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Abstract

The shift from manual to conditionally automated driving, supported by Advanced Driving
Assistance Systems (ADASs), introduces challenges, particularly increased crash risks due
to human factors like cognitive overload. Driving simulators provide a safe and controlled
setting to study these human factors under complex conditions. This study leverages
Functional Near-Infrared Spectroscopy (fNIRS) to dynamically assess cognitive load in
a realistic driving simulator during a challenging night-time-rain scenario. Thirty-eight
participants performed an auditory n-back task (0-, 1-, and 2-back) while driving, simulating
multitasking demands. A sliding window approach was applied to the time-series {NIRS
data to capture short-term fluctuations in brain activation. The data were analyzed using
EEGNet, a deep learning model, with both overlapping and non-overlapping temporal
segmentation strategies. Results revealed that classification performance is significantly
influenced by the learning rate and windowing method. Notably, a learning rate of 0.001
yielded the highest performance, with 100% accuracy using overlapping windows and
97% accuracy with non-overlapping windows. These findings highlight the potential of
combining fNIRS and deep learning for real-time cognitive load monitoring in simulated
driving scenarios and demonstrate the importance of temporal modeling in physiological
signal analysis.

Keywords: cognitive load; fNIRS; driving simulator; EEGNet; deep learning model

1. Introduction

Driver inattention remains one of the primary contributing factors to road traffic
accidents worldwide. A critical subset of inattention is driver distraction, which specifically
refers to the diversion of attention from tasks that are essential for safe driving to non-
driving-related activities [1,2]. These distractions can stem from both internal sources (e.g.,
using infotainment systems, texting, eating, or conversing with passengers) and external
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sources (e.g., looking at billboards or roadside events). Such distractions compromise the
driver’s situational awareness, reaction time, and overall ability to maintain safe control of
the vehicle [3]. Although the advancement of automated driving technologies is expected
to significantly reduce road traffic accidents, potentially eliminating up to 90% of incidents
caused by human error, driver monitoring remains crucial [4]. Even in partially automated
vehicles, drivers are often required to maintain situational awareness and resume control
under certain conditions. Hence, understanding and detecting driver cognitive workload
and distraction is vital for the design of safer and more adaptive driver-assistance systems.

Despite these limitations, driving simulators remain the safest and most controlled
method for exposing participants to challenging or hazardous driving scenarios without
placing them at risk of physical harm, collisions, or property damage [5]. Simulators
offer a highly customizable environment in which various factors such as traffic density,
road geometry, weather conditions, time of day, and distraction-inducing elements can
be manipulated to replicate real-world driving challenges. This enables researchers to
systematically investigate human behavior and physiological responses under controlled
but realistic conditions that would otherwise be unsafe or impractical to study on actual
roads [6]. In this study, the elevated levels of cognitive workload observed during the
experiments were intentionally induced through a combination of environmental stressors
(e.g., night-time driving and heavy rainfall) and secondary task demands, such as the
auditory n-back task. These stressors were designed to replicate real-world multitasking
demands and increase mental effort, thereby simulating complex driving situations that
require increased attention, decision-making, and working memory.

Previous neuroimaging studies utilizing techniques such as Functional Near-Infrared
Spectroscopy (fNIRS) have extensively investigated the relationship between cognitive
workload and brain activity, with a particular focus on task-induced activation in specific
cortical regions [7,8]. These studies consistently show that increased cognitive demands
often manipulated through working memory tasks lead to heightened activation in areas
such as the prefrontal cortex and parietal lobe, which are key regions involved in attention,
executive function, and memory processing [9]. {NIRS-based studies have frequently re-
ported load-dependent increases in blood oxygenation (HbO2) levels in the frontal cortex as
n increases, typically showing a pattern where 2-back tasks elicit a stronger activation than
1-back tasks, which in turn elicit more than 0-back tasks [10,11]. However, this relationship
is not always linear. In several studies, a non-linear activation pattern has been observed,
where frontal activation may plateau or even decrease at the highest task difficulty, contrary
to the expected trend [12]. This has been attributed to task disengagement, where partici-
pants may mentally give up when the cognitive demands exceed their processing capacity.
Another explanation is that cortical activation may saturate, reaching a physiological ceiling
beyond which no further activation is possible, regardless of task difficulty.

