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Multiple objectives optimization 
of injection‑moulding process 
for dashboard using soft computing 
and particle swarm optimization
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Houshyar Asadi 4 & Mohsen Hedayati‑Dezfooli 5*

This research focuses on utilizing injection moulding to assess defects in plastic products, including 
sink marks, shrinkage, and warpages. Process parameters, such as pure cooling time, mould 
temperature, melt temperature, and pressure holding time, are carefully selected for investigation. 
A full factorial design of experiments is employed to identify optimal settings. These parameters 
significantly affect the physical and mechanical properties of the final product. Soft computing 
methods, such as finite element (FE), help mitigate behaviour by considering different input 
parameters. A CAD model of a dashboard component integrates into an FE simulation to quantify 
shrinkage, warpage, and sink marks. Four chosen parameters of the injection moulding machine 
undergo comprehensive experimental design. Decision tree, multilayer perceptron, long short-term 
memory, and gated recurrent units models are explored for injection moulding process modelling. 
The best model estimates defects. Multiple objectives particle swarm optimisation extracts optimal 
process parameters. The proposed method is implemented in MATLAB, providing 18 optimal solutions 
based on the extracted Pareto-Front.

Keywords  Injection moulding, Warpage/shrinkage/sink mark, Soft computing, Multiple objectives particle 
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Plastic injection moulding process involves several stages. Initially, the polymer material and additives are fed 
into the heating system of the injection moulding machine. Subsequently, the heated polymer is injected into the 
mould cavity during the filling phase. In the packing stage, additional polymer melt is applied at elevated pres-
sure to offset shrinkage. The mould is then subjected to cooling until the part solidifies. Ultimately, the mould is 
opened, and the plastic part is ejected from the cavity using ejector pins, marking the completion of one cycle, 
after which the process is repeated1–3.

The quality of injected products is inherently uncertain. Operators typically develop a wealth of experience 
to determine the optimal combination of process parameters. In injection processing, a strong correlation exists 
between process parameters and the quality of the injected part. Improper configuration of these parameters 
can lead to various product defects, including sink marks, shrinkage, and warpages4. Warpage and shrinkage 
are common issues in injection moulding. Shrinkage refers to reducing the size of a plastic part as it cools. At 
the same time, a warpage is the deformation of a part due to uneven cooling5. A study focuses on the impact of 
process parameters on warpage and shrinkage in thin-wall technology. The study validates the procedure using 
a real case of moulding a cell phone shell with PC/ABS material. The results demonstrate accurate predictions 
of shrinkage and warpage effects using quadratic models.

By applying the optimal procedure, significant reductions in shrinkage (37.8%) and warpage (53.9%) are 
achieved for PC/ABS cell phone shells6. Sink marks in injection moulding refer to depressions or indentations 
that appear on the surface of a moulded part due to uneven shrinkage during the cooling phase. Sink marks 
commonly occur behind the ribs7. A theoretical model incorporating rib design and processing parameters was 
developed to analyse sink marks. Design of experiments8, FE flow analysis9, and GA10 were used. Sink mark 
depth depends on design variables and technological parameters. Four key variables (rib thickness, mould 
temperature, melt temperature, and coolant temperature) were optimized using the prediction model and GA 
to minimize sink depth11.

Pandelidis and Kao12 Developed KBS for diagnosing multiple defects in injection moulding using FIS, with 
an efficient algorithm for selecting the best cover of causes and providing remedies based on material proper-
ties. Liu et al.13 introduced a SNCCDBAGG-based neural network ensemble approach for quality prediction in 
the injection moulding process, combining bagging, negative correlation learning, and a selection-based strat-
egy to improve generalization ability and achieve enhanced performance compared to single neural network 
and negative correlation learning predictors. Zhao14 developed an automatic QSSPP algorithm for phase-based 
regression modelling and quality prediction in batch manufacturing processes, particularly illustrated through 
injection moulding, thereby addressing the challenge of partitioning phases and capturing time-varying quality 
prediction relationships. Moayyedian et al.15 introduced a modified edge gate in injection moulding, aimed at 
reducing internal and external defects, improving de-gating analysis, and achieving a significant reduction in 
scrap rates compared to the current edge gate. The used ANOVA to assess the geometric parameters and process 
effect on scrap rate. Jha et al.16 developed a comprehensive prognostic solution for industrial proton exchange 
membrane fuel cells, integrating bond graph theory and particle filters for accurate remaining useful life predic-
tion. Tsai et al.17 developed a hybrid model combining GA and MLP for establishing an inverse model of injection 
moulding, successfully identifying process parameters for achieving reliable lens form accuracy with a significant 
improvement rate. Abbasalizadeh et al.18 investigated the influence of injection moulding parameters on the 
shrinkage of different polymers, highlighting the significant influence of material crystallinity and flow direction. 
Optimum conditions for minimizing shrinkage were determined using the Taguchi approach. Khosravani et al.19 
reviewed the implementation of case-based reasoning as a soft computing method in the injection moulding 
process. Abdul et al.20 developed an MLP model combined with the Taguchi approach to predict and minimize 
part shrinkage in injection moulding, improving quality and facilitating the moulding setup process. Song 
et al.21 developed a hybrid model combining GA, MLP, and SVR to optimise design parameters and accurately 
predict warpage and volume shrinkage in injection moulding. Gao et al.22 proposed soft computing methods 
(MLP, SVR, and kernel ridge) for conformal cooling channels in injection moulding, resulting in reduced tem-
perature variance and improved cooling quality compared to conventional designs. Li et al.23 proposed predic-
tion models based on Taguchi and multiple linear regression techniques to minimize dimensional deviation in 
injection moulding. Jung et al.24 evaluated the effectiveness of different soft computing techniques in predicting 
the quality of injection moulding. Uğuroğlu25 introduced a real-time application for plastic injection moulding 
machines, employing soft computing methods such as k-nearest neighbour, random forest, logistic regression, 
and MLP. Zhang et al.26 systematically analysed and optimised injection moulding parameters for replicating 
microlens arrays for light-field applications using Gaussian regression filter. Li et al.27 introduced an off-policy 
reinforcement learning approach for fault-tolerant control in industrial processes, without requiring knowledge 
of system dynamics. Wang et al.28 used a reinforcement learning approach to optimise a fault-tolerant tracking 
control for industrial processes, improving performance and expanding fault tolerance.

