
Fuel 372 (2024) 132090

Available online 14 June 2024
0016-2361/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Full Length Article 

Optimizing microbial fuel cells with multiple-objectives PSO and type-2 
fuzzy neural networks 

Mohammad Reza Chalak Qazani a, Mostafa Ghasemi b, Houshyar Asadi c,* 

a Faculty of Computing and Information Technology, Sohar University, Sohar, Sohar 311, Oman 
b Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Sohar 311, Oman 
c Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC 33216, Australia   

A R T I C L E  I N F O   

Keywords: 
Microbial fuel cell 
Clean energy 
Type-2 fuzzy neural network 
Multiple-objective optimisation 
Particle swarm optimisation 

A B S T R A C T   

A microbial fuel cell is a novel method for simultaneous wastewater treatment and electricity production using 
microorganisms as biocatalysts. This study aims to develop an efficient surrogate model to predict microbial fuel 
cell performance based on varying input parameters, which include glucose (1–9 g/L), yeast extract (1–5 g/L), 
and aeration rate (0–110 ml/min). The output parameters of interest are chemical oxygen demand (COD) 
removal, coulombic efficiency, and power production. A type-2 fuzzy neural network (T2FNN) is employed to 
train the model for accurate predictions of these outputs. In the second phase, the trained model is integrated 
with multi-objective particle swarm optimization (PSO) to identify the optimal Pareto front solutions that 
maximize COD removal, coulombic efficiency, and power output. The optimal solutions are validated experi
mentally, demonstrating a marginal error of 9.50 % between the predicted and observed values. Specifically, the 
optimized microbial fuel cell achieved a COD removal efficiency with a margin error of 7.41 %, a coulombic 
efficiency margin error of 18.65 %, and a power generation margin error of 2.45 %. Compared to similar studies, 
the proposed methodology shows significant improvements, highlighting its effectiveness in enhancing microbial 
fuel cell performance for bioelectricity production and wastewater treatment. On average, the optimal param
eters identified using this method result in notable improvements in COD removal, coulombic efficiency, and 
power production compared to a full factorial experimental study.   

1. Introduction 

The two big challenges of the world are supplying clean water and 
energy. Water scarcity and global warming are threats to human life 
globally. With the rapid population growth of the world and living 
standards, pressure on the existing water and energy sources has jumped 
up [1–3]. Also, world capitalism has increased the resource usage. The 
rapid population growth needed to approach the economic govern
ment’s vision results from the current situation. The statistics predict 
that in less than 50 years, about 30 % of the people will have no access to 
water and about 1 billion people, which means 13 % of the population, 
will have no electricity [4–6]. The critical and high demand for a new 
energy source made all the governments think about alternative energy 
sources that don’t pollute the environment, have no environmental ef
fect, and are renewable. The microbial fuel cell is a device that can 
reduce the pollution of the environment, reduce carbon dioxide release, 
and treat wastewater. It also produces electricity as clean fuel by using 

microorganisms, and the fuel of the microbial fuel cell is free. It is also an 
efficient machine for extracting energy from the substrates in waste
water, such as carbon and nitrogen [7–9]. 

Furthermore, microbial fuel cells can produce clean, renewable fuel 
and reduce the hazardous carbon effect. Microbial fuel cells need less 
energy compared to other techniques for wastewater treatment. The 
removal of chemical oxygen demand in a microbial fuel cell is the 
oxidation of organic materials in the substances by using electroactive 
bacteria [10,11]. This results in a transfer of the protons and electrons to 
the electrode as an electron acceptor. Microbial fuel cells collect elec
tricity by applying several microorganisms for electrochemical re
actions. Microorganisms that generate a layer on the anode can move 
electrons to the anode and then by bacterial pili or nanowires. The 
performance of a microbial fuel cell depends on different parameters 
such as electrode, separator and cathode catalyst. Beyond all these pa
rameters, the media is the fuel and feed of microorganisms, such as the 
engine and biocatalyst in bioelectricity generation and wastewater 
treatment [12]. 
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Soft computing techniques have recently emerged in various do
mains, such as materials microstructure, manufacturing, and energy 
production [13–15]. Fang et al. [16] introduced an integrated modelling 
approach combining uniform design, relevance vector machine, and 
accelerating genetic algorithm to optimize microbial fuel cell perfor
mance, achieving high Coulombic efficiency and power density under 
optimal conditions. Garg et al. [17] explored multi-gene genetic pro
gramming, feedforward neural networks (FFNN), and support vector 
regression (SVR) to model microbial fuel cell performance, attempting 
to predict pre-and post-startup microbial fuel cell voltage based on 
temperature and ferrous sulphate concentrations. However, their model 
proved time-consuming and unsuitable for real-time applications. Chen 
et al. [18] introduced a hybrid soft computing model featuring wavelet 
analysis, ELM, and genetic algorithms (GA) to evaluate the influence of 
factors like relative humidity, load current, hydrogen pressure, and 
temperature on proton exchange in microbial fuel cells designed for 
electric vehicles. Although experimental results demonstrated the effi
cacy of their approach compared to traditional methods like Elman and 
relevance vector machines, practical implementation remains a chal
lenge. Cai et al. [19] demonstrated that incorporating microbial com
munity data with six machine-learning algorithms can accurately 
predict feed substrates in microbial fuel cells, achieving high accuracies 
(over 93 %) and enhancing microbial fuel cell-based biosensor signal 
specificity. Yewale et al. [20] developed a temperature-based mathe
matical model and a multiple models-based control strategy using 
various machine learning approaches, achieving a 65 % reduction in 
average settling time for controlling continuous microbial fuel cells. 
Dwivedi et al. [21] conducted a comprehensive review of the current 
research in microbial fuel cells, focusing on integrating soft computing 
methods to enhance the performance of these environmentally friendly 
applications. Jadhav et al. [22] explored various mathematical and 
computational modelling strategies to optimize microbial fuel cell per
formance, highlighting the importance of model-based optimization and 
process control for scaling up and commercializing microbial fuel cell 
technology. Additionally, Nguyen et al. [23] introduced a deep learning 
approach that combines multi-layer perceptron and GA to develop a 
three-dimensional Multiphysics model for microfluidic microbial fuel 
cells. 

