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Abstract

Alaska has one of the world's largest glaciated areas and is highly sensitive to climate change. Alaskan glaciers currently
contribute about a third of the global sea level rise, with tidewater glaciers playing a significant role through rapid retreat.
Meteorological observations in this region are insufficient to assess climatic influences on the tidewater glacier cycle, and
existing model datasets are either too coarse or cover too short a period. This study reconstructs the regional climate of
southern Alaska by downscaling the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv3) from 1836-2015 using the
Weather Research and Forecasting model (WRF) to produce a high-resolution 4-km dataset. The new downscaled dataset
(20CRv3-WRF) was validated for 1981-2015 against observational records (GSOD) and the Parameter-elevation Regression
on Independent Slopes Model (PRISM) datasets and compared to European Centre for Medium-Range Weather Forecasts
(ECMWEF) Reanalysis v5 (ERAS5). Compared to the observational records, 20CRV3-WRF performed well for annual mean
temperature (0.61 <r<0.96) and moderately for annual precipitation (0.16 <r<0.76). For temperature, 20CRv3 downscaling
output was more consistent with PRISM than with the coarser resolution ERAS, suggesting a more accurate representation of
temperature than the reanalysis. Precipitation was mostly overestimated in comparison to observations. The spatial variability
of precipitation was better represented in 20CRv3-WRF than ERAS. The results demonstrate that 20CRv3-WRF provides
a reliable high-resolution dataset to assess the influence of climate on southern Alaskan tidewater glaciers, enabling future
studies requiring long-term atmospheric data.

1 Introduction available and unevenly distributed observational records by
using models to provide spatially and temporally continuous
data. To do this, they use a method that combines forecast

models with data assimilation from available observational

Global climate models (GCMs) are important for under-
standing climate processes, variability, change, and for

performing climate experiments. GCMs are used to predict
future climate and simulate past climate. Historical climate
reanalyses have been developed for the period of observed
climate history. They solve the problem of inconsistently
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records (Choudhury et al. 2023; Hersbach et al. 2020; Slivin-
ski et al., 2019; Trenberth et al., 2008). Furthermore, rea-
nalysis datasets are used to evaluate climate model simula-
tions in conjunction with observational records. Reanalysis
datasets (e.g., ERAS (Hersbach et al. 2020), ERAS-Land
(Muiioz-Sabater et al. 2021) generally have higher resolu-
tion than GCMs. However, most climate reanalyses only
start when the first upper air observations became avail-
able (1948), when radiosonde observation became regular
(1958) or at the start of the satellite era (1979) (Compo et al.,
2011; Kobayashi et al., 2015; Slivinski et al., 2019). The
low resolution of GCMs and the short temporal coverage of
reanalysis datasets makes studying long-term local climate
difficult. In this work, we address this problem using the
longest available reanalysis, the NOAA-CIRES-DOE 20th
Century Reanalysis version 3 (20CRv3) spanning 1836 to
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2018 (Slivinski et al., 2019) at a spatial resolution of ~0.7
degree, to study the local climate of southern Alaska.

Global warming has raised mean surface temperatures
by 0.99 +0.15 °C from 1850-1900 to 2011-2020 (Gulev
et al. 2021). The high latitudes are more affected by climate
change because of Arctic amplification (including feed-
backs such as ice-albedo). For the period of 1979-2021 the
Arctic experienced warming of four times as much as the
global average (Rantanen et al. 2022). During 1957-2021,
Alaska was shown to have a rate of warming more than a
third higher than the warming rate for the contiguous United
States (Ballinger et al. 2023). Local climate affects natural
systems, and the effects of climate change vary with latitude.
Warming causes glaciers to melt and retreat, consequently
leading to sea level rise. During the period 1961-2016, melt-
ing glaciers contributed 27 +22 mm to global mean sea level
rise, with a notable large contribution from Alaskan gla-
ciers (Zemp et al., 2019). High latitude and remote regions
typically lack long observational climate records because
weather stations are difficult to maintain in these environ-
ments (Bieniek et al. 2012; De La France and McAfee 2019;
Molnia 2007; Tangborn 1997). Homogenous high-elevation
data covering at least 30 years is currently not available for
this region (Kane and Stuefer 2015). Hence, with the current
limitations of GCMs and reanalyses, changes in ice mass are
often studied on either a global scale or a short-term local
scale through field research, without knowledge of long-term
local-scale changes.

Many glacierized regions are poorly covered by obser-
vations. Alaska has one of the largest temperate and sub-
arctic glaciated areas in the world, which is highly sensi-
tive to climate change, but with few long-term settlements.
From 1961 to 2016, Alaskan glacier mass loss contributed
about one third to the global mean sea level rise (Zemp
et al., 2019). Southern Alaska accommodates ice fields
and mountain, lake-terminating, and tidewater glaciers
(Pfeffer et al., 2014). Changes in climate variations (espe-
cially 2-m air temperature and precipitation) have immedi-
ate effects on glaciers (Rasmussen et al., 2011b; Yde and
Paasche, 2010). Tidewater glaciers in Alaska are retreating
(Arendt et al., 2013; Black and Kurtz, 2023; Rasmussen
et al., 2011a), but the processes triggering their retreat
are not well understood. They are mainly influenced by
factors such as glacier geometry (internal dynamics)
and the underlying land (fjord bathymetry) (Enderlin
et al., 2018; Meier and Post, 1987). However, the overall
retreat of Alaskan tidewater glaciers that started during
the last two centuries (Pfeffer, 2007) indicates that cli-
mate plays a larger role than previously thought (Enderlin
et al., 2018; Post et al., 2011). The temporal cycle length
of the tidewater glacier cycle is on the scale of centuries
(Meier and Post, 1987). However, the weather station net-
work in Alaska is sparse, with a limited time range of
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meteorological observations, inhomogeneous time records
(Bieniek et al., 2012; De La France and McAfee, 2019;
Molnia, 2007; Tangborn, 1997) and a scarcity of observa-
tions at higher altitudes (Kane and Stuefer 2015). There-
fore, using observations alone to investigate the climate
influence on the tidewater glaciers of southern Alaska is
not sufficient.

Dynamical downscaling as well as statistical downscal-
ing have been previously applied over Alaska. Previous
studies concentrated on northern Alaska (e.g., Cai et al.
(2018); Poujol et al. (2020a), the Alaskan interior (Molders
and Kramm, 2010), southeast Alaska (Lader et al. 2020),
or Alaska as a whole (e.g., Bieniek et al. (2016); Cai et al.
(2018); Hill et al. (2015); Lader et al. (2017); McAfee
et al. (2014); Monaghan et al. (2018); Walsh et al. (2018).
The regional climate model used in those studies was the
Weather Research and Forecasting model (WRF) (Powers
et al., 2017; Skamarock et al., 2019), which is a commonly
used downscaling regional climate model. WRF output for
Alaska has been evaluated using either the limited available
observational records or other reanalysis products (inde-
pendent of the forcing data). These evaluations showed WRF
was able to successfully reproduce variables such as 2-m air
temperature, precipitation, and snowfall. Existing Alaskan
downscaling studies focused on reconstructing modern-day
climate or predicting future climate by downscaling GCM
output. None attempted to reconstruct past climate prior to
1979, and therefore do not cover the time frame required to
study the tidewater glacier cycle.

