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ABSTRACT

Barramundi or Asian seabass, Lates calcarifer, is an important food fish species in tropical aquaculture, but
intensive farming is associated with increased susceptibility to various bacterial, viral, and parasitic diseases.
Recent findings suggest that functional diets provide a broader advantage over the pathogen-specific protection
of vaccines by improving growth performance, gut health, and immunity in teleosts. In this study, we conducted
a six-week feeding trial in juvenile L. calcarifer (50.1 + 0.0 g) whereby growth and production performance on a
diet containing 0.5 % of a synergistic blend of organic acids, monoglycerides esters of organic acids and phy-
tobiotics (OMGP) was compared with a control diet (CTRL), using quadruplicate 500 L tanks with 30 fish per
tank. At the end of six weeks, juveniles were injected with Poly(I:C) to evaluate if the OMGP blend feed additive
stimulates anti-viral immune responses based on a comparative RNAseq study 24 hour (24 h) and 72 h post-
challenge. Juveniles fed with the OMGP blend exhibited an 8 % higher average final body weight
(147.5 £ 6.9 vs. 136.5 + 4.6 g) and a 6 % higher overall final biomass (4087 + 107 vs. 3855 + 149 g) compared
to CTRL group (P < 0.05). The addition of the OMGP blend resulted in significantly reduced fasting blood glucose
levels, higher white blood cell counts and greater intestinal mucosal villi heights compared to fish fed CTRL diet.
OMGTP fed L. calcarifer exhibited an increased number and upregulation of differentially expressed genes asso-
ciated with infectious disease related immune pathways, such as Toll-like receptor (TLR) and NOD-like (NLR)
receptor signaling, and Chemokine signaling pathways. Incorporating organic acids, monoglyceride esters of
organic acids and phytobiotics improved growth performance, increased intestinal mucosal villi heights, and
modulate the anti-viral immune capacity of juvenile L. calcarifer.

1. Introduction

Gibson-Kueh, 2012; Gibson-Kueh et al., 2021; Irshath et al., 2023).
While vaccines have proven efficacious against some diseases, they

Barramundi or Asian seabass, Lates calcarifer, is a versatile and
increasingly important food fish species in tropical aquaculture,
contributing significantly to the global production of 105,000 tons in
2020 (FAO, 2022). However, intensive farming of the species raises
susceptibility to a suite of bacterial (e.g., Vibrio harveyi, novel Vibrio sp.
in ‘Big Belly disease’, Streptococcus iniae), viral (e.g., Scale Drop Disease
Virus (SDDV), L. calcarifer herpesvirus (LCHV), Nervous Necrosis Virus
(NNV)), and parasitic diseases, which can cause heavy mortalities of
80-100 % (Jahangiri et al., 2022); (Erfanmanesh et al., 2024;
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provide protection only against specific pathogens (Irshath et al., 2023).
Increased intensity and scale of aquaculture have led to an increase in
the use of antibiotics. Growing concerns about antimicrobial resistance
have prompted research to find alternatives for prevention and treat-
ment of diseases (Rico et al., 2013). Effective biosecurity, improved
husbandry, and optimal nutrition are some considerations to boost
general health, reduce production losses, and create more sustainable
aquaculture with less use of chemicals (Austin, 2023).

Feed additives such as immunostimulants, probiotics and organic

Received 13 September 2024; Received in revised form 3 February 2025; Accepted 9 February 2025

Available online 21 February 2025

2352-5134/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0009-0007-0323-5699
https://orcid.org/0009-0007-0323-5699
mailto:Xueyan.shen@jcu.edu.au
www.sciencedirect.com/science/journal/23525134
https://www.elsevier.com/locate/aqrep
https://doi.org/10.1016/j.aqrep.2025.102692
https://doi.org/10.1016/j.aqrep.2025.102692
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aqrep.2025.102692&domain=pdf
http://creativecommons.org/licenses/by/4.0/