Recently, there has been a notable concentration on enhancing the efficiency of process parameters in injec-
tion moulding. Lockner et al.29 introduced a transfer learning to improve injection moulding process model-
ling with limited data, resulting in higher model quality. Párizs et al.30 conducted a comparison of various soft 
computing methods to forecast the quality of multi-cavity injection moulding. Their results showed that the DT 
model achieved the highest accuracy, exceeding 90%. Ke and Huang31 introduced an optimised MLP model with 
a Sigmoid activation function and a learning rate 0.1, achieving an accuracy of 95.8%. Moayyedian et al.32 devel-
oped a computationally efficient model using genetic programming to optimise injection moulding parameters. 
Their approach demonstrated significantly lower Mean Squared Error (MSE) compared to previous methods 
such as SVR, DT, and MLP. Gim et al.33 employed transfer learning techniques to optimise process parameters 
for achieving high surface quality in injection moulding. By training a multi-task MLP model on data from the 
original production site and transferring it to a new site, they improved surface gloss prediction, reduced dataset 
size. They enabled the efficient production of high-quality moulded parts. Wu et al.34 introduced a generative 
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soft computing-based multi-objective optimisation model for injection moulding. This model predicted part 
qualification and optimised processing variables to minimize weight difference and energy consumption. It 
enhanced the quality assurance and energy efficiency of plastic manufacturing.

In general, the investigated soft computing methods are KBS12,19, ANOVA15, linear regression23–26, 
MLP17,20–22,25,31,32, SVR21,22,24,32, random forest24,25,34, DT24,30,32, k-nearest neighbour25,30, genetic programming32,34, 
and deep learning27–29,33. In addition, mathematical32 and meta-heuristic16,17,21,34 optimisations are used to extract 
the optimal injection parameters for producing different parts. However, there is a lack of comprehensive soft 
computing investigation in modelling the injection moulding process of the complicated parts, such as a dash-
board considering different injection moulding process parameters. The main novelty of the current research 
can be categorised into two different points:

Developing comprehensive soft computing methods, including DT, MLP, LSTM, and GRU, for estimating 
injection moulding defects (shrinkage, warpage, and sink marks) based on process parameters (melt temperature, 
mould temperature, pressure holding time, and pure cooling time).

The implementation of multiple objectives particle swarm optimisation (MOPSO) with consideration of three 
objective functions, including shrinkage, warpage, and sink marks.

The datasets are generated via the FE simulation environment, SOLIDWORKS (SW) Plastics. The input 
parameters of the simulations are defined as melt temperature, mould temperature, pressure holding time, and 
pure cooling time. While the results are recorded via the shrinkage, warpage, and sink marks defects of the 
injection moulding. The recorded dataset is used for training/validation/testing purposes of the investigated soft 
computing techniques (DT, MLP, LSTM, and GRU). Then, based on higher accuracy, three models are developed 
for calculating injection moulding defects. In the last step, these three extracted soft computing methods are 
employed inside the MOPSO to extract the 3-dimensional Pareto front of the optimal solutions. The input process 
parameters of the optimal 3-dimensional Pareto front are recommended to reach the higher efficiency of the 
process in the last part of the article after validation with the results via the FE simulation environment. Figure 1 
shows the graphical abstract of the whole process in this paper, from the initial selection of the parameters to the 
extraction of optimal process parameters. It consists of three main steps, including mechanical part, machine 
learning part, optimisation and practical verification part. Initially, the important influenceable parameters 
that can affect the process are selected to be investigated, including pure cooling time, mould temperature, melt 
temperature, and pressure holding time. Then, the training dataset is produced by experimental design under FE 
analysis and SW Plastic. The results of defects in plastic products, including sink marks, shrinkage, and warpages 
are recorded. The produced dataset is modified in order to reach the highest efficiency using machine learning 
methods. The datasets are divided as 80% for training, 10% for validation, and another 10% for testing. The dif-
ferent machine learning methods including Decision tree (DT), multilayer perceptron (MLP), long short-term 
memory (LSTM), and gated recurrent units (GRU) models are trained, and their performances are investigated. 
Using the highest efficient methods the MOPSO is employed to extract the best process parameters to reach the 
lowest possible defects.

