Optimization of fixture locating layout design using comprehensive optimized machine learning

Chalak Qazani, Mohamadreza, Parvaz, Hadi, and Pedrammehr, Siamak (2022) Optimization of fixture locating layout design using comprehensive optimized machine learning. International Journal of Advanced Manufacturing Technology, 122. pp. 2701-2717.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s00170-022-10061...


Abstract

Fixtures are commonly employed in production as work holding devices that keep the workpiece immobilized while machined. The workpiece’s deformation, which affects machining precision, is greatly influenced by the positioning of fixture elements around the workpiece. By positioning the locators and clamps appropriately, the workpiece’s deformation might be decreased. Therefore, it is required to model the fixture–workpiece system’s complicated behavioral relationship. In this study, long short-term memory (LSTM), multilayer perception (MLP), and adaptive neuro-fuzzy inference system (ANFIS) are three machine-learning approaches employed to model the connection between locator and clamp positions and maximum workpiece deformation throughout end milling. The hyperparameters of the developed ANFIS, MLP, and LSTM are chosen using the evolutionary algorithms, including genetic algorithm (GA), particle swarm optimization (PSO), butterfly optimization algorithm (BOA), grey wolf optimization (GWO), and wolf optimization algorithm (WOA). Among developed methods, MLP optimized using BOA (BOA-MLP) reached the highest accuracy among all developed models in predicting the response surface. The developed model had a lower computational load than the final element model in calculating the response surface during the machining process. At the final step, the prementioned five evolutionary algorithms were implemented in the developed BOA-MLP to extract the optimal parameters of the fixture to decrease the deflection of the workpiece throughout the machining. The proposed method was modeled in MATLAB. The outcomes showed that the mentioned model was efficient enough compared with the previous method, such as optimized response surface methodology in the point view of 0.0441 μm lower workpiece deflection.

Item ID: 86737
Item Type: Article (Research - C1)
ISSN: 1433-3015
Copyright Information: © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Date Deposited: 18 Aug 2025 23:43
FoR Codes: 40 ENGINEERING > 4014 Manufacturing engineering > 401408 Manufacturing processes and technologies (excl. textiles) @ 40%
46 INFORMATION AND COMPUTING SCIENCES > 4611 Machine learning > 461199 Machine learning not elsewhere classified @ 60%
SEO Codes: 24 MANUFACTURING > 2412 Machinery and equipment > 241204 Industrial machinery and equipment @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page