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Abstract
Alaska has one of the world's largest glaciated areas and is highly sensitive to climate change. Alaskan glaciers currently 
contribute about a third of the global sea level rise, with tidewater glaciers playing a significant role through rapid retreat. 
Meteorological observations in this region are insufficient to assess climatic influences on the tidewater glacier cycle, and 
existing model datasets are either too coarse or cover too short a period. This study reconstructs the regional climate of 
southern Alaska by downscaling the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv3) from 1836–2015 using the 
Weather Research and Forecasting model (WRF) to produce a high-resolution 4-km dataset. The new downscaled dataset 
(20CRv3-WRF) was validated for 1981–2015 against observational records (GSOD) and the Parameter-elevation Regression 
on Independent Slopes Model (PRISM) datasets and compared to European Centre for Medium-Range Weather Forecasts 
(ECMWF) Reanalysis v5 (ERA5). Compared to the observational records, 20CRV3-WRF performed well for annual mean 
temperature (0.61 ≤ r ≤ 0.96) and moderately for annual precipitation (0.16 ≤ r ≤ 0.76). For temperature, 20CRv3 downscaling 
output was more consistent with PRISM than with the coarser resolution ERA5, suggesting a more accurate representation of 
temperature than the reanalysis. Precipitation was mostly overestimated in comparison to observations. The spatial variability 
of precipitation was better represented in 20CRv3-WRF than ERA5. The results demonstrate that 20CRv3-WRF provides 
a reliable high-resolution dataset to assess the influence of climate on southern Alaskan tidewater glaciers, enabling future 
studies requiring long-term atmospheric data.

1  Introduction

Global climate models (GCMs) are important for under-
standing climate processes, variability, change, and for 
performing climate experiments. GCMs are used to predict 
future climate and simulate past climate. Historical climate 
reanalyses have been developed for the period of observed 
climate history. They solve the problem of inconsistently 

available and unevenly distributed observational records by 
using models to provide spatially and temporally continuous 
data. To do this, they use a method that combines forecast 
models with data assimilation from available observational 
records (Choudhury et al. 2023; Hersbach et al. 2020; Slivin-
ski et al., 2019; Trenberth et al., 2008). Furthermore, rea-
nalysis datasets are used to evaluate climate model simula-
tions in conjunction with observational records. Reanalysis 
datasets (e.g., ERA5 (Hersbach et al. 2020), ERA5-Land 
(Muñoz-Sabater et al. 2021) generally have higher resolu-
tion than GCMs. However, most climate reanalyses only 
start when the first upper air observations became avail-
able (1948), when radiosonde observation became regular 
(1958) or at the start of the satellite era (1979) (Compo et al., 
2011; Kobayashi et al., 2015; Slivinski et al., 2019). The 
low resolution of GCMs and the short temporal coverage of 
reanalysis datasets makes studying long-term local climate 
difficult. In this work, we address this problem using the 
longest available reanalysis, the NOAA-CIRES-DOE 20th 
Century Reanalysis version 3 (20CRv3) spanning 1836 to 
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2018 (Slivinski et al., 2019) at a spatial resolution of ~ 0.7 
degree, to study the local climate of southern Alaska.

Global warming has raised mean surface temperatures 
by 0.99 ± 0.15 °C from 1850–1900 to 2011–2020 (Gulev 
et al. 2021). The high latitudes are more affected by climate 
change because of Arctic amplification (including feed-
backs such as ice-albedo). For the period of 1979–2021 the 
Arctic experienced warming of four times as much as the 
global average (Rantanen et al. 2022). During 1957–2021, 
Alaska was shown to have a rate of warming more than a 
third higher than the warming rate for the contiguous United 
States (Ballinger et al. 2023). Local climate affects natural 
systems, and the effects of climate change vary with latitude. 
Warming causes glaciers to melt and retreat, consequently 
leading to sea level rise. During the period 1961–2016, melt-
ing glaciers contributed 27 ± 22 mm to global mean sea level 
rise, with a notable large contribution from Alaskan gla-
ciers (Zemp et al., 2019). High latitude and remote regions 
typically lack long observational climate records because 
weather stations are difficult to maintain in these environ-
ments (Bieniek et al. 2012; De La France and McAfee 2019; 
Molnia 2007; Tangborn 1997). Homogenous high-elevation 
data covering at least 30 years is currently not available for 
this region (Kane and Stuefer 2015). Hence, with the current 
limitations of GCMs and reanalyses, changes in ice mass are 
often studied on either a global scale or a short-term local 
scale through field research, without knowledge of long-term 
local-scale changes.

Many glacierized regions are poorly covered by obser-
vations. Alaska has one of the largest temperate and sub-
arctic glaciated areas in the world, which is highly sensi-
tive to climate change, but with few long-term settlements. 
From 1961 to 2016, Alaskan glacier mass loss contributed 
about one third to the global mean sea level rise (Zemp 
et al., 2019). Southern Alaska accommodates ice fields 
and mountain, lake-terminating, and tidewater glaciers 
(Pfeffer et al., 2014). Changes in climate variations (espe-
cially 2-m air temperature and precipitation) have immedi-
ate effects on glaciers (Rasmussen et al., 2011b; Yde and 
Paasche, 2010). Tidewater glaciers in Alaska are retreating 
(Arendt et al., 2013; Black and Kurtz, 2023; Rasmussen 
et al., 2011a), but the processes triggering their retreat 
are not well understood. They are mainly influenced by 
factors such as glacier geometry (internal dynamics) 
and the underlying land (fjord bathymetry) (Enderlin 
et al., 2018; Meier and Post, 1987). However, the overall 
retreat of Alaskan tidewater glaciers that started during 
the last two centuries (Pfeffer, 2007) indicates that cli-
mate plays a larger role than previously thought (Enderlin 
et al., 2018; Post et al., 2011). The temporal cycle length 
of the tidewater glacier cycle is on the scale of centuries 
(Meier and Post, 1987). However, the weather station net-
work in Alaska is sparse, with a limited time range of 

meteorological observations, inhomogeneous time records 
(Bieniek et al., 2012; De La France and McAfee, 2019; 
Molnia, 2007; Tangborn, 1997) and a scarcity of observa-
tions at higher altitudes (Kane and Stuefer 2015). There-
fore, using observations alone to investigate the climate 
influence on the tidewater glaciers of southern Alaska is 
not sufficient.