Before using model output for novel applications, it is
necessary to quantify the skill and uncertainty of model
output by evaluating it with observations or reanalyses (and
considering their uncertainty as well). Downscaling and
reanalysis products have been evaluated with observations
(Bieniek et al. 2016; Cassano et al., 2001; Cassano et al.,
2011; Evans et al., 2012; Jeworrek et al., 2021; Lavers et al.
2022; Maussion et al. 2011; Slivinski et al., 2021; Yu et al.,
2021) and remote sensing data (Maussion et al. 2011; Mona-
ghan et al. 2018). Regardless of which evaluation datasets
are used, the statistical methods are usually similar (e.g., root
mean square error, bias, difference, correlation).

This paper investigates the ability of a dynamical downs-
caling model to simulate high-resolution local climate over
glacierized southern Alaska. To do so, we run the WRF
model using the complete 179-year record of 20CRv3 rea-
nalysis as forcing data. We then validate the model output
with available observational records from the Global Surface
Summary of the Day (GSOD) (NOAA 1999) and compare
it to the ERAS reanalysis (Hersbach et al. 2020) and PRISM
(Parameter-elevation Regression on Independent Slopes
Model) data. We focus our evaluation on 2-m air tempera-
ture and precipitation because of the importance of these
variables for glacier mass balance.
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2 Methodology
2.1 Simulation set up for 20CRv3-WRF downscaling

In this study, we downscale the 20CRv3 reanalysis prod-
uct. 20CRv3 is the longest available climate reanalysis
dataset (Slivinski et al., 2019), starting in 1836 and ending
in 2015. We use the 20CRv3 ensemble mean as forcing
data, rather than an arbitrarily chosen ensemble member.
The ensemble mean of the 20CRv3 reanalysis was used to
provide a consistent and representative boundary condi-
tion for long-term climate evaluation, minimizing biases
from individual ensemble members while prioritizing sta-
ble forcing for the downscaling. The ensemble spread of
the 20CRv3 is higher further back in time when fewer
observational records for data assimilation are available
(Slivinski et al., 2019). Because the observations are not
equally distributed, the ensemble spread and, therefore the
uncertainty, is higher in locations where fewer observa-
tions are available.

To conduct the 20CRv3 downscaling, we used WRF
version 4.3, developed by the National Center for Atmos-
pheric Research (NCAR) (Powers et al., 2017; Skama-
rock et al., 2019). WRF was run from 1836-2015 (with
1836 as spin up year). To run convection-permitting
meteorology and improve the simulation of precipita-
tion for regions with significant topography (Prein et al.,
2013Db), the resolution of the nest needed to be at least
4 km. Therefore, the domain set-up consisted of a 20-km
resolution parent domain of 3300 km X 3600 km (165
% 180 grid cells) and a convection-permitting 4-km high-
resolution nest over south-central/south-eastern Alaska
with dimension 1744 km X 1164 km (436 X291 grid
cells) (Fig. S1). Both domains used a temporal resolution
of 3 h. The full downscaling was conducted by running
six 30-year simulations, with 1-year overlap for model
spin-up, in parallel.

Prior to running the simulation, the most appropriate
physics configuration was identified by forcing WRF with
the 20CRv3 for 2010 using five different configurations
(Table S1). The simulated temperature and precipitation
of those five configurations were statistically evaluated
against GSOD observations (rz, RMSE, normalized mean
error, difference) and showed almost no difference. The
WREF physics configuration used to downscale the 20CRv3
was based on the configuration used by Monaghan et al.
(2018). The Thompson scheme was employed for micro-
physics, and Grell 3D scheme was used for the cumulus
parameterization with the nest switched off. The RRTMG
scheme was applied as shortwave and longwave radia-
tion scheme, and the Yonsei University (YSU) scheme
was used for the planetary boundary layer (PBL). MM5

Similarity was applied as the surface layer, and the land-
surface model Noah-MP was used. The 20CRv3-WRF
simulation used the default Noah-MP settings for snow,
which includes snowpack representation in three layers.
Additionally, the Noah-MP glacier treatment option was
activated, which includes phase changes by improving the
snow physics (Niu et al., 2011). This means that melting
seasons are considered for glaciers.

2.2 Evaluation datasets

Daily average 2-m air temperature (TEMP) and daily accu-
mulated precipitation (PRCP) from NOAA GSOD were
used to evaluate the simulation. For the study area, 22
GSOD stations recorded data during the years 1986-2015.
104 stations did not record for the full period, with at least
one year of missing data (Fig. 1). One station was within
a water grid cell and was excluded from the analysis. For
temperature, stations that recorded data for at least 85%
of each year were included (18 stations; see Table S2).
For precipitation, stations that recorded data for at least
70% of each year were used for the analysis (10 stations;
see Table S2).

The second dataset used for model evaluation was the
PRISM data from the PRISM Climate Group, Oregon
State University (PRISM 2023b). This spatial climate
dataset for the United States is based on statistical methods
that interpolate observational records on a digital elevation
model, combined with human expertise (Daly et al. 2002,
2018). Gridded 30-year mean temperature and 30-year
accumulated precipitation data from 1981-2010 (PRISM
2023a) were transformed into netcdf format and re-gridded
to the WRF grid. PRISM only provides 30-year means,
and so annual and seasonal analysis was not performed
with the PRISM dataset.

The model output was also compared to reanalysis data.
This is an approach often used if observational records
are not independent (Slivinski et al. 2021) or non-existent
(Choudhury et al. 2023). The reanalysis datasets enable a
gridded evaluation at annual and sub-annual timescales.
For the reanalysis comparison, the ERAS5 reanalysis was
used (Hersbach et al. 2020). Annual and 30-year mean 2-m
air temperature were calculated for 1986-2015 from the
monthly mean 2-m air temperature. Monthly mean precipi-
tation data was processed to monthly accumulated precipi-
tation and summed to annual accumulated precipitation.
From this, the 30-year mean annual accumulated precipita-
tion for 1986-2015 was calculated. These processes were
conducted on the native ERAS grid. The data was then
re-gridded to the WRF grid using bilinear interpolation to
match the downscaling data.
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Fig.1 (a) GSOD station loca-
tions. Stations that recorded
temperature for at least 85%

of each year from 1986-2015
are shown in red (note: Faro
has two stations), and stations
that also recorded precipitation
for at least 70% of each year
from 1986-2015 are shown in
blue (half circle). Stations in
grey had incomplete records
and were excluded from the
analysis. (b) Map of mountain
ranges and islands referred to in
this chapter, with the Alaska-
Canada border shown as the
dashed black line
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2.3 Evaluation method

Annual mean 2-m air temperature and annual accumulated
precipitation from the downscaling simulation were evalu-
ated. From here onwards, these variables are referred to as
‘temperature’ and ‘precipitation’, respectively.