To analyze the complex and often non-linear patterns that are present in physiological
data, a wide range of machine learning (ML) and deep learning (DL) algorithms have been
increasingly employed across various domains [13-15]. These data-driven approaches are
capable of capturing subtle variations and high-dimensional relationships that may not
be easily detectable through traditional statistical methods [16,17]. In recent years, the
fNIRS research community has also begun to adopt and explore the potential of ML and DL
techniques for tasks such as cognitive state classification, mental workload detection, and
brain—computer interface development. Their ability to automatically learn informative
features from raw or minimally preprocessed data has opened new avenues for more
accurate and scalable modeling of brain activity patterns using f{NIRS signals. Traditional
ML techniques such as Support Vector Machines (SVMs), Linear Discriminant Analysis
(LDA), k-Nearest Neighbors (k-NN), and Random Forests have been widely used for
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the classification of workload levels [18,19]. More recently, DL approaches including
Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks,
and Gated Recurrent Units (GRUs) [20,21] have gained traction due to their ability to
automatically extract and model temporal and spatial features from high-dimensional
fNIRS signals [21,22]. These models are particularly useful in capturing subtle, non-linear
patterns that traditional models might miss, offering new opportunities for robust and
real-time workload classification.

The primary objective of this study is to investigate the impact of cognitive load on
drivers within a controlled, high-fidelity simulated driving environment, specifically under
challenging conditions such as night-time driving and heavy rainfall. These environmental
stressors were chosen to closely replicate real-world situations where drivers often ex-
perience heightened mental demands due to reduced visibility, increased vigilance, and
complex decision-making requirements. Unlike many previous studies that have primarily
focused on only two levels of cognitive workload, typically low and high, this research
introduces a three-levels-of-workload paradigm using an auditory-modified n-back task
(0-back, 1-back, and 2-back). Furthermore, while prior studies often relied on traditional
statistical methods for classification, such techniques are typically limited in their general-
izability and tend to be highly subject-specific, performing well only on individual-level
data. In contrast, our study employs a DL-based approach, which is capable of learning
complex, non-linear patterns from large-scale physiological datasets. This enables the
model to generalize more effectively across a broader population of participants, offering
greater potential for real-time, scalable cognitive load detection in real-world driving sce-
narios. This approach demonstrates how incremental increases in cognitive demand affect
driver performance and brain activity. A key aim of this study is also to examine whether
these increasing levels of cognitive workload are associated with corresponding changes in
cerebral blood oxygenation, as measured by fNIRS. Specifically, we investigate whether
higher mental effort correlates with elevated levels of HbO2 in the prefrontal cortex, an
area known to be involved in working memory, attention, and executive function.

2. Materials and Methods

A total of 38 drivers participated in this study. To ensure consistency in cognitive
performance across participants, a set of specific inclusion criteria was established. All
participants were required to possess a valid driver’s license, confirming their eligibility
and basic driving competence. Additionally, individuals with any known history of mental
health disorders, neurological conditions, or physical impairments that could potentially
affect cognitive functioning were excluded from the study. This exclusion criterion was
implemented to minimize potential confounding variables and ensure that variations in
cognitive workload could be attributed more reliably to the experimental manipulations
rather than underlying medical conditions. As a result, only data from clinically healthy
participants with no self-reported or documented cognitive or physical impairments were
included in the final analysis, thereby improving the internal validity of the findings. The
study was approved by the Deakin University Human Research Ethics Committee (Project
ID: 2021-181).

2.1. Driving Simulator

For this study, we utilized a driving simulator setup designed to deliver a realistic
driving experience. At the core of the system was Next Level Racing Motion Platform
V3 (Next Level Racing, Australia), securely mounted on the Traction Plus Platform. This
combination was specifically chosen to enhance motion feedback, allowing participants
to physically perceive vehicle dynamics such as acceleration, braking, and road vibra-
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tions, thereby improving the overall realism of the simulation. The visual interface of
the simulator comprised three large 32-inch Samsung monitors, arranged in a panoramic
configuration to provide a wide field of view. This setup was used in simulating peripheral
vision and increasing participants’ situational awareness, both of which are critical for
realistic driving behavior. To further enrich the tactile experience, a Thrust master T300
steering wheel and pedal system was integrated into the simulator. This system offered
accurate force feedback, allowing participants to experience real-time steering resistance,
road texture, and vehicular control with high fidelity. A visual illustration of the complete
simulator setup is presented in Figure 1.