Section II provides an overview of the injection-moulding process for the intricate dashboard part. Addi-
tionally, this section elaborates on the approach for obtaining datasets using the finite element simulation envi-
ronment. The methodology employed in this research, which integrates diverse soft computing methods and 
MOPSO, is elucidated in Section III. Section IV presents a comparative analysis and discussion of the outcomes 
extracted through the MATLAB-based developed model. The conclusions drawn from the study are summarized 
in Section V.

Injection‑moulding process for dashboard
Shrinkage, warpage, and sink marks are interconnected phenomena within injection moulding. The cooling and 
subsequent shrinkage of the material can induce uneven or differential contraction, resulting in deformation 
or warpage of the moulded part. Warpage denotes the departure from the intended shape of the part, leading 

Figure 1.   The overview of the proposed method in this study for extracting the optimal injection moulding 
process parameter for dashboard production.
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to dimensional discrepancies and functional complications. On the other hand, sink marks can contribute to 
warpage by instigating stress concentrations due to uneven shrinkage, causing bending or twisting of the part. 
Consequently, the primary objective of this study is to minimize the occurrence of these identified defects by 
maintaining their values at the lowest possible levels.

The literature survey identified three defects for in-depth analysis: warpage, shrinkage, and sink marks. A full 
factorial design is implemented to identify the most influential parameters that affect the chosen plastic part’s 
quality to achieve an optimum design. Figure 2 illustrates the modelling of the dashboard, where (a) showcases 
the solid representation. The simulation process utilizes FE analysis and SW Plastic. The cooling system for the 
plastic part is developed utilizing a cool pipe model, wherein the cooling channels are incorporated into the solid 
representation of the mould design. In the iterative process, the transient thermal fields of the heated mould and 
cavity are computed by employing the Cool solver. For the initial heating, the ambient temperature is considered. 
Finite Element (FE) analysis plays a pivotal role in the simulation, ensuring the precision and accuracy of the 
analysis outcomes. Within Finite Element (FE) analysis, surface meshes employ triangle meshes that conform 
to the geometric characteristics of the samples, as exemplified in Fig. 2b. After evaluating various sizes, a surface 
mesh size of 1 mm is selected for the injection part.

This research investigates various process parameters, including pure cooling time, melt temperature, mould 
temperature, and pressure holding time. These parameters are examined at different levels, with 5 levels chosen 
for melt temperature as the most significant parameter. In comparison, 3 levels are selected for pure cooling 
time. These levels are selected through simulations to establish the minimum and maximum effective levels for 
each parameter and the required intermediary levels. Considering the chosen objectives and insights from the 
literature review, four key parameters are selected namely, cooling time, melt temperature, mould temperature, 
and pressure holding time. They are the most effective parameters for the evaluation of shrinkage, warpage, 
and sink mark35. For each parameter, the minimum and maximum levels are identified. Intermediate values are 
selected based on the equipment’s capabilities, material characteristics, and desired results. Acrylonitrile Buta-
diene Styrene (ABS) is the designated material for this study. Considering the number of parameters and their 
corresponding levels outlined in Table 1, 180 simulations were conducted using SW Plastics.

In addition, the theory of relaxation time of plastic materials provides insights into the dynamic behavior of 
plastics during cooling and solidification. By understanding and controlling factors that influence relaxation, such 
as cooling time, mold temperature, and material properties, manufacturers can minimize shrinkage, warpage, 
and sink marks in plastic products, resulting in higher quality end products.

Upon revisiting the methodology and considering the extensive literature on process parameters affecting 
defects in plastic products, the importance of parameters such as injection time, injection pressure, and holding 
pressure is acknowledged. While these parameters indeed play significant roles in the occurrence of defects like 
sink marks, shrinkage, and warpage, a focus is specifically placed on optimizing a subset of parameters for the 
chosen objectives. In selecting the parameters to study, the aim is to prioritize those with the most significant 

Figure 2.   (a) Solid modelling of dashboard; (b) the meshed model with triangle meshes.

Table 1.   The selected parameters and their levels.

Parameters L1 L2 L3 L4 L5

Melt temperature T1 (°C) 200 215 230 255 280

Mould temperature T2 (°C) 25 50 65 80 –

Pressure holding time t1 (s) 10 20 30 – –

Pure cooling time t2 (s) 60 80 100 – –
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impact on the specific defects sought to be addressed: shrinkage, warpage, and sink marks. Based on the literature 
review and practical considerations, cooling time, melt temperature, mould temperature, and pressure holding 
time are identified as the key parameters directly influencing these defects. These parameters are chosen for their 
well-established relationships with shrinkage, warpage, and sink marks35. It is recognized that different studies 
enumerated several factors affecting in-mold shrinkage, including injection pressure, injection rate, and hold-
ing pressure. Additionally, the relationship between warpage and physical shrinkage is highlighted, particularly 
emphasizing the role of molding conditions such as melt temperature, pressure, and injection time in inducing 
nonuniform shrinkage. The decision to focus on cooling time, melt temperature, mould temperature, and pres-
sure holding time is based on their direct influence on the specific defects under investigation and the practical 
constraints of the study.

Methodology
The primary aim of this study is to determine the optimal injection moulding process parameters for the dash-
board to minimize warpage, shrinkage, and sink marks. The proposed method combines DT, MLP, LSTM and 
GRU soft computing. Figure 3 shows the schematic representation of the proposed technique from importing 
the dataset inside the algorithm until extraction of the maximum defects of the dashboard after injection. As the 
final step, this algorithm was used inside the cost function of the MOPSO to extract the optimal solutions. Each 
model has been trained individually, and then the combination of them is proposed as the most reliable model 
to calculate the defect of the final product.

