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Simple Summary: Scale drop disease virus (SDDV) has been identified as a significant pathogen
causing scale drop syndrome (SDS), leading to significant economic losses in Asian seabass production
in Southeast Asia. This study utilized a metagenomic approach to investigate the bacterial and viral
communities associated with SDS, with a particular focus on SDDV, and evaluated the potential of
metagenomics for retrieving complete SDDV genomes. By characterizing the complete genomes
of SDDV strains, we aimed to gain a deeper understanding of the virus. The insights gained from
this study are expected to inform the development of comprehensive disease prevention and control
strategies for SDDV, mitigating its impact on the aquaculture industry.

Abstract: Scale drop disease virus (SDDV), a double-stranded DNA virus in the family Iridoviridae,
has been reported widely in southeast Asian countries as a causative agent of scale drop syndrome
(SDS) in Asian seabass. SDS has resulted in high mortality and significant economic losses to the
aquaculture industry. This study demonstrated the use of metagenomic methods to investigate
bacterial and viral communities present in infected fish tissues and recover a complete genome of
the causative agent named SDDV TH7_2019. Characterization of the TH7_2019 genome revealed a
genome size of 131 kb with 134 putative ORFs encoding viral proteins potentially associated with host
apoptosis manipulation. A comparative genome analysis showed a high degree of amino acid identity
across SDDV strains, with variations in number of repeat sequences and mutations within core genes.
Phylogenetic analyses indicate a close relationship among SDDV genomes. This research enhances
our understanding of the genetic diversity and evolutionary relationship of SDDV, contributing
valuable insights for further development of effective control strategies of SDDV.
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1. Introduction

Asian seabass (Lates calcarifer) is recognized as a euryhaline species, thriving in both
brackish and nearshore marine environments. This species has considerable economic
importance within the Asia-Pacific region. It is widely cultured in Australia, Singapore,
Malaysia, Thailand, Indonesia, and China [1]. However, intensive aquaculture practices
have resulted in a notable impact on Asian seabass cultures, particularly in their suscep-
tibility to infectious diseases. Scale drop syndrome (SDS) represents a significant threat
to aquaculture, particularly for Asian seabass cultivation. This disease was initially docu-
mented in an Asian seabass farm in Malaysia in 1992 [2]. Typically, affected fish exhibit scale
loss over extensive areas, accompanied by skin discoloration, darkened bodies, gill pallor,
tail and fin erosion, as well as pathological features such as vasculitis and tissue necrosis
in major internal organs [3]. Several pathogens have been implicated in causing SDS in
Asian seabass, including scale drop disease virus (SDDV), Vibrio harveyi, and Tenacibaculum
maritimum [2,4–8]. However, the current scientific consensus is that SDS in Asian seabass is
caused by SDDV, resulting in significant economic losses in production of this valuable fish
species [2,4,7,8].

SDDV is a double-stranded DNA virus belonging to the genus Megalocytivirus, family
Iridoviridae. SDDV infections have been primarily observed in Asian seabass and reported in
Southeast Asian countries including Thailand, Singapore, Malaysia, and Indonesia [1,3,6,7].
More recently, yellow seabream (Acanthopagrus latus) infected with SDDV were observed in
China, exhibiting distinct clinical signs and pathological characteristics (swollen abdomen
and ascites) compared to those observed in Asian seabass [9]. Understanding the genomic
diversity of SDDV across Southeast Asia could potentially facilitate disease control and
inform protective strategies against the disease. However, to date, only a few SDDV
genome sequences have been deposited to public sequence databases [10,11]. The first
partial genome sequence of SDDV was reported from Asian seabass in Singapore [4],
followed by complete genomes from the same fish species in Thailand [12]. Additionally,
an SDDV genome sequence was reported from yellow seabream in China [9]. A genome
comparison between the first SDDV isolated in Singapore and the Thai SDDV revealed
a high degree of sequence identity (99.97%), along with some notable variations, such
as genome size and mutations [12]. Despite the regional significance of SDDV, there is
limited information available regarding the genomic characteristics, strain diversity, and
phylogenetic relationships of SDDV, particularly strains originating from different regions.
In this context, genome characterization of different SDDV strains could elucidate factors
influencing host susceptibility, virulence, and geographical distribution.

Metagenomics offers a powerful approach for characterizing viral and microbial com-
munities, overcoming the limitations of traditional culturing methods [13]. This technique
is particularly advantageous when prior knowledge of the organisms is scarce, co-infections
are suspected, or comprehensive pathogen identification is required [14]. Several studies
have successfully employed metagenomics to retrieve complete genomes of pathogens
from diverse sample types [12,15,16].

This study aimed to use a metagenomic approach to investigate bacterial and viral
communities associated with SDS in diseased Asian seabass isolated from a selection of
Southeast Asian countries. We particularly focused on identifying potential pathogens
co-infecting SDS-affected fish. Additionally, this study evaluated the potential of metage-
nomics for retrieving complete SDDV genomes and elucidating their phylogenetic relation-
ships. By characterizing the complete genome of different SDDV strains, we aimed to gain
a deeper understanding of the virus, which could ultimately inform the development of
comprehensive disease prevention and control strategies for SDDV.