Ghasemi et al. [24] used a multi-layer perceptron with varying 

hidden layers to significantly enhance the accuracy of predicting mi
crobial fuel cell performance, demonstrating a 5.1819-fold improve
ment compared to the traditional SVR method. In addition, Ghasemi 
et al. [25] utilised fuzzy modelling and the salp swarm optimizer to 
enhance microbial fuel cell performance, achieving simultaneous im
provements in power density, COD removal, and coulombic efficiency. 
Abdollahfard et al. [26] enhanced microbial fuel cell performance by 
using random forest and gradient boost regression models to predict 
power density and COD removal, optimized via particle swarm optimi
zation, identifying key parameters for maximization. Nguyen et al. [27] 
introduced explainable artificial intelligence to analyse machine 
learning models for optimizing membrane less microbial fuel cells, 
achieving a 239.024 % increase in power density and offering valuable 
insights into key operating parameters. Hossain et al. [28] introduced 
Bayesian optimization-SVR and Bayesian optimization-Boosted Regres
sion Tree super learner models for predicting microbial fuel cell power 
generation, demonstrating that BA-SVR significantly outperforms 
existing models in accuracy and robustness, thus optimizing electricity 
estimation and reducing laboratory trials. Recently, Kebede et al. [29] 
proposed a transfer learning approach using a variational autoencoder 
and Bi-LSTM with an attention mechanism for predicting remaining 
useful life of microbial fuel cells, achieving superior accuracy and effi
ciency in stack voltage degradation estimation. Li et al. [30] presented 
an integrated framework using multi-physics models, machine learning 
(AdaBoost), and an enhanced grey wolf optimizer to swiftly optimize 
channel structure, maximizing power density with high accuracy and 
efficiency. 

However, despite these advancements, several gaps remain in the 
literature:  

1. Limited Integration of Type-2 Fuzzy Neural Networks (T2FNN): 
Previous studies have predominantly used traditional neural net
works and machine learning techniques. The application of T2FNNs, 
which can handle higher levels of uncertainty and imprecision in 
data, is still underexplored in the context of microbial fuel cell 
optimization.  

2. Comprehensive Multi-Objective Optimization: While some studies 
have addressed single-objective optimization, there is a lack of 
comprehensive approaches that simultaneously optimize multiple 

Nomenclature 

Symbols 
CC Correlation coefficient 
COD Chemical oxygen demand 
FFNN Feedforward neural networks 
FIS Fuzzy inference system 
GA Genetic algorithm 
MSE Mean square error 
ORR Oxygen reduction reaction 
PSO Particle swarm optimization 
RMSE Root mean square error 
SVR Support vector regression 
T2FNN Type-2 fuzzy neural network 

Acronyms 
ai Type-2 FIS IF-THEN rule 
b Number of transferred electrons per mole of oxygen 
C1 Individual confidence factor 
C2 Swarm confidence factor 
F Faraday number 
I Current 
maxgen Maximum number of generations 

maxvel Maximum vel in percentage 
M Molecular weight of oxygen 
Np Population size 
Nr Repository size 
ngrid = 20 Number of grids in each dimension 
nxi Corresponding normalised data 
P Power 
Qa

u Comprise sets of type-2 FISs 
Qa

v Comprise sets of type-2 FISs 
R External resistance 
u*

i Reference signals with ai 

umut Uniform mutation percentage 
V Voltage 
Van Volume of the anode chamber 
v*

i Reference signals with ai 

W Inertia weight 
x Maximum values of the dataset 
x Minimum values of the dataset 
xi Raw data at the ith position 
μa

Xi 
Minimum outputs of the fuzzy rules 

μa
Xi 

Maximum output of the fuzzy rules  
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critical outputs like COD removal, coulombic efficiency, and power 
density.  

3. Experimental Validation of Soft Computing Models: Many studies 
present computational models without sufficient experimental vali
dation, leaving a gap in confirming these models’ practical applica
bility and accuracy in real-world settings. 

The main motivation of the current study can be categorised into two 
different points. Initially, the surrogate model was developed to imitate 
the microbial fuel cell’s behaviour in calculating the chemical oxygen 
demand (COD) removal, coulombic efficiency, and power based on 
glucose, yeast extract, and aeration as operation parameters. Also, 
extracting the optimal solution of the input parameters results in the 
system’s maximum performance. Then, the study’s main contribution 
lies in developing and applying a novel methodology that combines 
T2FNN with multiple-objective particle swarm optimization (PSO) to 
optimise the performance of a microbial fuel cell process by choosing the 
optimized media through a new method. The methodology begins with a 
comprehensive experimental investigation, using a full factorial design 
to analyse the impact of various input process parameters on key out
comes, including COD removal, coulombic efficiency, and power. Sub
sequently, three distinct T2FNN models are developed to predict these 
outcomes accurately. The main motivation for selecting T2FNN in 
comparison to other machine learning methods:  

1. Handling Uncertainty: T2FNNs are designed to manage and model 
the uncertainty and imprecision inherent in real-world data more 
effectively than traditional ANNs. This is particularly important in 
biological systems like microbial fuel cells, where data variability is 
high.  

