference from 
other systems and equipment, for example, vibration, affecting perfor
mance (Kroell et al., 2022).

In Australia, most companies use skip bins to collect CDW material. A 
top-down or surface assessment can be problematic (Driouache et al., 
2024). Bins may have lighter material, such as pallets, stacked on top of 
heavier mixed waste (Davis et al., 2021). Relying on surface features 
alone may also introduce bias; contractors may load trucks in a partic
ular way depending on accessibility to the waste or stage of demolition 
(Chen et al., 2021). Fig. 1(a) shows a skip bin being delivered to an MRF, 
with its contents ready to be tipped. The waste pile is then spread using 
an excavator (Fig. 1(b)) before being loaded onto a conveyor belt by a 
hydraulic grab. Fig. 2 demonstrates the subsequent processes of that 
waste in the MRF. The colored box is the focus of this review. This step 
often requires manual inspection to check for prohibited or bulky items 
that pose a safety risk to personnel or equipment downstream. Analysis 
of this pile not only informs operational decisions but also highlights the 
critical need for advanced technologies, such as deep learning, to 
enhance the accuracy and efficiency of material identification and 
processing. Given the importance of these advancements, a compre
hensive review is necessary to understand the current state of the field 
and identify pathways for future progress.

This review aims to systematically examine and synthesize existing 
literature on DL applications for CDW management, with a particular 

focus on object detection and segmentation for real-time implementa
tion in MRFs. Current research mainly focuses on discrete, homogenous 
waste piles or mixed waste streams on conveyor belts. In contrast, this 
paper reviews advancements in DL technology and examines case 
studies of DL-assisted CDW recycling, highlighting successes and 
persistent challenges limiting commercial adoption. This review un
derscores the need for future research to harness DL methods, driving 
significant improvements in CDW recycling processes and supporting 
the industry’s shift towards a circular economy.

2. Research methodology

This paper reviews DL technologies in CDW management to better 
understand the progress towards real-time composition analysis and 
object detection/segmentation. This literature review relied heavily on 
the quality of its initial search terms. To identify the most relevant 
keywords, a preliminary review was conducted on construction and 
demolition waste recycling, artificial intelligence, circular economy, 
computer vision, sensors, material recycling facilities, and deep 
learning. Fig. 3 illustrates the flowchart of the paper selection process.

Scopus was selected as the primary database due to its extensive 
coverage of peer-reviewed journals in relevant fields and its frequent use 
in construction engineering research (Pal and Hsieh, 2021). The search 
encompassed article titles, abstracts, and keywords within the specified 
timeframe (2004-2025). The same search criteria were also used for Web 
of Science (WoS) core collection. Google Scholar was also searched to 
identify reports, technical papers, and other materials that may not be 
indexed in traditional databases like Scopus or Web of Science. The 
bibliograph of these reports was examined to find relevant references. 
Although only peer reviewed sources were analyzed, this was crucial for 
accessing potentially valuable research in this rapidly evolving area.

The search field in Scopus was set as “Article title, Abstract, Key
words”. The first set of searches consisted of “construction AND demo
lition AND waste (management OR recycling)” and deep learning OR 
CNN OR transformer OR object detection OR segmentation OR conv* OR 
artificial intelligence. The second keyword set consisted of “construction 
waste AND learning” AND sensor OR dataset. The keywords within each 
set were combined with ‘AND’ or “OR” operators with ‘*’ symbol used 
for related word variants. The third key word search consisted of “ma
terial recovery facility” AND recycling AND deep learning OR sensors. 
The same searches were conducted in WoS using ‘All Fields’ and Google 
Scholar.

The initial search retrieved 692 papers from Scopus and 94 from 
WoS. The lists were integrated by removing duplicate entries, condi
tional formatting applied to the ‘Article Title’ and a manual review of 
each abstract for relevance performed. Document types such as articles, 
conference papers, conference reviews, reviews, and book chapters 
written in English were used for this review. The integration process 
retained 121 papers for analysis, excluding those on solid or municipal 
waste and deep learning studies unrelated to CDW recycling or man
agement. These 121 papers served as a foundation for the review helping 
to understand the landscape of CDW research; however, given the focus 
on deep learning, only research from the past five years on segmentation 
and object detection was considered, resulting in 27 papers listed in 
Table 1.

Table 1 presents the information retrieved from the relevant papers 
organized for clarity and comparison. The fields include type of CDW 
materials, sensors used to collect the data, method or models investi
gated, research setting, image resolution (if reported), and dataset size. 
Each publication year has been noted to highlight the increasing volume 
of publications in recent years. Analysis of Table 1 highlights the diverse 
CDW material datasets, sensors, and deep learning models used for ob
ject detection and segmentation. The following sections examine each of 
these topics, exploring their opportunities and challenges.Fig. 1. Real world example of CDW waste. (a) an example of a typical mixed 

CDW-containing skip bin. (b) Pile waste being spread and examined with 
an excavator.
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Fig. 2. Overview of the CDW recycling stream with various processing stages, including sorting and shredding. The colored box is the focus of this review.

Fig. 3. Flowchart of paper selection process.
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Table 1 
Recent studies (since 2019) for C&DW object detection and segmentation assessment.