The evaluation metrics used in this study are root mean
square error (RMSE), square of the Pearson correlation
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elevation (m)

Min: 0.00 | Max: 4947.62 | Avg: 862.11

coefficient (%), normalized mean error (NME), time-aver-
aged difference (DIFF) and standard deviation (¢). RMSE
is defined in Eq. 1:
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RMSE = \/ v Zi=1(mi -0,
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where N is the number of data points m; represents an indi-
vidual model (WRF) value at time i, and o, represents an
individual observation at time i.

r was used to assess the linear relationship of day-to-day
or year-to-year correlation of the values simulated by the
model to the values from the evaluation datasets. r ranges
from —1 to 1 and is ideal at 1. Negative values show anti-
correlation. r is defined in Eq. 2:

L Zi\;l (ml- - ﬁ)x(oi -0) o
VEL (=) 5y 22 (0,-5)°

where m is the mean of the model (WRF) dataset sampled
at observation locations and o is the mean of the observa-
tions. 7* was used to assess the proportion of variation of the
values simulated by WREF in relationship to the evaluation
dataset. Values range from O to 1, with 1 being ideal.

NME was calculated to identify the extent to which the
simulated values differ from the evaluation dataset. NME
is a positive value that, when equal to 0, means the simu-
lated value is the same as the evaluation dataset value. The
higher the NME, the less similarity between the simulated
and evaluation dataset values. NME is defined in Eq. 3:

3

DIFF was used to assess the absolute magnitude of the
similarity between the values simulated for a variable by
WREF and the values of that variable from the evaluation
dataset, defined in Eq. 4:

1 N
DIFF = N2i=1(mi -0, (@)

o explains the variability of the values that are simulated
for a given variable. The standard deviation of the simulated
values produced by WRF was compared with that of the
values from the evaluation datasets. o was defined in Eq. 5:

Zi‘\;l (m; — m)z 5)
N

Downscaling output was evaluated at the point locations
of the GSOD stations (Fig. 1a and Table S2) by comparing
the 20CRv3-WRF with available GSOD observation station
over the period 01-Jan-1986 to 31-Dec-2015. For the avail-
able locations, the model performance was assessed using
RMSE, %, NME, DIFF and standard deviation (o) relative
to the observations.

For ERAS, the modeled recent climate (01-Jan-1986-31-
Dec-2015) was evaluated by comparing the 20CRv3-WRF
downscaling output to gridded ERAS reanalysis data. The

time-averaged difference in 30-year mean temperature and
accumulated precipitation was calculated by subtracting the
re-gridded ERAS from the downscaling output. r was calcu-
lated for annual temperature and precipitation in each grid
cell. For PRISM, the difference between the 20CRv3-WRF
and PRISM for 30-year (01-Jan-1981-31-Dec-2010) mean
temperature and 30-year mean accumulated precipitation
was calculated.

3 Results
3.1 Evaluation using GSOD station data
3.1.1 Temperature

Available station records are evenly distributed across the
domain (Fig. 1). Figure 2 compares the downscaling output
with the input reanalysis data (20CRv3), ERAS and GSOD
observational data for four selected sites near tidewater gla-
cier locations. The figure shows that the 20CRv3-WRF is an
overall improvement relative to the 20CRv3. The 20CRv3
exhibited a larger difference compared to the GSOD data,
but this was reduced by the 20CRv3-WRF downscaling,
especially for Juneau and Anchorage.

The 20CRv3-WRF temperatures are highly correlated
with the GSOD station records (Fig. S2, Fig. 3 and 4). This
can be seen on different time scales and shows that weather
as well as climate are realistically predicted by the downscal-
ing (Fig. S2). The model performs best for temperatures at
eastern interior locations (Mayo, Faro, Beaver Creek, Gul-
kana) (Fig. 3 and 4). At these locations, the 20CRv3-WRF
produces on average a warm bias, but with low normalized
mean errors and high correlation. Overall, the correlation is
similar across all stations.

Figure 3 (a-g) shows the annual temperature for 20CRv3-
WREF and the observations for a subset (seven representative
stations) of the 18 analyzed continuous recording stations
from 19862015 (Fig. S3 and S4 includes the remaining sta-
tions), along with the annual mean difference between them.
This Figure also shows the average over the 1986-2015 time
period for each day of the year to provide an annual cycle
of 30-year mean daily temperature from 20CRv3-WRF and
the observations, along with the difference between model
and observations (Fig. 3h-n). The differences in average
temperatures can mainly be explained by over- or underes-
timation by the model in specific seasons. For example, for
Anchorage, the low annual mean temperature produced by
the model is caused by a cold bias of temperatures in sum-
mer and autumn (Fig. 3c and j). However, in some cases,
for example Sitka, the model shows a temperature bias in all
seasons, which results in the lower annual mean temperature.

@ Springer
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Fig.2 Comparison of 20CRv3-WRF downscaling output (teal) to its
20CRvV3 input data (orange), ERAS (blue), and GSOD observational
data (black) for four selected stations close to tidewater glacier sites:

The downscaling simulates a cold bias for coastal regions
(Iliamna, King Salomon, Cordova, Anchorage, Yakutat,
Sitka with the highest negative bias, see Fig. 3). On the other
hand, the downscaling overestimates temperature at eastern
interior stations (Mayo, Beaver Creek and Faro) during win-
ter (Fig. 3n and Fig. S4). Central interior stations (Gulkana,
Talkeetna and McGrath) show no particular seasonal pattern
of bias.

Figure 4 presents Taylor diagrams that summarize the
performance of the 20CRv3-WRF for simulating daily
and annual temperatures. The diagrams include the sta-
tistics that are used to evaluate the model output with the
observations (r, RMSE, and the standard deviation of the
model with a referenced to the mean standard deviation
of the observations). Each point represents one station
and is colored by NME. Daily temperature correlations
(Fig. 4a) show less spread than annual temperatures cor-
relation (Fig. 4b), indicating better agreement in the tim-
ing of weather events. However, the standard deviation
shows greater spread than annual temperatures, reflecting
differences in magnitude. This is expected because the rea-
nalysis assimilates pressure anomalies, which are directly
related to synoptic weather systems. For Faro, located
in the eastern interior of the domain, the model shows
the worst performance for annual temperature (Fig. 4b).
For some of the coastal locations (Yukata, Sitka, Juneau,
Kenai), the model performs less realistically on both daily
and annual time scales (except Kenai) (Fig. 4b). However,
for other coastal stations (Homer, Kodiak), it performs
better for annual than for daily temperature correlations.
At other stations within the east (Iliamna, King Salmon,
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(a) Anchorage, (b) Gustavus, (c) Juneau Airport and (d) Portage Gla-
cier. The observational records cover different time spans and contain
some missing data

Cordova, Anchorage), 20CRv3-WRF performs better
(daily and annual). Overall, the model performs better in
the area around the west coast compared to the east coast
stations. Moderate performance for annual temperature is
observed in stations of the interior (Fairbanks, Talkeetna,
McGrath, Beaver Creek, Mayo).