2. Higher Accuracy and Robustness: T2FNNs provide better accuracy 
and robustness in predicting outputs, accounting for a wider range of 
input variations and uncertainties.  

3. Flexibility and Modularity: Using separate T2FNNs for each output 
allows for greater flexibility and modularity in system design, mak
ing it easier to update or refine individual models as needed without 
affecting the entire system. 

By using three separate T2FNNs, this study ensures higher accuracy, 
simplicity, lower computational load, and better applicability, thereby 
addressing the critical needs of microbial fuel cell optimization more 
effectively than a single ANN model with multiple outputs. It should be 
noted that the results of the developed T2FNN models are compared 
with traditional machine learning models, including decision tree (DT), 

SVR, and FFNN, to prove the higher efficiency of the proposed method in 
this research. 

These T2FNN models are integrated into a multiple-objectives PSO 
framework, where the objective functions are based on mean square 
error between experimental and predicted values. The optimization 
process aims to maximize COD removal, coulombic efficiency, and 
power generation in the microbial fuel cell process. This study provides 
a systematic approach to optimize microbial fuel cell performance, 
which can have significant implications for various biotechnology and 
renewable energy applications. This study is the first time the media in 
the microbial fuel cell was optimized using the T2FNN method, and the 
model was validated. 

Section 2 comprehensively examines the microbial fuel cell process, 
specifically defining the inputs and capturing the system’s outputs. 
Furthermore, this Section outlines the methodology for acquiring the 
necessary datasets and utilizing the experimental study. Moving forward 
to Section 3, a detailed explanation regarding the innovative approach 
incorporating the combined utilization of T2FNN and multiple- 
objectives PSO is provided. Section 4 of this manuscript offers a 
comprehensive comparative analysis and thought-provoking discussion, 
delving into the outcomes extracted through the developed model 
implemented within the MATLAB framework. Finally, in Section 5, the 
study reaches its culmination as key conclusions derived from the 
research are summarized and highlighted. 

2. Materials and methods 

2.1. Microbial fuel cell configuration 

The microbial fuel cell structure is similar to our previous study [31]. 
The microbial fuel cell is built by two chambers that have been separated 
by a separator, which is a proton exchange membrane (Nafion117). 
Nafion 117 has high selectivity; only protons can pass through that and 
reach the anode. The electricity is generated by the oxygen reduction 
reaction (ORR) reaction on the surface of the cathode electrode, and the 
voltage is recorded on a PC. The schematic diagram of a microbial fuel 
cell is shown in the Fig. 1a. Carbon paper was used as the electrode in 
anode and carbon paper/Pt in employed as the cathode electrode. 

2.2. Media and inoculation 

Different concentrations of glucose (1–9 g/l) are used as carbon 
sources. The yeast extract in variable amounts was used as a nitrogen 
source (1–5 g/l). Mineral and vitamin components were used as 

Fig. 1. (a): The schematic of a microbial fuel cell; (b): The experiment setup for capturing the COD removal, coulombic efficiency, and power generation based on 
glucose, yeast extract, and aeration. 
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described before. Also, the nitrogen was purged in the anode chamber 
for 15 min before the start of the experiment to make the anode 
anaerobic. Also, the air is purged by an aquarium pump to the cathode 
chamber for ORR reaction. 

The media was inoculated by palm oil mill effluent (POME, Selangor) 
as an anaerobic sludge in an anaerobic beaker. Before the operation, 10 
ml of the sludge has been added to the media. The attached microor
ganisms were observed by scanning electronic microscopy (SEM-Surpra- 
55vp-Zeiss, Germany). The samples were dried and covered by a thin 
layer of gold before the photo was captured. Fig. 1b shows the experi
mental setup for holding the experiment to capture the COD removal, 
coulombic efficiency, and power generation based on glucose, yeast 
extract, and aeration. To start the operation, 10 ml of the sludge has 

been added to the media in the anode chamber of microbial fuel cell. 
Then the MFC is connected to the voltameter and fed every 90 h. It took 
about three weeks that the voltage of MFC get stable. Then the re
sistances were connected to the MFC for producing the current. 

2.3. Analysis and calculation 

A voltammeter measures the produced voltage in each second and is 
recorded and saved on a PC. The current and voltage produced can be 
calculated using the formula below. 

I =
V
R

(1) 

Fig. 2. The proposed research methodology’s graphical abstract for extracting the optimal microbial fuel cell parameters.  
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P = V × I (2)  

where the current is noted as I and the voltage is noted as V. The external 
resistance is shown as R. 

The COD reagents (high range) were used to measure the COD. A 
sample was taken from the anode chamber to find the COD and then 
diluted 10-fold in water. Then, 2 mL of the sample was added to the 
high-range COD vials and heated to150 oC. Finally, a spectrophotometer 
was used to measure COD [32]. 

This formula can calculate the system’s coulombic efficiency as 
follows: 

CE =
M
∫ t

0 Idt
FbVanΔCOD

(3)  

where M is the molecular weight of oxygen, and F is the Faraday num
ber. The number of transferred electrons per mole of oxygen is b = 4. 
The change of COD is shown by ΔCOD and Van is the volume of the anode 
chamber. Nitrogen gas was purged inside the anode chamber for 10 min 
to provide the anaerobic condition. From the other side, the air was 
continuously purged in the cathode chamber for the ORR reaction. 