2. Materials and Methods
2.1. Fish Samples and DNA Extraction

A total of eight Asian seabass (Lates calcarifer) were collected from farms in Thailand,
Singapore, and Malaysia during disease outbreaks from 2016 to 2019 from our previous
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studies (Table 1) [7,8]. A single fish collected from Singapore in 2019 was a juvenile
(length 30 cm, weight 293 g), while the two fish collected from Malaysia in 2019 were
adults (length 30–40 cm, weight 450–700 g). Fish from both countries were cultured in sea
cages with water salinities ranging from 28–31 ppt. Fish collected from Thailand during
2016–2019 were juveniles (weights ranging from 60–280 g) cultured in floating cages with
water salinity of 10 ppt. All fish displayed typical clinical signs of SDS including lethargy,
darkened bodies, fin and tail rot, easily detached scales, severe scale loss, and hemorrhages,
and the tissues collected included brain, kidney, liver, spleen, and fin. Tissues were
preserved in RNAlater™ reagent (Thermo Fisher Scientific, Waltham, MA, USA) and kept
at −20 ◦C until use. Genomic DNA was extracted using a conventional phenol/chloroform
method [17]. All fish samples were screened for SDDV infection using SDDV-specific
semi-nested conventional PCR as described by Charoenwai et al. [18] to confirm SDDV
infection prior to sequencing.

Table 1. The information of metagenomic samples collected from diseased fish.

Metagenomic
Sample No. Geographical Origin Year Organ

2 Chanthaburi, Thailand 2016 Liver
3 Chanthaburi, Thailand 2016 Liver
4 Chanthaburi, Thailand 2017 Liver
6 Chanthaburi, Thailand 2018 Liver
7 Chanthaburi, Thailand 2019 Fin
12 Singapore 2019 Kidney

21 Selangor, Malaysia 2019 Pool internal organs
(liver, spleen, and kidney)

23 Selangor, Malaysia 2019 Pool internal organ
(liver, spleen, and kidney)

2.2. Library Preparation and Sequencing

Genomic DNA extracted from fin (sample 7), kidney (sample 12), liver (sample 2, 3,
4, and 6), and pooled internal organs (kidney, spleen, and liver, sample 21 and 23) were
subjected to metagenome sequencing. DNA concentrations of all samples were quantified
using a QubitTM fluorometer (Thermo Scientific, USA) and adjusted to 100 ng/µL prior
to sequencing. Sequence library preparation was carried out using NEBNext® Ultra DNA
Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following the manufacturer’s
instructions. The libraries were sequenced using the Illumina HiSeq 1000 in 150 bp paired-
end mode. The sample sequencing was carried out by Suzhou GENEWIZ Biotechnology
company (Suzhou, China).

2.3. Sequence Analysis
2.3.1. Reads Quality Control and Host Removal

After obtaining the metagenomic sequencing datasets, low-quality reads (Q < 20)
and adapter sequences were removed using Trimmomatic v 0.39 [19]. Subsequently, host
sequence reads were removed by mapping the reads of each of the samples to the Asian
seabass reference genome (GCA_001640805.1) using Bowtie2 v 2.5.1 [20].

2.3.2. Taxonomic Classification

The host-depleted reads were taxonomically classified according to the lowest common
taxonomic ancestor (LCA) using Kraken2 v 2.1.3 with the NCBI viral and bacterial RefSeq
complete genomes/proteins (downloaded August 2023) [21]. Virus and bacteria abundance
estimates were reported at family level and normalized as a proportion of the sequencing
reads in each of the samples using Bracken v 2.8 [22]. Moreover, the top 10 most abundant
bacteria and virus families of each sample were determined in reads per million (RPM)
using the formula: [the number of reads classified to a specific taxonomic group/total



Animals 2024, 14, 2097 4 of 19

number of classified reads] × 106. Relative taxa abundance bar plot and heatmap (based
on RPM for each sample) were generated using ggplot2 [23] in R v 4.2.2 [24].

2.3.3. Metagenome Assembly and SDDV Genome Recovery

The host-depleted reads were assembled using MEGAHIT v 1.2.9, and contigs shorter
than 200 bp were discarded [25]. Sequence similarity searches of the assembled contigs
were conducted using NCBI BLASTx v 2.13.0 [26] and the full NCBI non-redundant protein
(nr) database (downloaded on August 2024) with e-value cut off 1 × 10−5 to identify
viral contigs, specifically SDDV. Subsequently, the SDDV contigs were subtracted from
the samples that contained relative abundance of SDDV more than 70% (sample 4, 6, 7,
12, 21, and 23). Draft SDDV genomes were further subjected to genome assembly quality
assessment by mapping all reads obtained for each sample to the SDDV TH2019 genome
(MN562489) using Bowtie2 v 2.5.1 to determine genome size, depth, and breadth of read
coverages [20]. Additionally, genome completeness was evaluated using Benchmarking
Universal Single-Copy Orthologs (BUSCO v 5.7.1) analysis based on the conserved gene
set of the iridoviridae_odb10 database [27].

2.3.4. SDDV Genome Annotation

Open reading frames (ORFs) were predicted using Prodigal v 2.6.3, and their functions
were predicted based on NCBI BLASTp [26] searches against the NCBI nr and conserved
domain (CD) database (downloaded in January 2023) [28]. Genome segments were re-
oriented using progressive MAUVE using the SDDV TH2019 genome (MN562489) as
reference before comparative genome analysis [29]. For comparative genome analysis,
all SDDV genomes available in NCBI, C4575 (NC_027778), and ZH-06/20 (OM037668),
were included. Pairwise comparison of whole genome and multiple sequence alignment
(MSA) was performed using MAFFT v 7 with the FFT-NS-I strategy [30]. Dot plots were
generated using LAST local alignment implemented in MAFFT with SDDV TH2019 on the
horizontal axis [30]. Nucleotide and amino acid sequence similarities of SDDV TH7_2019
against other SDDV genomes were estimated using BLAST v 2.13.0 [26] and visualized
using pyGenomeViz v 0.4.4 [31].