Data pre‑processing
Before developing the model and utilizing the dataset, three essential tasks need to be carried out with the data. 
Firstly, any data outside the acceptable range should be excluded to enhance the system’s resilience. The second 
task involves normalizing the data, which reduces complexity and prepares it for training. The normalized data 
can be obtained in the following manner:

Here, nxi represents the normalized input data for the ith entry. The functions x and x are utilised to extract the 
minimum and maximum values from the dataset. To ensure realistic results, the data is divided into three groups 
during the final network pre-tuning process: 80% for training, 10% for validation, and another 10% for testing. 
The testing data is withheld from the network until the testing stage to achieve accurate and reliable outcomes 
using the proposed models.

(1)nxi =
xi − x

x − x

Figure 3.   The schematic proposed hybrid soft computing algorithm in this study for calculation of the optimal 
process parameter of the injection moulding.
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Decision tree
The first investigated model in this paper is DT. DT expands the data mining method with prominent usage in 
data analysis36. It can be used for classification and regression based on the criteria of the dataset. DT is com-
posed of nodes and lines. There are two types of nodes, including leaf and branch nodes. The line represents the 
decision pathway between the parent and children. The decision boundaries are defined via the decision rule, an 
inequality expression. DT is employed for achieving many tasks in soft computing. The logic of the DT is to split 
data based on conditions and pass inputs to its children, called a binary tree. The described action is followed 
until the data reaches the leaf node as the final prediction results. Chi-squared automatic interaction detection, 
C4.5, and CART are the most common DT algorithm37–39. The privilege of the DT over other traditional predic-
tion models is the ability to produce logical statements or interpretable rules. In this paper, the CART model, as 
a nonparametric regression, is employed based on recursive partitioning.

Multilayer perceptron
The MLP is used for supervised training in classification and regression. Inputs and outputs adjust network 
parameters, minimizing error. Backpropagation derives optimal weights and biases from error measures like 
RMSE or MSE. Stochastic gradient descent updates biases and weights in the MLP. In the process of training, 
the output of the jth node for the nth data point can be denoted as:

Given that d and y represent the target and actual outputs, respectively, the weights can be determined by mini-
mizing the error through the utilization of the complete network output in the following manner:

The change in weights through the utilization of the gradient descent technique can be expressed as follows:

where yi represents the output of the previous neuron while υi denotes the local induced field. The learning rate 
η plays a crucial role in determining the MLP convergence. The Simplified version of the weight derivative based 
on the local induced field can be calculated for an output node in the following manner:

The weight derivative of the hidden node can be extracted as the activation function derivative, denoted as ϕ′, 
which remains unchanged with respect to the weight and locally induced field. This can be mathematically 
represented as follows:

The modification in weight for the hidden node is determined by the weight of the kth node in the output layer, 
as indicated by Eq. (6). Consequently, the weights in the output layer are affected by the weights in the hidden 
layer, which is determined by the activation function derivative. This mechanism is commonly referred to as the 
activation function backpropagation40.

Long‑short term memory
The RNN is a useful approach for forecasting nonlinear signals, as it accounts for the dynamic nature of compli-
cated mechanical phenomena. Its internal memory blocks enable the learning of temporal sequences. However, 
RNN has limitations, including strict time lag dependence and the inability to capture long-term dependencies. 
LSTM overcomes these drawbacks and can handle extended sequences of data samples. It incorporates three 
gates: the input gate, output gate, and forget gate, which preserve gradient information and regulate the flow of 
information. Fully connected regression layers generate the output of the LSTM. Memory cells establish con-
nections and retain temporal states to determine the flow of information.

The input and output sequences of the model are represented as x = (x1, x2, . . . , xT ) and 
m = (m1,m2, . . . ,mT ) , respectively, where T corresponds to the prediction period. The memory cell for the jth 
neuron at time t is referred to as cjt . The output of the jth neuron, denoted as mj

t , is given by:

The output gate, ojt , is responsible for determining which information should be propagated. The expression for 
the output gate can be given as:

The vector representations of mj
t−1 and cjt are represented by mt−1 and ct, respectively. Diagonal weight matrices 

Wo, Uo, and Vo play a role in minimizing a loss function and require online tuning. Additionally, the σ represents 

(2)ej(n) = dj(n)− yj(n)

(3)ε(n) =
1

2

∑

j
e2j (n)

(4)�wij(n) = −η
∂ε(n)
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(5)−
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′
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(
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a standard logistic sigmoid function. The recurrent CEC unit serves as the primary focus of the memory cell, 
responsible for generating the cell state. At each time step, the memory cell, cjt , needs to be updated. This update 
involves eliminating the current memory cell and incorporating the new memory value, c̃jt , using the following:

where the new memory value is:

A forget gate is utilised to ensure that the internal cell values do not exhibit unbounded growth and to maintain 
the continuous operation of the time series mechanism instead of segmentation. This gate enables the reset of 
outdated information flow. It replaces the CEC weight with the activation of the multiplicative forget gate. The 
computation of the forget gate, denoted as f jt  , is performed after updating the memory cell with the new memory 
value according to the following equation:

The diagonal weight matrices Wf, Uf, and Vf are utilized in the computation of the forget gate. Similarly, the input 
gate follows the same methodology to determine the reserved new features, expressed as:

The diagonal weight matrices Wi, Ui, and Vi are involved in this computation as well. It is important to note that 
the values of the three gates fall between 0 and 1. The LSTM output can be formulated as follows:

The function g is in the range of [− 2,2] as a centred logistic sigmoid function. The training process of LSTM 
involves backpropagation through time and real-time recurrent learning, utilizing gradient descent optimisation. 
The loss function is employed as the sum of square errors. LSTM leverages the linear CEC of the memory cell 
to mitigate errors and handle extended prediction horizons.