Figure 1. Driving simulator setup designed to replicate real-world vehicle dynamics and driving
conditions using motion platforms and responsive control hardware.

To replicate the feel and functionality of a real vehicle, the simulator was configured
to mirror the driving dynamics and interior layout of a Toyota Fortuner SUV. This vehicle
model was selected to maintain consistency in participants’ perception of vehicle handling,
the cabin environment, and spatial awareness. For the driving scenarios, we employed
Euro Truck Simulator 2 (ETS2) beta version 1.47 software, recognized for its realistic driving
physics and extensive environmental conditions. ETS2 was selected for its capability to
emulate a wide range of driving environments, including highway cruising, urban traffic
navigation, and varying weather scenarios such as rain and fog. These features allowed us
to construct diverse and cognitively demanding driving tasks that were representative of
real-world conditions.

2.2. Secondary Cognitive Task

To simulate realistic multitasking demands and elevate cognitive load during the dual-
task driving condition, an auditory-modified n-back task was employed in this study. This
task was specifically designed to engage working memory and executive function while
participants were simultaneously involved in a dynamic driving scenario. The cognitive
load manipulation combined elements of the traditional n-back paradigm with a digit-span
task, resulting in three graded levels of difficulty: 0-back, 1-back, and 2-back. The 0-back
condition served as the baseline and required minimal cognitive effort, as participants
simply identified a pre-specified target digit. In contrast, the 1-back and 2-back conditions
progressively increased the memory load, requiring participants to continuously monitor
and compare the current digit to the one presented one or two steps earlier in the sequence,
respectively. Among these, the 2-back task was designed to impose the highest cognitive
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demand, thereby enabling the assessment of participants’ ability to manage an increased
mental workload while driving. Auditory stimuli consisted of randomly selected spoken
digits ranging from 0 to 9, presented through the simulator’s speakers in a consistent
male voice at fixed intervals of 3.5 s. Each spoken digit lasted approximately 0.2 to 0.3 s,
depending on the specific digit, with the remaining time allocated for participant response.
This modality was chosen to prevent visual distraction and allow seamless integration
with the visual demands of the driving task. Participants were instructed to provide their
responses using two buttons, red and green, strategically mounted on the steering wheel
for easy access, as depicted in Figure 2. The green button indicated a match between
the current digit and the target digit, while the red button indicated a non-match. This
hands-on response method ensured minimal physical distraction from the driving task,
while maintaining engagement with the cognitive task.

&
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Figure 2. Steering wheel interface used during the auditory modified n-back task.

The auditory n-back tasks were developed and implemented using the Python Psy-
choPy library [23]. PsychoPy was also utilized to capture participant responses via the red
and green buttons mounted on the steering wheel. To ensure a smooth and immersive dual-
task experience, PsychoPy was configured to operate in parallel with the driving simulator.
This integration was critical for maintaining the ecological validity of the experiment, as it
allowed participants to remain fully engaged in the simulated driving environment while
concurrently performing the cognitive task.

2.3. Functional Near-Infrared Spectroscopy (fNIRS)

The hemodynamic activity of the prefrontal cortex was recorded using a high-density
fNIRS device, NIRSIT (OBELAB Inc., Seoul, South Korea). This wearable neuroimaging
system is equipped with 24 light sources (laser diodes) and 32 photodetectors, operating at
two near-infrared wavelengths, 780 nm and 850 nm, to measure changes in cerebral blood
oxygenation. Data acquisition was performed at a sampling rate of 8.138 Hz, allowing
for continuous monitoring of brain activity throughout the experimental sessions. The
source-detector pairs were arranged to create a dense coverage of the prefrontal region,
with a fixed inter-optode distance of 1.5 cm. The raw optical density signals collected from
the fNIRS device were pre-processed using OBELAB’s built-in Digital Signal Processing
toolkit. This toolkit applied noise reduction and signal correction algorithms to enhance
signal integrity. Following pre-processing, changes in HbO2 and Deoxygenation (HbR)
concentrations were computed using the Modified Beer—-Lambert Law [24], a standard
approach for quantifying hemodynamic responses based on light absorption properties in
biological tissues.