2.3.5. Comparative Genomics and Phylogenetic Analyses

Due to limitation of availability of gene sequences and completeness of the retrieved
SDDV genomes in this study, maximum likelihood (ML) phylogenetic trees were con-
structed based on (i) whole genome sequences (WGS), (ii) single-nucleotide polymorphisms
(SNPs), (iii) six concatenated iridoviruses core genes, and (iv) individual iridoviruses
core genes. Sequences of megalocytiviruses (MCVs) including ISKNV (NC_003494), red
seabream iridovirus (RSIV) (MK689686), European chub iridovirus (ECIV) (MK637631),
and turbot reddish body iridovirus (TRBIV) (GQ273492) were included in the phylogenetic
analysis while Singapore grouper iridovirus (SGIV) (AY521625) from family Ranavirus
was used as an outgroup. A phylogenetic tree based on WGS was constructed using
MAFFT-derived MSA and the IQ-TREE web interface accessed on 25 February 2024
with 1000 bootstraps through the ultrafast bootstrap approximation approach [32]. The
best fit nucleotide substitution model was selected according to the lowest Bayesian in-
formation criterion (BIC) score using ModelFinder accessed on 25 February 2024 [33].
SNP calling with SDDV TH2019 as a reference and subsequent SNP-based phylogenetic
analysis were carried out using the Call SNPs and Infer Phylogeny (CSI) web service
(https://cge.food.dtu.dk/services/CSIPhylogeny/) accessed on 25 February 2024 [34]. All
available iridoviruses core gene sequences including DNA polymerase, DNA-dependent
RNA polymerase II alpha subunit (RPO), DNA-dependent RNA polymerase II beta subunit
(RPO2), D5 family NTPase ATPase, NTPase, flap endonuclease, ATPase, myristoylated
membrane protein, NIF-NLI interacting factor, Uvr/REP helicase, and major capsid protein
(MCP) were retrieved from the SDDV genomes for phylogenetic analysis based on individ-
ual genes and concatenated core genes (Table S1). The six iridovirus core gene sequences

https://cge.food.dtu.dk/services/CSIPhylogeny/
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(D5 family NTPase ATPase, flap endonuclease, ATPase, myristoylated membrane protein,
NIF-NLI interacting factor, and Uvr/REP helicase) were concatenated and aligned using
MEGA X v 10.2 [35], and the best fit nucleotide substitution models were selected according
to the lowest BIC score. Maximum likelihood phylogenetic analyses were performed using
MEGA X with 1000 bootstraps [35].

Nucleotide and amino acid substitutions within the core genes were determined man-
ually using the previous sequence alignments, and SDDV TH2019 was used as reference for
result interpretation. Tandem repeats were identified using Tandem Repeats Finder (TRF)
with default parameters (https://tandem.bu.edu/trf/trf.html) accessed on 25 February
2024 [36].

Pan-genome analysis of the four complete SDDV genomes (TH7_2019, TH2019, C4575,
and ZH-06/20) was carried out using Roary v 3.13.0 [37] with identity threshold of 95%.
Genes present in three or more genomes were defined as core genes, whereas genes present
in fewer than three genomes were defined as accessory genes.

3. Results
3.1. Taxonomic Profiles of Bacteria and Viruses

Metagenomic sequencing resulted in a total of 22 to 30 million reads per sample and
contained approximately 87% to 94% of host reads. After read trimming and host removal,
the number of sequences that remained for each sample ranged from 1.5 to 3.2 million.
The host-depleted read pairs were subjected to taxonomic classification using Kraken2
and the percentage number of classified reads ranged from 1% to 6%, except sample 7,
which exhibited a remarkable percentage of microbial reads (42.81%) compared with other
samples (Table 2). Among these microbial reads, the percentages of reads representing
bacteria ranged from 84% to 99% with sample 23 possessing the lowest and sample 7 the
highest number of bacterial reads, respectively. The taxonomic analysis revealed a total of
479 bacterial families across all samples.

Table 2. Classification of read counts of metagenomic samples using Kraken2.

Metagenomic
Sample No.

Number of Raw
Reads

Unclassified
Reads (%)

Classified Reads
(%)

Bacterial Reads
(%) Viral Reads (%)

2 1,577,409 98.90 1.10 93.13 6.87
3 3,012,060 94.16 5.84 92.04 7.96
4 3,144,439 98.70 1.30 88.75 11.25
6 1,422,958 97.30 2.70 96.62 3.38
7 2,844,173 57.19 42.81 99.09 0.91

12 2,017,399 97.55 2.45 92.54 7.46
21 1,515,485 98.77 1.23 85.10 14.90
23 2,096,503 98.69 1.31 84.42 15.58