C. Goh et al.

acids offer sustainable alternatives to antibiotics, as they stimulate the
innate immune system and/or promote the growth of beneficial bacteria
in the gut, addressing concerns related to antimicrobial resistance and
environmental pollution (Dawood et al., 2018; Montero et al., 2023;
Neuls et al., 2021; Yadav et al., 2020). Probiotics such as Lactobacillus
and Weissella may be useful in counteracting loss of microbiome di-
versity and increased abundance of potential pathogens in guts of
L. calcarifer with chronic bacterial enteritis or ‘Big Belly’ (Chew et al.,
2023). Organic acids are produced via microbial fermentation of car-
bohydrates by various bacterial species under different metabolic
pathways and conditions. Organic acids are able to cross bacterial cell
membrane, kill by disrupting their metabolism, and enhance nutrient
availability to fish hosts by lowering gut pH, increased pepsin activity
and solubility of minerals. Organic acid salts in fish diet was found to
improve growth, feed intake, specific growth rates (SGR) and feed
conversion ratio (FCR) in various aquaculture species (Ng and Koh,
2017); such as citric acid, lactic acid and sorbic acid in rainbow trout
(Oncorhynchus mykiss) (Hernandez et al., 2012; Pandey and Satoh, 2008;
Pelusio et al., 2020). Organic acids tend to be absorbed in the upper
digestive tract, limiting their impact on bacteria in the lower digestive
tract. Fatty acids such as monoglycerides are able to reach and exert
their antimicrobial activity in the distal gut by virtue of a glycerol side
chain that is removed only by lipases in the intestines (Rimoldi et al.,
2018). A previous study showed that a blend of monoglycerides
increased immune function and reduced growth of Vibrio spp in
gastrointestinal tract of salmon and shrimp (Cordts and Quandt, 2021).
In another study, a diet supplemented with monoglycerides in the form
of a sodium salt of coconut fatty acid distillate enhanced the overall feed
intake and growth rates of gilthead sea bream (Sparus aurata)
(Simo-Mirabet et al., 2017). Phytobiotics, derived from various plant
sources, are seen as a promising alternative to antibiotics due to the
presence of various bioactive compounds that have the potential to
enhance fish health (Kalaiselvan et al., 2024). Other studies show that
dietary phytobiotics such as limonene found in citrus fruit peels have
growth-promoting effects in Mozambique tilapia (Oreochromis mossam-
bicus) (Acar et al., 2015) and Ningu (Labeo victorianus) (Ngugi et al.,
2017)

Transcriptome profiling based on RNA-Seq is increasingly utilized to
investigate host immune strategies against pathogens and comprehend
how pathogens overcome host-mediated immune responses (Sudhagar
et al., 2018). The fish kidney serves as a crucial immune organ with
hematopoietic and lymphoid tissues, melanomacrophage centers, and a
rich network of sinusoids capable of trapping foreign antigens
(Ferguson, 2006; Stosik et al., 2019). The application of RNA-Seq in
studying the kidney and other essential immune organs has contributed
to an improved understanding of immune response in L. calcarifer
(Domingos et al., 2021; Jiang et al., 2014; Liu et al., 2016; Xia et al.,
2011, 2013). Polyinosinic:polycytidylic acid [Poly(I:C)] is a structural
analog of double-stranded RNA (dsRNA) widely used in several studies
to mimic immune responses to viral infections (Wan et al., 2023; Zhao
etal., 2023; Zhou et al., 2014), as TLR3 agonist and to induce interferon
(IFN) production (He et al., 2021). RNA-Seq analysis following Poly(I:C)
challenge could elucidate the molecular pathways by which feed addi-
tives may improve growth and immunity in L. calcarifer.

2. Materials and methods
2.1. Overview of experimental trial

The present study aims to investigate the effects of dietary mono-
glycerides, organic acids and phytobiotics synergistic blend on growth
performance and immunomodulation in juvenile L. calcarifer in a 6-
week feed trial, followed by intraperitoneal administration of Poly(I:
C). A comparative transcriptomic study of kidney tissues post-Poly(I:C)
challenge was used to study the effects of dietary supplementation on
the regulation of key immune-related genes and regulatory pathways in
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L. calcarifer.

Juvenile L. calcarifer were sourced from Barramundi Group Ltd
hatchery in Singapore. A feeding trial was carried out in the Aquaculture
Research and Teaching Facility (ARTF) Recirculatory Aquaculture Sys-
tem (RAS) at James Cook University Singapore (JCUS), under Institu-
tional Animal Care and Use Committee (IACUC) approval number 2021-
A012. To minimize size variation across 500 L circular RAS experi-
mental tanks, 40-60 g juvenile L. calcarifer were sedated with 5 ppm
Aqui-S immersion bath, individually weighed and 30 fish (average body
weight 50.1 + 0.0 g) were equally distributed across eight tanks (P = 1).
The experiment ran in quadruplicate tanks with two dietary treatments:
a control group with fish fed a control basal diet (CTRL), or the basal diet
supplemented with 0.5 % of a proprietary blend of organic acids,
monoglycerides esters of organic acids and phytobiotics (OMGP) from
Adisseo Group for 6 weeks.

The experimental diets (slow sinking) were made at the Singapore
Food Agency Marine Aquaculture Centre (MAC) research feed mill,
using Evolum 25 (Clextral, France) twin-screw extruder. Both CTRL and
OMGP diets were sent to BV-AQ (Singapore) Pte. Ltd. for nutritional
composition analysis. Results and formulations of the two experimental
diets are presented in Table 1.

2.2. General husbandry

Fish were fed CTRL or OMGP diets to satiation thrice daily (10 am,
2 pm, 5 pm) for 6 weeks, and per tank feed consumption was recorded
daily. Individual fish weight checks were conducted at the start and end
of the trial, and average body weight (ABW) of fish derived based on
total biomass and fish numbers in each tank every two weeks (weeks 2
and 4). Temperature of the water in the RAS system was recorded as
27.98 £+ 0.25°C, DO above 5 mg/L, pH 8-8.2, salinity 30-33 ppt and
total ammonia nitrogen and nitrite levels were < 1 mg/L throughout the
6 weeks, and individual tank flow rate was set at 350/L per hour.