Gated recurrent unit
A GRU layer learns dependencies in time series data. The hidden state at each step contains the layer’s output. 
Gates control information updates. Weights include input weights (W), recurrent weights (R), and bias (b). 
Additional bias values are needed for certain gate and state calculations. Matrices W and R are input and recur-
rent weights concatenations, respectively. These matrices are concatenated as follows:

The representation of the reset gate, update gate, and candidate state is given by r, z, and ĥ , respectively. The 
configuration of the bias vector depends on the ResetGateMode property. In the case of ResetGateMode being 
’after-multiplication’ or ’before-multiplication’, the bias vector is constructed by combining three separate vectors:

The subscript W denotes that this bias corresponds to the multiplication with input weights. On the other hand, 
if the ResetGateMode is set to ’recurrent-bias-after-multiplication’, the bias vector is created by combining six 
distinct vectors:

The subscript R indicates that this bias corresponds to the multiplication with recurrent weights. The hidden 
state at time step t is calculated as:

(9)c
j
t = f

j
t c

j
t−1 + i

j
t c̃
j
t

(10)c̃
j
t = tanh (Wcxt + Ucmt−1)

j

(11)f
j
t = σ

(

Wf xt + Uf ht−1 + Vf ct−1

)j

(12)i
j
t = σ(Wixt + Uiht−1 + Vict−1)

j
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The following formulas describe the components at time step t.

During these computations, the activation functions for the gate and state are represented as σg and σs, respectively.
The default behaviour of the GRU Layer function involves using the sigmoid function, defined as 

σ(s) =
(

1+ e−x
)−1 , to calculate the gate activation function. The hyperbolic tangent function (tanh) is also 

employed to compute the state activation function. The StateActivationFunction and GateActivationFunction 
properties can be modified to customize the state and gate activation functions.

Multiple objectives particle swarm optimisation
PSO has been widely used for optimisation problems since its proposal by Kennedy and Eberhart in 199741. To 
address MOO problems, an extended version called MOPSO was introduced by Coello et al. in 200442. MOPSO 
incorporates an external repository, consisting of an archive controller and an adaptive grid, to store the non-
dominated solutions discovered during the search process.

The archive controller determines whether a new solution should be added to or removed from the archive. 
In comparison, the adaptive grid aims to distribute the objective function space uniformly by dividing it into 
regions. In contrast, traditional methods convert multiple objectives into a single objective. MOPSO directly han-
dles MOO problems without needing multiple runs and achieves more accurate results, especially for disjointed 
and concave Pareto fronts. However, in MOO problems, multiple global optima exist along the Pareto front. 
Therefore, MOPSO maintains a repository of nondominated particles and employs the adaptive grid method to 
assign each particle a leader from the repository. This approach ensures a diverse and accurate approximation 
of the Pareto front.

In this research, the provided platform in MATLAB by Víctor Martínez-Cagigal43 is employed to extract the 
3-dimensional Pareto front distribution of the optimal injection moulding process parameters. In order to vector-
ize the objective function for our case, the three different defects, including sink marks, shrinkage, and warpages 
are considered simultaneously in order to find the pareto front optimal solutions of the process. However, the 
operator can choose the suitable option between the recommended optimal solutions from the extracted data.

Results and discussions
This Section is composed of two subsections. In the first subsection, we focus on the soft computing modelling of 
the system in order to extract the most reliable models to calculate the sink marks, shrinkage, and warpage based 
on melt temperature, mould temperature, pressure holding time, and pressure cooling time. Four investigated 
methods in previous Sections are investigated in this matter. In the following subsections, the most accurate 
extracted soft computing method in calculating sink marks, shrinkage, and warpage is employed inside the 
multiple objectives’ optimisation (based on subsection III.F) to extract the optimal solution of the operation in 
order to minimise the defects of the final product. At last, some of the extracted optimal solutions via MOPSO 
are investigated to prove the efficiency of the proposed method. Five parameters have been used for validation of 
our investigated methods in order to choose the most reliable one, including correlation coefficient (CC), mean 
square error (MSE), root mean square error (RMSE), and normalized root mean square error (NRMSE). These 
validation parameters are calculated as follows:

(19)rt = σg (Wrxt + bWr + Rrht−1)

(20)rt = σg (Wrxt + bWr + Rrht−1 + bRr)

(21)zt = σg (Wzxt + bWz + Rzht−1)

(22)zt = σg (Wzxt + bWz + Rzht−1 + bRz)

(23)ĥt = σs
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W
ĥ
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ĥ
xt + bW

ĥ
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where n, xi, x and T  are the number of samples, the ith input, the mean of inputs and the mean of outputs.