The 20CRv3 downscaling performs the best for tempera-
ture in winter (Fig. 4). The performance of each station var-
ies with the seasons. For example, the 20CRv3-WRF simu-
lates winter temperatures well for Kenai but for the autumn
and summer, this location is one of the worst performing.
In contrast, the model performs moderately at simulating
temperatures for Iliamna throughout all seasons, with the
best performance in autumn. This pattern is similar to that at
King Salmon, where the best results are seen in summer and
performance is moderately good throughout the other sea-
sons. Mayo performs best for spring and winter, but poorly
in autumn and summer.

There is no specific seasonal pattern between the per-
formance of western and eastern stations. For autumn and
winter, the central and eastern coastal stations (Anchorage,
Kenai, Cordova, and King Salmon, Iliamna, Homer, Kodiak)
are part of the better performing stations with the central
coastal stations performing well for winter. For autumn and
winter the 20CRv3-WRF simulates temperatures least reli-
ably for the central interior stations (McGrath, Fairbanks,
and Gulkana). Kenai, Cordova and Beaver Creek (spread
over the domain) show the poorest temperature performance
in spring. This spatially unrelated performance is similar in
summer, with the worst performing stations being Yakutat
(west coast), Kenai (central east coast) and Mayo (western



Performance of a 179-year high-resolution climate simulation of Southern Alaska

Page70of25 391

FAIRBANKS INTERNATIONAL AIRPORT, AK US 70261026411

FAIRBANKS INTERNATIONAL AIRPORT, AK US 70261026411

| —— T2 - 20CRV3-WRF
—— TEMP - GSOD
|- T2 - TEMP Difference

E 20
-3
[ E |
G 8 10
S
¢ &,
i :
2, ‘=' -10
E
K] T
g =3
4 m-20
2
a) 1986 1991 1996 2001 2006 2011 h)2 50 100 150 200 250 300 350
GULKANA AIRPORT, AK US 70271026425 o GULKANA AIRPORT, AK US 70271026425
1 <
g
10
go g
n &
5 ® 0
s ®
a-2 5
g g-10
&5 8
>-20
b -4 N’
) 1986 1991 1996 2001 2006 2011 s 50 100 150 200 250 300 350
ANC T.S. INT , AK US 7027 1 5 ANCHORAGE T. S. INTERNATIONAL AIRPORT, AK US 70273026451
S s
4 E
G 3 2 10
g2 £
21 2
g o 5 9
: H
-1 >
9 -5
¥ )
-3 2-10
s
c) 1986 1991 1996 2001 2006 2011 L 50 100 150 200 250 300 350
KING SALMON AIRPORT, AK US 70326025503 KING SALMON AIRPORT, AK US 70326025503
H S 15
-3
4 E 10
G 3 g
= 5
2 &
2 0
. :
0 5 -
£ g
g-1 g
o -10
-2 m
2.5
3 L el qo——_——e————— | i
d) 1986 1991 1996 2001 2006 2011 k) ° 50 100 150 200 250 300 350
SITKA AIRPORT, AK US 70371025333 c SITKA AIRPORT, AK US 70371025333
<15
8 /\/\/\/\/_/’\,\/\/‘/ a
o
E
G & 10
s 4 W 5
o
£ 35
£ o §
2o
£ &
-2 2
= 25
e) 1986 1991 1996 2001 2006 2011 1) ] 50 100 150 200 250 300 350
JUNEAU AIRPORT, AK US 70381025309 JUNEAU AIRPORT, AK US 70381025309
Sis0
7 o
o
o 6 g12s
£° £ 100
g ¢ N 75
23 g
4 & 50
22 b
E 1 g 25
e >
“ o0 g 00
1 2-25
f) 1986 1991 1996 2001 2006 2011 m)3 50 100 150 200 250 300 350
MAYO, CA 71965099999 MAYO, CA 71965099999
3 E 20
2 a
E
g1 g 10
o
g &,
2-1 2
|- ]
g ‘=' -10
-3
>
=4 8-20
-5 >
g) 19 1991 199 2001 2006 2011 n) 3 50 100 150 200 250 300 350
Year Days

@ Springer



391 Page8of25

S. K. Kdnigseder et al.

«Fig.3 Left (a-g)—annual mean temperature for the 20CRv3-WRF
downscaling (teal lines) and GSOD observations (black lines), and
the difference (model — observations, grey bars). Right (h-m)—daily
30-year (1986-2015) mean temperature for 20CRv3 downscaling
modelled data (teal) and GSOD observations (black), and the dif-
ference (model — observations, grey bars). For the selected stations:
(a,h) Fairbanks International Airport, AK US; (b,i) Gulkana Airport,
Ak US; (c.j) Anchorage Ted Stevens International Airport, AK US;
(d,k) King Salmon Airport, AK US; (e,])Sitka Airport, AK US; (f,m)
Juneau Airport, AK US; (g,n) Mayo, CA. AK, US for Alaska, United
States of America, and CA for Canada

interior). For autumn, the set of worst performing stations
are different, but again, show a spread over the domain
(Sitka, Kenai, Mayo) while for winter the worst perform-
ing stations are all within the interior (McGrath, Fairbanks).

For the coastal and interior region, a pattern for stand-
ard deviation could be identified, however not for the other
metrics. For spring, the coastal stations (apart from King
Salmon) show lower standard deviation, which means the
range of daily temperatures is less than the range in observa-
tions. This is a similar pattern in summer, with King Salmon
being the only coastal station that exceeds the diversity in
daily temperatures. In autumn, most stations exhibit greater
variability in simulated temperature than in observational
records compared to other seasons. For interior stations,
simulated temperatures generally show more variability than
observed values during spring (except Talkeetna and Gul-
kana), summer, and autumn. For winter, the stations differ
and some show higher (McGrath, Fairbanks, Gulkana and
Beaver Creek) and lower variability (Talkeetna, both Faro
stations, and Mayo).

3.1.2 Precipitation

The modeled precipitation shows relatively poor perfor-
mance with the observations in comparison to tempera-
ture. Agreement improves when the data is averaged over
longer timescales. Precipitation shows higher correlation
with GSOD for annual accumulated precipitation than for
daily accumulated precipitation (Fig. S5). The inaccuracy
in simulating daily precipitation can be related to tempo-
ral location error (Barros and Lettenmaier 1993; Cassano
et al. 2016), where the precipitation at the end of the day
is simulated a few hours too late and assigned to the next
day, causing both days to be inaccurate. Better correlation
occurs for annual accumulated and 30-year average annual
accumulated (Fig. 5) precipitation. For nearly all stations,
the model produces a positive precipitation bias.