Table 1
Dietary formulation of control and experimental diets.

CTRL OMGP

(%) (%)
Ingredients
Danish fish meal 71 % Crude Protein (CP) 20 20
Soybean meal 45.8 % CP 18.5 185
Wheat gluten 76 % CP 10.5 10.5
Soy protein concentrate 60.5 % 14 14
Wheat flour 32 31.5
Fish oil 2.3 2.3
Soybean oil 1 1
Soy lecithin 1 1
Vitamin Premix — marine fish 0.15 0.15
Mineral Premix — marine fish 0.15 0.15
Choline chloride, 60 % 0.1 0.1
Funginate FP (Norel) mold inhibitor 0.05 0.05
Antioxydant (haltox) 0.02 0.02
Vitamin C 0.05 0.05
L-Taurine 0.2 0.2
Organic acids, monoglycerides esters of organic acids and - 0.5

phytobiotics (OMGP) additive blend

Composition
Dry Matter (%) 90.0 88.9
Energy (Kcal/100 g) 393 388
Ash (% m/m) 4.8 5.0
Carbohydrate (% m/m) 30.3 30.2
Fat Substrate Breakdown Ratio (SBR) (% m/m) 10.4 10.4
Moisture (% m/m) 10.0 11.1
Protein (% m/m) 44.5 43.3
Cholesterol (mg/100 g) 79 75
Salt (% m/m) 0.67 0.66
Phosphorus (mg/100 g) 624 629
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2.3. Sample collection for hematology and gut mucosal height assessment
at 0 and 6 weeks

Blood samples were collected from 6 fish at the start of the experi-
mental trial and from 6 fish each from OMGP and CTRL groups at the
end of 6 weeks. Fish were sedated with 5 ppm Aqui-S immersion bath for
blood collection and body weight measurements. Blood was collected
from the caudal vein of each fish into heparinized microtainers (BD) and
kept chilled in a cooling block at 4°C until analyzed for blood glucose,
total plasma protein, hematocrit, and total white blood cell counts on
the same day, as described by Chew and Gibson-Kueh (2023).

After blood collection, the same 6 fish from both OMGP and CTRL
groups at start and end of trial were euthanized in a prolonged bath with
40 ppm Aqui-S, and gut tissues fixed in 10 % buffered formalin for
histoprocessing into hematoxylin and eosin (H&E) tissue sections to
assess gut mucosal heights on an Olympus BX53 transmission light mi-
croscope, Digital Camera DP74, and CellSens™ Standard Imaging Sys-
tem (Olympus Corporation). Mucosal heights were recorded to reduce
variability of measurements as it was often difficult to determine the
base of villi at sections adjacent to intestinal crypts (Figs. 1B, 1C). Height
from tip of villi to muscularis mucosa (mucosal layer) (Figs. 1B, 1C) were
taken in H&E tissue sections in each of four segments of the gut: anterior
gut (AG), anterior half of mid-gut (MG1), posterior half of mid-gut
(MG2), and hind gut (HG) (Fig. 1A). Up to 5 measurements of
mucosal heights were taken in each of 5 tissue sections (n = 25 mea-
surements) of each segment of the gut for each fish.

2.4. Sample collection for transcriptomics at 24 h and 72 h post
intraperitoneal injection with PBS and poly(I:C)

Thirty fish from OMGP and CTRL groups were each given 0.1 mL

Poly(I:C) (100 pg/fish) (Sigma Aldrich), or 0.1 mL phosphate-buffered
saline (PBS) intraperitoneal injections at the end of the 6 weeks

A
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feeding trial. Kidney tissues from 6 fish each from OMGP or CTRL group
were sampled at 24 h and 72 h after injection with Poly(I:C) or PBS, for
transcriptomics. Kidney tissues were snap frozen in liquid nitrogen and
stored at —80°C until processed for analysis.

2.5. RNA isolation, library construction and sequencing

Total RNA was extracted from kidney tissues using a RNeasy® Plus
Micro kit (Qiagen, 74034) according to the manufacturer’s instructions.
All RNA samples were treated with RNase-free DNase-I (M610A,
Promega) to remove genomic DNA contamination. The quality and
quantity of the total RNA were determined with an Agilent 2100 Bio-
analyzer (RNA 6000 Nano chip assay) and a Qubit 3.0 (Quant-It dsSRNA
BR Assay). A total of 48 libraries of kidney samples (6 fish x 4 treatments
x 2 time periods with challenges using PBS and poly(I:C)) were gener-
ated using the VAHTS mRNASeq V3 Library Prep Kit for [llumina
(NR611, Vazyme) according to the manufacturer’s instructions. Briefly,
mRNA with poly(A) was enriched by mRNA Capture Beads and frag-
mented by heating. Short mRNA was reverse transcribed with random
hexamer primers to generate the first cDNA, and the second cDNA was
synthesized. cDNA fragments underwent an end repair process, followed
by addition of a single ‘A’ base to the 3’ end and ligation of the adapters.
Products were purified and size selected (350 bp range). Final fragments
were enriched by PCR amplification and purified using VAHTSTM DNA
Clean Beads. The quality and quantity of the PCR product was assessed
using the Agilent Bioanalyzer 2100 and Qubit 2.0 (Thermo). Finally,
libraries were sequenced on an Illumina NovaSeq 6000 platform with
150 bp paired end reads at Omics Drive Pte Ltd (Singapore).