Reference Year CDW Materials Camera/Sensor 
Specification

Method/Model(s) Setting Image 
Resolution

Dataset Size

(Prasad and 
Arashpour, 
2024)

2024 concrete, rock, stone, bricks; 
deformed cardboard, high density 
polyethylene (HDPE) materials; 
metals (copper, aluminum, steel, 
iron); translucent polyethylene 
(LDPE) materials; waste timber and 
wood

RGB-D Object 
segmentation/ 
RGB-DL depth 
fusion strategy

Material 
recovery 
facility

1280 × 720 train: 2500, validation 
713, test 355 (3568 
images)

(Sirimewan 
et al., 2024)

2024 concrete and aggregates; wood and 
timber; hard plastic; soft plastic; 
steel; cardboard and paper; mixed 
waste

RGB Object detection; 
segmentation/ 
DuoSeg++

DeepLab3+
Unet

Material 
recovery 
facility

Non-disclosed train: 75 %, validation 15 
%, test: 10 % (430 images)

(Demetriou 
et al., 2024)

2024 concrete; brick; tile; foam; general 
waste; plaster board; pipes; plastic; 
wood; stone

RGB Object detection; 
segmentation/ 
YOLOv8

Conveyor belt 1920 × 1200 train: 1984, test: 573, 
validation: 570 (3127 
images)

(Kronenwett 
et al., 2024)

2024 brick; sand-lime brick Line-Scan Camera Object detection/ 
SSD,YOLOv3 
Faster R-CNN

Conveyor belt 300 × 300 train: 5000, test: 500, 
validation: 500

(Demetriou 
et al., 2023)

2023 concrete; brick; tile RGB Object detection/ 
SSD,YOLO 
Faster R-CNN

Conveyor belt 1920 × 1200 train: 4230, test 1727 
(4230 images)

(Wang et al., 
2023)

2023 rebar; bricks; PVC pipes, plastic 
wires; debris.

RGB Object 
segmentation/ 
Swin Transformer, 
Twins 
Transformer, K-Net

Construction 
site

620 × 770 
(average)

train: 1696, test: 200, 
validation 23. (1919 
images - different data 
sources, synthetic images)

(Lux et al., 
2023)

2023 concrete grains; natural stones; 
ceramics; bituminous grains; glass 
and others

RGB Object 
classification; 
segmentation; mass 
regression/ 
RACNET

Conveyor belt 8192 × 4096 
(database 2)

train: 8000, test: 800, 
validation: 800 (images – 
from 2 datasets)

K. (Lin, 
Kunsen 
et al., 2022)

2022 concrete; brick; stone; ceramic tile; 
glass; metal scrap; gypsum board; 
wood; plastic and paper

RGB Object 
classification/ 
ResNet based

Construction 
site

Non-disclosed 
(scaled to 224 
× 224)

train: 36,711, validation: 
4080, test: 10,203 (2836 
original images -web 
crawling/Image 
augmentation)

(Bashkirova 
et al., 2021)

2022 cardboard; soft plastic; rigid plastic; 
metal

RGB Object detection; 
segmentation/ 
RetinaNet, Mask- 
RCNN, TridentNet

Conveyor belt 1920 × 1080 train: 3002, test: 929, 
validation 572, unlabeled: 
6212 (10,715 images)

(Zhou et al., 
2022)

2022 brick; wood; stone; plastic RGB Object detection/ 
Faster-RCNN, YOLO

Construction 
site

Non-disclosed train: 80 %, test: 10 %, 
validation 10 % (3046 
images)

(Na et al., 
2022)

2022 concrete; brick; lumber; board; 
mixed waste

RGB Object detection; 
segmentation/ 
YOLACT

Construction 
site

512 × 512 (500 images construction 
site, 288 web crawling)

(Sunwoo 
et al., 2022)

2022 concrete; brick; board; mixed 
waste; wood

RGB Object 
classification; 
detection; 
segmentation/ 
YOLACT

Construction 
site

512 × 512 (599 images construction 
site, web crawling)

(Dong et al., 
2022)

2022 rock; gravel; earth; packaging; 
wood; other non-inert, and mixed

RGB Object 
segmentation/ 
Boundary aware 
Transformer

Weigh bridge 
top-down view

1980 × 1080 (5366 images)

(Li et al., 
2022)

2022 concrete; machine made brick; fired 
brick; wood; plaster; plastic; 
ceramic; carton

RGB-Depth Object 
classification; 
detection/ 
Mask R-CNN based 
fusion models

Conveyor belt Non-disclosed 
(scaled to 640 
× 640)

train: 70 %, test: 30 % 
(3367 images)

(Ko et al., 
2022)

2022 rebar; bricks; PVC pipes; wires; 
cementitious debris

RGB Object 
segmentation/ 
Detectron2, 
YOLACT and 
MMDetection

Construction 
site

Non-disclosed (858 images)

(Lu et al., 
2022)

2022 rock; gravel; earth; packaging; 
wood; other non-inert, and mixed

RGB Object 
segmentation/ 
DeepLabv3+

Weigh bridge 
top-down view

1980 × 1080 train: 3515, validation: 
754, test: 753 (5366 
images)

(Chen et al., 
2022)

2022 cotton gloves; wood blocks; small 
ferrous; plastic pipe, bamboo; 
corrugated paper; rebar

RGB-Depth; 3D 
LiDAR.