3. Experimental Procedure

The study began with the collection of written informed consent from all participants
prior to their formal enrolment. Following consent, participants attended a comprehensive
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briefing session. During this session, they received both verbal and written instructions
detailing the study’s purpose, the structure of the experimental tasks, and relevant safety
protocols. After the briefing, participants underwent the sensor fitting procedure. They
were equipped with the necessary physiological and neuroimaging equipment, includ-
ing a high-density fNIRS system to monitor cerebral hemodynamics. Next, participants
completed a simulator familiarization phase, during which they spent several minutes
interacting with the driving simulator. Before the experimental tasks began, a one-minute
resting-state baseline was recorded while participants sat quietly in the simulator. During
this phase, all lights in the simulator setup were turned off to create a dark environment,
enabling physiological signals to stabilize and establishing an individualized baseline for
detecting task-induced changes. The experimental phase involved participants performing
a series of structured driving tasks under controlled yet cognitively demanding conditions.
The simulated environment mimicked real-world challenges, including night-time driving
at approximately 1:00 a.m. and heavy rainfall. These conditions were intended to increase
visual and attentional demands, thereby simulating scenarios that elevate cognitive load
and mental fatigue in actual driving situations.

While navigating the simulated driving environment, participants concurrently per-
formed the auditory-modified n-back task at varying difficulty levels (0-back, 1-back, and
2-back). The steering wheel-mounted red and green buttons reinforced dual-task coordina-
tion. This dual-task paradigm was designed to assess cognitive workload by requiring the
allocation of attention and working memory resources across both the primary (driving)
and secondary (n-back) tasks. Throughout the experimental session, fNIRS was used to con-
tinuously monitor changes in cerebral oxygenation within the prefrontal cortex. Combined
with measures of driving performance and task accuracy, the fNIRS data provided insights
into how cognitive load and environmental complexity interacted to affect multitasking
performance in safety-critical settings.

4. Research Methodology

fNIRS data is collected from the prefrontal cortex while participants engage in a
driving simulator and perform auditory n-back tasks (0-back, 1-back, and 2-back) to
induce varying levels of cognitive load. The raw signals undergo a pre-processing pipeline
and are segmented into 10 s, 20 s, and 30 s windows using both overlapping and non-
overlapping strategies, allowing for the analysis of temporal resolution and classification
performance. These segments are then fed into EEGNet, a compact convolutional neural
network originally designed for EEG data, which is adapted here to classify the cognitive
workload based on hemodynamic patterns. An overview of the data processing and
classification pipeline, including fNIRS acquisition, pre-processing, windowing strategies,
and EEGNet classification, is illustrated in Figure 3.

)

' __________ -~

| |

| fNIRS Data

| collection |

' I

- _ _
Pre, IE:::t:ssin hae

p 9 EEGNet Model 1-back

10sec, 20sec, 2-back
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Figure 3. Schematic representation of the fNIRS-based cognitive workload classification pipeline.
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4.1. Data Pre-Processing

First, to normalize the feature scales and mitigate the influence of varying baseline
values across channels, the fNIRS signals were standardized using the Standard Scaler
method as shown in Equation (1). This transformation was applied independently to each
channel across the dataset.

X = (@)

In the above equation, x is the original feature value, is the mean, and is the standard
deviation computed across the training dataset. This ensures that the data for each channel
has zero mean and unit variance, which improves the convergence of learning algorithms
and helps in comparing features on the same scale.

After standardization, the fNIRS time-series data was segmented into temporal win-
dows to extract meaningful features that reflect short-term variations in cognitive load. This
segmentation is a critical step in time-series analysis, particularly for physiological signals
such as fNIRS, where brain activation patterns fluctuate over time. In this study, two types
of segmentation strategies were adopted: overlapping windows and non-overlapping
windows. The overlapping window method utilizes a sliding window approach, in which
each new segment shares a portion of its data with the previous segment. This technique
enhances the temporal resolution of the dataset, potentially capturing transient or transi-
tional changes in cognitive states more effectively. In contrast, the non-overlapping window
strategy divides the entire signal into consecutive, discrete segments with no repetition.
This method reduces computational load and redundancy in the data but may risk missing
subtle transitions between cognitive states.