Dynamical downscaling as well as statistical downscal-
ing have been previously applied over Alaska. Previous 
studies concentrated on northern Alaska (e.g., Cai et al. 
(2018); Poujol et al. (2020a), the Alaskan interior (Mölders 
and Kramm, 2010), southeast Alaska (Lader et al. 2020), 
or Alaska as a whole (e.g., Bieniek et al. (2016); Cai et al. 
(2018); Hill et  al. (2015); Lader et  al. (2017); McAfee 
et al. (2014); Monaghan et al. (2018); Walsh et al. (2018). 
The regional climate model used in those studies was the 
Weather Research and Forecasting model (WRF) (Powers 
et al., 2017; Skamarock et al., 2019), which is a commonly 
used downscaling regional climate model. WRF output for 
Alaska has been evaluated using either the limited available 
observational records or other reanalysis products (inde-
pendent of the forcing data). These evaluations showed WRF 
was able to successfully reproduce variables such as 2-m air 
temperature, precipitation, and snowfall. Existing Alaskan 
downscaling studies focused on reconstructing modern-day 
climate or predicting future climate by downscaling GCM 
output. None attempted to reconstruct past climate prior to 
1979, and therefore do not cover the time frame required to 
study the tidewater glacier cycle.

Before using model output for novel applications, it is 
necessary to quantify the skill and uncertainty of model 
output by evaluating it with observations or reanalyses (and 
considering their uncertainty as well). Downscaling and 
reanalysis products have been evaluated with observations 
(Bieniek et al. 2016; Cassano et al., 2001; Cassano et al., 
2011; Evans et al., 2012; Jeworrek et al., 2021; Lavers et al. 
2022; Maussion et al. 2011; Slivinski et al., 2021; Yu et al., 
2021) and remote sensing data (Maussion et al. 2011; Mona-
ghan et al. 2018). Regardless of which evaluation datasets 
are used, the statistical methods are usually similar (e.g., root 
mean square error, bias, difference, correlation).

This paper investigates the ability of a dynamical downs-
caling model to simulate high-resolution local climate over 
glacierized southern Alaska. To do so, we run the WRF 
model using the complete 179-year record of 20CRv3 rea-
nalysis as forcing data. We then validate the model output 
with available observational records from the Global Surface 
Summary of the Day (GSOD) (NOAA 1999) and compare 
it to the ERA5 reanalysis (Hersbach et al. 2020) and PRISM 
(Parameter-elevation Regression on Independent Slopes 
Model) data. We focus our evaluation on 2-m air tempera-
ture and precipitation because of the importance of these 
variables for glacier mass balance.
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2 � Methodology

2.1 � Simulation set up for 20CRv3‑WRF downscaling

In this study, we downscale the 20CRv3 reanalysis prod-
uct. 20CRv3 is the longest available climate reanalysis 
dataset (Slivinski et al., 2019), starting in 1836 and ending 
in 2015. We use the 20CRv3 ensemble mean as forcing 
data, rather than an arbitrarily chosen ensemble member. 
The ensemble mean of the 20CRv3 reanalysis was used to 
provide a consistent and representative boundary condi-
tion for long-term climate evaluation, minimizing biases 
from individual ensemble members while prioritizing sta-
ble forcing for the downscaling. The ensemble spread of 
the 20CRv3 is higher further back in time when fewer 
observational records for data assimilation are available 
(Slivinski et al., 2019). Because the observations are not 
equally distributed, the ensemble spread and, therefore the 
uncertainty, is higher in locations where fewer observa-
tions are available.

To conduct the 20CRv3 downscaling, we used WRF 
version 4.3, developed by the National Center for Atmos-
pheric Research (NCAR) (Powers et al., 2017; Skama-
rock et al., 2019). WRF was run from 1836–2015 (with 
1836 as spin up year). To run convection-permitting 
meteorology and improve the simulation of precipita-
tion for regions with significant topography (Prein et al., 
2013b), the resolution of the nest needed to be at least 
4 km. Therefore, the domain set-up consisted of a 20-km 
resolution parent domain of 3300 km × 3600 km (165 
× 180 grid cells) and a convection-permitting 4-km high-
resolution nest over south-central/south-eastern Alaska 
with dimension 1744 km × 1164 km (436 × 291 grid 
cells) (Fig. S1). Both domains used a temporal resolution 
of 3 h. The full downscaling was conducted by running 
six 30-year simulations, with 1-year overlap for model 
spin-up, in parallel.

Prior to running the simulation, the most appropriate 
physics configuration was identified by forcing WRF with 
the 20CRv3 for 2010 using five different configurations 
(Table S1). The simulated temperature and precipitation 
of those five configurations were statistically evaluated 
against GSOD observations (r2, RMSE, normalized mean 
error, difference) and showed almost no difference. The 
WRF physics configuration used to downscale the 20CRv3 
was based on the configuration used by Monaghan et al. 
(2018). The Thompson scheme was employed for micro-
physics, and Grell 3D scheme was used for the cumulus 
parameterization with the nest switched off. The RRTMG 
scheme was applied as shortwave and longwave radia-
tion scheme, and the Yonsei University (YSU) scheme 
was used for the planetary boundary layer (PBL). MM5 

Similarity was applied as the surface layer, and the land-
surface model Noah-MP was used. The 20CRv3-WRF 
simulation used the default Noah-MP settings for snow, 
which includes snowpack representation in three layers. 
Additionally, the Noah-MP glacier treatment option was 
activated, which includes phase changes by improving the 
snow physics (Niu et al., 2011). This means that melting 
seasons are considered for glaciers.

2.2 � Evaluation datasets

Daily average 2-m air temperature (TEMP) and daily accu-
mulated precipitation (PRCP) from NOAA GSOD were 
used to evaluate the simulation. For the study area, 22 
GSOD stations recorded data during the years 1986–2015. 
104 stations did not record for the full period, with at least 
one year of missing data (Fig. 1). One station was within 
a water grid cell and was excluded from the analysis. For 
temperature, stations that recorded data for at least 85% 
of each year were included (18 stations; see Table S2). 
For precipitation, stations that recorded data for at least 
70% of each year were used for the analysis (10 stations; 
see Table S2).

The second dataset used for model evaluation was the 
PRISM data from the PRISM Climate Group, Oregon 
State University (PRISM 2023b). This spatial climate 
dataset for the United States is based on statistical methods 
that interpolate observational records on a digital elevation 
model, combined with human expertise (Daly et al. 2002, 
2018). Gridded 30-year mean temperature and 30-year 
accumulated precipitation data from 1981–2010 (PRISM 
2023a) were transformed into netcdf format and re-gridded 
to the WRF grid. PRISM only provides 30-year means, 
and so annual and seasonal analysis was not performed 
with the PRISM dataset.