3. Simulation method 

This Section’s focal point lies in the proposed methodology, which 
revolves around developing T2FNN. Fig. 2 shows the graphical abstract 
of the proposed methodology in this research. It consists of three main 
steps, including extracting the dataset using practical experiments, 
developing T2FNN as a representative of soft computing method, and 
extracting optimal processing parameters using multiple-objectives 
PSO. 

The first step comprises three sub-steps, including the production of 
microbial fuel cells using different input parameters (glucose, yeast 
Extract, and aeration). A comprehensive investigation employs a full 
factorial microbial fuel cell process analysis. This study embraces the 
fully experimental study to capture the different outcomes of the pro
cess, including COD removal, coulombic efficiency, and power. To reach 
the system’s highest possible accuracy, the experiment’s full factorial 
design is investigated using the different levels for each input process 
parameter, as shown in Table 1. The dataset comprises 125 samples 
related to different experimental setups for each scenario. The extracted 
dataset is reported in the supplementary file as a.csv file. 

The second step entails the utilisation of T2FNN to derive a surrogate 
model that faithfully emulates the behaviour exhibited by the microbial 
fuel cell process. The extracted dataset is divided into 70 % and 30 % for 
training and testing purposes of the proposed T2FNN. It should be noted 
that for the sake of simplicity, lower computational load, and applica
bility, three T2FNNs are proposed to calculate the COD removal, 
coulombic efficiency, and power, which is called COD-T2FNN, CE- 
T2FNN, and P-T2FNN, respectively. The influence of different input 
parameters can be evaluated on the outcomes of the microbial fuel cell 
process. 

In the third step, these three extracted T2FNN models are employed 
inside multiple-objectives PSO as three separate cost functions to extract 
the optimal Pareto front solutions. After extracting these optimal Pareto 
solutions, the extracted optimal parameters are validated using the real 
experiment to prove the higher efficiency of the proposed method in 
real-life applications. 

3.1. Preprocessing 

The raw datasets cannot be directly fed into the algorithm, which 
would compromise the model’s accuracy. Hence, we delve into the 
importance of data preprocessing. The dataset undergoes a crucial pre
processing stage to enhance the network’s accuracy, aimed at mitigating 
the system’s complexity. The process commences by removing out-of- 
range data, as these entries significantly impede the network’s preci
sion. Subsequently, normalisation takes centre stage, facilitating the 
allocation of mean and standard deviation values within a rational 
range. By achieving this, the system’s complexity is effectively reduced, 
streamlining the network’s operations. The calculations involved in this 
normalisation process are as follows: 

nxi =
xi − x
x − x

(4)  

where x and x are the maximum and minimum values of the dataset. 
Additionally, let xi represent the raw data at the ith position while nxi 

symbolises the corresponding normalised data. The normalised values 
are constrained within the interval [0,1]. Acknowledging that the nor
malisation procedure is conducted independently for input and output 
data is vital. 

Concluding the data preprocessing stage involves partitioning the 
dataset into distinct training and testing samples. For this study, 70 % of 
the dataset is allocated for training. The remaining 30 % is reserved for 
testing the network’s performance. 

3.2. Type-2 fuzzy neural network 

T2FNN emerges as a powerful fusion, integrating a neural network 
and a type-2 fuzzy inference system (FIS) to achieve optimal tuning. The 
type-2 FIS takes centre stage within this study, meticulously calculating 

Table 1 
Different levels of the input parameters for the design of the experiment.  

Parameters L1 L2 L3 L4 L5 

Glucose (g/L) 1 3 5 7 9 
Yeast Extract (g/L) 1 2 3 4 5 
Aeration (mL/min) 0 20 50 80 110  

Fig. 3. (a): Membership function of the type-2 fuzzy interface; (b): Schematic representation of the T2FNN.  
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COD removal, coulombic efficiency, and power in the microbial fuel cell 
process. These components, denoted as COD-T2FNN, CE-T2FNN and P- 
T2FNN, deliver accurate insights. Fig. 3a artistically showcases the 
membership functions employed by the interval type-2 FIS. These 
functions have been strategically designed to handle the intricacies of 
COD removal, coulombic efficiency, and power. 

Moreover, complementing the type-2 FIS model, an FFNN has been 
seamlessly integrated. It helps to predict COD removal, coulombic effi
ciency, and power more accurately. The comprehensive structure of this 
hybrid T2FNN model is skilfully depicted in the captivating Fig. 3b. 

The T2FNN involves the development of the considered system 
through the utilisation of multiple type-2 FIS IF-THEN rules, as outlined 
below [33]: 

Rule ai : IF u*
i ∈ Qa

u and v*
i ∈ Qa

v 

THEN : Xa
i =

[

(ua
i )

T
(va

i )
T
]
= r̂a

i0 + R̂
a
i0

[

(u*
i )

T
(v*

i )
T
]T

= r̂a
i0 + R̂

a
u,vX

*
i

(5)  

where: 

R̂
a
u,v =

[
r̂a

u,v,1 ⋯ r̂a
u,v,5

]
while r̂a

u,v,n ∈
[
ra

u,v,n ra
u,v,n

]
, n = 1,…,5

(6) 

Moreover, u*
i and v*

i represent the reference signals with ai denoting 
the number of rules for systems i within the set {n, q}. Additionally, Qa

u 
and Qa

v comprise sets of type-2 FISs, each equipped with their respective 
membership functions. 