Figure 5 shows the annual accumulated precipitation for
the 20CRv3-WRF and GSOD as well as its annual differ-
ence. Some stations generally overestimate precipitation
(McGrath, Fairbanks, King Salmon and Juneau), whereas
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other stations (Kodiak, Yakutat and Sitka) underestimate
precipitation. The 30-year daily accumulated precipitation
for each station is also presented in Fig. 5. Some coastal
stations (Yakutat, Sitka, and Juneau) show a dry bias in sum-
mer, and all stations produce a wet bias in winter and spring
(Fig. 5).

The performance of the 20CRv3-WRF precipitation mod-
eling is shown in Fig. 6 at daily (a) and annual (b) resolution.
On a daily timescale, 20CRv3-WREF performs least well at
Yakutat, Juneau, and Sitka. The annual performance shows
no regional patterns, with the worst performance at Yaku-
tat, Anchorage, and Homer. The daily variability is lower
in the model than in the observations for regions that are
furthest from the ocean (McGrath, Talkeetna, Fairbanks,
Anchorage, King Salmon and Homer). In contrast, Fig. 6
shows model variability is higher than observed at Kodiak,
Yakutat, Sitka, and Juneau stations. On annual timescales,
the model produces lower variability compared to the obser-
vational records for most stations (apart from Yakutat and
Sitka) which may be related to the use of ensemble mean
boundary conditions.

Overall, the evaluation of 20CRv3-WRF with station-
based observational records shows that for precipitation, the
downscaling performs the best in spring and winter (Fig. 6).
There is no consistent pattern for a given station’s perfor-
mance in simulating precipitation. For example, Kodiak
is one of the best simulated stations for nearly all seasons
(apart from autumn) while Anchorage is one of the worst
locations in spring, winter and summer. However, McGrath
shows moderate performance throughout all seasons. The
central interior stations (McGrath, Talkeetna, Fairbanks)
consistently produce lower variation in precipitation in the
model than observations for all seasons. Central interior sta-
tions are amongst the better performing stations for autumn
and winter but less in spring and summer. The easternmost
coastal stations, Sitka and Juneau, perform best in spring
but worst in winter. Kodiak is the best performing station for
spring and summer but performs worse in autumn. Yakutat
differs most from the other eastern coastal stations (Sitka
and Juneau) by having a high standard deviation.

3.2 Evaluation using PRISM and ERAS5 gridded data
3.2.1 Temperature

The 20CRv3-WRF downscaling produces slightly lower
temperatures than PRISM (Fig. 7). The mountainous areas
show a mixed bias (Fig. 7), possibly explained by the higher
resolution PRISM data (800 m). Within the Alaskan Ranges,
some 20CRv3-WRF grid cells have warmer temperatures
than PRISM and surrounding ones show colder temperatures.
Higher resolution enables better representation of colder
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«Fig.4 Daily (a), annual (b) and seasonal ((c) spring—MAM, (d)
summer—IJJA, (e) autumn—SON, (f) winter -DJF) performance for
2-m temperature—1. McGrath Airport, AK US; 2. Talkeetna Airport,
AK US; 3. Kenai Airport, AK US; 4. Fairbanks International Air-
port, AK US; 5. Gulkana Airport, Ak US; 6. Anchorage Ted Stevens
International Airport, AK US; 7. Cordova Airport, AK US; 8. King
Salmon Airport, AK US; 9. Iliamna Airport, AK US; 10. Homer Air-
port, AK US; 11. Kodiak Airport, AK US; 12. Yakutat Airport, AK
US; 13. Sitka Airport, AK US; 14. Juneau Airport, AK US; 15. Faro
AUT YT, CA; 16. Faro, CA; 17. Mayo, CA; 18. Beaver Creek Air-
port, CA. AK, US for Alaska, United States of America, and CA for
Canada

temperatures at high elevation, a result that was also observed
in the comparison between the downscaling and ERAS.

Figure 8 compares the 30-year (1986-2015) mean tem-
perature from 20CRv3-WRF to ERAS. Differences based on
resolution are clearly visible in the figure. The 20CRv3-WREF,
with its higher resolution and more detailed model topogra-
phy than ERAS, presents more temperature variations due
to elevation. The downscaling, with its complex topography
along the coast that includes fjords and valleys, produces
higher temperatures in the lowlands of the coast than ERAS.
Colder temperatures in the higher altitude mountain regions
along the coast are also simulated by the downscaling. On
average, the 20CRv3-WRF produced noticeably lower tem-
peratures (about —6 °C) than ERAS within the Chugach
Mountains, Talkeetna Mountains, Alaska Range and Kenai
Mountains. In most of the area around the mountain ranges,
20CRv3-WREF produced higher temperatures than ERAS.
This is because the coarser 31-km resolution of ERAS
averages the colder temperature of the mountains with the
warmer temperatures of the foothills. Therefore, differences
between the 20CRv3-WRF and ERAS are largely explained
by resolution and model topography. The comparison also
shows other regional differences between 20CRv3-WRF and
ERAS. The downscaling produced higher temperature in the
interior and east, except in the Southern Panhandle which,
especially in winter, shows lower temperatures simulated by
the 20CRv3-WRF. Temperatures in the Southern Panhandle
are less consistent between 20CRv3-WRF and ERAS than
they were between 20CRv3-WRF and PRISM. In general, the
20CRv3-WRF simulates lower temperature in the west and
over water. Within the area of Sitka, the downscaling shows
lower temperatures in comparison with ERA5 and GSOD.
On average, the difference over the domain is —0.71 °C; how-
ever, when excluding water, the difference between 20CRv3-
WREF and ERAS reduces to 0.07 °C.

The correlation (r) for temperature between the 20CRv3-
WRF and ERAS is presented in Fig. 9. In the east and in
mountainous areas (especially the Alaskan Ranges and Chu-
gach Mountains), the correlation is the lowest. The highest
correlation is found in the west of the domain, especially on
Kodiak Island and the surrounding King Salmon area. This
is also the case for Glacier Bay and around Gustavus, where
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20CRv3-WREF temperatures correlate highly with the rea-
nalysis. Lower correlation in the east interior where Faro is
located is consistent with the GSOD comparison. Within the
fjords of the Southern Panhandle, the correlation is also low.

3.2.2 Precipitation

The comparison with PRISM precipitation data is shown in
Fig. 10. The difference is highest within the coastal regions,
which show both positive and negative biases. This con-
trasts with the interior, where 20CRv3-WRF overestimates
precipitation compared to PRISM. This result is consistent
with the comparison with GSOD (Sect. 3.1.2) where the
20CRv3-WREF overestimates precipitation for the interior
stations McGrath, Fairbanks and Talkeetna.