The model output was also compared to reanalysis data. 
This is an approach often used if observational records 
are not independent (Slivinski et al. 2021) or non-existent 
(Choudhury et al. 2023). The reanalysis datasets enable a 
gridded evaluation at annual and sub-annual timescales. 
For the reanalysis comparison, the ERA5 reanalysis was 
used (Hersbach et al. 2020). Annual and 30-year mean 2-m 
air temperature were calculated for 1986–2015 from the 
monthly mean 2-m air temperature. Monthly mean precipi-
tation data was processed to monthly accumulated precipi-
tation and summed to annual accumulated precipitation. 
From this, the 30-year mean annual accumulated precipita-
tion for 1986–2015 was calculated. These processes were 
conducted on the native ERA5 grid. The data was then 
re-gridded to the WRF grid using bilinear interpolation to 
match the downscaling data.
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2.3 � Evaluation method

Annual mean 2-m air temperature and annual accumulated 
precipitation from the downscaling simulation were evalu-
ated. From here onwards, these variables are referred to as 
‘temperature’ and ‘precipitation’, respectively.

The evaluation metrics used in this study are root mean 
square error (RMSE), square of the Pearson correlation 

coefficient (r2), normalized mean error (NME), time-aver-
aged difference (DIFF) and standard deviation (σ). RMSE 
is defined in Eq. 1:

(1)RMSE =

√
1

N

∑N

i=1
(m

i
− o

i
)
2

Fig. 1   (a) GSOD station loca-
tions. Stations that recorded 
temperature for at least 85% 
of each year from 1986–2015 
are shown in red (note: Faro 
has two stations), and stations 
that also recorded precipitation 
for at least 70% of each year 
from 1986–2015 are shown in 
blue (half circle). Stations in 
grey had incomplete records 
and were excluded from the 
analysis. (b) Map of mountain 
ranges and islands referred to in 
this chapter, with the Alaska-
Canada border shown as the 
dashed black line
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where N is the number of data points m
i
 represents an indi-

vidual model (WRF) value at time i, and o
i
 represents an 

individual observation at time i.
r was used to assess the linear relationship of day-to-day 

or year-to-year correlation of the values simulated by the 
model to the values from the evaluation datasets. r ranges 
from −1 to 1 and is ideal at 1. Negative values show anti-
correlation. r is defined in Eq. 2:

where m is the mean of the model (WRF) dataset sampled 
at observation locations and o is the mean of the observa-
tions. r2 was used to assess the proportion of variation of the 
values simulated by WRF in relationship to the evaluation 
dataset. Values range from 0 to 1, with 1 being ideal.

NME was calculated to identify the extent to which the 
simulated values differ from the evaluation dataset. NME 
is a positive value that, when equal to 0, means the simu-
lated value is the same as the evaluation dataset value. The 
higher the NME, the less similarity between the simulated 
and evaluation dataset values. NME is defined in Eq. 3:

DIFF was used to assess the absolute magnitude of the 
similarity between the values simulated for a variable by 
WRF and the values of that variable from the evaluation 
dataset, defined in Eq. 4:

σ explains the variability of the values that are simulated 
for a given variable. The standard deviation of the simulated 
values produced by WRF was compared with that of the 
values from the evaluation datasets. σ was defined in Eq. 5:

Downscaling output was evaluated at the point locations 
of the GSOD stations (Fig. 1a and Table S2) by comparing 
the 20CRv3-WRF with available GSOD observation station 
over the period 01-Jan-1986 to 31-Dec-2015. For the avail-
able locations, the model performance was assessed using 
RMSE, r2, NME, DIFF and standard deviation (σ) relative 
to the observations.

For ERA5, the modeled recent climate (01-Jan-1986–31-
Dec-2015) was evaluated by comparing the 20CRv3-WRF 
downscaling output to gridded ERA5 reanalysis data. The 
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time-averaged difference in 30-year mean temperature and 
accumulated precipitation was calculated by subtracting the 
re-gridded ERA5 from the downscaling output. r was calcu-
lated for annual temperature and precipitation in each grid 
cell. For PRISM, the difference between the 20CRv3-WRF 
and PRISM for 30-year (01-Jan-1981–31-Dec-2010) mean 
temperature and 30-year mean accumulated precipitation 
was calculated.

3 � Results

3.1 � Evaluation using GSOD station data

3.1.1 � Temperature

Available station records are evenly distributed across the 
domain (Fig. 1). Figure 2 compares the downscaling output 
with the input reanalysis data (20CRv3), ERA5 and GSOD 
observational data for four selected sites near tidewater gla-
cier locations. The figure shows that the 20CRv3-WRF is an 
overall improvement relative to the 20CRv3. The 20CRv3 
exhibited a larger difference compared to the GSOD data, 
but this was reduced by the 20CRv3-WRF downscaling, 
especially for Juneau and Anchorage.

The 20CRv3-WRF temperatures are highly correlated 
with the GSOD station records (Fig. S2, Fig. 3 and 4). This 
can be seen on different time scales and shows that weather 
as well as climate are realistically predicted by the downscal-
ing (Fig. S2). The model performs best for temperatures at 
eastern interior locations (Mayo, Faro, Beaver Creek, Gul-
kana) (Fig. 3 and 4). At these locations, the 20CRv3-WRF 
produces on average a warm bias, but with low normalized 
mean errors and high correlation. Overall, the correlation is 
similar across all stations.

Figure 3 (a-g) shows the annual temperature for 20CRv3-
WRF and the observations for a subset (seven representative 
stations) of the 18 analyzed continuous recording stations 
from 1986–2015 (Fig. S3 and S4 includes the remaining sta-
tions), along with the annual mean difference between them. 
This Figure also shows the average over the 1986–2015 time 
period for each day of the year to provide an annual cycle 
of 30-year mean daily temperature from 20CRv3-WRF and 
the observations, along with the difference between model 
and observations (Fig. 3h-n). The differences in average 
temperatures can mainly be explained by over- or underes-
timation by the model in specific seasons. For example, for 
Anchorage, the low annual mean temperature produced by 
the model is caused by a cold bias of temperatures in sum-
mer and autumn (Fig. 3c and j). However, in some cases, 
for example Sitka, the model shows a temperature bias in all 
seasons, which results in the lower annual mean temperature. 
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The downscaling simulates a cold bias for coastal regions 
(Iliamna, King Salomon, Cordova, Anchorage, Yakutat, 
Sitka with the highest negative bias, see Fig. 3). On the other 
hand, the downscaling overestimates temperature at eastern 
interior stations (Mayo, Beaver Creek and Faro) during win-
ter (Fig. 3n and Fig. S4). Central interior stations (Gulkana, 
Talkeetna and McGrath) show no particular seasonal pattern 
of bias.