Therefore: 

Xa
i = ra

i0 +Ra
u,vX

*
i  

Xa
i = ra

i0 +Ra
u,vX

*
i (7) 

Using the fuzzy sets illustrated in Fig. 3a as a reference, we define 
α̂a

u(vi) =
[
αa

u(vi), αa
u(vi)

]
and α̂a

u(ui) =
[
αa

u(ui), αa
u(ui)

]
as uncertain stan

dard deviation and mean Gaussian functions, while [34]: 

0⩽αa
Xi
(Xi)⩽αa

Xi
(Xi)⩽1 (8)  

and 

αa
Xi
(Xi) = e

⎛

⎝−
1
2

(
Xi − ca

Xi
wa

1Xi

)2
⎞

⎠

αa
Xi
(Xi) = e

⎛

⎝−
1
2

(
Xi − ca

Xi
wa

2Xi

)2
⎞

⎠

(9) 

By multiplying the type-2 fuzzy sets, the final outputs of the fuzzy 
rules in each system are determined in the following manner: 

μa
Xi
(Xi) = αa

u(ui) × αa
u(vi)

μa
Xi
(Xi) = αa

u(ui) × αa
u(vi) (10) 

So: 

X̂i =
1
2

⎛

⎝

∑Ai
a=1μa

Xi
(Xi)Xa

i
∑Ai

a=1μa
Xi
(Xi)

+

∑Ai
a=1μa

Xi
(Xi)X

a
i

∑Ai
a=1μa

Xi
(Xi)

⎞

⎠ (11) 

The generation of parameters within the type-2 FIS is accomplished 
by training a neural network utilising the datasets employed in this 
study. The fuzzy neural network, operating on the principles of the 
Takagi-Sugeno fuzzy structure, skilfully incorporates the represented 
rules outlined in Eq. (6). Visualising the intricate mechanism of the 
T2FNN is Fig. 3b, a captivating depiction illustrating the system’s 
functionality through the arrangement of five layers or two distinct main 

groups, namely the antecedents and the consequents. 
Three parameters have been used to validate our investigated 

methods to choose the most reliable one, including correlation coeffi
cient (CC), mean square error (MSE), and root mean square error 
(RMSE). These validation parameters are calculated as follows: 

CC =

∑n
i=1((xi − x)(Ti − T) )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
(xi − x)2

(Ti − T)2
)

√

MSE =
1
n
∑n

i=1
(Ti − T̂ i)

2  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ti − T̂ i)

2

n

√
√
√
√
√

(12)  

where n, xi, and x are the number of samples, the ith input, and the mean 
of inputs. 

3.3. Multiple-objectives particle swarm optimisation 

PSO has been widely used for optimisation problems since its pro
posal by Kennedy and Eberhart in 1997 [35]. An extended version called 
multiple-objectives PSO was introduced by Coello et al. in 2004 [36] to 
address multiple-objectives optimisation problems. Multiple-objectives 
PSO incorporates an external repository, consisting of an archive 
controller and an adaptive grid, to store the non-dominated solutions 
discovered during the search process. 

The archive controller determines whether a new solution should be 
added to or removed from the archive. In comparison, the adaptive grid 
aims to distribute the objective function space uniformly by dividing it 
into regions. In contrast, traditional methods convert multiple- 
objectives into a single objective. Multiple-objectives PSO directly 
handles multiple-objectives optimisation problems without needing 
multiple runs and achieves more accurate results, especially for 
disjointed and concave Pareto fronts. However, in multiple-objectives 
optimisation problems, multiple global optima exist along the Pareto 
front. Therefore, multiple-objectives PSO maintains a repository of 
nondominated particles and employs the adaptive grid method to assign 
each particle a leader from the repository. This approach ensures a 
diverse and accurate approximation of the Pareto front. Within this 
study, three objective functions are determined through the calculation 
of the mean square error (MSE) between the actual values acquired via 
experimental study and the predictions generated by the proposed 
T2FNN models: 

JCOE(G,YE,A) = 100 −
1
n
∑n

i=1
(CODi − CÔDi)

2  

JCE(G,YE,A) = 500 −
1
n
∑n

i=1
(CEi − ĈEi)

2  

JP(G,YE,A) = 1000 −
1
n
∑n

i=1
(Pi − P̂i)

2 (13)  

where G, YE, and A are glucose, yeast extract, and aeration, respectively. 
In addition, COD, CE, and P stand for actual COD removal, coulombic 
efficiency, and power, respectively. It should be noted that the CÔD, ĈE, 
and P̂ are predicted COD removal, coulombic efficiency, and power by 
COD-T2FNN, CE-T2FNN, and P-T2FNN models, respectively. It should 
be noted that the best solution for the microbial fuel cell process is the 
generation of higher COD removal, coulombic efficiency, and power. 
Then, the constant parameters 100, 50, and 1000 are defined inside Eq. 
(13) to extract the system’s maximum regenerated outputs during 
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optimisation. 
In this research, the provided platform in MATLAB by Víctor Mar

tínez-Cagigal [37] is employed to extract the 3-dimensional Pareto front 
distribution of the optimal microbial fuel cell process parameters. The 
hyperparameters of the investigated multi-objective PSO were chosen 
through a trial-and-error approach to achieve the minimum cost func
tion as described in Eq. (13). This approach was taken to ensure that the 
algorithm could effectively explore and exploit the solution space for 
optimal performance. The selected hyperparameters are Np = 20, Nr =

200, maxgen = 100, W = 0.4, C1 = 2, C2 = 2, ngrid = 20, maxvel = 5, 

umut = 0.5. These values were iteratively adjusted based on their impact 
on the convergence and diversity of the solutions. The chosen parame
ters reflect a balance between computational efficiency and the thor
oughness of the search process, ensuring that the PSO algorithm can 
effectively find and refine the Pareto-optimal solutions for maximizing 
COD removal, coulombic efficiency, and power generation. 