Object detection; 
segmentation/ 
Mask R-CNN

Construction 
site

640 × 480 Train: 454, validation: 
151, test: 151 (756 
images)

(continued on next page)
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3. Challenges and opportunities in developing CDW in-the-wild 
datasets

DL algorithms require large, varied datasets to extract high-level, 
complex abstractions; no single algorithm can guarantee the same re
sults across all datasets. The growth of datasets designed for CDW 
recycling has evolved over the years since the early benchmark for waste 
analysis were proposed in 2016 (Yang and Thung, 2016). Early ap
proaches dealt with single-stream datasets, which were too simple for 
commercial applications and did not reflect the variety of CDW mate
rials. Table 1 highlights not only the evolution and complexity of these 
datasets but also the challenges of comparing research results. There 
exists a wide range of dataset diversity including vary image quality and 
resolution, location settings and types of material included (Lu and 
Chen, 2022).

MRF specific datasets remain a small part of the current research 
domain and have only started to appear in recent years. The Construc
tion and Demolition Waste Object Detection (CODD) (Demetriou, 2022) 
and ZeroWaste Datasets (Bashkirova et al., 2021) attempt to capture the 
composition complexities of CDW through high levels of clutter and 

variation. However, these may still fail to provide realistic performance 
of model assessment in an MRF due to lack of variation in recyclable 
classes. These datasets may have limited utility in assessing CDW in 
mixed piles (Prasad and Arashpour, 2024). The annotation and 
expertise-related expenses associated with developing fully supervised 
DL algorithms can be prohibitive (Munappy et al., 2022). To fill this gap, 
techniques such as data augmentation and synthetic data creation may 
be necessary to develop commercially viable algorithms.

3.1. Data augmentation

Data augmentation is a technique to artificially expand a training 
dataset by creating additional, slightly modified versions of existing 
data. The process involves applying a set of transformations or manip
ulations of the original data that preserves its label or class while 
creating new data points that are similar but not identical to the original. 
Image augmentation can include transformations such as rotation, flips, 
color jittering, geometric transformations, cropping and changes in 
brightness or contrast. The technique helps deep learning by increasing 
the data to train models effectively, reducing overfitting and improving 

Table 1 (continued )

Reference Year CDW Materials Camera/Sensor 
Specification 

Method/Model(s) Setting Image 
Resolution 

Dataset Size

(Song et al., 
2022)

2022 brick; woods; plastics; concretes; 
foams

RGB Object 
classification/ 
VGG-16, ResNet-50, 
and Transformer

Conveyor belt Non-disclosed 125 pictures of each class. 
train: 100 samples, test: 
25 samples of each type

(K. Lin, K. 
et al., 2022)

2022 concrete; brick; stone; ceramic tile; 
glass; metal scrap; gypsum board; 
wood; plastic and paper

RGB Object 
classification/ VGG 
based models

Construction 
site

Non-disclosed 
(scaled to 224 
× 224)

train: 36,711, validation: 
4080, test: 10,203 (2836 
original images- web 
crawling/Image 
augmentation)

(Davis et al., 
2021)

2021 Second fix timbers; shuttering/ 
formwork timbers; shuttering/ 
formwork ply and particle boards; 
hard plastics; soft plastics; brick; 
concrete; cardboard; polystyrene

RGB Object 
classification/ VGG 
based models

Skip bin top- 
down view

3000 × 2250 (525 images; 84 images 
empty skip bins)

(Chen et al., 
2021)

2021 Inert (concrete and bricks) and non- 
inert (wood, plastic and bamboo)

RGB Percentage of inert 
waste exceeds 
certain level (e.g. 50 
%)/ 
DenseNet169

Weigh bridge 
top-down view

Non-disclosed train: 70 %, validation 15 
%, test: 15 % 
(1127 records: images, 
physical properties such 
as net weight, weight 
depth)

(Lau Hiu 
Hoong et al., 
2020)

2020 concrete grains; white stones; grey 
stones; light colored stones; slate; 
clay bricks; ceramic tiles; 
bituminous grains; glass; wood; 
plastics; steel; paper and cardboard; 
other

RGB Object 
classification/ 
ResNet

Laboratory 
setting

6000 × 4000 
(scaled to 256 
× 256)

train: 2000, test: 500 in 
each of 9 subclasses 
(36,000 labelled database 
images)

(Xiao et al., 
2020)

2020 wood; rubber; brick; concrete NIR hyperspectral Object 
classification/ 
CNN (class not 
defined)

Conveyor belt 100 × 100/ 
wavelength 
900–1700 nm.