Figure 4 presents Taylor diagrams that summarize the 
performance of the 20CRv3-WRF for simulating daily 
and annual temperatures. The diagrams include the sta-
tistics that are used to evaluate the model output with the 
observations (r, RMSE, and the standard deviation of the 
model with a referenced to the mean standard deviation 
of the observations). Each point represents one station 
and is colored by NME. Daily temperature correlations 
(Fig. 4a) show less spread than annual temperatures cor-
relation (Fig. 4b), indicating better agreement in the tim-
ing of weather events. However, the standard deviation 
shows greater spread than annual temperatures, reflecting 
differences in magnitude. This is expected because the rea-
nalysis assimilates pressure anomalies, which are directly 
related to synoptic weather systems. For Faro, located 
in the eastern interior of the domain, the model shows 
the worst performance for annual temperature (Fig. 4b). 
For some of the coastal locations (Yukata, Sitka, Juneau, 
Kenai), the model performs less realistically on both daily 
and annual time scales (except Kenai) (Fig. 4b). However, 
for other coastal stations (Homer, Kodiak), it performs 
better for annual than for daily temperature correlations. 
At other stations within the east (Iliamna, King Salmon, 

Cordova, Anchorage), 20CRv3-WRF performs better 
(daily and annual). Overall, the model performs better in 
the area around the west coast compared to the east coast 
stations. Moderate performance for annual temperature is 
observed in stations of the interior (Fairbanks, Talkeetna, 
McGrath, Beaver Creek, Mayo).

The 20CRv3 downscaling performs the best for tempera-
ture in winter (Fig. 4). The performance of each station var-
ies with the seasons. For example, the 20CRv3-WRF simu-
lates winter temperatures well for Kenai but for the autumn 
and summer, this location is one of the worst performing. 
In contrast, the model performs moderately at simulating 
temperatures for Iliamna throughout all seasons, with the 
best performance in autumn. This pattern is similar to that at 
King Salmon, where the best results are seen in summer and 
performance is moderately good throughout the other sea-
sons. Mayo performs best for spring and winter, but poorly 
in autumn and summer.

There is no specific seasonal pattern between the per-
formance of western and eastern stations. For autumn and 
winter, the central and eastern coastal stations (Anchorage, 
Kenai, Cordova, and King Salmon, Iliamna, Homer, Kodiak) 
are part of the better performing stations with the central 
coastal stations performing well for winter. For autumn and 
winter the 20CRv3-WRF simulates temperatures least reli-
ably for the central interior stations (McGrath, Fairbanks, 
and Gulkana). Kenai, Cordova and Beaver Creek (spread 
over the domain) show the poorest temperature performance 
in spring. This spatially unrelated performance is similar in 
summer, with the worst performing stations being Yakutat 
(west coast), Kenai (central east coast) and Mayo (western 

Fig. 2   Comparison of 20CRv3-WRF downscaling output (teal) to its 
20CRv3 input data (orange), ERA5 (blue), and GSOD observational 
data (black) for four selected stations close to tidewater glacier sites: 

(a) Anchorage, (b) Gustavus, (c) Juneau Airport and (d) Portage Gla-
cier. The observational records cover different time spans and contain 
some missing data
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interior). For autumn, the set of worst performing stations 
are different, but again, show a spread over the domain 
(Sitka, Kenai, Mayo) while for winter the worst perform-
ing stations are all within the interior (McGrath, Fairbanks).

For the coastal and interior region, a pattern for stand-
ard deviation could be identified, however not for the other 
metrics. For spring, the coastal stations (apart from King 
Salmon) show lower standard deviation, which means the 
range of daily temperatures is less than the range in observa-
tions. This is a similar pattern in summer, with King Salmon 
being the only coastal station that exceeds the diversity in 
daily temperatures. In autumn, most stations exhibit greater 
variability in simulated temperature than in observational 
records compared to other seasons. For interior stations, 
simulated temperatures generally show more variability than 
observed values during spring (except Talkeetna and Gul-
kana), summer, and autumn. For winter, the stations differ 
and some show higher (McGrath, Fairbanks, Gulkana and 
Beaver Creek) and lower variability (Talkeetna, both Faro 
stations, and Mayo).

3.1.2 � Precipitation

The modeled precipitation shows relatively poor perfor-
mance with the observations in comparison to tempera-
ture. Agreement improves when the data is averaged over 
longer timescales. Precipitation shows higher correlation 
with GSOD for annual accumulated precipitation than for 
daily accumulated precipitation (Fig. S5). The inaccuracy 
in simulating daily precipitation can be related to tempo-
ral location error (Barros and Lettenmaier 1993; Cassano 
et al. 2016), where the precipitation at the end of the day 
is simulated a few hours too late and assigned to the next 
day, causing both days to be inaccurate. Better correlation 
occurs for annual accumulated and 30-year average annual 
accumulated (Fig. 5) precipitation. For nearly all stations, 
the model produces a positive precipitation bias.

Figure 5 shows the annual accumulated precipitation for 
the 20CRv3-WRF and GSOD as well as its annual differ-
ence. Some stations generally overestimate precipitation 
(McGrath, Fairbanks, King Salmon and Juneau), whereas 

other stations (Kodiak, Yakutat and Sitka) underestimate 
precipitation. The 30-year daily accumulated precipitation 
for each station is also presented in Fig. 5. Some coastal 
stations (Yakutat, Sitka, and Juneau) show a dry bias in sum-
mer, and all stations produce a wet bias in winter and spring 
(Fig. 5).

The performance of the 20CRv3-WRF precipitation mod-
eling is shown in Fig. 6 at daily (a) and annual (b) resolution. 
On a daily timescale, 20CRv3-WRF performs least well at 
Yakutat, Juneau, and Sitka. The annual performance shows 
no regional patterns, with the worst performance at Yaku-
tat, Anchorage, and Homer. The daily variability is lower 
in the model than in the observations for regions that are 
furthest from the ocean (McGrath, Talkeetna, Fairbanks, 
Anchorage, King Salmon and Homer). In contrast, Fig. 6 
shows model variability is higher than observed at Kodiak, 
Yakutat, Sitka, and Juneau stations. On annual timescales, 
the model produces lower variability compared to the obser-
vational records for most stations (apart from Yakutat and 
Sitka) which may be related to the use of ensemble mean 
boundary conditions.

Overall, the evaluation of 20CRv3-WRF with station-
based observational records shows that for precipitation, the 
downscaling performs the best in spring and winter (Fig. 6). 
There is no consistent pattern for a given station’s perfor-
mance in simulating precipitation. For example, Kodiak 
is one of the best simulated stations for nearly all seasons 
(apart from autumn) while Anchorage is one of the worst 
locations in spring, winter and summer. However, McGrath 
shows moderate performance throughout all seasons. The 
central interior stations (McGrath, Talkeetna, Fairbanks) 
consistently produce lower variation in precipitation in the 
model than observations for all seasons. Central interior sta-
tions are amongst the better performing stations for autumn 
and winter but less in spring and summer. The easternmost 
coastal stations, Sitka and Juneau, perform best in spring 
but worst in winter. Kodiak is the best performing station for 
spring and summer but performs worse in autumn. Yakutat 
differs most from the other eastern coastal stations (Sitka 
and Juneau) by having a high standard deviation.