A heat map based on RPM was constructed to highlight the diversity of bacterial
families across the samples (Figure 1A). The top 10 most abundant families present within
each sample were selected for calculating family-level relative abundances, resulting in
22 dominant families (with the remaining families grouped as “others”) (Figure 1B). Among
these, nine families were identified as containing species that are known fish pathogens, in-
cluding Staphylococcaceae, Enterobacteriaceae, Vibrionaceae, Flavobacteriaceae, Pseudomonadaceae,
Morganellaceae, Hafniaceae, Mycobacteriaceae, and Aeromonadaceae. They were represented
by high proportions of the total bacterial reads obtained for several samples (Figure 1C).
The top five most prevalent bacterial families were Enterobacteriaceae, Alteromonadaceae,
Vibrionaceae, Staphylococcaceae, and Flavobacteriaceae. Notably, Vibrionaceae, Gram negative
bacteria known for causing SDS, exhibited a remarkably high abundance in samples 6 (33%)
and 7 (91%). Meanwhile, sample 3 displayed a distinct bacterial profile, characterized by a
high abundance of Mycobacteriaceae (24%), which was absent in other samples, and a high
abundance of Pseudomonadaceae (38%).

https://tandem.bu.edu/trf/trf.html
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Figure 1. Taxonomic analysis of bacterial reads at family level. The top 10 bacterial families are
shown. (A) Heat map represents reads per million (RPM) values. The RPM values are represented
according to color gradient legend in the right panel. (B) Bar plot represents bacterial diversity in
terms of relative abundance. (C) Pie charts represent proportion of bacterial families based on their
impact on fish health. TH: Thailand, SG: Singapore, ML: Malaysia.

Regarding virus taxonomic analysis, a total of 146 virus families were identified. A
heat map showing the abundance (RPM) and the diversity of the virus families among
samples is shown in Figure 2A. The top 10 most abundant virus families in each sample
were chosen for family-level relative abundances calculation, resulting in 34 dominant
families (with the remaining families grouped as “others”) (Figure 2B). Among these, five
families contain viruses that are known fish pathogens, while 22 families were representing
bacteriophages. The top 5 most prevalent virus families were Iridoviridae, Herpesviridae,
Baculoviridae, Peribunyaviridae, and Phycodnaviridae. The proportion of virus families known
to be fish pathogens were dominated in all samples except sample 3, which exhibited
a remarkably high proportion of bacteriophage families (85%) (Figure 2C). Notably, the
family Iridoviridae, which includes SDDV, displayed the highest abundance in all samples
except sample 3, which displayed its own unique viral community characteristics. Consis-
tent with the bacterial taxonomic profile, sample 3 exhibited a unique virus profile with
higher abundance of prokaryotic viruses, including Casjensviridae (33%), Peduoviridae (31%),
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and Rountreeviridae (19%). In all samples, Iridoviridae were predominantly represented by
SDDV sequences, with the exception of sample 3 where approximately 30% of the Iridoviri-
dae sequences were ISKNV sequences, while the remaining 70% were SDDV sequences
(Figure 2B).
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Figure 2. Taxonomic analysis of viral reads at family level. The top 10 viral families are shown.
(A) Heat map represents reads per million (RPM) values. The RPM values are represented according
to color gradient legend in the right panel. (B) Bar plot represents viral diversity in terms of relative
abundance and proportion of species within the Iridoviridae family. (C) Pie charts represent proportion
of viral families based on host. TH: Thailand, SG: Singapore, ML: Malaysia.

3.2. SDDV Genome Recovery

Following de novo assembly, the generated contigs were subjected to taxonomic clas-
sification. Notably, the largest contig (approximately 131 kb) was obtained from sample
7. SDDV contigs were successfully retrieved from seven out of eight samples, with the
exception of sample 3. The SDDV genomes retrieved from samples 2, 4, 6, 7, 12, 21, and
23 were named as SDDV strain TH2_2016, TH4_2017, TH6_2018, TH7_2019, SG12_2019,
ML21_2019, and ML23_2019, respectively. The assembled SDDV genomes exhibited vary-
ing degrees of coverage, ranging from 12% to 100% (sample 7; see Table 3). Furthermore,
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genome completeness was assessed using the BUSCO (Benchmarking Universal Single-
Copy Orthologs) approach, evaluating a set of 10 single-copy iridovirus genes (Table S2).
The result indicated the highest completeness within SDDV TH7_2019 genome with the
following score: Complete (C): 10 (100%), Fragmented (F): 0, Missing (M): 0; followed
by SDDV ML23_2019 with the following score: C: 8 (80%), F: 2 (20%), M: 0; and SDDV
ML21_2023 with the following score: C: 7 (70%), F: 3 (30%), M: 0. Therefore, a complete
genome was recovered only from sample 7 (SDDV TH7_2019) and submitted to NCBI
under the accession no. PP660347. Apart from the BUSCO set of iridovirus genes, complete
major capsid protein (MCP) gene sequences were obtained from SDDV ML23_2019 and
submitted to NCBI (Table S2).

Table 3. Assembly statistics of SDDV genomes retrieved from metagenomic samples.

Metagenomic
Sample No.