Modelling
Four different soft computing methods are investigated in subsection III.B-D. DT, MLP, GRU, and LSTM are 
designed and developed under MATLAB software using functions including fitrtree, feedforwardnet, gru, and 
lstm. As there are three different defects, including sink marks, shrinkage, and warpage, three different soft com-
puting functions are needed to calculate these parameters based on T1, T2, t1, and t2. The DT, MLP, GRU, and 
LSTM hyperparameters are extracted using trial and error to reach the most efficient model for each of them, 
shown in Table 2. The four investigated models are trained using 80% of the datasets. In addition, the remaining 
dataset (20%) is used for testing the models to pick the most appropriate one for each parameter. Table 3 shows 
the outcomes of this process for all four investigated methods in cooperation with three outputs (sink marks, 
shrinkage, and warpage). Based on the represented results in Table 3, MLP is the best model to imitate the sys-
tem’s behaviour for calculating warpage and shrinkage. In addition, DT is the best option for calculating the sink 
mark defect based on four investigated inputs of the system. These extracted models are called shrinkage_MLP, 
warpage_MLP, and sinkmark_DT. The outputs are visualised using the plot function of MATLAB software.

The graphical representations of Table 3 are shown in the following Figs. 4, 5 and 6. The error histogram of 
these three extracted models, including shrinkage_MLP, warpage_MLP, and sinkmark_DT using all datasets 
(training 80% and testing 20%) are shown in Fig. 4. Figure 4a shows the error histogram of the shrinkage_MLP 
with mean and standard deviation of error of are 2.28 × 10−5 and 8.14 × 10−4, respectively. It shows the left-skewed 

(28)
RMSE =

√

√

√

√

∑n
i=1

(

Ti − T̂i

)2

n

(29)NRMSE =
RMSE

T

Table 2.   The extracted most efficient hyperparameters for four investigated soft computing methods (DT, 
MLP, GRU, and LSTM).

Methods Hyperparameters

DT Categorical predictors = 3; ’ minimum parent size = 4; maximum number of splits = 29; surrogate = ’on

MLP Number of hidden layer = 1; number of neurons = 4; training function = ’trainscg’; mutation = 8.38 × 10−3

GRU​ Number of hidden layer = 1; number of neurons = 10; maximum epochs = 500; minimum batch size = 32; learning func-
tion = ‘adam’; learning rate = 7.58 × 10−3; dropout value = 0.5

LSTM Number of hidden layer = 1; number of neurons = 8; maximum epochs = 500; minimum batch size = 32; learning func-
tion = ‘adam’; learning rate = 9.18 × 10−3; dropout value = 0.5

Table 3.   The extracted results for investigation of implementing DT, MLP, GRU, and LSTM for calculation of 
sink marks, shrinkage, and warpage based on melt temperature, mould temperature, pressure holding time, 
and pressure cooling time. Significant values are in bold.

Index

CC MSE RMSE NRMSE

Train Test All Train Test All Train Test All Train Test All

Shrinkage

DT 0.9777 0.9584 0.9741 9.4 × 10−2 1.6 × 10−1 1.1 × 10−1 3.1 × 10−1 4.0 × 10−1 3.3 × 10−1 4.1 × 10−2 5.3 × 10−2 4.4 × 10−2

MLP 0.9657 0.9458 0.9599 6.0 × 10−7 8.9 × 10−7 6.6 × 10−7 7.7 × 10−4 9.5 × 10−4 8.1 × 10−4 3.8 × 10−2 4.6 × 10−2 4.0 × 10−2

GRU​ 0.6639 0.5519 0.6431 1.45 1.50 1.46 1.21 1.23 1.21 0.16 0.16 0.16

LSTM 0.4997 0.4156 0.4839 1.60 1.62 1.61 1.27 1.27 1.27 0.17 0.17 0.17

Warpage

DT 0.9762 0.9258 0.9638 6.4 × 10−2 2.7 × 10−1 1.0 × 10−1 2.5 × 10−1 5.1 × 10−1 3.2 × 10−1 3.6 × 10−2 7.3 × 10−2 4.6 × 10−2

MLP 0.9895 0.9635 0.9847 4.6 × 10−2 1.2 × 10−1 6.1 × 10−2 2.1 × 10−1 3.5 × 10−1 2.5 × 10−1 3.1 × 10−2 4.9 × 10−2 3.5 × 10−2

GRU​ 0.8610 0.8441 0.8599 6.5 × 10−1 8.8 × 10−1 7.0 × 10−1 8.1 × 10−1 9.4 × 10−1 8.4 × 10−1 1.2 × 10−1 1.3 × 10−1 1.2 × 10−1

LSTM 0.8001 0.8037 0.8015 7.8 × 10−1 9.1 × 10−1 8.0 × 10−1 8.8 × 10−1 9.5 × 10−1 9.0 × 10−1 1.3 × 10−1 1.3 × 10−1 1.3 × 10−1

Sink Mark

DT 0.9979 0.9873 0.9958 2.1 × 10−8 6.3 × 10−8 3.0 × 10−8 1.5 × 10−4 2.5 × 10−4 1.7 × 10−4 7.2 × 10−3 1.2 × 10−2 8.5 × 10−3

MLP 0.9657 0.9458 0.9599 6.0 × 10−7 8.9 × 10−7 6.6 × 10−7 7.7 × 10−4 9.5 × 10−4 8.1 × 10−4 3.8 × 10−2 4.6 × 10−2 4.0 × 10−2

GRU​ 0.9573 0.9705 0.9616 6.6 × 10−7 5.1 × 10−7 6.3 × 10−7 8.1 × 10−4 7.2 × 10−4 7.9 × 10−4 4.0 × 10−2 3.5 × 10−2 3.9 × 10−2