20CRv3-WRF and ERAS have similar spatial patterns
(Fig. 11), with the biggest differences found in areas of com-
plex topography. Both show high accumulation of precipitation
in the mountain region adjacent to the Gulf of Alaska, consist-
ent with the precipitation pattern in PRISM. This is due to the
mountains blocking the moisture transfer from the ocean to
the land interior leading to orographic precipitation. However,
ERAS, with its coarse resolution, only shows very high precipi-
tation accumulation (> 5000 mm yr~') in the western Chugach
Mountains and the northern end of the Coast Mountains (the
mountain range along the coast of the Southern Panhandle). In
the 20CRv3-WREF, accumulation this high is present along all
the mountain ranges. 20CRv3-WRF-simulated precipitation
in the Alaskan Ranges agrees better with PRISM than with
ERAS. The downscaling product and ERA5 show an extreme
drop in precipitation on Kenai Peninsula resulting from the
Kenai mountains blocking the moist air, but 20CRv3-WRF
simulates much higher precipitation amounts.

As a result of the coarse resolution, ERAS predicts high
precipitation over the water in coastal regions adjacent to
the mountain ranges (Aleutian Range, Kenai mountains,
Chugach Mountains, Wrangell-St. Elias Mountains, Coast
Mountains). 20CRv3-WRF shows increased precipitation
beginning once the air masses hit the mountain ranges, with
no extension over the coastal waters. ERAS has higher pre-
cipitation around mountain ranges, while precipitation in the
downscaling is more localized, again explained by the reso-
lution difference. ERAS lacks representation of precipitation
within regions of complex topography and overall has lower
precipitation amounts than the 20CRv3-WRF.

Overall, 20CRv3-WRF simulates more precipitation rela-
tive to ERAS (Fig. 11). ERAS produces higher precipitation
along the coast surrounding the mountains and coast, which
is caused by model resolution. On average over the domain,
including the ocean and water, the difference maps show that
20CRv3-WREF produces slightly lower precipitation (—5 mm
yr~!) than ERAS. Differences are the highest in autumn and
winter (Fig. 11).
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«Fig.5 Left (a-g)—yearly accumulated precipitation for the 20CRv3-
WREF downscaling (teal) and GSOD observations, with the difference
(model — observation) for each year presented in the grey bars. Right
(h-n)—daily 30-year (1986-2015) average precipitation for 20CRv3
downscaling modelled data (teal) and GSOD observations (black),
and the difference (model — observations, grey bars). For the stations:
(a,h) Fairbanks International Airport, AK US; (b,i) Anchorage Ted
Stevens International Airport, AK US; (c,j) King Salmon Airport,
AK US; (d,k) Homer Airport, AK US; (e,]) Kodiak Airport, AK US;
(f)m) Sitka Airport, AK US; (g,n) Juneau Airport, AK US. AK, US
for Alaska, United States of America

Annual as well as seasonal accumulated precipitation
between the ERAS and the 20CRv3-WREF are overall posi-
tively correlated (Fig. 12). However, they do not agree as
well for precipitation as they did for temperature, and are
anti-correlated in some locations, for example on the leeward
side of the Kenai Peninsula and in parts of the eastern inte-
rior. Precipitation is least correlated between the 20CRv3-
WREF and ERA reanalysis in summer and most correlated
in winter. Precipitation from the models is less correlated
on land than over water (Fig. 12 and Fig. S8). The interior
shows patches of non-statistically significant results, mainly
in spring and summer. For autumn, the results are more
robust, and for winter, only the Kenai Peninsula correla-
tion is not statistically significant. Precipitation in southern
Alaska is the highest in autumn and winter, the seasons for
which 20CRv3-WRF produces the best results. In all sea-
sons, correlation is low on the leeward side of Kenai Penin-
sula. This feature can be explained by the detailed topogra-
phy of the downscaling, which creates a boundary for moist
air on the peninsula. Although temperature has low correla-
tion in the Southern Panhandle in spring, this is the opposite
for precipitation. The similarity between 20CRv3-WRF and
reanalysis is in this region is highest in spring.

4 Discussion

This study presents an evaluation of downscaling 20CRv3
using WRF over southern Alaska. It is important to note
that the evaluation should be considered in the context of
the limited available station records and the limitations of
the reanalysis product. Overall, the downscaled model repro-
duced station data (GSOD) well with little bias. Spatially,
the model reconstructed gridded climate data (PRISM) well
and was most different from the ERAS reanalysis results.
This shows that the 20CRv3-WRF produced temperature
and precipitation realistically.

Topography explains much of the difference between
reanalysis and observations. The 20CRv3-WRF downs-
caling resolves topography in finer detail (4 km) than the
coarser (31 km) ERAS reanalysis. Given that temperature is
a function of elevation, disparities in modelled elevation as
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compared to station elevation can contribute to variations
in simulated temperatures (Monaghan et al. 2018). PRISM,
with a spatial resolution of 800 m, largely preserves the ele-
vation of the stations with minimal smoothing. The average
temperature appears to be warmer than that obtained through
downscaling, potentially due to differences in resolution and,
therefore, elevation.

Precipitation is often overestimated by climate mod-
els in general, including reanalyses such as 20CRv3 and
ERAS. Precipitation in 20CRv3 is overestimated at high
altitudes relative to datasets based on station and satellite
measurements (Slivinski et al. 2021). However, precipi-
tation is not an input variable for the downscaling, and
so the 20CRv3 precipitation biases do not directly affect
the downscaling results. Precipitation modelled by WRF
is, however, still dependent on other input variables that
are related to the modelled 20CRv3 precipitation. Conse-
quently, this contributes to a higher precipitation in the
20CRv3-WRF downscaling than seen in the observations.

The downscaling also inherits the uncertainty of the
input data, which provides the lateral boundary conditions
(Bruyere et al. 2013; Errico et al. 1993). 20CRv3 has been
evaluated, and its overall performance compared to obser-
vations, satellite products and other reanalysis products was
assessed by Slivinski et al. (2021). The authors concluded
that the 20CRv3 reanalysis successfully estimates mass and
circulation fields with decadal variability and produces fields
that are more accurate in the Northern Hemisphere than in
the Southern Hemisphere. It is worth noting that 20CRv3
assimilates surface pressure observations, and these have
been found to better constrain the climate during winter
than during summer, resulting in higher ensemble spread
(an indicator of uncertainty) during the warm season (Yu
et al., 2022). Hawkins et al. (2023a, 2023b) demonstrated
how the incorporation of additional historical observations
improved the representation of a historical windstorm in
the 20CRv3 reanalysis. As a result, the storm Ulysses was
accurately captured in the improved dataset. This improve-
ment underscores the value of assimilating a greater num-
ber of high-quality observations into the reanalysis system.
Therefore, the inclusion of standardized, long-term climate
records from Alaska (as done for Antarctica Wang et al.
(2021) and Wang et al. (2023) would help fill observational
gaps and enhance the accuracy of reanalysis input for future
downscaling efforts in this region.