Number of
SDDV Contigs

SDDV Strain
Name

Length (bp) Percent
Covered 1

BUSCO Search

Complete (C) Fragmented (F) Missing (M)

2 36 TH2_2016 16,035 12.3 1 0 9
4 126 TH4_2017 90,045 80.0 1 6 3
6 71 TH6_2018 30,800 23.1 1 2 7
7 1 TH7_2019 131,759 100 10 0 0

12 113 SG12_2019 108,163 81.9 3 7 0
21 79 ML21_2019 127,278 92.9 7 3 0
23 28 ML23_2019 130,742 98.9 8 2 0

1 Percent covered of query genomes compared with SDDV TH2019.

3.3. SDDV Genome Characterization

The genome of SDDV strain TH7_2019 was subjected to genome annotation to predict
ORFs and their potential function. The SDDV TH7_2019 genome size was 131,759 bp with
a G + C content of 36.6% (Table 4). A total of 134 ORFs encoding putative proteins were
predicted based on BLASTp searches against nr and CD database. A circular genome
map of the SDDV TH7_2019 genome is shown in Figure 3. Detailed information on the
predicted ORFs, including their lengths, homologous proteins based on BLASTp results,
and predicted functions, is presented in Table S3. All predicted ORFs were homologous
to SDDV and other iridovirus genes. Among these, 38 ORFs were functionally annotated,
including 26 iridoviruses core genes. Functions of viral proteins were categorized into
four types; (i) structural proteins: structural and virion-associated elements; (ii) replica-
tion/catalytic proteins: essential proteins in DNA replication and transcription, or support
virus replication and adaptation, or cell signaling; (iii) virus–host interaction: virulence
or immune evasion proteins; and (iv) unknown function. Several proteins that are crucial
for the virus life cycle, including MCP (ORF079), DNA-dependent RNA polymerase II
alpha (RPO) (ORF099) and beta (RPO2) (ORF008) subunit were identified. Moreover, viral
proteins involved with virulence, including eukaryotic translational initiation factor 2α
(eIF2α) (ORF032), ribonuclease III (ORF046), Erv1/Alr family (ORF023), and tumor necrosis
factor receptor (TNFR) homologs (ORF009 and 069), were present.

Pairwise comparison demonstrated high similarity between the SDDV TH7_2019
genome and other previously published SDDV genomes. The SDDV TH7_2019 genome
exhibited 99.80%, 99.71%, and 99.69% nucleotide identity with SDDV strains TH2019, ZH-
06/20, and C4575, respectively (Figure 4). Dot plot analysis indicated substantial collinear-
ity across the genomes, with the SDDV ZH-06/20 strain exhibiting an inverted direction
(Figure S1). Gene-by-gene comparisons of predicted ORFs from the SDDV TH7_2019
genome indicated high amino acid similarity (<95% to 100%) for 110 to 122 ORFs of
134 ORFs when compared to other SDDV strains. Conversely, the number of ORFs exhibit-
ing lower sequence similarity (<90%) were 6 to 14 (Table S4). Some of these variations
can be attributed to the presence of varying numbers of tandem repeat sequences in ORFs.
The most variable number of tandem repeats was found in ORF076 and ORF077 (SDDV
TH7_2019), resulting in relatively low sequence similarities (78% to 79%) between Thai
SDDV strains and other SDDV strains (Table S5). Variations in the number of tandem
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repeats were also observed in ORF051 and ORF088, resulting in sequence similarities of
97% and 98%, respectively.

Table 4. General features of genomes used in this study.

Species Isolate
Name Host Year Geographical

Origin GC (%) Length
(bp) ORFs GenBank

Accession No. Reference

Scale drop disease
virus (SDDV) TH7_2019 Asian seabass

(Lates calcarifer) 2019 Thailand 36.6 131,759 134 PP660347 This study

Scale drop disease
virus (SDDV) TH2019 Asian seabass

(Lates calcarifer) 2018 Thailand 36.6 131,192 135 MN562489 [12]

Scale drop disease
virus (SDDV) C4575 Asian seabass

(Lates calcarifer) 2015 Singapore 37.0 124,244 129 KR139659 [4]

Scale drop disease
virus (SDDV) ZH-06/20 Yellow seabream

(Acanthopagrus latus) 2020 China 36.56 131,122 135 OM037668 [9]

Infectious spleen and
kidney necrosis virus

(ISKNV)

Mandarin fish
(Siniperca chuatsi) 2001 China 54.78 111,362 124 AF371960 [38]

European chub
iridovirus (ECIV) LEC15001 European chub

(Squalius cephalus) 2005 United
Kingdom 38.5 128,216 108 MK637631 [39]

Turbot reddish body
iridovirus (TRBIV)

Turbot
(Scophthalmus maximus) 2006 China 55.0 110,104 114 GQ273492 [40]

Red seabream
iridovirus (RSIV) KagYT-96 Japanese amberjack

(Seriola quinqueradiata) 1996 Japan 53.0 112,719 117 MK689686 [41]

Singapore grouper
iridovirus (SGIV)

Brown-spotted grouper
(Epinephelus tauvina) 2004 Singapore 48.5 140,131 162 AY521625 [42]
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Figure 4. Linear map of whole genome sequence alignment of SDDV TH7_2019 against SDDV
TH 2019, C4575, and ZH-06/20. Grey linkages indicate nucleotide similarity percentages, and red
linkages indicate nucleotide similarity percentages of inverted sequences. The arrows indicate the
direction of transcription.