4. Results and discussions 

This Section is composed of four subsections. The first subsection 

Fig. 4. The experimental and predicted outputs of microbial fuel cell process using DT, SVR, FFNN, and T2FNN for calculation of (a) COD removal ( %); (b) 
coulombic efficiency (As); (c) power (mW/m2). 
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focuses on developing T2FNN modelling of the system to extract the 
most reliable models to calculate the COD removal, coulombic effi
ciency, and power based on glucose, yeast extract, and aeration. 
Traditional machine learning methods, including DT, SVR, and FFNN, 
have also been designed and developed to validate the newly proposed 
T2FNN in terms of accuracy and efficiency. In the second subsection, the 
influence of the input parameters (glucose, yeast extract, and aeration) 
on the variation of output parameters (COD removal, coulombic effi
ciency, and power) are analysed based on the extracted efficient T2FNN 
models. In the fourth subsection, the most accurate extracted T2FNN 
models in calculating COD removal, coulombic efficiency, and power are 
employed inside the multiple-objectives’ optimisation (based on Section 
3.3) to extract the optimal solution of the operation to maximise the 
outputs of the system. At last, the extracted optimal solutions via 
multiple-objectives PSO are experimentally validated to prove the effi
ciency of the proposed method. 

4.1. Modelling and evaluation 

In the first step of the implementation process, four different 
methods are designed and developed under MATLAB software to prove 
the higher efficiency of the proposed T2FNN in terms of higher accuracy 
and lower computational load. DT, SVR, and FFNN are developed using 
fitrtree, fitrsvm, and feedforwardnet, respectively. In addition, T2FNN is 
designed and developed based on the represented model in Section 3.2. 
70 % and 30 % of the extracted dataset during the experiment in Section 
2 are used for training and testing purposes of the four investigated 

methods, respectively. 
Fig. 4a–c displays COD removal, coulombic efficiency, and power 

assessment within the microbial fuel cell process using experiment, DT, 
SVR, FFNN and T2FNN during the testing process of the models. This 
appraisal involves employing the network’s testing phase, as the net
work’s accuracy during the testing process is more critical for engi
neering applications. The experimental results are the benchmark 
against which the outcomes of the other three methods are calculated, 
facilitating an evaluation of the proposed models’ precision. Fig. 4a 
delineates the computation of COD removal for 37 testing samples, 
utilizing both the experiment and COD removal calculation via DT, SVR, 
FFNN, and T2FNN. As evidenced by the findings in Fig. 4a, the CC be
tween the experimental outcomes and the extracted COD removal yiel
ded by the DT, SVR, FFNN, and T2FNN amounts to 0.7561, 0.7658, 
0.8648, and 0.9412, respectively. It proves the higher efficiency of our 
newly proposed T2FNN in the prediction of COD removal by improving 
the accuracy of the network by 24.48 %, 9.48 %, and 8.83 %, compared 
with those of DT, SVR, and FFNN, respectively, in term of CC. Further
more, Fig. 4b demonstrates that encompassing 37 testing samples, the 
CC between the experimental results and the extracted coulombic effi
ciency generated by the suggested DT, SVR, FFNN, and T2FNN models 
stands at 0.7451, 0.7868, 0.7343, and 0.9453, respectively. It proves the 
higher efficiency of our newly proposed T2FNN in the prediction of COD 
removal by improving the accuracy of the network by 26.87 %, 16.10 %, 
and 28.73 %, compared with those of DT, SVR, and FFNN, respectively, 
in term of CC. Also, the CC between the experimental results and the 
extracted power by the DT, SVR, FFNN, and T2FNN models are 0.9677, 

Fig. 5. The error between the experimentally captured and predicted value using the four investigated models, including DT, SVR, FFNN, and T2FNN, to predict (a) 
COD removal ( %); (b) coulombic efficiency (As); (c): power (mW/m2). 
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0.9462, 0.9643, and 0.9804 based on the represented results in Fig. 4c. It 
proves the higher efficiency of our newly proposed T2FNN in prediction 
of COD removal by improving the accuracy of the network by 1.31 %, 
2.51 %, and 1.67 %, compared with those of DT, SVR, and FFNN, 
respectively, in term of CC. 

Fig. 5a–c illustrates the discrepancy between the anticipated and 
reference (experiment) values for COD removal, coulombic efficiency, 
and power predictions during the testing process of the models, 
including DT, SVR, FFNN, and T2FNN. Analysing the outcomes depicted 
in Fig. 5a, it becomes evident that the MSE between the predicted and 
experimental COD removal, as determined by the investigated DT, SVR, 
FFNN, and T2FNN, equates to 224.2081, 141.4224, 122.8929, and 
60.7736 ( %), respectively. Similarly, in the ensuing analysis, the MSE 
about the anticipated and experimental coulombic efficiency, facilitated 
by the DT, SVR, FFNN, and T2FNN models, computes to 12.5181, 
8.8310, 14.3016, and 2.7720 (As), respectively, as reflected in Fig. 5b. 

Also, Fig. 5c shows that the MSE about the predicted and experimental 
power are 4.2183 × 103, 18.384.2183 × 103, 4.9056 × 103, and 3.0866 
× 103 (mW/m2) using DT, SVR, FFNN, and T2FNN. 

The RMSE, gauged between the predicted and experimentally 
recorded COD removal, using DT, SVR, FFNN, and T2FNN, are 14.9736, 
11.8921, 11.0857, and 7.7957 ( %), respectively, following the data 
portrayed in Fig. 5a. Moreover, the RMSE values measured between the 
predicted and experimentally recorded coulombic efficiency for DT, 
SVR, FFNN, and T2FNN are 3.5381, 2.9717, 3.7817, and 1.6649 (As), 
respectively, as shown in Fig. 5b. Furthermore, as depicted in Fig. 5c, the 
RMSE values between the predicted and experimentally observed power 
are 64.9481 (mW/m2) for DT, 135.5858 (mW/m2) for SVR, 70.0403 
(mW/m2) for FFNN, and 55.5572 (mW/m2) for T2FNN. 