(750 samples)

(Wang et al., 
2019)

2020 Concrete; bricks; plastic bottles; 
rubber; wood

Hyperspectral 
camera, laser 
beam, 3D camera

Object detection/ 
RCNN 
Autoencoder

Conveyor belt 160 × 160 train:test 4:1 ratio, (2500 
grasping rectangles)

(Ku et al., 
2020)

2020 Bricks; concrete; plastic; metal; 
wood; rubber

NIR hyperspectral/ 
3D camera

Object detection Conveyor belt 640 × 640 train: 75 %, test 25 % 
(2500 samples)

(W. Xiao, Wen 
et al., 2019)

2019 foam; plastic; brick; concrete; wood RGB/NIR 
hyperspectral

Object 
classification/ 
Single hidden-layer 
forward neural 
network

Conveyor belt 640 × 480/ 
wavelength 
900–1700 nm.

train: 250, test 150 
(samples)

(W. Xiao, W. 
et al., 2019)

2019 Wood; plastic; bricks; concrete; 
rubber; black bricks

NIR hyperspectral Object classification Conveyor belt wavelength 
900–1700 nm.

train: 150 samples each 
type, test: 166 pieces of 
woods, 130 pieces of 
plastics, 142 pieces of red 
bricks, 
150 pieces of concretes, 
198 pieces of rubbers, and 
158 pieces of 
black bricks
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robustness through training a model on a more extensive and diverse 
dataset (Shorten and Khoshgoftaar, 2019). In one study, increasing the 
amount of CDW data through augmentation using transfer learning 
increased the mAP by 16 % (Na et al., 2022).

3.2. Synthetic CDW data

Synthetic data refers to artificially generated data that mimics the 
statistical properties of a real-world dataset. It is often used when real- 
world data is challenging to obtain, expensive, or private and sensitive 
(Nikolenko, 2021). It can also be used to augment existing datasets or to 
create simulations for testing and training purposes. Privacy is less of a 
consideration for CDW datasets than in other fields, such as medicine; 
however, these may be commercially sensitive (Rajotte et al., 2022).

Software, including Blender 3D and Unity, have been used to create 
3D synthetic data for DL models for PET recycling and waste sorting 
(Feščenko et al., 2023). A gaming engine (Unreal Engine 4) was used to 
generate synthetic data with similar distance, orientation, camera 
rotation, texture and light source to balance classes for image detection 
using CNN-based YOLOv5. The model utilized purely synthetic data to 
identify several categories of objects, including pallets and crates, on a 
portable Jetson Nano single-board computer with a RealSense Depth 
Camera D435i (Rasmussen et al., 2022). Although this work shows 
promising results using synthetic data in the CDW visual analysis, some 
limitations should be considered. Models trained purely on synthetic 
data may not generalize well if the data does not capture the complexity 
and variability of real-world conditions; however, fine-tuning models 
trained on large synthetic datasets on a few real images may increase 
real-world performance (Baaz et al., 2022).

3.3. Large language models (LLM) and segment anything (SAM)

Recently, the release of several computer vision foundation models, 
such as Segment Anything (SAM) (Kirillov et al., 2023), SAM-2 (Nikhila 
et al., 2024), DINOv2 (Oquab et al., 2023), and CLIP (Radford et al., 
2021), have greatly stimulated research in the CV community and have 
tremendous implications for CDW modelling. Although some examples 
focus on text and language, these models can also assist segmentation 
through zero-shot recognition or generate images through prompts such 
as speech-to-text-to-image/video. Given their strong generalization ca
pabilities, LLMs (Frei and Kramer, 2023) may offer significant advan
tages for developing or utilizing assisted segmentation techniques to 
efficiently create datasets for contaminated CDW.

Meta’s SAM is a foundation CV model for segmentation and has been 
applied to numerous domains, from medical (Zhang et al., 2023) to the 
construction industry (Ahmadi et al., 2023). The potential to automate 
labelling CDW datasets makes model development easier and may 
improve the time and accuracy of resultant datasets. SAM’s zero-shot 
abilities across various tasks are impressive as an out-of-the-box tool, 
but CDW introduces nuances not seen in everyday images. It is currently 
unknown if domain-specific fine-tuning, incorporating expert annota
tions, domain-adaptive techniques or modification to the algorithm 
structure, through methods such as patch inference, is needed to 
improve for specific circumstances or datasets (Xie et al., 2024).

To address this question, Panizza et al. studied five classes of mate
rial (bricks, concrete, PVC pipes, plastic wire and rebars) obtained from 
the Site Object Detection Dataset (SODA), Google and synthetic model 
generators (Shutterstock, 2024) and Sketchfab (Sketchfab Inc, 2024). 
The dataset consisted of 1276 images, divided into training (80 %) and 
testing (20 %) fractions. The images were labelled using LabelMe (Wada, 
2018) and SAM. The authors concluded that SAM improved the ease of 
labelling but with a maximal IoU loss ranging from 6.6 % to 28.35 %, 
depending upon the material (Panizza et al., 2024). This is consistent 
with similar studies from other domains, for example, medicine 
(Ferreira and Arnaout, 2023).