3.2 � Evaluation using PRISM and ERA5 gridded data

3.2.1 � Temperature

The 20CRv3-WRF downscaling produces slightly lower 
temperatures than PRISM (Fig. 7). The mountainous areas 
show a mixed bias (Fig. 7), possibly explained by the higher 
resolution PRISM data (800 m). Within the Alaskan Ranges, 
some 20CRv3-WRF grid cells have warmer temperatures 
than PRISM and surrounding ones show colder temperatures. 
Higher resolution enables better representation of colder 

Fig. 3   Left (a-g)—annual mean temperature for the 20CRv3-WRF 
downscaling (teal lines) and GSOD observations (black lines), and 
the difference (model – observations, grey bars). Right (h-m)—daily 
30-year (1986–2015) mean temperature for 20CRv3 downscaling 
modelled data (teal) and GSOD observations (black), and the dif-
ference (model – observations, grey bars). For the selected stations: 
(a,h) Fairbanks International Airport, AK US; (b,i) Gulkana Airport, 
Ak US; (c,j) Anchorage Ted Stevens International Airport, AK US; 
(d,k) King Salmon Airport, AK US; (e,l)Sitka Airport, AK US; (f,m) 
Juneau Airport, AK US; (g,n) Mayo, CA. AK, US for Alaska, United 
States of America, and CA for Canada
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temperatures at high elevation, a result that was also observed 
in the comparison between the downscaling and ERA5.

Figure 8 compares the 30-year (1986–2015) mean tem-
perature from 20CRv3-WRF to ERA5. Differences based on 
resolution are clearly visible in the figure. The 20CRv3-WRF, 
with its higher resolution and more detailed model topogra-
phy than ERA5, presents more temperature variations due 
to elevation. The downscaling, with its complex topography 
along the coast that includes fjords and valleys, produces 
higher temperatures in the lowlands of the coast than ERA5. 
Colder temperatures in the higher altitude mountain regions 
along the coast are also simulated by the downscaling. On 
average, the 20CRv3-WRF produced noticeably lower tem-
peratures (about −6 °C) than ERA5 within the Chugach 
Mountains, Talkeetna Mountains, Alaska Range and Kenai 
Mountains. In most of the area around the mountain ranges, 
20CRv3-WRF produced higher temperatures than ERA5. 
This is because the coarser 31-km resolution of ERA5 
averages the colder temperature of the mountains with the 
warmer temperatures of the foothills. Therefore, differences 
between the 20CRv3-WRF and ERA5 are largely explained 
by resolution and model topography. The comparison also 
shows other regional differences between 20CRv3-WRF and 
ERA5. The downscaling produced higher temperature in the 
interior and east, except in the Southern Panhandle which, 
especially in winter, shows lower temperatures simulated by 
the 20CRv3-WRF. Temperatures in the Southern Panhandle 
are less consistent between 20CRv3-WRF and ERA5 than 
they were between 20CRv3-WRF and PRISM. In general, the 
20CRv3-WRF simulates lower temperature in the west and 
over water. Within the area of Sitka, the downscaling shows 
lower temperatures in comparison with ERA5 and GSOD. 
On average, the difference over the domain is −0.71 °C; how-
ever, when excluding water, the difference between 20CRv3-
WRF and ERA5 reduces to 0.07 °C.

The correlation (r) for temperature between the 20CRv3-
WRF and ERA5 is presented in Fig. 9. In the east and in 
mountainous areas (especially the Alaskan Ranges and Chu-
gach Mountains), the correlation is the lowest. The highest 
correlation is found in the west of the domain, especially on 
Kodiak Island and the surrounding King Salmon area. This 
is also the case for Glacier Bay and around Gustavus, where 

20CRv3-WRF temperatures correlate highly with the rea-
nalysis. Lower correlation in the east interior where Faro is 
located is consistent with the GSOD comparison. Within the 
fjords of the Southern Panhandle, the correlation is also low.

3.2.2 � Precipitation

The comparison with PRISM precipitation data is shown in 
Fig. 10. The difference is highest within the coastal regions, 
which show both positive and negative biases. This con-
trasts with the interior, where 20CRv3-WRF overestimates 
precipitation compared to PRISM. This result is consistent 
with the comparison with GSOD (Sect. 3.1.2) where the 
20CRv3-WRF overestimates precipitation for the interior 
stations McGrath, Fairbanks and Talkeetna.

20CRv3-WRF and ERA5 have similar spatial patterns 
(Fig. 11), with the biggest differences found in areas of com-
plex topography. Both show high accumulation of precipitation 
in the mountain region adjacent to the Gulf of Alaska, consist-
ent with the precipitation pattern in PRISM. This is due to the 
mountains blocking the moisture transfer from the ocean to 
the land interior leading to orographic precipitation. However, 
ERA5, with its coarse resolution, only shows very high precipi-
tation accumulation (> 5000 mm yr−1) in the western Chugach 
Mountains and the northern end of the Coast Mountains (the 
mountain range along the coast of the Southern Panhandle). In 
the 20CRv3-WRF, accumulation this high is present along all 
the mountain ranges. 20CRv3-WRF-simulated precipitation 
in the Alaskan Ranges agrees better with PRISM than with 
ERA5. The downscaling product and ERA5 show an extreme 
drop in precipitation on Kenai Peninsula resulting from the 
Kenai mountains blocking the moist air, but 20CRv3-WRF 
simulates much higher precipitation amounts.

As a result of the coarse resolution, ERA5 predicts high 
precipitation over the water in coastal regions adjacent to 
the mountain ranges (Aleutian Range, Kenai mountains, 
Chugach Mountains, Wrangell-St. Elias Mountains, Coast 
Mountains). 20CRv3-WRF shows increased precipitation 
beginning once the air masses hit the mountain ranges, with 
no extension over the coastal waters. ERA5 has higher pre-
cipitation around mountain ranges, while precipitation in the 
downscaling is more localized, again explained by the reso-
lution difference. ERA5 lacks representation of precipitation 
within regions of complex topography and overall has lower 
precipitation amounts than the 20CRv3-WRF.

Overall, 20CRv3-WRF simulates more precipitation rela-
tive to ERA5 (Fig. 11). ERA5 produces higher precipitation 
along the coast surrounding the mountains and coast, which 
is caused by model resolution. On average over the domain, 
including the ocean and water, the difference maps show that 
20CRv3-WRF produces slightly lower precipitation (−5 mm 
yr−1) than ERA5. Differences are the highest in autumn and 
winter (Fig. 11).