To determine the most effective temporal resolution for classifying cognitive load
from fNIRS signals, we systematically experimented with three different time window
lengths: 10 s, 20 s, and 30 s. These window durations were selected based on their frequent
use in prior neuroimaging and physiological signal processing studies [16,25], where they
have been shown to provide a meaningful balance between capturing sufficient temporal
context and maintaining model responsiveness. The window sizes reflect a balance between
capturing fine-grained temporal dynamics and ensuring sufficient context for robust model
training. Furthermore, these window lengths align well with the typical temporal profile
of the hemodynamic response function in fNIRS data, which typically peaks around
68 s post-stimulus, making shorter windows potentially inadequate and much longer
windows unnecessary.

4.2. EEGNet Model

To classify cognitive load across three levels (0-back, 1-back, and 2-back), this study
employed the EEGNet model architecture [26], originally developed for EEG-based brain—
computer interface applications. EEGNet was chosen for its compact design and proven
ability to decode neurophysiological signals with relatively few parameters. The structure
of the EEGNet model is shown in Table 1. The model was trained using the Adam optimizer
and was optimized with categorical cross-entropy loss, which is suitable for multi-class
classification tasks. Training was conducted over 200 epochs to enable the model to learn
discriminative spatiotemporal features from the input fNIRS data. The EEGNet architecture
consists of three sequential blocks designed to progressively extract and integrate spatial
and temporal features from the input signals.
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Table 1. Layer-wise configuration of the EEGNet model, illustrating the sequence of operations used
to extract discriminative spatiotemporal features from fNIRS input for multi-class classification.

Type Parameters Output Shape
Input channels = 1, Output channels = F1, Kernel .
Conv2D size = (1, kernel length), Padding = (0, Kernel JEECeIn s, El' ST 57 Il EETT e )
Vet /2, e el Number of time samples]
BatchNorm2D Number of features = F1 [Batch size, El’ Number of channels,
Number of time samples]
Input channels = F1, Output channels = F1-D, . .
Conv2DWithConstraint Kernel size = (Number of channels, 1), Maximum Ezf;dllessl]ze’ FID/ 1, Rumber of fime
norm = 1, Bias = False p
BatchNorm2D Number of features = F1-D [Batch size, F1-D, 1, Number of time
samples]
ELU Activation _ [Batch size, F1-D, 1, Number of time
samples]
AvgPool2D or MaxPool2D Kernel size = (1, 4), Stride = (1, 4) [Batch size, F1-D, 1, Number of time
samples/4]
_ . [Batch size, F1-D, 1, Number of time
Dropout p = drop probability samples/4]

Conv2D (Depthwise)

Input channels = F1-D, Output channels = F1-D,
Kernel size = (1, 16), groups = F1-D

Padding = (0, 8), Bias = False

[Batch size, F1-D, 1, Number of time
samples/4]

Conv2D (Pointwise)

Input channels = F1-D, Output channels = F2, [Batch size, F2, 1, Number of time

Kernel size = (1, 1), Padding = (0, 0), Bias = False samples/4]
BatchNorm2D Number of features = F2 lLsitd? it 162, 1, INictolbr oif iaue
samples/4]
ELU Activation ) [Batch size, F2, 1, Number of time
samples/4]
AvgPool2D or MaxPool2D Kernel size = (1, 8), Stride = (1, 8) i ez, L6221, NG s o i
samples/32]
_ [Batch size, F2, 1, Number of time
Dropout p = drop prob samples/32]
Input channels = F2, Output channels = N (classes), .
Conv2D Kernel = (1, Final conv length), Bias = True DEEeIn its, NG 1y 1
Log Softmax Dimension =1 [Batch size, N, 1, 1]

Expression (squeeze)

_ [Batch size, N]

4.2.1. Block 1: Spatial Feature Extraction

This block begins with an input layer followed by two key convolutional operations. A
2D convolution is first applied to extract low-level features across time and channels. This
is followed by a depthwise convolution, which applies a separate filter to each channel in-
dividually. Unlike standard convolutions, this method significantly reduces the number of
trainable parameters while still capturing meaningful spatial patterns. Batch normalization
follows each convolutional operation, standardizing feature distributions and facilitating
stable learning. The depthwise convolution specifically enhances training efficiency and
mitigates overfitting, which is particularly valuable when working with relatively small
neuroimaging datasets.