LLMs came into prominence in 2018 with subsequent iterations, 

including Open AI ChatGPT and Google’s Gemini (Schalkwyk et al., 
2023). These perform well on diverse tasks in domains including busi
ness and education; however, little work has been done in the field of 
CDW recycling (Saka et al., 2024). Multi-modal LLMs can also generate 
images; text prompting can allow precise control over image content, 
allowing modification or customization of backgrounds, styles and 
content. This may enable the rapid generation of larger CDW datasets 
whilst reducing costs and allowing the visualization of desired mixtures 
or components. While improving dataset creation times, these synthetic 
images might still have subtle artifacts or unrealistic elements that 
source content experts can identify (Cao et al., 2024). Fig. 4(a) illustrates 
an image generated with Google’s Gemini. The text prompt was “show 
an image, using an overhead top-down view, of a waste tipped from a 
skip bin onto the floor, which has been spread out, with construction 
waste consisting of 50 % concrete and 50 % wood”. Fig. 4(b) demon
strates the same text prompt using DeepSeek (Lu et al., 2024). Other 
settings included natural lighting, realistic art style and neutral mood.

4. Sensors for CDW analysis

The use of different sensors in DL systems for CDW recycling has 
progressed notably. Initially, the emphasis was on traditional imaging 
methods, where approaches centered around basic visual checks for 
recycling processes. However, as technology evolved, more advanced 
sensors have been utilized to boost the accuracy of material identifica
tion in MRFs (Chen, L. et al., 2024). As early as 2002, edge detector 
algorithms were used to detect pixels that belong to the target object 
(concrete, steel, timber, aluminum) by comparing the RGB value of the 
pixel with the RGB range of the material from which the target is made. 

Fig. 4. Synthetic images generated by (a) Google’s Gemini, and (b) DeepSeek, 
asked to create an image of CDW waste pile containing concrete and wood.
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Once the edges have been detected, the pixels were grouped inside them 
to form an object (Abeid Neto et al., 2002).

In 2010, the detection of concrete in construction site images relied 
upon predefined color/texture value ranges for material recognition 
with varying thresholds. With manual color and texture features, auto
matic concrete detection correctly identified concrete using neural 
networks and SVMs with an average precision and recall of around 80 %. 
Missing classification of small regions (< 200 pixels) occurred as part of 
the pre-processing and image segmentation process (Zhu and Brilakis, 
2010); however, small object identification remains a problem today 
with even more complex and sophisticated object detection algorithms 
(Chen, X. et al., 2024).

By 2014, accuracy of greater than 97.1 % were obtained using the 
SVM classifier on images from the Construction Materials Library (20 
typical construction classes) for high-quality 200 × 200-pixel color 
images. It averaged above 90 % for small 30 × 30 pixels and 92 % for 
highly compressed, low-quality images under real-world conditions, 
improving upon previous results of 70 % (Dimitrov and Golparvar-Fard, 
2014). The relationship between sensor technologies and DL suggested 
the potential of integrating real-time data gathering with DL models to 
enhance sorting and recovery processes in CDW recycling. This trend 
reflects an increasing acknowledgment of the significance of advanced 
sensor technologies in boosting deep learning capabilities, ultimately 
leading to better material recovery solutions (Choi et al., 2023).

4.1. RGB-depth cameras

RGB cameras are widely used visual sensors in many DL applications; 
in many scenarios, providing enough information for a DL model to 
perform a recognition task properly (Qiao et al., 2024). In MRFs, dust 
may cover object surfaces, reducing camera recognition accuracy. 
Adding in depth information, which is not easily affected by dust, color, 
or lighting changes, may improve detection rates. However, in one 
model using laser line scanning for depth information, classification 
accuracy was only modestly increased by 1.92 ~ 2.27 % (Li et al., 2022).

A further problem for RGB cameras in CDW identification is het
erogeneous sample composition within a single category. Wood, for 
example, can be derived from natural or engineered sources. Pheno
typically similar materials such as aerated, lightweight and porous 
concrete may have different optical properties. Similar-looking mate
rials, such as natural aggregates, have higher water adsorption with a 
lower grain strength than concrete (Anding et al., 2011). Therefore, 
these similarly looking materials cannot be easily identified by visible 
spectrum (i.e., RGB) necessitating other sensor types.

4.2. Near-infrared

Near-infrared (NIR) spectroscopy, encompassing wavelengths from 
700 to 2500 nanometers, elucidates the chemical composition of a 
sample by analyzing the characteristic vibrational transitions induced 
by the absorption of infrared radiation (Emsley et al., 2022). NIR may 
improve plastic identification compared to standard image identifica
tion but may have some shortcomings, particularly in identifying black 
materials, as these are less distinguishable. Adding NIR spectral recog
nition increases the cost and complexity of systems. In the context of 
CDW, many inorganic substances in construction waste do not contain 
distinct functional groups absorption spectra, making NIR spectroscopy 
difficult without initial pre-processing of the spectral curve (W. Xiao, W. 
et al., 2019).