2.6. Gene differential expression, functional GO, and pathway
enrichment analysis

High-quality clean data were produced from the raw data by

Fig. 1. Gross morphology of the L. calcarifer gut (A). (a) stomach, (b) pyloric caeca, (c) anterior gut, (d) mid gut 1, (e) mid gut 2, (f) hind gut. The mid gut is similar
in morphology to anterior gut (B) except with progressively larger numbers of mucus cells in epithelium. The hindgut (C) is characterized by a marked increase in
epithelial mucus cells. The height of tips of villi to the muscularis mucosa (double headed arrows, mucosal height) is measured in the anterior gut (B), anterior and
posterior half of midgut, and the hindgut (C). Mucosal heights were taken in each of 6 fish from groups fed a control or organic acids, monoglycerides esters of
organic acids and phytobiotics (OMGP) diets at the end of 6 weeks and presented in Fig. 2.
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removing reads containing adapters, more than 10 unknown nucleo-
tides, or more than 50 low-quality (Q < 20) bases. Paired-end clean
reads were aligned with the L. calcarifer reference genome using TopHat
v2.0.12 (Kim et al., 2013). Genetic quantification of the gene expression
level was determined with HTSeq v0.6.1 by counting the read numbers
mapped to each gene (Anders et al., 2015). The expected number of
fragments per kilobase of transcript sequence per million base pairs
sequenced (FPKM) of each gene was calculated based on the length of
the gene and read count mapped to this gene. To characterize differ-
entially expressed genes (DEGs), the raw read number data sets were
analyzed using the DESeq R package (1.18.0) (Wang et al., 2009). Genes
with an adjusted P value < 0.05 and |log2FoldChange|>1 were
assigned as the threshold for indicating significant differential expres-
sion. Gene Ontology (GO) enrichment analysis of differentially
expressed genes was implemented by the GOseq R package, in which
gene length bias was corrected (Young et al., 2010). GO terms with
corrected P values < 0.05 were considered significantly enriched by
differentially expressed genes. KOBAS software (Mao et al., 2005) was
utilized to test the statistical enrichment of those differentially expressed
genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg/) pathways (Kanehisa et al., 2016).

2.7. Statistical analyses of growth performance and blood values

Statistical analyses for the effects of diet were conducted using the
SPSS software package (IBM SPSS Statistics 23), where data were
analyzed using ANOVA or t-tests. Data was assessed for normality using
Kolmogorov-Smirnov test and homogeneity using Levene’s test
(p > 0.05). Tukey’s HSD test was used after conducting ANOVA.

3. Results
3.1. Growth performance in fish fed CTRL and OMGP diets

Fish fed OMGP dietary blend for 6 weeks had significantly higher
ABW (+ 8 %) compared to the CTRL group (two-tailed t-test, P < 0.01),
in part associated with a higher feed consumption (two-tailed t-test,
P < 0.05) (Table 2). FCR was relatively low (~1.20 — 1.22) and survival
was relatively high (~96-99 %) for both groups, with no statistical
differences between them. L. calcarifer final biomass, biomass gain, and
specific growth rates between diets demonstrated a higher trend in the
OMGP when compared with the CTRL diet (6 %, 10 % and 8 % higher
values, respectively), however only approaching statistical significant
difference for two-tailed t-test (P = 0.06-0.07).

3.2. Blood values

No significant difference in blood values was observed between fish
fed OMGP and CTRL diets at the end of the trial. Comparative blood
values post-trial was however significantly lower for fasting blood
glucose levels (P < 0.001) and total plasma protein (P < 0.05), but
higher for hemoglobin (P < 0.01) compared to pre-trial values (Table 3).
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3.3. Height of intestinal mucosa

Intestinal mucosal heights across the four gut section AG, MG1 and
HG were greater in fish fed diet OMGP than CTRL, although this was
statistically significant (P < 0.05) only for MG1 and HG (Fig. 2).

3.4. Transcriptomics in kidney tissues at 24 h and 72 h post IP Poly(I:C)
and PBS

The RNA-seq data showed raw read counts ranging from 80.6 to
112.4 million reads, with an average count of 93.6 million per sample. In
addition, the average GC percentage was 47.3 %, and greater than
93.8 % of clean reads in all samples exceeded Q30, confirming the high
quality of the sequencing (Supplementary Table S1). The pairwise
comparisons of Poly(I:C) vs PBS at 24 hours post-injection (24-HPI) in
each diet group revealed 391 DEGs (347 upregulated and 44 down-
regulated) in fish fed the CTRL diet (CTRL-Poly(I:C) vs CTRL-PBS) and
629 DEGs (401 upregulated and 228 downregulated) in fish fed the
OMGP diet (OMGP-Poly(I:C) vs OMGP-PBS) (Fig. 3a). Additionally, fifty
DEGs were detected in the CTRL-Poly(I:C) vs OMGP-Poly(I:C) treatment
(Fig. 3a). Venn analysis showed 171 DEGs and 409 DEGs distinct from
the CTRL group and OMGP group, respectively, with an overlap of 220
DEGs (Fig. 3b). Details of all genes which expression was significantly
altered between group are presented in Supplementary Tables S2-54.