3.4. Comparison Genomics and Phylogenetic Analysis

Pan-genome analysis identified a total of 148 putative protein-coding sequences among
SDDV genomes including 114 core genes (present in at least three of four genomes) and
34 accessory genes (present in less than three genomes) (Figure 5). Predicted functions
of the core genes are primarily involved with essential biological functions such as DNA
replication, transcription, translation, and structural and cell metabolisms. Based on the
presence and absence of genes, SDDV Thai strains (SDDV TH2019 and TH7_2019) were
grouped into the same cluster whereas SDDV strains from Singapore (SDDV C4575) and
China (SDDV ZH-06/20) were clustered separately. Compared to the other strains, SDDV
C4575 possessed a unique pattern with ten and sixteen unique presence and absence genes,
respectively. The functions of the unique accessory genes of SDDV C4575 are largely
unknown, although some were predicted to encode for mRNA capping enzymes and
signaling peptides. Similarly, the majority of accessory genes that were absent in SDDV
C4575 were predicted to have unknown functions; however, some were predicted to contain
signaling peptides and/or zinc ring finger motifs (see Supplemental Table S6).
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Using SDDV TH2019 as reference, SNPs were identified across seven core genes (D5
family NTPase ATPase, flap endonuclease, ATPase, myristoylated membrane protein,
NIF-NLI interacting factor, Uvr/REP helicase, and MCP) (Table S7). A total of 13 SNPs
were identified and characterized, including five synonymous (not changing the amino
acid sequence) and eight nonsynonymous (changing the amino acid sequence) variants.
All nonsynonymous variants were missense variants. The SDDV ZH-06/20 exhibited the
highest number of SNPs (7 SNPs), while none were detected in the SDDV TH7_2019. SDDV
strains from Malaysia possessed unique SNPs within the NTPase, flap endonuclease, and
NIF-NLI interacting factor genes. Additionally, variations of SNPs were found within the
Uvr/REP helicase gene among the Thai strains.

Phylogenetic analysis based on WGS, SNPs, and concatenated and individual core
genes indicated that all SDDV strains clustered within a single clade, distinct from other
iridoviruses (Figures 6, 7, and S2–S5). Notably, SDDV exhibited the closest relationships
with ECIV followed by the ISKNV clade (ISKNV, RSIV, and TRBIV).
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Figure 6. Maximum-likelihood tree based on (A) concatenated 6 core genes. The tree was constructed
using MEGA X with General Time Reversible (GTR) + G nucleotide substitution model; (B) whole
genome sequences (WGS). The tree was constructed using IQ TREE with GTR + F + G4 nucleotide
substitution model; (C) single nucleotide polymorphisms (SNPs). The tree was constructed using IQ
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TREE with Transversion model (TVM) + F +ASC + G4 nucleotide substitution model. All trees
were constructed with 1000 replications and bootstrap support values are shown at the nodes. Solid
black circle represents SDDV strains from this study. Scale bar represents nucleotide substitution
per site. Singapore grouper iridovirus (SGIV), belonging to the genus Ranavirus, was used as an
outgroup. SDDV: scale drop disease virus, ECIV: European chub iridovirus, ISKNV: infectious spleen
and kidney necrosis virus, RSIV: red sea bream iridovirus, TRBIV: turbot reddish body iridovirus.
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TRBIV: turbot reddish body iridovirus.

4. Discussion

Scale drop syndrome (SDS) has been a significant threat to Asian seabass aquaculture
by causing severe economic losses across Southeast Asia [4,7,8]. Other pathogens, such
as V. harveyi [5], T. maritimum [6], ISKNV [43], L. calcarifer herpes virus (LCHV) [44,45],
and RSIV [46,47], can also cause similar symptoms or occasionally co-infected with SDDV.
In this study, metagenomics analysis was used to study viral and bacterial communities
within the tissues of diseased Asian seabass exhibiting pathological characteristics of SDS.
Taxonomic analysis of bacteria identified members of the pathogenic bacterial families
Staphylococcaceae, Enterobacteriaceae, Vibrionaceae, Flavobacteriaceae, Pseudomonadaceae, Mor-
ganellaceae, Hafniaceae, Mycobacteriaceae, and Aeromonadaceae. Among these, members of the
Vibrionaceae family were suspected to be the cause of SDS observed in our samples, as its
relative abundance was notably high. However, it is worth noting that only two samples
exhibited a high abundance of the Vibrionaceae family. Most of the viral sequences in the
samples represented members of the Iridoviridae family, predominantly SDDV. Based on
the abundance of viral and bacterial reads, our findings suggest that SDDV and not Vibrio
spp. was the primary pathogen responsible for causing SDS, while Vibrio spp. may also act
opportunistically to increase disease severity.

In addition to these pathogens, sequences representing other potential pathogenic
viruses and bacteria were discovered, raising concerns about opportunistic infections and
disease transmission. For example, the Herpesviridae family was frequently identified
as the second-ranked pathogen in many samples. This virus was reported to co-infect
subclinically with SDDV in Asian seabass and may currently be endemic in this species [48].
For sample 3, which displayed the most distinctive bacterial and viral profiles, we observed
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a high abundance of the family Pseudomonadaceae and Mycobacteriaceae, corresponding with
a high abundance of the bacteriophage family Peduoviridae. There is an increasing number
of studies that demonstrated the role of the pathobiome in disease [49], and further work is
needed to investigate the role of SDDV, Vibrio spp., and potentially other species in SDS.