4.3. Hyperspectral imaging

Hyperspectral imaging (HSI) is an emerging rapid and non- 
destructive technology that may have promising applications for the 
identification of CDW. HSI offers a potential advantage over NIR by 
integrating spectroscopic and visible imaging capabilities within a single 

system. This unique approach enables simultaneous acquisition of both 
spectral and spatial information (Tahmasbian et al., 2021). It has been 
used to separate different types of plastics in municipal solid wastes and 
to recover and recycle concrete, mortar aggregates, bricks, tiles and 
wood (Castro-Díaz et al., 2023). HIS images are costly due to the 
complicated apparatus required to acquire a wide continuous spectrum. 
Still, they are also more robust to solar reflections, a significant concern 
for RGB cameras. Reconstruction of HIS from single RGB images using 
convolutional neural networks (CNNs) offers a portable, low-cost 
alternative (Gao et al., 2021), which can be adopted in the CDW 
domain but requires significant research and development.

4.4. Multi-sensor fusion

The composition of CDW may be complex, resulting in equally 
complex spectral features obtained from NIR or HIS techniques. In such 
cases, multi-sensor fusion and the internet of things (IoT) may provide 
agile solutions for classification and real-time monitoring of municipal 
solid waste (MSW) (Mookkaiah et al., 2022). Such techniques may also 
be introduced into CDW recognition. Emerging 5G and 6G networks 
enable IoT infrastructure that will allow higher resolution images and 
integration of wireless sensor networks to track the CDW at the source 
and direct it to the appropriate MRF (Jagan and Jayarin, 2022).

4.5. Other sensors

Other sensors that can be fused for CDW recognition include 
infrared, ultrasonic, line and laser scanning, weight and chemicals. Lidar 
sensor fusion leverages detailed 3D information, whereas ultrasonic can 
provide high precision distance measurement capability to improve 
waste sorting and efficiency (Aliew, 2022). Combining multiple sensors 
can provide a more comprehensive understanding of waste streams but 
at increased expense to integrate into existing infrastructure and may be 
subject to calibration, data synchronization and complexity or process
ing issues. Algorithms using sensor fusion can require significant tech
nical expertise. Sound recognition, metal detection and weight were 
used to detect glass and metal in trash bases based on spectrograms in 
highly controlled circumstances with an accuracy of 98 % (Funch et al., 
2021); however, this is impractical for a large MRF.

5. Deep learning for visual CDW analysis

The application of DL technologies for CDW analysis in recycling 
facilities has evolved significantly over the past decade. Initial studies 
focused on traditional CV techniques, which often struggled with the 
complexities and variabilities inherent to CDW streams (K. Lin, K. et al., 
2022). Early work highlighted the need for enhanced detection meth
odologies to manage the processing of diverse materials effectively 
(Lopes et al., 2024). As the field matured, researchers began to explore 
machine learning approaches that could automate the classification and 
sorting of CDW with improved accuracy, laying the groundwork for 
subsequent innovations in deep learning (Wang et al., 2020).

5.1. Object detection for visual CDW analysis

In a short space of time, driven by the increasing speed of object 
detection algorithms and the need for real-time sorting, classification 
has given way to object detection and segmentation algorithms (Diwan 
et al., 2023). MaskRCNN has been used with robot models for CDW 
detection. In one study, using an RGB-Depth camera, a real-time sorting 
robot was able to analyze CDW on a conveyor belt with a speed of 0.25 m 
per second and inference time not exceeding 1920 milliseconds (Li et al., 
2022). Despite its accuracy, MaskRNN’s two stage architecture makes it 
less suitable for real-time applications compared with single stage al
gorithms (YOLO, SDD). Classifying materials from 15 to 25 m was also 
challenging for RGB cameras; this poses a problem for cameras placed 
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too far from the load drop off zone, or if those zones vary on the MRF 
floor (Wolff et al., 2021).

In the last few years, the research landscape has expanded beyond 
object detection to include comprehensive analyses of CDW composi
tion. Demetriou et al. assessed 18 models, both single-stage (SSD, YOLO) 
and two-stage (Faster-RCNN) detector architectures coupled with 
various backbones feature extractors (ResNet, MobileNetV2, Effi
cientDet) on 6600 CDW samples belonging to brick, concrete and tile 
under working conditions with normal and heavily stacked adhered 
samples. YOLOv7 attained the best accuracy (mAP50:95 ~ 70 %) at the 
highest inference speed of less than 30ms (Demetriou et al., 2023).

5.2. Object segmentation for visual CDW analysis

Compared to object detection, segmentation can provide more pre
cise information about mixed objects or regions within the image. Se
mantic segmentation performs classification at the pixel level, which 
may provide more granularity on waste composition compared with 
classification/object detection models. It is currently one of the most 
popular research fields in CV. It underlies technology in autonomous 
vehicles, medicine, image search engines, industrial inspection and 
augmented reality (Yu et al., 2023).

YOLACT is a real-time instance segmentation algorithm that extends 
the YOLO framework by predicting object masks alongside bounding 
boxes and class labels. It has shown promising results in some studies, 
but its performance may be limited by the size and augmentation of the 
training dataset (Ko et al., 2022). Vision Transformers, a relatively new 
class of models, have demonstrated strong performance in various image 
recognition tasks, including object detection and semantic segmenta
tion, and are considered a promising avenue for future research in 
construction and CDW applications (Dong et al., 2022).