At 72 hours post-injection (72-HPI), a total of 66 DEGs (29 upregu-
lated and 37 downregulated) were detected in the kidney between
OMGP-Poly(I:C) and CTRL-Poly(I:C) (Supplementary Table S5). The
number of DEGs detected between CTRL-Poly(I:C) vs CTRL-PBS (only 1
downregulated gene: pcolce2) and OMGP-Poly(I:C) vs OMGP-PBS (15
upregulated and 18 downregulated) (Supplementary Table S6) were
significantly reduced when compared to 24 HPI. Venn analysis showed
no overlapping DEGs between CTRL-Poly(I:C) vs CTRL-PBS and OMGP-
Poly(I:C) vs OMGP_PBS, while 6 overlapping DEGs were identified be-
tween OMGP-Poly(I:C) vs CTRL-Poly(I:C) and OMGP-Poly(I:C) vs
OMGP-PBS (Fig. 3c).

3.5. Immune-related genes in response to Poly(I:C) challenge in juvenile
L. calcarifer fed with dietary OMGP

KEGG pathway functional analysis was performed for 171 differen-
tially regulated specific DEGs in CTRL-Poly(I:C) vs CTRL-PBS and 409
specific DEGs in OMGP-Poly(I:C) vs OMGP-PBS at 24-HPI with Poly(L:C)
(Fig. 3b). Subsequent investigations revealed an increased number of
DEGs associated with immune and infectious disease related pathways,
such as Toll-like receptor and NOD-like receptor receptor signaling
pathways, Complement and coagulation cascades pathway and Che-
mokine signaling pathway, in fish fed OMGP diets compared to those on
CTRL diets in response to Poly (I:C) (Table 4). Significantly overex-
pressed key immune response DEGs (OMGP-Poly(I:C) vs OMGP-PBS)
included B-cell linker (bink), NOD-like receptors (NLRs) (nlrci2l,
nlrc3), leukocyte differentiation antigens (cd22, c¢d209, cd276), C-X-C
chemokine receptor type 4 (cxcr4), toll-like receptor 13 (tir13), integrin
alpha 4 (itga4), macrophage colony-stimulating factor 1 receptor 2
(csf1r2), C-type lectin receptor (mrcll), and histone H2A (h2a). In
contrast, some DEGs were significantly downregulated in the above

Table 2
Growth performance in L. calcarifer fed organic acids, monoglycerides esters of organic acids and phytobiotics (OMGP) vs control (CTRL) diet for 6 weeks.
Diet ABW Initial ABW Final Final Biomass Biomass Gain Feed intake (§)  Feed Conversion Ratio Specific Growth Rate Survival
(8 (8 (® (® (FCR) (SGR) (%)
CTRL 50.1 £0.0 136.5 + 4.6° 3855 + 149 2351 + 150 2820 + 107° 1.20 £ 0.05 2.38 £0.08 99.2
+ 1.44
OMGP  50.1 £0.1 147.5 + 6.9° 4087 + 107 2584 +103 3160 + 192° 1.22 £+ 0.05 2,57 £0.11 95.8
+3.63

Different letters denote a statistically significant difference for two-tailed t-test (P < 0.05).
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Table 3
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Pre-trial blood values of L. calcarifer taken at start of experimental trials and end of 6 weeks fed on diets organic acids, monoglycerides esters of organic acids and
phytobiotics (OMGP) and control (CTRL) (n = 6 fish each), against established *mean values and reference intervals (RI) (Chew and Gibson-Kueh, 2023).

Diet Glucose (mmol/L) Hematocrit (%) Hemoglobin (g/L) Total Plasma Protein (g/L) Total White Blood
Cell Counts (x10°/L)

Pre-trial 7.50 + 3.18% 40.67 £ 7.20 75.3 + 4.8° 90.0 + 10.0% 9.86 + 2.18

CTRL 3.27 + 0.55° 42.67 + 4.27 89.8 + 4.6" 72.3 +5.0° 15.2 £ 5.1

OMGP 2.55 + 0.50° 42.67 + 5.47 92.2 + 8.6° 76.3 + 3.7° 14.3+ 6.5

Mean values* 6.3-7.0 28.5-30.0 71.0-73.5 65.4-67.0 25.7-32.7

Ref Interval* 2.4-11.3 18.9-39.2 56.0-85.0 56.0-77.0 5.3-69.9

Different letters denote a statistically significant difference for ANOVA (P < 0.05).

Villimeasurements (um) +/-s.e.