Fig. 4   Daily (a), annual (b) and seasonal ((c) spring—MAM, (d) 
summer—JJA, (e) autumn—SON, (f) winter -DJF) performance for 
2-m temperature—1. McGrath Airport, AK US; 2. Talkeetna Airport, 
AK US; 3. Kenai Airport, AK US; 4. Fairbanks International Air-
port, AK US; 5. Gulkana Airport, Ak US; 6. Anchorage Ted Stevens 
International Airport, AK US; 7. Cordova Airport, AK US; 8. King 
Salmon Airport, AK US; 9. Iliamna Airport, AK US; 10. Homer Air-
port, AK US; 11. Kodiak Airport, AK US; 12. Yakutat Airport, AK 
US; 13. Sitka Airport, AK US; 14. Juneau Airport, AK US; 15. Faro 
AUT YT, CA; 16. Faro, CA; 17. Mayo, CA; 18. Beaver Creek Air-
port, CA. AK, US for Alaska, United States of America, and CA for 
Canada
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Annual as well as seasonal accumulated precipitation 
between the ERA5 and the 20CRv3-WRF are overall posi-
tively correlated (Fig. 12). However, they do not agree as 
well for precipitation as they did for temperature, and are 
anti-correlated in some locations, for example on the leeward 
side of the Kenai Peninsula and in parts of the eastern inte-
rior. Precipitation is least correlated between the 20CRv3-
WRF and ERA reanalysis in summer and most correlated 
in winter. Precipitation from the models is less correlated 
on land than over water (Fig. 12 and Fig. S8). The interior 
shows patches of non-statistically significant results, mainly 
in spring and summer. For autumn, the results are more 
robust, and for winter, only the Kenai Peninsula correla-
tion is not statistically significant. Precipitation in southern 
Alaska is the highest in autumn and winter, the seasons for 
which 20CRv3-WRF produces the best results. In all sea-
sons, correlation is low on the leeward side of Kenai Penin-
sula. This feature can be explained by the detailed topogra-
phy of the downscaling, which creates a boundary for moist 
air on the peninsula. Although temperature has low correla-
tion in the Southern Panhandle in spring, this is the opposite 
for precipitation. The similarity between 20CRv3-WRF and 
reanalysis is in this region is highest in spring.

4 � Discussion

This study presents an evaluation of downscaling 20CRv3 
using WRF over southern Alaska. It is important to note 
that the evaluation should be considered in the context of 
the limited available station records and the limitations of 
the reanalysis product. Overall, the downscaled model repro-
duced station data (GSOD) well with little bias. Spatially, 
the model reconstructed gridded climate data (PRISM) well 
and was most different from the ERA5 reanalysis results. 
This shows that the 20CRv3-WRF produced temperature 
and precipitation realistically.

Topography explains much of the difference between 
reanalysis and observations. The 20CRv3-WRF downs-
caling resolves topography in finer detail (4 km) than the 
coarser (31 km) ERA5 reanalysis. Given that temperature is 
a function of elevation, disparities in modelled elevation as 

compared to station elevation can contribute to variations 
in simulated temperatures (Monaghan et al. 2018). PRISM, 
with a spatial resolution of 800 m, largely preserves the ele-
vation of the stations with minimal smoothing. The average 
temperature appears to be warmer than that obtained through 
downscaling, potentially due to differences in resolution and, 
therefore, elevation.

Precipitation is often overestimated by climate mod-
els in general, including reanalyses such as 20CRv3 and 
ERA5. Precipitation in 20CRv3 is overestimated at high 
altitudes relative to datasets based on station and satellite 
measurements (Slivinski et al. 2021). However, precipi-
tation is not an input variable for the downscaling, and 
so the 20CRv3 precipitation biases do not directly affect 
the downscaling results. Precipitation modelled by WRF 
is, however, still dependent on other input variables that 
are related to the modelled 20CRv3 precipitation. Conse-
quently, this contributes to a higher precipitation in the 
20CRv3-WRF downscaling than seen in the observations.

The downscaling also inherits the uncertainty of the 
input data, which provides the lateral boundary conditions 
(Bruyère et al. 2013; Errico et al. 1993). 20CRv3 has been 
evaluated, and its overall performance compared to obser-
vations, satellite products and other reanalysis products was 
assessed by Slivinski et al. (2021). The authors concluded 
that the 20CRv3 reanalysis successfully estimates mass and 
circulation fields with decadal variability and produces fields 
that are more accurate in the Northern Hemisphere than in 
the Southern Hemisphere. It is worth noting that 20CRv3 
assimilates surface pressure observations, and these have 
been found to better constrain the climate during winter 
than during summer, resulting in higher ensemble spread 
(an indicator of uncertainty) during the warm season (Yu 
et al., 2022). Hawkins et al. (2023a, 2023b) demonstrated 
how the incorporation of additional historical observations 
improved the representation of a historical windstorm in 
the 20CRv3 reanalysis. As a result, the storm Ulysses was 
accurately captured in the improved dataset. This improve-
ment underscores the value of assimilating a greater num-
ber of high-quality observations into the reanalysis system. 
Therefore, the inclusion of standardized, long-term climate 
records from Alaska (as done for Antarctica Wang et al. 
(2021) and Wang et al. (2023) would help fill observational 
gaps and enhance the accuracy of reanalysis input for future 
downscaling efforts in this region.

The 20CRv3-WRF downscaling better represents 
observed temperature than the original 20CRv3. Zhang et al. 
(2021) found that for mainland China, temperature from 
20CRv3 is less accurate than from ERA5; however, their 
results show that 20CRv3 performed better at higher eleva-
tion (3000–5000 m) than ERA5. It is therefore possible that 
our finding of lower correlation between 20CRv3-WRF and 
ERA5 in the Alaskan Ranges (which includes areas above 

Fig. 5   Left (a-g)—yearly accumulated precipitation for the 20CRv3-
WRF downscaling (teal) and GSOD observations, with the difference 
(model – observation) for each year presented in the grey bars. Right 
(h-n)—daily 30-year (1986–2015) average precipitation for 20CRv3 
downscaling modelled data (teal) and GSOD observations (black), 
and the difference (model – observations, grey bars). For the stations: 
(a,h) Fairbanks International Airport, AK US; (b,i) Anchorage Ted 
Stevens International Airport, AK US; (c,j) King Salmon Airport, 
AK US; (d,k) Homer Airport, AK US; (e,l) Kodiak Airport, AK US; 
(f,m) Sitka Airport, AK US; (g,n) Juneau Airport, AK US. AK, US 
for Alaska, United States of America
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3000 m) could be due to the forcing data, in addition to the 
resolution effects discussed previously. Colder temperatures 
in 20CRv3-WRF in the mountainous areas where glaciers 
are located might also be explained by a temperature over-
estimate in ERA5, as has been identified by He et al. (2022) 
for glaciers in China. In the northeast US, previous work 
showed the coarse resolution 20CRv3 reanalysis was unable 
to capture warming in coastal regions, where topographic 
variations include both lowlands and higher elevations 
(Karmalkar and Horton 2021). The coastline of the Gulf of 
Alaska has a similar topography.