The current leading segmentation algorithm for ’real-time’ analysis 
of highly cluttered CDW, YOLOv9e-seg, achieves a mean average pre
cision (mAP50:95) of 49.92 while processing at 125 frames per second. 
However, the mAP for small recyclable objects (<322 pixels) is signifi
cantly lower compared to medium (322–962 pixels) or large (>962 
pixels) materials. The authors revealed that the examined models 
exhibited a bias towards objects situated within less visually complex 
environments. This preference could be attributed to the enhanced ease 
of object identification and segmentation within such contexts. The 
implementation of a patch-based inference strategy mitigated the 
detrimental impact of visual clutter on object detection performance, 
resulting in a mAP of 56.34. Notably, this improvement in detection 
accuracy was achieved without a significant compromise in classifica
tion accuracy or inference speed (Prasad and Arashpour, 2024).

6. Challenges and opportunities for DL in commercial CDW 
MRFs

6.1. Dataset challenge

A look at existing literature, as outlined in Table 1, shows numerous 
themes tied to the challenges of CDW dataset generation. Generating 
standardized datasets for this industry is difficult and expensive; the 
makeup of waste shifts over time and varies by location, indicating the 
need for flexible and thorough datasets that can accurately capture these 
changes. The challenges of annotating these datasets highlight not only 
the technical hurdles in identifying and categorizing materials but also 
the demanding and sometimes subjective nature of the labeling process 
(Demrozi et al., 2023). Despite advancements in automated data 
collection methods like image recognition and sensor fusion, there is still 
a notable lack of standardizing datasets for deep learning in CDW waste 
recycling.

The lack of a common standard results in datasets being developed 
inconsistently, which can negatively impact the performance and 
adaptability of deep learning models in various recycling settings (Liang 

et al., 2020). Moreover, existing research often fails to address the dif
ferences found in real-world scenarios, where environmental factors and 
operational conditions can affect the accuracy and usefulness of the 
generated datasets. These issues stress the urgent need for more research 
to create best practices for dataset production, focusing on data quality, 
diversity and integration of both multi-modal and emerging sensor 
technologies with real-world recycling operations. Increased collabo
ration among academics, industry players, and policymakers could 
support the creation of standardized data collection protocols and pro
mote the sharing of datasets across research and practical environments.

6.2. Generative AI and domain specific prompt engineering opportunities

Annotating complex CDW images is challenging due to the presence 
of small, innumerable, and difficult-to-identify materials. Stable Diffu
sion offers solutions by generating synthetic CDW images with 
controlled composition, augmenting existing datasets with label- 
preserving techniques, and even generating initial labels for human 
refinement (Valvano et al., 2024). Moreover, the rise of multi-modal AI 
(Barua et al., 2023), including the potential for CDW-specific models, 
combined with the increasing integration of IoT devices, promises to 
revolutionize CDW management by providing more comprehensive and 
accurate insights into recovery processes.

The advent of prompt engineering enables the use of pre-trained 
models for tasks by using customized prompts, which helps the 
models understand context better without needing a large amount of 
labeled data or complete retraining. Combining techniques like the 
YOLO system with infrared imaging shows how prompt engineering can 
improve detection accuracy in certain conditions by using different data 
enhancement methods (Yang et al., 2024). Overall, these strategies not 
only make the annotation process more efficient and cheaper but also set 
the stage for scalable solutions in many deep learning applications.

6.3. Business case challenges and opportunities

A business case supporting the purchase, development, installation, 
maintenance and use of a DL system should include an analysis of the 
expected costs and benefits. AI projects can be expensive and may not 
provide an immediate return on investment (ROI). The business case 
should start with a clearly defined problem that the model will solve and 
how it will improve efficiency, reduce costs, or open new opportunities. 
It should also quantify the problem, providing data demonstrating the 
extent and impact of the problem e.g., losses due to errors, time wasted 
on manual tasks, potential gains from new services or efficiency in 
current ones. The proposed solution should also outline the model 
functionality (classification, detection and segmentation) and the 
hardware or software services required (Enholm et al., 2021).

There are some spectacular examples of AI implementation failure 
(Olavsrud, 2024). Hence, knowing what an AI investment is worth and 
how to measure that value is a prerequisite for intelligent 
decision-making. An estimated 87 % of data science projects fail to make 
it into production (VentureBeat, 2019). Simply investing money and 
expecting a high-tech solution at the end of the project does not happen 
without the proper leadership support and conditions for success. The 
costs for development can be considerable and vary significantly; small 
to medium-scale projects can cost from $10,000 to $500,000 (CHI 
Software, 2024). Development considerations include data collection 
and annotation, model development (engineers, data scientists), infra
structure, and services. Deployment costs may include integrating 
models into existing systems and other expenses, for example cloud 
computing. Maintenance considerations include model updates, 
retraining, monitoring performance drift, ongoing technical support, 
and hardware replacement (edge devices, routers, power supplies) 
(Smith, 2023).

Several frameworks (Bevilacqua et al., 2023) have been published to 
help estimate ROI, but what seems clear is that the productivity dividend 
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of AI does not materialize immediately (Pandey et al., 2021). Specif
ically, for CDW processing, tangible benefits include reducing labor 
costs through task automation and reducing errors, increasing revenue 
through less plant downtime, speeding up processing times, and pro
ducing a cleaner product for marketing. Intangible benefits include 
improved safety or compliance, potential competitive advantage in the 
CDW recycling market and enhanced customer experience by providing 
more detailed and accurate information for billing and reporting 
purposes.