The 20CRv3-WRF downscaling better represents
observed temperature than the original 20CRv3. Zhang et al.
(2021) found that for mainland China, temperature from
20CRv3 is less accurate than from ERAS; however, their
results show that 20CRv3 performed better at higher eleva-
tion (3000-5000 m) than ERAS. It is therefore possible that
our finding of lower correlation between 20CRv3-WRF and
ERAS in the Alaskan Ranges (which includes areas above
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«Fig.6 Same as Fig. 5 for daily (a), annual (b) and seasonal ((c)
spring—MAM, (d) summer—IJJA, (e) autumn—SON, (f) winter
-DJF) accumulated precipitation—1. McGrath Airport, AK US; 2.
Talkeetna Airport, AK US; 3. Fairbanks International Airport, AK
US; 4. Anchorage Ted Stevens International Airport, AK US; 5. King
Salmon Airport, AK US; 6. Homer Airport, AK US; 7. Kodiak Air-
port, AK US; 8. Yakutat Airport, AK US; 9. Sitka Airport, AK US;
10. Juneau Airport, AK US. AK, US for Alaska, United States of
America

3000 m) could be due to the forcing data, in addition to the
resolution effects discussed previously. Colder temperatures
in 20CRv3-WREF in the mountainous areas where glaciers
are located might also be explained by a temperature over-
estimate in ERAS, as has been identified by He et al. (2022)
for glaciers in China. In the northeast US, previous work
showed the coarse resolution 20CRv3 reanalysis was unable
to capture warming in coastal regions, where topographic
variations include both lowlands and higher elevations
(Karmalkar and Horton 2021). The coastline of the Gulf of
Alaska has a similar topography.

The evaluation of 20CRv3-WRF against PRISM supports
the conclusion that the downscaling produces realistic results
in simulating temperature. In addition, the complex topog-
raphy and differences between datasets in model elevation
likely contribute to the low correlation in areas of complex
terrain such as the Southern Panhandle. This could mean that,
due to the higher resolution, the downscaling is an improve-
ment in the coastal mountain area relative to ERAS, even
though it inherits the coastal disadvantage of 20CRv3.

Previous ERAS evaluations in both the study region
and similar geographic locations (He et al. 2022; Song
et al. 2021; Zhang et al. 2021) found inaccurate tempera-
ture on large glaciers (He et al. 2022), overestimated snow
accumulation (Song et al. 2021) and poorer performance
in simulating temperature at high elevation compared to
20CRv3 (Zhang et al. 2021). Our evaluation of 20CRv3-
WREF against ERAS5 presented above shows lower correla-
tion within coastal areas with more temperature variation,
and the difference shows that 20CRv3-WRF produces
higher temperatures than ERAS in some coastal areas.
However, compared to GSOD observations, the downscal-
ing underestimates summer and autumn temperatures in
coastal locations. Within the Southern Panhandle, tem-
peratures of ERAS are higher than in the downscaling.
This region shows low correlation between the datasets,
which might be explained by a bias in ERAS5. The com-
parison to observations in this region is limited to two
stations (Sitka and Juneau). For Sitka, 20CRv3-WREF pro-
duces a consistent cold bias, while for Juneau, the aver-
age cold bias is smaller and concentrated in winter. The
Juneau region is cooler in ERAS than in 20CRv3 and
GSOD. The results of 20CRv3-WRF and PRISM within
the Southern panhandle are more consistent.
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Precipitation spatial variability is improved by the
20CRv3-WRF downscaling compared to ERAS, even
though the downscaling simulation overestimates pre-
cipitation in comparison to GSOD observations. Li et al.
(2020) showed that WRF downscaling produces higher
but more realistic precipitation than reanalysis products
in high mountain glacierized areas. Regions of wet bias
are especially common within the mountain regions in
the 20CRv3-WREF. This pattern might be explained by
the resolution, as the bordering grid cells show lower pre-
cipitation in comparison to the coarser reanalysis (with
high precipitation variability averaged out by the reanaly-
sis). Another explanation could be that ERAS is known to
overestimate solid precipitation in the foothills of moun-
tains in southern Alaska (Song et al. 2021). The 20CRv3-
WRF downscaling produces higher precipitation within
the mountains compared to PRISM; however, the differ-
ence is less than ERAS, which is known to have a wet bias
(Lavers et al. 2022). Lavers et al. (2022) evaluated ERAS
precipitation globally and found a general wet bias, but
the evaluation was dependent on available observation
stations, which are rare in Alaska. They found that the
Spearman’s correlation of ERAS precipitation with obser-
vations from the few stations available in Alaska ranged
from O to 1 with seasonal differences, and biases varied
between —2.5 and 5 mm d~! (for the studied months Janu-
ary, April, July, and October) for the period from 2001
to 2020 (Lavers et al. 2022). Further evaluation of ERAS
precipitation would be needed to better understand its
accuracy in Alaska. The fact that 20CRv3-WRF produces
higher precipitation than PRISM but less than ERAS sug-
gests that it might still have a wet bias, though potentially
less severe than ERAS’s..

On average, precipitation simulated by the 20CRv3-
WRF downscaling model in the study domain is slightly
lower in comparison to ERAS but higher than PRISM.
However, accuracy improves when annually accumulated.
Weather stations that use gauge data underestimate solid
precipitation because of wind blowing it, a phenomenon
known as gauge undercatch (Goodison et al. 1998). This
is the case in Alaska, where most precipitation in winter
is snow (Bieniek et al. 2016; Kane and Stuefer 2015).
The wet bias in winter and spring for nearly all stations
likely reflects not only overestimation by the model but
also low biases in the measurements from gauge under-
catch of solid precipitation. The fact that the 20CRv3-
WREF downscaling overestimates precipitation compared
to the GSOD station observations and PRISM, but with
on average lower precipitation than ERAS, implies that
the downscaling improves the estimation of precipitation
due to the higher spatial resolution, but does not fully
correct model biases. The physics parameterization could
also play a role in the overestimation of precipitation and
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WRF—ERAS). Minimum, maximum, and average difference, in °C, are provided inset
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20CRv3-WRF ERAS 2-m temperature correlation 1986-2015
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«Fig.9 Pearson correlation (r) between of 20CRv3-WRF downscaling
and ERAS for (a) annual mean (whole domain =p < 0.05) and sea-
sonal ((b) spring—MAM, (c¢) summer—IJJA, (d) autumn—SON, (e)
winter—DIJF) 2-m temperature, calculated over the period 19862015
for each WRF grid cell. Shaded areas indicate p> 0.05, showing no
statistical significance. Minimum, maximum, and average values of r
are provided in inset. Further statistical analysis for station locations
is provided in Table S3

further work is required to explore the influence of dif-
ferent physics schemes that influence precipitation direct
or indirect.