The evaluation of 20CRv3-WRF against PRISM supports 
the conclusion that the downscaling produces realistic results 
in simulating temperature. In addition, the complex topog-
raphy and differences between datasets in model elevation 
likely contribute to the low correlation in areas of complex 
terrain such as the Southern Panhandle. This could mean that, 
due to the higher resolution, the downscaling is an improve-
ment in the coastal mountain area relative to ERA5, even 
though it inherits the coastal disadvantage of 20CRv3.

Previous ERA5 evaluations in both the study region 
and similar geographic locations (He et al. 2022; Song 
et al. 2021; Zhang et al. 2021) found inaccurate tempera-
ture on large glaciers (He et al. 2022), overestimated snow 
accumulation (Song et al. 2021) and poorer performance 
in simulating temperature at high elevation compared to 
20CRv3 (Zhang et al. 2021). Our evaluation of 20CRv3-
WRF against ERA5 presented above shows lower correla-
tion within coastal areas with more temperature variation, 
and the difference shows that 20CRv3-WRF produces 
higher temperatures than ERA5 in some coastal areas. 
However, compared to GSOD observations, the downscal-
ing underestimates summer and autumn temperatures in 
coastal locations. Within the Southern Panhandle, tem-
peratures of ERA5 are higher than in the downscaling. 
This region shows low correlation between the datasets, 
which might be explained by a bias in ERA5. The com-
parison to observations in this region is limited to two 
stations (Sitka and Juneau). For Sitka, 20CRv3-WRF pro-
duces a consistent cold bias, while for Juneau, the aver-
age cold bias is smaller and concentrated in winter. The 
Juneau region is cooler in ERA5 than in 20CRv3 and 
GSOD. The results of 20CRv3-WRF and PRISM within 
the Southern panhandle are more consistent.

Precipitation spatial variability is improved by the 
20CRv3-WRF downscaling compared to ERA5, even 
though the downscaling simulation overestimates pre-
cipitation in comparison to GSOD observations. Li et al. 
(2020) showed that WRF downscaling produces higher 
but more realistic precipitation than reanalysis products 
in high mountain glacierized areas. Regions of wet bias 
are especially common within the mountain regions in 
the 20CRv3-WRF. This pattern might be explained by 
the resolution, as the bordering grid cells show lower pre-
cipitation in comparison to the coarser reanalysis (with 
high precipitation variability averaged out by the reanaly-
sis). Another explanation could be that ERA5 is known to 
overestimate solid precipitation in the foothills of moun-
tains in southern Alaska (Song et al. 2021). The 20CRv3-
WRF downscaling produces higher precipitation within 
the mountains compared to PRISM; however, the differ-
ence is less than ERA5, which is known to have a wet bias 
(Lavers et al. 2022). Lavers et al. (2022) evaluated ERA5 
precipitation globally and found a general wet bias, but 
the evaluation was dependent on available observation 
stations, which are rare in Alaska. They found that the 
Spearman’s correlation of ERA5 precipitation with obser-
vations from the few stations available in Alaska ranged 
from 0 to 1 with seasonal differences, and biases varied 
between −2.5 and 5 mm d−1 (for the studied months Janu-
ary, April, July, and October) for the period from 2001 
to 2020 (Lavers et al. 2022). Further evaluation of ERA5 
precipitation would be needed to better understand its 
accuracy in Alaska. The fact that 20CRv3-WRF produces 
higher precipitation than PRISM but less than ERA5 sug-
gests that it might still have a wet bias, though potentially 
less severe than ERA5’s..

On average, precipitation simulated by the 20CRv3-
WRF downscaling model in the study domain is slightly 
lower in comparison to ERA5 but higher than PRISM. 
However, accuracy improves when annually accumulated. 
Weather stations that use gauge data underestimate solid 
precipitation because of wind blowing it, a phenomenon 
known as gauge undercatch (Goodison et al. 1998). This 
is the case in Alaska, where most precipitation in winter 
is snow (Bieniek et al. 2016; Kane and Stuefer 2015). 
The wet bias in winter and spring for nearly all stations 
likely reflects not only overestimation by the model but 
also low biases in the measurements from gauge under-
catch of solid precipitation. The fact that the 20CRv3-
WRF downscaling overestimates precipitation compared 
to the GSOD station observations and PRISM, but with 
on average lower precipitation than ERA5, implies that 
the downscaling improves the estimation of precipitation 
due to the higher spatial resolution, but does not fully 
correct model biases. The physics parameterization could 
also play a role in the overestimation of precipitation and 

Fig. 6   Same as Fig.  5 for daily (a), annual (b) and seasonal ((c) 
spring—MAM, (d) summer—JJA, (e) autumn—SON, (f) winter 
-DJF) accumulated precipitation—1. McGrath Airport, AK US; 2. 
Talkeetna Airport, AK US; 3. Fairbanks International Airport, AK 
US; 4. Anchorage Ted Stevens International Airport, AK US; 5. King 
Salmon Airport, AK US; 6. Homer Airport, AK US; 7. Kodiak Air-
port, AK US; 8. Yakutat Airport, AK US; 9. Sitka Airport, AK US; 
10. Juneau Airport, AK US. AK, US for Alaska, United States of 
America
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Fig. 7   30-year (1981–2010) mean 2-m temperature from (a) 20CRv3-WRF downscaling, (b) PRISM, and (c) the difference (calculated as 
20CRv3-WRF minus PRISM). Minimum, maximum and mean difference values, in °C, are shown inset
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Fig. 8   30-year mean 2-m temperature (1986–2015) from (a) 20CRv3-WRF downscaling; (b) ERA5, (c) difference (calculated as 20CRv3-
WRF—ERA5). Minimum, maximum, and average difference, in °C, are provided inset
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further work is required to explore the influence of dif-
ferent physics schemes that influence precipitation direct 
or indirect.