7. Discussion and conclusion

The study of CV and DL technologies in mixed CDW analysis at MRFs 
shows new innovations but also points out major challenges that limit 
their effective use. Key results from this review show that while DL 
models, especially convolutional neural networks, have improved ma
terial classification accuracy, the diverse nature of mixed CDW waste 
creates serious problems. Differences in material types and insufficient 
training datasets reduce the effectiveness and widespread use of these 
technologies in practical commercial situations such as MRFs. More 
large volume, high-quality, and varied datasets that represent the 
complexities of mixed waste streams to enable strong algorithm training 
are needed.

Reinforcing the main point, it is evident from literature that 
combining computer vision, sensors, and DL in CDW analysis is a critical 
area in waste management technology. Additionally, it highlights the 
importance of interdisciplinary approaches that mix engineering, envi
ronmental science, and waste management to develop better and more 
sustainable solutions. Developing an international collaborative data 
repository for CDW images may help to address issues around dataset 
standardization, sensors modality and model performance (Kras et al., 
2020), if commercial barriers can be overcome. The environmental 
benefits of recycling efforts can also be better assessed using the data
base. By studying trends and patterns in CDW disposal, regions could 
pinpoint their most pressing waste streams and customize strategies 
accordingly. For instance, areas with high amounts of materials, like 
concrete or metal, can fine-tune their recycling facilities to focus more 
on these materials.

The synthesis of this literature also highlights future directions for 
research. The current focus is largely on the recyclable waste stream; 
however, components such as fire extinguishers, gas cylinders, lithium 
batteries, for example, are highly relevant, but largely absent from the 
current literature. In 2024, the annual report from the recycling industry 
fire protection firm found that there were 373 fires at MRFs and transfer 
stations across all recycling facility types, including CDW (Staub, 2024). 
The number of MRF fires is becoming increasingly more common. In the 
US and Canada, the number of major fires had increased by more than 
one third since 2017, numbering 390 in 2022. It is estimated that this 
figure is likely to be much higher as smaller fires often go unreported. 
These fires are due to several factors including the growing number of 
plants to deal with demand, major new hazards in the waste streams, 
and global shifts in policy and attitudes towards CDW management. 
Finally, a hotter and dryer climate will make it easier for fires to start 
and spread, destroying millions of dollars in infrastructure (Nugent, 
2023).

Despite the extensive information available on CDW waste and its 
recycling potential, there remain gaps, especially regarding practical 
applications and stakeholder involvement. Much of the research has 
focused on measuring material types and volumes, often ignoring the 
social and economic factors that shape recycling practices. There is a 
deficit of comprehensive studies that assess how consumer knowledge 
and habits impact recycling outcomes. Future research could look at pile 
composition, as it is delivered to the MRF, to feed back to customers in 
real-time. This is essential for developing effective strategies to divert 
CDW waste, enhance recovery rates, reduce costs and improve overall 
environmental results.

The wider implications of these findings suggest that solving the 
identified issues could improve CDW waste management, enhancing 
material recovery efficiency and supporting sustainable practices that 
align with current environmental objectives. Applying advanced CV and 
DL technologies could automate complex sorting tasks, cut operational 
costs, and improve the quality of recovered materials, contributing to 
the circular economy. Successful use of these technologies can also lead 
to a better understanding of waste composition, guiding future regula
tions and aligning industry practices with sustainability standards.

The costs involved in generating large-scale datasets are not insig
nificant (ul Hassan et al., 2022). The literature demonstrates that a wide 
range of sensors and resolutions have been used previously (see Table 1). 
However, maintenance schedules are usually not listed. For example, 
cameras installed in the roof of MRFs may require special access 
equipment, such as a scissor lift, and trained staff for access and clean
ing. Access may be difficult during business hours if there are technical 
issues. The video quality may degrade during the week if weekend 
cleaning schedules, during downtime, are adopted. This may affect the 
outcome or efficiency of the DL models. Furthermore, there would need 
to be a clear cost benefit for adopting these models as part of the 
deployment of new digital technologies for assessing and processing 
CDW.

To tackle these challenges, several areas of exploration are recom
mended, such as hybrid models that combine different data sources, like 
sensor data and CV results, to improve classification accuracy. 
Furthermore, collaborative frameworks involving industry, academia, 
and tech developers can drive innovation by creating feedback loops 
that enhance machine learning algorithms based on real-world experi
ences. There is also a need for studies on the ethical implications of AI in 
sorting tasks, as this technology is adopted, to ensure that automation 
does not reduce human oversight and accountability (Joseph et al., 
2024).

In conclusion, the literature review gives a thorough overview of the 
critical issues facing CV and DL in analyzing mixed CDW in MRFs. By 
detailing both the progress made and the challenges that still exist, it 
underscores the pressing need for concerted research to realize the full 
potential of these technologies in achieving sustainable waste manage
ment practices.
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