Our study successfully employed metagenomics to recover a complete SDDV genome
directly from the tissue samples, but this approach does have limitations. The detection of
viral sequences can be challenging due to the overwhelming presence of host sequences
and other microbial species. In our study, sample 7, which had a relatively high number of
iridovirus reads, enabled de novo assembly of a single SDDV-like contig of 131 kb in length.
This contig was confirmed as SDDV through reference genome mapping, comparative
genomics, and phylogenetic analyses. However, samples with fewer iridovirus reads
yielded only partial SDDV genomes. The completeness of viral genomes assembled via
metagenomics depends on the abundance of viral reads in the samples, which could be
influenced by the severity or stage of the viral infection. Therefore, a high sequencing depth
is recommended for metagenomics analysis. Interestingly, sample 7 was obtained from fin
tissue, which is generally considered to be a lower priority target organ for SDDV during
the early stages of infection [48]. This aligns with a recent study by Charoenwai et al. [17],
which also detected SDDV in non-destructive samples like mucus and fin clips.

The SDDV TH7_2019 genome was found to be 131,759 bp in length, with a GC content
of 36.6%. This genome length is characteristic of MCV genomes, which are typically larger
compared to other viruses in the Iridoviridae family. Recent research has categorized the
Megalocytivirus genus into two main clusters, with one cluster, containing viruses like
ISKNV, RSIV, and TRBIV, known as the ISKNV-like cluster. The other cluster is more
distinct and includes SDDV and ECIV. This distinct grouping has led to the proposal
of a new cluster named the SDDV-like cluster [9,50,51]. Our genome characterization
and phylogenetic analysis support the proposal of an SDDV-like cluster, based on both
GC content and genome length. The SDDV genome sequenced in this study, along with
previously characterized SDDV and ECIV genomes, share a relatively low GC content
(<40%, ranging from 36.5% to 37%) and a relatively larger size (>128 kb, ranging from
128 kbp to 131 kbp). These distinct features suggest that these viruses form a novel clade
within the genus Megalocytiviruses, separate from other known MCVs [4,12,39,52]. Analysis
of nucleotide and amino acid sequence similarities between SDDV genomes revealed a high
degree of similarity (>99%) within the strains, even across different locations and years.

Interestingly, the first characterized SDDV genome (SDDV C4575) from Singapore
has the shortest genome size (124 kb) compared to other SDDV genomes, which typically
range around 131 kb [4,9,12]. A recent comparative genomics study comparing Thai SDDV
strains TH2019 and SDDV C4575 revealed a 7.6 kb-long unique region encoding for ORFs
15–20 with unknown functions in SDDV TH2019 [12]. However, our study identified
the presence of this region in SDDV SG12_2019, which originated from Singapore. The
missing region in SDDV C4575 could potentially be either the variations within Singapore
strains or a consequence of the limitations of the sequencing technique, VIDISCA-454 (virus
discovery cDNA-AFLP combined with Roche 454). This method is often challenged by high
interference from background sequences and limited availability of reference genomes,
which may have resulted in incomplete sequencing of certain genomic regions [53,54].
Pan-genome analysis revealed a highly conserved genome structure shared by all SDDV
strains with the majority of genes (70%) defined as SDDV core genes. It is a common
occurrence for core genes to be primarily associated with genome replication, transcription,
and modification, as they are widely recognized as essential genes across many viral species.
Meanwhile, variations were observed among the accessory genes. SDDV C4575 exhibited
the most distinct gene presence/absence pattern. Even though the functions of the majority
of these genes are unknown, some are potentially linked to enhancing mRNA stability
during the translation process. The absence of the 7.6 kb region, which contains six ORFs,
in SDDV C4575 would have influenced the results of the pan-genome analysis. Further
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functional characterization of the accessory genes could elucidate potential differences
contributing to virulence or adaptation ability among SDDV strains.

Gene prediction revealed 134 putative ORFs in the SDDV TH7_2019 genome, with
known functions attributed to some genes. Out of these, 26 genes were identified as iri-
dovirus core genes, showing high homology to SDDV and other viruses within the family.
Notably, among these core genes, MCP (ORF079) is a structural component of the virus
particles, constituting 40–50% of the viral particle [38]. The other iridovirus core genes are
mostly associated with DNA replication, transcription, and cell metabolism. The genes
described as essential for the viral life cycle are DNA polymerase (ORF008 and ORF099),
DNA repair protein (ORF096), D5 family NTPase (ORF062), DNA binding/packing protein
(ORF039), and helicase (ORF124) [38,55,56]. In addition to the essential genes, several
genes associated with virulence and host immune interaction of SDDV were also iden-
tified. Some of these genes are related to host apoptosis manipulation, including tumor
necrosis receptor (TNFR) homologs (ORF009 and ORF069) and Golgi antiapoptotic protein
(ORF117). Iridovirus, like many other viral families including Poxviridae, possess genes
that encode proteins capable of suppressing host apoptosis. Apoptosis is a natural cellular
self-destruct mechanism that eliminates virus-infected cells. By inhibiting apoptosis, these
viral genes prolong the survival of infected cells, creating a more favorable environment
for viral replication [42]. ORF072 was identified as a gene encoding the small subunit
of ribonucleotide reductase. This protein, previously studied in poxviruses, functions
by binding to the host ribonucleotide reductase large subunit. This interaction induces
host ribonucleotide reduction, thereby facilitating the viral replication process [57]. TNFR
homologs or TNFR-associated protein genes are commonly found in other fish iridoviruses,
whereas gene loss events have been reported in many non-fish iridoviruses, such as those
affecting amphibians and reptiles [58]. These genes may have significantly contributed to
the adaptation to different natural host species during iridovirus-host co-evolution [58].
Furthermore, the SDDV genome contains six ORFs encoding ankyrin repeat-containing
proteins, which may encode repressors of the host immune response [51]. Collectively, the
SDDV TH7_2019 genome consists of genes encoding host immune evasion functions. These
genes potentially contribute to prolonged SDDV infection by inhibiting apoptosis and
triggering inflammatory responses during infection. This aligns with observations of the
delayed appearance of clinical signs of SDDV infection and host responses characterized
by the release of chemokines, interleukins, and tumor necrosis factors [48].