Our results are consistent with findings from previ-
ous downscaling over Alaska. We found here that the 
20CRv3-WRF downscaling tends to overestimate pre-
cipitation inland. This is similar to the finding of Bieniek 
et al. (2016) that the forcing data potentially introduces a 
positive bias. Bieniek et al. (2016) compared a downscal-
ing model output with GSOD observations and a gridded 
dataset from statistical downscaling by Hill et al. (2015) 
and assessed similarity to the forcing data (ERA-Interim). 
Studies such as Bieniek et al. (2016) and Monaghan et al. 
(2018) have shown that downscaling reanalysis products 
improves precipitation representation compared to the 
original reanalysis products, consistent with our results. 
As in our analysis, Bieniek et al. (2016) also found that 
the higher elevation Alaskan Ranges area has higher pre-
cipitation in the downscaling output than in the reanalysis 
(ERA-Interim). Another similarity is higher precipitation 
in the model output than for the station observations at 
Juneau and Fairbanks. For temperature at Fairbanks, they 
reported a slight warm bias in winter and better model 
performance in summer, as seen in our results. Lader 
et. al (2020) presented a negative precipitation bias for 
Yakutat. Their downscaling dataset over southern Alaska 
(1981–2010, using the Climate Forecast System reanaly-
sis as input data) performed most poorly for Yakutat, with 
RMSE above 14 and a negative bias in precipitation. This 
is consistent with our precipitation results for Yakutat that 
showed RMSE of 14.62 mm the simulated precipitation 
of the 20CRv3-WRF was lower than the observed. Lader 
et al. (2020) attributed this bias to the 4 km resolution of 
their downscaling product, which is too coarse to cap-
ture the topographic changes within the grid cell for the 
location of Yakutat. The station location is close to the 
ocean, and the model underestimates the upward motion 
in the flow pattern of the vertical motion. Because the 
20CRv3-WRF has the same resolution and uses the same 
land surface model (Noah-MP) as Lader et al. (2020), we 
suspect the discrepancy between observed and simulated 
precipitation is similarly due to the model’s handling of 
vertical motion at the ocean-land interface. For tempera-
ture, the downscaling model of Lader et al. (2020) per-
formed better at Juneau than Yakutat, as seen here for the 

20CRv3-WRF downscaling. The better performance of 
simulating temperature than precipitation seen by Lader 
et al. (2020) is also reflected in our results.

Monaghan et al. (2018) used a gridded dataset pro-
duced by statistical downscaling (SNAP dataset), along 
with satellite data and observational records, to validate 
snow cover, temperature, and precipitation for Alaska. 
Their WRF downscaling of Alaska performed more real-
istically for temperature than for precipitation, which was 
also seen in our results. In comparison with SNAP, their 
modelled annual temperature was colder and precipita-
tion higher in the interior, with mixed biases (both nega-
tive and positive) on the coast. This is consistent with 
our comparison between the 20CRv3 downscaling and 
the PRISM dataset, in which the downscaling model also 
showed a negative bias for temperature and a positive bias 
in the interior but mixed biases along the coast. In gen-
eral, our results are consistent with previous downscaling 
studies for Alaska, and we find similar magnitudes and 
patterns of bias for both temperature and precipitation.

5 � Conclusions

This study evaluated the performance of the last four dec-
ades of a new 179-year 20CRv3-WRF downscaling over 
Alaska, with focus on its ability to predict 2-m tempera-
ture and precipitation. The model output was compared 
to observational records (GSOD) for 1986–2015, inter-
polated observational data (PRISM) for 1981–2010 and 
reanalysis (ERA5) for 1986–2015.

For temperature, the 20CRv3 downscaling was highly 
correlated with the gridded datasets (ERA5, PRISM) 
and observations (0.61 ≤ r ≤ 0.96). Differences between 
20CRv3-WRF and ERA5 were larger than the differ-
ences between 20CRv3-WRF and PRISM, which suggests 
that the higher resolution contributes to a more realistic 
simulation of temperature. Higher accuracy was identi-
fied in the western part of the domain. However, ERA5 
has weaknesses in reproducing soil temperatures for the 
eastern part of the domain, which could mean that 2-m 
air temperature is also biased, explaining the lower cor-
relation between the 20CRv3-WRF and ERA 2-m tem-
peratures. The evaluation with observational records indi-
cates realistic performance of the downscaling. Seasonal 
biases were comparable to previous downscaling studies 
for Alaska (Bieniek et al. 2016; Monaghan et al. 2018).

Evaluating precipitation continues to be challenging. 
The performance is worse than for temperature (corre-
lation with GSOD of 0.16 ≤ r ≤ 0.76). Precipitation in 
the downscaling shows more spatial variation than seen 
in ERA5, with a lower correlation than for temperature. 
The 20CRv3-WRF overestimates precipitation, especially 

Fig. 9   Pearson correlation (r) between of 20CRv3-WRF downscaling 
and ERA5 for (a) annual mean (whole domain = p < 0.05) and sea-
sonal ((b) spring—MAM, (c) summer—JJA, (d) autumn—SON, (e) 
winter—DJF) 2-m temperature, calculated over the period 1986–2015 
for each WRF grid cell. Shaded areas indicate p > 0.05, showing no 
statistical significance. Minimum, maximum, and average values of r 
are provided in inset. Further statistical analysis for station locations 
is provided in Table S3
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Fig. 10   30-year (1981–2010) mean precipitation from (a) 20CRv3-WRF downscaling, (b) PRISM, and (c) the difference (calculated as 20CRv3-
WRF minus PRISM). Minimum, maximum and mean difference values, in mm, are shown inset
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Fig. 11   30-year (1981–2010) mean annual accumulated precipitation from (a) 20CRv3-WRF downscaling, (b) ERA5, and (c) the difference 
(calculated as 20CRv3-WRF – ERA5). Minimum, maximum and mean difference values, in mm, are shown inset
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in comparison to observations. However, measurements 
of solid precipitation in Alaska are known to be biased 
because of gauge undercatch (Bieniek et al. 2016; Kane 
and Stuefer 2015). The precipitation results found here 
are consistent with previous downscaling for Alaska 
(Bieniek et al. 2016; Lader et al. 2020; Monaghan et al. 
2018), and with the overestimation of precipitation in 
WRF simulations for other parts of the world (Li et al. 
2020; Maussion et al. 2011).

The results presented here provide a necessary precur-
sor for further use of this dataset. We have shown that the 
20CRv3 can successfully be used as forcing dataset for 
WRF downscaling, resulting in reasonable performance 
for the modern era (1981–2015) when observation-based 
evaluation datasets are available. However, given the 
20CRv3 uncertainty in the nineteenth century and the 
lack of evaluation datasets before 1981, the full 179-
year 20CRv3-WRF downscaling must be used with care. 
Although bias correction would improve the accuracy 
of the dataset, this is challenging because of the limited 
observational records and uncertainty in existing datasets, 
especially for precipitation. The 20CRv3-WRF does not 
perform equally well for temperature and precipitation. 
Despite the challenges, the accuracy of the modern-era 
temperature and precipitation outputs, as well as the 
length and high resolution of the dataset, provide the 
unique possibility to use these data to investigate long 
timescale climate phenomena. Future work will apply 
this downscaling product to the tidewater glacier cycle 
in southern Alaska.
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