Our results are consistent with findings from previ-
ous downscaling over Alaska. We found here that the
20CRv3-WRF downscaling tends to overestimate pre-
cipitation inland. This is similar to the finding of Bieniek
et al. (2016) that the forcing data potentially introduces a
positive bias. Bieniek et al. (2016) compared a downscal-
ing model output with GSOD observations and a gridded
dataset from statistical downscaling by Hill et al. (2015)
and assessed similarity to the forcing data (ERA-Interim).
Studies such as Bieniek et al. (2016) and Monaghan et al.
(2018) have shown that downscaling reanalysis products
improves precipitation representation compared to the
original reanalysis products, consistent with our results.
As in our analysis, Bieniek et al. (2016) also found that
the higher elevation Alaskan Ranges area has higher pre-
cipitation in the downscaling output than in the reanalysis
(ERA-Interim). Another similarity is higher precipitation
in the model output than for the station observations at
Juneau and Fairbanks. For temperature at Fairbanks, they
reported a slight warm bias in winter and better model
performance in summer, as seen in our results. Lader
et. al (2020) presented a negative precipitation bias for
Yakutat. Their downscaling dataset over southern Alaska
(1981-2010, using the Climate Forecast System reanaly-
sis as input data) performed most poorly for Yakutat, with
RMSE above 14 and a negative bias in precipitation. This
is consistent with our precipitation results for Yakutat that
showed RMSE of 14.62 mm the simulated precipitation
of the 20CRv3-WRF was lower than the observed. Lader
et al. (2020) attributed this bias to the 4 km resolution of
their downscaling product, which is too coarse to cap-
ture the topographic changes within the grid cell for the
location of Yakutat. The station location is close to the
ocean, and the model underestimates the upward motion
in the flow pattern of the vertical motion. Because the
20CRv3-WREF has the same resolution and uses the same
land surface model (Noah-MP) as Lader et al. (2020), we
suspect the discrepancy between observed and simulated
precipitation is similarly due to the model’s handling of
vertical motion at the ocean-land interface. For tempera-
ture, the downscaling model of Lader et al. (2020) per-
formed better at Juneau than Yakutat, as seen here for the
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20CRv3-WRF downscaling. The better performance of
simulating temperature than precipitation seen by Lader
et al. (2020) is also reflected in our results.

Monaghan et al. (2018) used a gridded dataset pro-
duced by statistical downscaling (SNAP dataset), along
with satellite data and observational records, to validate
snow cover, temperature, and precipitation for Alaska.
Their WRF downscaling of Alaska performed more real-
istically for temperature than for precipitation, which was
also seen in our results. In comparison with SNAP, their
modelled annual temperature was colder and precipita-
tion higher in the interior, with mixed biases (both nega-
tive and positive) on the coast. This is consistent with
our comparison between the 20CRv3 downscaling and
the PRISM dataset, in which the downscaling model also
showed a negative bias for temperature and a positive bias
in the interior but mixed biases along the coast. In gen-
eral, our results are consistent with previous downscaling
studies for Alaska, and we find similar magnitudes and
patterns of bias for both temperature and precipitation.

5 Conclusions

This study evaluated the performance of the last four dec-
ades of a new 179-year 20CRv3-WRF downscaling over
Alaska, with focus on its ability to predict 2-m tempera-
ture and precipitation. The model output was compared
to observational records (GSOD) for 1986-2015, inter-
polated observational data (PRISM) for 1981-2010 and
reanalysis (ERAS5) for 1986-2015.

For temperature, the 20CRv3 downscaling was highly
correlated with the gridded datasets (ERAS, PRISM)
and observations (0.61 <r< 0.96). Differences between
20CRv3-WRF and ERAS were larger than the differ-
ences between 20CRv3-WRF and PRISM, which suggests
that the higher resolution contributes to a more realistic
simulation of temperature. Higher accuracy was identi-
fied in the western part of the domain. However, ERAS5
has weaknesses in reproducing soil temperatures for the
eastern part of the domain, which could mean that 2-m
air temperature is also biased, explaining the lower cor-
relation between the 20CRv3-WRF and ERA 2-m tem-
peratures. The evaluation with observational records indi-
cates realistic performance of the downscaling. Seasonal
biases were comparable to previous downscaling studies
for Alaska (Bieniek et al. 2016; Monaghan et al. 2018).

Evaluating precipitation continues to be challenging.
The performance is worse than for temperature (corre-
lation with GSOD of 0.16 <r< 0.76). Precipitation in
the downscaling shows more spatial variation than seen
in ERAS, with a lower correlation than for temperature.
The 20CRv3-WRF overestimates precipitation, especially
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20CRv3-WRF avg precipitation 1981-2010 PRISM avg precipitation 1981-2010
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Fig. 10 30-year (1981-2010) mean precipitation from (a) 20CRv3-WRF downscaling, (b) PRISM, and (c) the difference (calculated as 20CRv3-
WRF minus PRISM). Minimum, maximum and mean difference values, in mm, are shown inset
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20CRv3-WRF avg precipitation 1986-2015 ERAS avg precipitation 1986-2015
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Fig. 11 30-year (1981-2010) mean annual accumulated precipitation from (a) 20CRv3-WRF downscaling, (b) ERAS, and (c) the difference
(calculated as 20CRv3-WRF — ERAS5). Minimum, maximum and mean difference values, in mm, are shown inset
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20CRv3-WRF ERADS precipitation correlation 1986-2015
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«Fig. 12 Pearson correlation (r) between of 20CRv3-WRF downscal-
ing and ERAS for (a) annual mean and seasonal ((b) spring—MAM,
(¢) summer—IJJA, (d) autumn—SON, (e) winter—DIJF) accumulated
precipitation, calculated over the period 1986-2015 for each WRF
grid cell (shaded area means p> 0.05 showing no statistical signifi-
cance)—minimum, maximum, and average values of r are provided
inset. Further statistical analysis for station locations is provided in
Table S4

in comparison to observations. However, measurements
of solid precipitation in Alaska are known to be biased
because of gauge undercatch (Bieniek et al. 2016; Kane
and Stuefer 2015). The precipitation results found here
are consistent with previous downscaling for Alaska
(Bieniek et al. 2016; Lader et al. 2020; Monaghan et al.
2018), and with the overestimation of precipitation in
WREF simulations for other parts of the world (Li et al.
2020; Maussion et al. 2011).

The results presented here provide a necessary precur-
sor for further use of this dataset. We have shown that the
20CRvV3 can successfully be used as forcing dataset for
WRF downscaling, resulting in reasonable performance
for the modern era (1981-2015) when observation-based
evaluation datasets are available. However, given the
20CRv3 uncertainty in the nineteenth century and the
lack of evaluation datasets before 1981, the full 179-
year 20CRv3-WRF downscaling must be used with care.
Although bias correction would improve the accuracy
of the dataset, this is challenging because of the limited
observational records and uncertainty in existing datasets,
especially for precipitation. The 20CRv3-WRF does not
perform equally well for temperature and precipitation.
Despite the challenges, the accuracy of the modern-era
temperature and precipitation outputs, as well as the
length and high resolution of the dataset, provide the
unique possibility to use these data to investigate long
timescale climate phenomena. Future work will apply
this downscaling product to the tidewater glacier cycle
in southern Alaska.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00704-025-05612-x.
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