AG MG1

Diet
BCTRL
WoveP

MG2 HG

Gut Section

Fig. 2. Intestinal mucosal heights (um) + /- s.e. in anterior gut (AG), mid-gut anterior half (MG1), mid-gut posterior half (MG2), and hind gut (HG). Different letters
denote a statistically significant difference (P < 0.05) within gut sections between organic acids, monoglycerides esters of organic acids and phytobiotics (OMGP) and

control (CTRL).

comparison: interleukin-8 (il-8), chemokine proteins (ccl19a, cxcl9),
interferon regulatory factors (irf7, irf3) and several interferon-induced
proteins (ifi44, ifitl, ifihl, gimap7) (Table 4). Fewer immune-related
DEGs specific for CTRL-Poly(I:C) vs CTRL-PBS were detected, with
increased mRNA abundance, including major histocompatibility com-
plex (MHC) factors (hla-f10a, h2-eb1), heat shock proteins (hsp90aal.2,
hsf2), complement factors (c4b, c7a, clIr), toll-like receptor 2 type-2
(tlr2-2), collagen alpha-1(I) chain-like (collal), interferon-induced
proteins (ifind-27 1, ifind-44 1), and NACHT, LRR and PYD domains-
containing protein 3 (nlrp3) (Table 4). A heatmap was generated to
illustrate these immune-related DEGs detected in fish at both 24-HPI and
72-HPI (Fig. 3d). The transcriptome profile of the kidney in fish fed
OMGP was markedly different from that in fish fed the CTRL diet in
response to intraperitoneal injection of Poly(I:C) at 24-HPI. However,
the dissimilarity in gene expression patterns between the two groups
became less noticeable after 72-HPI (Fig. 3d).

4. Discussion

In this study, L. calcarifer fed the OMGP-supplemented diet
consumed more feed and were 8 % heavier compared to fish on the basal
control diet (CTRL) after a 6-week feeding trial, but with comparable
FCR in both OMGP and CTRL groups. The OMGP diet was positively
associated with increased intestinal mucosal heights throughout the
L. calcarifer intestine, particularly in the anterior mid-gut and the
hindgut sections. This parameter has been correlated with improved

growth performance in various species, including fish (Libanori et al.,
2023; Lin et al., 2023; Ramos et al., 2017), piglets, (Wang et al., 2020)
and chickens (Amer et al., 2021).