In summary, the higher accuracy of our newly proposed T2FNN 
compared to those of DT, SVR, and FFNN is obvious in terms of lower 
MSE and RMSE in predicting COD removal, coulombic efficiency, and 

Fig. 6. The regression of the whole dataset (training and testing) using (a) COD-T2FNN for prediction of the COD removal ( %); (b) CE-T2FNN for prediction of the 
coulombic efficiency (As); (c) P-T2FNN for prediction of the power (mW/m2). 
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power. 
As T2FNN is the most accurate model among the four investigated 

methods in this research, the linear regression plot is represented in 
Fig. 6a–c during the training and testing process of COD-T2FNN, CE- 
T2FNN and P-T2FNN for calculation of COD removal, coulombic 

efficiency, and power, respectively. As indicated in Fig. 6a, the predic
tive performance of COD-T2FNN in estimating COD removal exhibits R 
of 0.9517 and 0.9412 for the training and testing dataset, respectively. 
Similarly, Fig. 6b illustrates a distinct pattern, where R for CE-T2FNN in 
the domain of coulombic efficiency prediction is 0.9728 and 0.9453 for 

Table 2 
The extracted results for investigation of implementing COD-T2FNN, CE-T2FNN and P-T2FNN for calculation of COD removal ( %), coulombic efficiency (As), and 
power (mW/m2) based on glucose(g/L), yeast extract(g/L), and aeration(mL/min).  

Output Stage Stage CC MSE Mean Std 

COD Removal DT Train  0.9598  20.7580 1.4534e¡15  4.5822 
Test  0.7561  224.2081 5.1689  14.2470 

SVR Train  0.8597  113.7815 0.1286  10.7272 
Test  0.7658  141.4224 − 2.2541  11.8376 

FFNN Train  0.9817  9.5620 0.0267  3.1099 
Test  0.8648  122.8929 2.7351  10.8912 

T2FNN Train  0.9517  24.9924 0.2140  5.0233 
Test  0.9412  60.7736 3.2902  7.1649  

Coulombic Efficiency DT Train  0.9435  2.4951 ¡2.0186e¡17  1.5886 
Test  0.7451  12.5181 0.9850  3.4451 

SVR Train  0.8142  9.7556 0.5302  3.0957 
Test  0.7868  8.8310 0.0267  3.0126 

FFNN Train  0.9726  1.2314 0.0149  1.1159 
Test  0.7343  14.3016 0.0695  3.8333 

T2FNN Train  0.9728  1.2810 − 0.0140  1.1382 
Test  0.9453  2.7720 0.4470  1.6259  

Power DT Train  0.9909  1.0113e+03 − 2.1639e− 14  31.9828 
Test  0.9677  4.2183e+03 10.4214  64.9909 

SVR Train  0.9564  1.8310e+04 36.7706  130.9702 
Test  0.9462  1.8384e+04 7.1329  137.2657 

FFNN Train  0.9976  266.6385 0.0781  16.4225 
Test  0.9643  4.9056e+03 ¡3.8567  70.8987 

T2FNN Train  0.9939  4.6050e+03 25.1986  63.3693 
Test  0.9804  3.0866eþ03 19.3054  52.8137 

The bold numbers reveal the highest accurat model. 

Fig. 7. COD-T2FNN rule surface for calculation of COD removal ( %) using (a) glucose (g/L) and yeast extract (g/L); (b) glucose (g/L) and aeration (mL/min).  

Fig. 8. CE-T2FNN rule surface for calculation of coulombic efficiency (As) using (a) glucose (g/L) and yeast extract (g/L); (b) glucose (g/L) and aeration (mL/min).  
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the training and testing datasets, respectively. Also, Fig. 6c shows that 
the R between the experimentally captured and predicted power using 
P-T2FNN for training and testing datasets are 0.9804 and 0.9639, 
respectively. 

All the represented results on Figs. 4–6 are shown in Table 2 for a 
quick check of the performance of the proposed methods. The concepts 
of MSE, CC, mean of error and standard deviation of error are used to 
show the efficiency of the proposed method. 

Regarding computational efficiency, the training durations for COD- 
T2FNN, CE-T2FNN and P-T2FNN, executed on a computer equipped 
with Intel(R) Core(TM) i7-10875H CPU @ 2.30 GHz 2.30 GHz, amount 
to 6.593536, 8.702862 and 0.646226 s, respectively. 

4.2. Influence of parameters 

Fig. 7a–b shows the rule surface of the extracted COD-T2FNN in 
calculating the COD removal based on arrangements of the input process 
parameters, including glucose-yeast extract and glucose-aeration, 
respectively. Fig. 7a–b shows that glucose has the most influence on 
the variation of COD removal. Also, yeast extract and aeration stand in 
the second and third levels of influence in the variation of the COD 
removal. Based on the represented results in Fig. 7a–b, the enhancement 
of glucose increases COD removal, which is suitable for the microbial 
fuel cell process. In addition, the same fluence is witnessed for yeast 
extract based on the represented result in Fig. 7a with a lower slope. 
Also, the influence of aeration variation on COD removal is captured in 
Fig. 7b, which has an optimal point based on the arrangement of glucose 
and extract. It should be extracted via the optimisation process, which is 
the objective of the next subsection. 