Phylogenetic analyses utilizing various approaches, including WGS, SNPs, and core
genes, consistently demonstrated a close relationship between SDDV strains, grouping
them within a single clade. The high degree of conservation observed across the SDDV
strains provides flexibility in the use of available resources for SDDV identification and
classification. This observation supports the potential of utilizing the MCP and core genes,
such as ATPase, which have been identified in several studies, for the development of
diagnostic tools and vaccines [11,51,59,60].

Variations within SDDV strains were highlighted by determination of tandem repeats
and SNPs. Tandem repeats are short lengths of DNA that are repeated multiple times,
contributing to DNA slippage during the replication process. Variation in numbers of
tandem repeats referred to as variable number tandem repeats (VNTRs) facilitates studies
of genetic diversity and evolution. In SDDV, repeat sequences were previously reported in
genes encoded for myristoylated membrane, hypothetical protein, ADP-ribose glycohy-
drolase, and putative ankyrin repeat protein through genome comparison between SDDV
C4575 and TH2019 [12]. Similarly, our study identified the repeat sequences across these
genes with additional SDDV genomes. Notably, SDDV strains from Thailand exhibited
the same pattern and number of repeats, while SDDV strains from China and Singapore
possessed similar number of repeats that were distinct from those found in Thai strains. A
significantly different number of repeats were found in gene encoding putative membrane
and hypothetical protein (ORF077 and ORF055) between Thai and other SDDV strains from
Singapore and China. Several previous studies have demonstrated the potential of using
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repeat regions in epidemiological studies of viruses, such as white spot syndrome virus
(WSSV) and African swine fever virus (ASFV), to trace the origin, investigate virus distri-
bution and the development of genetic markers for strain discrimination [61–64]. Hence,
these repeat sequences could potentially serve as genetic markers for further research on
genetic diversity in SDDV.

Additionally, this study indicated variations in SNPs patterns across SDDV strains
from different geographical origins by determining SNPs within the core genes. Notably,
the SDDV strains from Malaysia in this study (SDDV ML21_2019 and SDDV ML23_2019)
displayed unique missense mutations in genes encoding the NTPase, flap endonuclease,
and NIF-NLI interacting factor. Missense mutations can alter the amino acid sequence,
potentially affecting protein function. While the SDDV strains from China (SDDV ZH-
06/20) harbored the highest number of SNPs, most were silent mutations, potentially
having a less significant impact compared to the missense mutations observed in SDDV
strains from Malaysia. Variations in SNPs were detected among Thai SDDV strains collected
across different years in this study. Different SNPs were found at positions 29 (Gln29His)
and 109 (Arg109Cys) of Uvr/REP helicase of SDDV TH6_2018 and TH4_2017, respectively,
while no SNPs were found in SDDV TH7_2019. Previous reports have also highlighted
differences in amino acid substitutions within genes encoding ATPase and myristoylated
membrane proteins between SDDV isolates from different years [12]. This suggests a
potential for temporal accumulation of mutations, leading to increased strain divergence
over time. Furthermore, consistency was also observed across SDDV strains isolated from
China, Malaysia, and Singapore, revealing the same SNPs within the DNA polymerase
(Leu139Val and Arg590Arg) and RPO (Ala817Ala) genes. Viral mutations, particularly
missense mutations, can be a mechanism for adaptation and survival under selective
pressure [65]. Future studies should investigate whether these observed mutations impact
the structural integrity or functionality of SDDV proteins, potentially influencing viral
fitness or virulence, as observed in other viruses [66]. Nevertheless, the relatively small
sample size and limited availability of SDDV genomes from diverse geographical regions
of this study restrict the generalizability of our findings. Future research should prioritize
expanding the SDDV strain collection by including more samples from a wider range
of countries. This will provide a more comprehensive understanding of SDDV genetic
diversity and potential geographical trends in mutation patterns.

Altogether, SDDV isolated from diseased Asian seabass from across Southeast Asian
countries exhibited high similarity in their genomes and several genes still hold promise as
targets for diagnostic approaches or vaccine development. However, differences between
SDDV strains were also observed and these can likely be attributed to differences in both
host and geographic location. This raises a concern related to the translocation of seabass
stocks across countries, specifically the movement of fingerlings from hatcheries in one
country to grow-out facilities in another. Such translocations could potentially introduce
different viral strains into new environments, each with its own level of virulence and
adaptability. As a result, the efficacy of existing diagnostic tools and vaccines in the affected
countries could decrease over time. This highlights the need for ongoing updates in
disease surveillance, as well as the implementation of effective control measures and virus
prevention strategies.

5. Conclusions

This study employed metagenomic techniques to investigate the microbial diversity
associated with scale drop disease (SDS) and successfully recovered a complete genome
of the causative agent, scale drop disease virus (SDDV). We further characterized the
SDDV genome through phylogenetic analysis and functional annotation, revealing insights
into genome structure, evolutionary relationships, and potential virulence factors. These
findings provide a foundation for developing targeted diagnostic tools and effective disease
control strategies for SDDV.
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