Organic acids are known to enhance nutrient availability by acti-
vating pepsin through lowering gastric pH, increasing mineral solubility
and absorption, and inhibiting the overgrowth of harmful gut microbes
(Ng and Koh, 2017). Short-chain and medium-chain fatty acid mono-
glycerides serve as an energy source for enterocytes, thereby enhancing
their functionality and potentially improving nutrient absorption
(Rimoldi et al., 2018), such as amino acids, lipids and carbohydrates
(Fabay et al., 2022; Watanabe and Tsujino, 2022; Zhang et al., 2020b).
In gilthead sea bream (Sparus aurata), dietary monoglycerides positively
modulated fish intestinal microbiota by increasing the abundance of
beneficial lactic acid bacteria often associated with a healthy intestinal
epithelium (Rimoldi et al., 2018). Other studies showed that a diet
supplemented with 0.3 % medium-chain fatty acids enhanced growth
rates and overall feed intake (Simo-Mirabet et al., 2017). A diet with
0.15 % glycerol monolaurate has been shown to improve growth per-
formance, liver enzymes and lipid metabolism in juvenile cage-farmed
pompano (Trachinotus ovatus) (Lin et al., 2022). Even at a low level of
0.5 %, incorporation of garlic peel (Allium sativum L.) as phytobiotic in
feed was shown to enhance immune resistance of African catfish (Clarias
gariepinus) to opportunistic bacterial pathogens such as Aeromonas
hydrophila (Thanikachalam et al., 2010). Different fish species possess
distinct digestive systems and gut microbiota compositions, and
tailoring dietary interventions to their unique physiological and
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Table 4
Summary of immune-relevant genes in L. calcarifer kidneys when fed control (CTRL) and organic acids, monoglycerides esters of organic acids and phytobiotics (OMGP) diets in response to 24 h post Poly(I:C) challenge.
Gene Family Gene Gene description Log2 Fold change @24 h Functional enrichment (Pathway analysis) Gene ID
Name
CTRL-Poly I:C OMGP-Poly I:C
vs CTRL-PBS vs OMGP-PBS
B7 family vtenll V-set domain-containing T-cell activation inhibitor 1-like -2.6 3.2 T-cell receptor signaling pathway LOC108885036
Pore-forming proteins pfnll perforin—1-like 1.5 1.7 Natural killer cell-mediated cytotoxicity LOC108880579
pathway; T cell receptor signaling pathway
Chemokine cxcl9 C-X-C motif chemokine 9 -2.8 -3.0 Chemokine signaling pathway LOC108878497
Heat shock proteins hsf2 heat shock transcription factor 2 binding protein 2.7 1.2 Protein processing in endoplasmic reticulum hsf2bp
hsp90aal.2  heat shock protein 90, alpha (cytosolic), class A member 1, tandem duplicate 2 1.1 -0.5 LOC108896796
TRIM proteins trim111 E3 ubiquitin-protein ligase TRIM11-like 1.4 1.2 Ubiquitin mediated proteolysis pathway LOC108877214
trim211 E3 ubiquitin-protein ligase TRIM21-like 1.2 0.4 LOC108880987
CD molecules cd209 CD209 antigen-like protein E 3.3 2.7 Tuberculosis; Hepatitis C LOC108889315
Collagen collal collagen alpha—1(I) chain-like 3.5 1.2 ECM-receptor interaction; PI3K-Akt signaling LOC108881445
pathway
Complement clr complement C1r subcomponent 1.1 —6.4 Complement and coagulation cascades LOC108880662
c4b complement 4B 1.7 -3.1 LOC108891077
c7a complement component 7a 2.1 0.8 LOC108882604
Serine protease proca protein C (inactivator of coagulation factors Va and VIIIa), a -1.2 -3.7 proc
Major hla-f10a class I histocompatibility antigen, F10 alpha chain 2.6 —0.4 Antigen processing and presentation; T cell LOC108888427
histocompatibility receptor signaling pathway
complex (MHC) h2-ebl1 H-2 class II histocompatibility antigen, E-S beta chain-like 2.1 -1.0 Antigen processing and presentation; Thl and ~ LOC108882204
Th2 cell differentiation
Toll-like receptor tir2-2 toll-like receptor 2 type—2 1.8 -0.7 Inflammatory bowel disease; Toll-like receptor ~ LOC108885865
signaling pathway
Interferon ifind-271 interferon alpha-inducible protein 27-like protein 2 A 2.4 0.0 Interferon pathway LOC108898049
ifind-441 interferon-induced protein 44-like 3.4 0.3 LOC108879675
NLR (NOD-like receptor) nlrp3 NACHT, LRR and PYD domains-containing protein 3 4.5 -0.8 NOD-like receptor signaling pathway LOC108881849
AP—1 (activator protein 1) jund transcription factor JunD -1.0 -0.4 IL—-17 signaling pathway LOC108902773
family
Serine/threonine kinase tgfbrl transforming growth factor beta receptor-like -1.3 -0.3 TGF-beta signaling pathway; IL—17 signaling LOC108881978
receptors pathway
B cell blnk B cell linker 0.7 1.5 B cell receptor signaling pathway blnk
bered221 B-cell receptor CD22-like 0.2 1.2 LOC108888182
Chemokine cxcr4 C-X-C chemokine receptor type 4 -0.2 1.8 Chemokine signaling pathway LOC108886893
ccll9a chemokine (C-C motif) ligand 19a, tandem duplicate 1 0.1 -1.8 Chemokine signaling pathway; T cell receptor ~ LOC108887152
signaling pathway
CD molecules cd209 CD209 antigen-like protein E 0.0 1.4 Antigen processing and presentation pathway =~ LOC108875780
cd276 CD276 antigen 0.6 2.2 T cell receptor signaling pathway; B cell LOC108892727
cd82 CD82 antigen-like ~ —0.2 -1.1 receptor signaling pathway LOC108894293
Heat shock proteins hsf4 heat shock transcription factor 4 -0.2 2.0 MAPK signaling pathway; PI3K-Akt signaling hsf4
pathway
NLR (NOD-like receptor) nlrc3 NLR family CARD domain-containing protein 3 -1.9 2.9 NOD-like receptor signaling pathway LOC108879372
nlrp12l NACHT, LRR and PYD domains-containing protein 12-like 0.2 2.2 LOC108892802
Toll-like receptor tiri3 toll-like receptor 13 0.6 1.9 Toll-like receptor signaling pathway LOC108892776
Integrin itga4 integrin alpha 4 0.3 1.3 PI3K-AKkt signaling pathway itga4
Interleukin il-8 interleukin—8 —0.4 -1.8 Cytokine-cytokine receptor interaction LOC108887160
MMP proteins mmp13 matrix metallopeptidase 13 -0.4 -4.1 Collagen degradation pathway mmpl3
mmp28 matrix metallopeptidase 28 0.2 —-2.4 mmp28
C-type lectin clec10a C-type lectin domain family 10 member A -0.6 -3.0 Collectin and complement pathways LOC108892791
clec4a C-type lectin domain family 4 member A —0.2 1.6 LOC108899434
clec6al C-type lectin domain family 6 member A-like 0.4 2.0 LOC108886975
nppc3l C-type natriuretic peptide 3-like ~ —0.6 -2.3 LOC108900485
mrcll macrophage mannose receptor 1-like 0.5 1.6 Phagosome; C-type lectin family LOC108883267

(continued on next page)
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2015). The NOD-like receptors (NLRs) further highlighted the immu-
noregulatory effects of OMGP. NLRs are known for their
anti-inflammatory properties, which reduce pro-inflammatory cytokine
production (Uchimura et al., 2018). The nirc3 and nlrp12l, both upre-
gulated in L. calcarifer receiving the OMGP diet, act as negative regu-
lators of inflammation by inhibiting NF-xB and type I interferon
signaling pathways, thus promoting immune homeostasis. While nlrp3, a
marker of inflammasome activation, was significantly upregulated in
control diet-fed fish after the challenge, highlighting its role in
inflammasome-mediated inflammation crucial for pathogen defense,
whereas OMGP-fed fish exhibited no significant changes in nlrp3
expression, implying a potential regulatory effect of OMGP on
inflammation.