LSTM 0.9681 0.9853 0.9727 7.4 × 10−7 4.8 × 10−7 6.9 × 10−7 8.6 × 10−4 6.9 × 10−4 8.3 × 10−4 4.2 × 10−2 3.4 × 10−2 4.1 × 10−2
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histogram behaviour. Figure 4b shows the error histogram of the warpage_MLP with mean and standard devia-
tion of error of − 1.21 × 10−3 and 2.48 × 10−1, respectively. It shows the left-skewed histogram behaviour. Figure 4c 
shows the error histogram of the sinkmark_DT with mean and standard deviation of error of 1.53 × 10−5 and 
1.72 × 10−4, respectively. It shows the normal distribution of the error as DT is the traditional soft computing 
method.

Figure 5a–c represents the regression of the developed shrinkage_MLP, warpage_MLP and sinkmark_DT for 
predicting the algorithms’ injection-moulding defects during all datasets (training and testing stages), respec-
tively. The vertical and horizontal axes in Fig. 5 represent the actual and predicted defect (including shrinkage, 
warpage and sink mark). Based on Fig. 5a–c, the R-square of shrinkage_MLP, warpage_MLP and sinkmark_DT 
are 0.9074, 0.9713 and 0.9961, respectively (Fig. 5a–c).

Figure 6a–c represents the target and predicted shrinkage, warpage, and sink mark of the dashboard injec-
tion moulding product based on T1, T2, t1, and t2 using shrinkage_MLP, warpage_MLP and sinkmark_DT, 
respectively. Following the outcomes in Fig. 6a, the CC linking the target and predicted shrinkage correspond-
ingly stands at 0.9657, 0.9458, and 0.9657 for the training, testing, and all datasets. Turning our attention to the 
findings in Fig. 6b, the CC connecting the target and predicted warpage are appraised at 0.9895, 0.9635, and 
0.9847 during the training, testing, and all dataset analyses, respectively. The information divulged by Fig. 6c 
unfolded a similar pattern, with the CC bridging the gap between the target and predicted sink mark measuring 
at 0.9979, 0.9873, and 0.9958 for the training, testing, and all datasets in sequence.

The extracted and investigated models in this subsection are employed inside the MOPSO in the next subsec-
tion to extract the optimal solutions of the process.

Reducing the cooling time minimizes the duration the plastic remains in the mold, thereby decreasing the 
likelihood of uneven cooling and reducing residual stresses. Consequently, this diminishes the occurrence of 
warpage and sink marks. Furthermore, lowering the melt temperature alleviates thermal stress on the molded 
part, resulting in more uniform cooling and solidification, thereby reducing shrinkage and warpage. Addition-
ally, decreasing the pressure holding time prevents excessive material packing, which can cause sink marks and 
internal stresses. Striking a balance ensures the material is adequately packed without being overly compressed. 
Finally, elevating the mold temperature fosters a uniform cooling rate across the part, mitigating differential 
shrinkage and warpage while enhancing material flow and packing, thus minimizing sink marks.

In the study, the focus is on optimizing cooling time to minimize the duration that the plastic remains in the 
mold. By reducing the cooling time, the aim is to mitigate the potential for uneven cooling and residual stresses, 
which are known contributors to warpage, shrinkage, and sink marks. The rationale for emphasizing low cool-
ing time parameters was based on the understanding that prolonged exposure to the mold can exacerbate these 
defects.

In the study, one of the focus is on optimizing cooling time to minimize the duration that the plastic remains 
in the mold. By reducing the cooling time, the aim is to mitigate the potential for uneven cooling and residual 
stresses, which are known contributors to warpage, shrinkage, and sink marks. The rationale for emphasizing low 

Figure 4.   The error histogram of the data using all data, including all data (training and testing) using (a) 
shrinkage_MLP; (b) warpage_MLP; (c) sinkmark_DT.
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cooling time parameters was based on the understanding that prolonged exposure to the mold can exacerbate 
these defects.

The relaxation time of plastic materials is also pivotal in determining shrinkage, warpage, and sink marks in 
molded products. During molding processes, plastic undergoes stress from shaping and cooling. Subsequently, 
as stress dissipates, the material relaxes over time, regulated by its relaxation time. This phenomenon significantly 
affects the extent and uniformity of shrinkage. Insufficient relaxation time may result in residual stresses, causing 
uneven shrinkage and dimensional inaccuracies. Uneven stress relaxation can lead to differential shrinkage and 
warpage. Sink marks, stemming from localized shrinkage during cooling, are also influenced by relaxation time. 
Inadequate relaxation time may prevent uniform stress redistribution, resulting in localized areas of shrinkage 
and sink marks. Overall, controlling relaxation time is vital for ensuring dimensional stability and surface quality 
in plastic components, mitigating defects such as shrinkage, warpage, and sink marks.

Optimisation
The three investigated models (shrinkage_MLP, warpage_MLP and sinkmark_DT) are the objective functions 
of the multiple objectives’ optimisation using PSO, investigated in subsection III.F. As mentioned before, the 
provided toolbox by Víctor Martínez-Cagigal43 is used for the implementation purpose of this study.