Figs. 8a–b shows the rule surface of the extracted CE-T2FNN in 
calculating the coulombic efficiency based on arrangements of the input 
process parameters, including glucose-yeast extract and glucose- 
aeration, respectively. Glucose has the most influence on the variation 
of coulombic efficiency, as shown in Fig. 8a–b. Yeast extract stands in 
the second level of influence in the variation of coulombic efficiency 
based on the results represented in Fig. 8a. It should be noted that there 
is no optimum point in the case of constant aeration for glucose and 
yeast extract. The higher coulombic efficiency is accessible with 
increasing the glucose and yeast extract in the case of constant aeration 
based on the represented results in Fig. 8a. However, the variation of 
aeration changes the behaviour of the system based on the represented 
results in Fig. 8b by elaboration of optimum point for both input pa
rameters, including glucose and aeration. It proves the necessity of 
implementing the multiple-objective optimisation technique in this field 
to extract the optimal solution. 

Fig. 9a–b shows the rule surface of the extracted P-T2FNN in calcu
lating the power based on arrangements of the input process parameters, 
including glucose-yeast extract and glucose-aeration, respectively. 
Glucose influences the power variation most, as evidenced in Fig. 9a–b. 
Yeast extract and aeration stand in the second level of influence in the 

coulombic efficiency variation based on the results in Fig. 9ab. It should 
be noted that there is no optimum for glucose and yeast extract. The 
higher power is generated by increasing the glucose and yeast extract 
based on the represented results in Fig. 9a. However, there is an opti
mum point for aeration based on the arrangement of glucose and Yeast 
extract, which should be extracted using the optimisation technique. 

4.3. Optimisation 

The three extracted models (COD-T2FNN, CE-T2FNN and P-T2FNN) 
are the objective functions of the multiple-objectives’ optimisation using 
PSO, investigated in Eq. (13). As mentioned before, the provided toolbox 
by Víctor Martínez-Cagigal [37] is used for the implementation purpose 
of this study. 

Illustrated in Fig. 10 is the distribution of the optimal solution’s 
three-dimensional Pareto front configuration within the context of the 
process. Moreover, the optimal solutions derived are outlined in Table 3. 
A sequence of microbial fuel cell experiments was conducted to affirm 
the system’s precision using the extracted optimal solution from the 
recently introduced approach. The margin of error between the exper
iment and predicted values of 18 optimal recommended solutions via 
investigated T2FNN methods are 7.41 %, 18.65 %, and 2.45 % on 
average for COD removal, coulombic efficiency, and power. This proves 

Fig. 9. P-T2FNN rule surface for calculation of power (mW/m2) using (a) glucose (g/L) and yeast extract (g/L); (b) glucose (g/L) and aeration (mL/min).  

Fig. 10. Pareto front of the extracted optimal solution using multiple-objective 
PSO in the microbial fuel cell process to extract the COD removal ( %), 
coulombic efficiency (As), and power (mW/m2). 
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that P-T2FNN has the most prediction power, while CE-T2FNN is the 
least accurate of the three proposed T2FNN models. In addition, the 
lowest margin error for COD-T2FNN, CE-T2FNN and P-T2FNN are 
captured during the 18, 13, and 18 sets of the optimal solution with 0.27 
%, 5.99 %, and 0.81 %, respectively. 

5. Conclusion 

Microbial fuel cells present a promising solution for renewable en
ergy generation while simultaneously treating wastewater. This study 
had two primary objectives: first, to develop a surrogate model that 
accurately predicts microbial fuel cell performance in terms of COD 
removal, coulombic efficiency, and power output based on operational 
parameters such as glucose, yeast extract, and aeration; and second, to 
identify optimal input parameter values to maximize system perfor
mance. The main contribution of this study is developing and applying a 
novel methodology that integrates Type-2 Fuzzy Neural Networks 
(T2FNN) with multi-objective Particle Swarm Optimization (PSO). This 
approach begins with a comprehensive experimental investigation using 
a full factorial design to assess the impact of various input parameters on 
critical outcomes. Three distinct T2FNN models were developed to 
predict COD removal, coulombic efficiency, and power output. These 
models were then integrated into a multi-objective PSO framework to 
extract the optimal Pareto front solutions. The optimized solutions 
achieved a COD removal efficiency with a margin error of 7.41 % 
compared to practical investigations. The best solutions for coulombic 
efficiency had a margin error of 18.65 %, and the power generation 
optimization resulted in a margin error of 2.45 %. The proposed T2FNN 
models demonstrated superior performance to traditional machine 
learning models, highlighting their ability to handle uncertainty and 
variability in the data. The methodology effectively optimized the mi
crobial fuel cell performance, showing significant improvements over 
previous studies and demonstrating the practical applicability of the 
model. To further enhance microbial fuel cell optimization, future 
studies could focus on expanding input parameters such as temperature, 
pH, and different microbial communities to develop more comprehen
sive models. Long-term studies are also recommended to evaluate the 
stability and durability of the optimized microbial fuel cell systems 
under real-world conditions. 

Additionally, exploring the integration of microbial fuel cells with 
other renewable energy technologies and wastewater treatment pro
cesses to create hybrid systems could lead to improved efficiency and 
sustainability. Applying other advanced optimization algorithms, such 
as genetic or differential evolution, could further enhance the 

optimization process. This study’s systematic approach provides a 
robust framework for optimizing microbial fuel cell performance, with 
significant implications for biotechnology and renewable energy appli
cations. By employing T2FNN and multi-objective PSO, this research 
marks the first instance of media optimization in microbial fuel cells 
validated through experimental results, paving the way for future in
novations in the field. 
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