4.2.2. Block 2: Separable Convolution for Spatiotemporal Integration

Block 2 employs a separable convolution, which decouples the learning of temporal
and spatial patterns. It starts with a depthwise convolution that independently processes
each feature map over time, enabling the model to capture temporal dynamics within
each channel. This is followed by a pointwise convolution (1 x 1), which combines the
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temporally filtered signals across channels, allowing the model to learn cross-channel de-
pendencies. This two-stage approach reduces computational complexity while preserving
the ability to represent brain activity patterns distributed across time and spatial locations.
By explicitly separating the modeling of temporal and spatial structures, the model becomes
better suited to detecting subtle changes in cognitive workload.

4.2.3. Block 3: Classification and Output

The final block of the EEGNet model maps the learned high-level features to class
predictions. It begins with a flattening layer that transforms the multi-dimensional feature
maps into a one-dimensional vector suitable for classification. This vector is then passed
through a dense layer that projects the features onto three output nodes, each representing
one of the cognitive load levels (0-back, 1-back, and 2-back). A SoftMax activation follows,
generating a probability distribution over the three classes, which enables the model to
produce confidence scores for each prediction. The model is trained using the categor-
ical cross-entropy loss function, which compares the predicted probabilities to the true
class labels.

4.3. Validation Framework

Cross-validation is a fundamental strategy in ML for assessing a model’s performance,
robustness, and generalizability to unseen data [27,28]. Among the various techniques
available, k-fold cross-validation is widely adopted due to its balance between computa-
tional efficiency and reliability [29]. In k-fold cross-validation, the dataset is partitioned
into k equal-sized subsets or “folds.” The model is trained on k — 1 folds and tested on the
remaining one. This process is repeated k times, each time with a different fold used as the
test set. The results across all folds are then averaged to obtain a more generalized estimate
of model performance.

In this study, k was set to 5, meaning the dataset was divided into five equal parts.
During each of the five iterations, a different subset was used for validation while the
remaining four subsets were used for training. This ensures that each sample in the dataset
is used exactly once for testing, thereby minimizing bias and variance in the performance
evaluation. The final accuracy, as well as other performance metrics, was reported as
the mean of the five folds, offering a comprehensive view of the model’s classification
capability. To explore the effect of temporal granularity on model performance, the dataset
was processed using three distinct window lengths: 10 s, 20 s, and 30 s. For each window
size, we generated both overlapping and non-overlapping segments from the time-series
fNIRS data. After segmentation, the data was randomly shuffled to remove any sequence
bias before being divided into five folds. This randomized shuffling step ensures that
samples from the same time period or task condition do not disproportionately influence
any single fold. For each window size configuration (e.g., 10 s windows), the same fold
partitioning was used to train the model under three different learning rates (LRs): 0.1, 0.01,
and 0.001. This consistent fold usage across LRs allows for a fair comparison of how LR
influences classification performance under identical data conditions.

4.4. EEGNet Hyperparamter Tuning

To ensure optimal classification performance of cognitive workload using fNIRS
signals, the EEGNet model was fine-tuned through extensive hyperparameter tuning.
EEGNet, originally developed for EEG-based brain—computer interface applications, was
adapted in this study to classify hemodynamic responses captured by f{NIRS. Due to the
distinct temporal resolution and signal characteristics of fNIRS, model hyperparameters
had to be carefully customized for different input segment durations.
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We experimented with three temporal resolutions commonly cited in the literature for

(D) for spatial filtering was held constant at 2 across all configurations, maintaining a
balance between model complexity and training stability.

Table 2. Dynamic EEGNet hyperparameters adjusted per window length.

Number of samples per

window (at 8.138 Hz) 81 163 244
Dropout fraction 0.25 0.25 0.25
Length of temporal convolution
in first Conv2D layer 32 64 128
Depthwise conv kernel size
(temporal dimension in 8 16 32
Conv2D)
Number of temporal filters to 8 16 30
learn
Depth multiplier for spatial

- 2 2 2
filtering
Number of pointwise filters to 16 0 64

learn (F1 x D)

These adjustments ensured that EEGNet could handle varying levels of temporal
resolutions without underfitting or overfitting to shorter or longer signal segments. In
addition to the window-specific parameters, several hyperparameters were kept uniform
across all training runs to ensure consistency and fair evaluation, as illustrated in Table 3.
These included architectural and training-level configurations such as the type of dropout,
pooling strategy, activation function, and loss function. All models used Mean Pooling, ELU
activation, and Cross Entropy Loss as the classification objective. The final convolutional