Illustrated in Fig. 7 is the distribution of the optimal solution’s three-dimensional Pareto front configuration 
within the context of the process. Moreover, the optimal solutions derived with extracted defects are outlined 
in Table 4. A sequence of injection-moulding experiments was conducted to affirm the system’s precision using 
the extracted optimal solution from the recently introduced approach. The extracted optimal solution results in 
terms of shrinkage, warpage and sink marks using the optimal machine learning methods and SW Plastics are 
shown inside the Table 4. Also, the margin of error between the experiment and predicted values via investigated 
soft computing methods is mentioned in the last column of Table 4 as the average of three defects error between 
machine learning methods and SW Plastics. The process of determining the margin of error between the experi-
ments detailed in Table 4 and the optimization methods involves comparing the predicted values acquired from 
the experiments with the optimized values derived from the optimization method. This comparison enables the 
identification of differences among the chosen approaches.

Figure 5.   The regression of the data during all data (training and testing) using optimized based (a) shrinkage_
MLP; (b) warpage_MLP; (c) sinkmark_DT.
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Conclusion
This study focuses on assessing and mitigating defects in plastic products through injection moulding. Key 
process parameters were meticulously examined, including pure cooling time, mould temperature, melt tem-
perature, and pressure holding time, using a full factorial design of experiments. These parameters significantly 
influence the final product’s physical and mechanical properties. By employing soft computing techniques like 
FE analysis, the study effectively quantified and mitigated the impact of various input parameters on the injection 

Figure 6.   The actual and predicted defects of injection-moulding process of dashboard using (a) shrinkage_
MLP; (b) warpage_MLP; (c) sinkmark_DT.
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moulding process. CAD models integrated with FE simulations facilitated the assessment of shrinkage, warpage, 
and sink marks. Among various models, including DT, MLP, GRU and LSTM, the best-performing model was 
identified for defect prediction. Furthermore, the application of MOPSO extracted optimal process parameters. 
The proposed method, implemented in MATLAB, yielded 18 optimal solutions based on the Pareto-Front. For 
practitioners, this study highlights the significance of process parameters in enhancing product quality. It intro-
duces effective tools for defect prediction and optimization. In conclusion, this research provides insights into 
optimizing injection moulding processes, ultimately improving product quality and manufacturing efficiency. 
Future research should focus on advanced soft computing techniques such as unsupervised deep learning meth-
ods, real-time optimization, robustness against uncertainties, integration with Industry 4.0, and sustainability 

Figure 7.   Three-dimensional Pareto front of the extracted optimal solution using MOPSO in injection-
moulding process to calculate the minimal defects. Briefly, the MLP and DT soft computing methods are used to 
calculate the injection-moulding defects of dashboard products based on the process parameters (T1, T2, t1, and 
t2). MOPSO calculates the optimal process parameters to lead to the minimum defect of the final product.

Table 4.   Extracted optimal process parameters of injection-moulding process of dashboard using soft 
computing methods and MOPSO with extracted defects, including shrinkage, warpage, and sink mark.

No T1 T2 t1 t2

Shrinkage Warpage Sink mark

Error %MLP SW Plastic MLP SW Plastic DT SW Plastic

1 203.911 75.071 12.478 78.471 0.0165 0.0181 4.886 4.4951 0.016 0.0174 9

2 203.912 75.065 12.452 78.475 0.0166 0.0151 4.885 4.1522 0.016 0.0179 13

3 203.913 75.073 12.109 78.484 0.0166 0.0199 4.870 4.3830 0.016 0.0141 14

4 203.912 75.074 11.673 78.482 0.0166 0.0183 4.849 4.2186 0.016 0.0125 15

5 203.914 75.068 12.018 78.474 0.0166 0.0159 4.866 5.2553 0.016 0.017 6

6 203.910 75.074 12.679 78.473 0.0165 0.0185 4.895 5.5313 0.016 0.0133 14

7 203.912 75.068 11.938 78.480 0.0166 0.0148 4.862 4.0841 0.016 0.0179 13

8 203.912 75.069 12.517 78.474 0.0165 0.0168 4.888 4.6925 0.016 0.0165 3

9 203.911 75.076 11.710 78.480 0.0166 0.0168 4.851 4.7055 0.016 0.0157 2

10 203.911 75.072 11.752 78.479 0.0166 0.0154 4.853 4.3192 0.016 0.0179 10

11 203.913 75.0759 12.177 78.479 0.0166 0.0129 4.873 5.5065 0.016 0.0195 19

12 203.911 75.074 11.626 78.489 0.0166 0.0178 4.846 4.4583 0.016 0.0170 7

13 203.911 75.074 11.831 78.478 0.0166 0.0148 4.856 5.1959 0.016 0.0150 12

14 203.913 75.065 12.564 78.475 0.0165 0.0163 4.890 4.9878 0.016 0.0152 4

15 203.910 75.0723 12.407 78.478 0.0166 0.0188 4.883 5.7619 0.016 0.0182 15

16 203.911 75.070 11.658 78.474 0.0166 0.0158 4.848 4.7026 0.016 0.0171 5

17 203.911 75.074 12.233 78.483 0.0166 0.0178 4.875 4.1924 0.016 0.0174 10

18 203.912 75.071 12.160 78.475 0.0166 0.0188 4.872 4.3361 0.016 0.0189 14
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in injection moulding. Also, reinforcement learning can be used for dynamic multi-objective optimization to 
relocate the PSO more adaptively (Supplementary Information).

Data availability
The datasets analysed during the current study are available for the corresponding author on reasonable request.
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