Interleukin-8 (il8), referred to as “CXCL8 or neutrophil-activating
peptide (NAP-1)”, is a pro-inflammatory chemokine that plays a
crucial role in neutrophil activation and the regulation of inflammation
(Bickel, 1993). In this study, il8 was significantly downregulated in fish
fed with OMGP diet in response to Poly(I:C) challenge, suggesting po-
tential anti-inflammatory properties that may modulate immune re-
sponses to balance effective virus control with minimized tissue damage.
In addition, the downregulation of mmp13 and mmp28 in OMGP-fed fish
following Poly(I:C) challenge suggested a potential modulation of in-
flammatory responses and extracellular matrix (ECM) remodeling.
These mmps play key roles in ECM degradation (Jiang et al., 2010) and
immune cell migration during inflammation, with excessive activity
often leading to tissue damage. Their reduced expression in OMGP-fed
fish may indicate a potential reduction in inflammation-associated tis-
sue remodeling, which is particularly beneficial in aquaculture settings,
where prolonged inflammation can compromise fish health and growth.
Several interferon-related genes, including irf7, irf3, ifih1, gimap?7, ifi44,
and ifitl, were downregulated in OMGP-fed fish following the Poly(I:C)
challenge. Interferon regulatory factors (IRFs) such as irf3 and irf7 are
crucial for activating type I interferon responses essential for antiviral
defense (Zhang and Gui, 2012). The ifih]l gene detects viral RNA and
triggers interferon activation, while gimap7, ifi44, and ifitl are
interferon-stimulated genes that contribute to antiviral defense mecha-
nisms (Lazarte et al., 2019; Nitta et al., 2006; Qiao et al., 2022; Zhou
et al., 2013). Their downregulation in OGMP-fed fish at 24-HPI may
indicate modulation of interferon signaling pathways, potentially miti-
gating excessive inflammatory responses, and optimizing antiviral de-
fense, in agreement with previous reports (Andresen et al., 2020; Hori
et al., 2012). Furthermore, the NADPH oxidase family plays a vital role
for fish immune response due to its role in producing reactive oxygen
species (ROS), which are important for pathogen elimination (Vermot
etal., 2021). The upregulation of NADPH oxidase family member ncf2 in
OMGP-fed fish challenged with Poly(I:C) indicated enhanced ROS pro-
duction to combat viral infections, aligning with findings from other fish
species’ responses to Nervous Necrosis Virus (NNV) (Toubanaki et al.,
2022).

The temporal dynamics of immune responses observed in this study
provided valuable insights into the impact of OMGP supplementation.
At 24-HP], the transcriptomic differences were most pronounced, with a
greater number of DEGs unique to the OMGP-Poly(I:C) group compared
to the CTRL-Poly(I:C) group (Fig. 3B), suggesting enhanced immune
activation relative to the control diet group. Additionally, comparison of
72-HPI Poly(I:C) samples to 72-HPI PBS samples revealed fewer DEGs
responsive to Poly(I:C) across all diets when compared to 24-HPI sam-
ples. This observation suggests that either the transcriptomic effects Poly
(I:C) are reduced after 3 days, or that the OMGP diet may affect the
timing of the gene expression response to viral infection. Overall, these
findings underscore the promise of synergistic blend of organic acids,
monoglycerides and phytobiotics as a dietary supplementation to
potentially enhance host immunity against viral diseases in aquaculture.
By mitigating excessive inflammation and reducing tissue damage,
OMGP supplementation could support fish health and productivity
while decreasing reliance on antibiotics. To validate its efficacy and
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mechanisms of action, future studies should include viral challenge
trials (e.g., SDDV, Infectious Spleen and Kidney Necrosis Virus (ISKNV),
or LCHV) and assess its long-term impacts under commercial farming
conditions. Such investigations are critical to realizing the full potential
of OMGP for sustainable L. calcarifer aquaculture practices.

5. Conclusion

The present study demonstrated that dietary supplementation with
OMGP exerted a positive impact on growth performance in juvenile
L. calcarifer and may potentially enhance the immune response to viral
diseases. This is evidenced by increased gut mucosal heights and a
greater number of immune-related DEGs in fish fed the OMGP diet
compared to those on the CTRL diet when challenged with Poly(I:C) as a
viral response marker. These findings suggest that OMGP blend could
serve as an important feed additive for sustainable aquaculture of
L. calcarifer under commercial culture conditions. Nevertheless, further
research with actual viral challenges, and additional histological as-
sessments of goblet and epithelial cell integrity is needed to confirm
whether OMGP blend may boost fish immunity to a level in which it
confers higher survival.
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