Dropout

Mean Pooling
ELU

Auto

Adam
CrossEntropyLoss

pA

Xavier Uniform
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The Adam optimizer was used in all configurations for its ability to adaptively adjust
LRs during training. The batch size of 64 was selected to balance computational efficiency
with convergence stability. The full EEGNet training pipeline is summarized in Algorithm
1, which outlines a structured and repeatable algorithm for training and validating the
model. For each window size (10 s, 20 s, 30 s), the time-series {NIRS data was segmented
into overlapping and non-overlapping windows, from which the top 50 features were
selected using ANOVA-based feature selection. The dataset was then normalized, randomly
shuffled, and split using 5-fold cross-validation. To evaluate the influence of the LR on
classification performance, three LRs were tested, 0.1, 0.01, and 0.001, for each window size.
Importantly, the same folds were used across LR experiments for each window duration to
ensure comparability.

Algorithm 1: EEGNet training with ANOVA feature selection and varying temporal windows.

Input:
Labelled fNIRS dataset D,
Window sizes W = {10's,20s,30 s},
Sampling frequency f; = 8.138 Hz,
Learning rates LR = {0.1, 0.01, 0.001},
Number of top ANOVA features K = 50,
Number of folds F = 5,
Number of epochs E
Output:
Trained EEGNet models F for each configuration
1: for each window size w € W do
2: n—wX fs / /Convert seconds to number of samples
3: (X,y) < Extract segments of length n from I
4: X' +— Select top K features from X using ANOVA
5: D + Normalize and prepare dataset (X', )
6: for each learning rate 7 € LR do
7: for fold =1 to F do
8: Dirains Diest < Split D using fold F
9: Initialize EEGNet F with window size n and dynamic parameters (Fy, F,, kernel length)
10: Initialize optimizer with LR
11: for epoch =1 to E do
12: Train F on Dy, using Cross Entropy Loss
13: Evaluate F on Dyt and record metrics
14: end for
15: Save model F and results for (w,#, fold)
16: end for
17: end for
18: end for
19: return all trained EEGNet models F
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This tuning and training procedure allowed us to systematically investigate the effect
of temporal window size and LR on classification accuracy, AUC, precision, recall, and
F1-score across different experimental configurations.

5. Results and Discussions

Given that the dataset comprises 204 f{NIRS channels, a feature selection step was
necessary to reduce dimensionality and identify the most informative signals associated
with cognitive load during simulated driving. To achieve this, we employed the Analysis
of Variance (ANOVA) method, a statistical approach commonly used in neuroimaging
to evaluate the significance of each feature with respect to class separation. Figure 4
presents the top 50 ranked features identified through ANOVA-based feature selection. As
illustrated in the figure, a greater proportion of the selected features correspond to HbO2
channels rather than HbR. This observation suggests that changes in blood HbO2 are more
strongly associated with variations in cognitive load than changes in HbR.

Top Feature Importances using ANOVA feature analysis method

CH116HDbR
CH32HbO2
CH15HbO?2
CH149HbO2
CH150HDbR
CH154Hb0O2
CH95HDbR
CH11HbO2
CH112HbO2
CH53H

Features
0
I 0
~=OITI
W=
WOINS
TITOINUN

21HbO2
CH21HbR

Figure 4. Visualization of the top 50 most significant fNIRS channels identified through ANOVA analysis.

This finding aligns with prior research indicating that HbO2 signals tend to exhibit
higher sensitivity to task-related neural activation, particularly within the prefrontal cortex,
where cognitive processes such as working memory and attention are regulated s [10,30,31].
The predominance of HbO2 features among the top-ranked channels implies that blood
oxygenation dynamics are more robust indicators of cognitive workload in dual-task
conditions, such as driving while performing a secondary cognitive task (e.g., the n-
back task).



Sensors 2025, 25, 4921

13 of 20

After selecting the top 50 features from the fNIRS dataset based on their relevance to
cognitive load classification, further refinement was performed through correlation analysis.
This step aimed to assess the degree of linear dependency between features to ensure that
each selected feature contributes uniquely to the model, without redundancy. Highly
correlated features can introduce multicollinearity, which may degrade the performance
and interpretability of ML models by overemphasizing certain aspects of the signal while
masking others.

To address this, a pairwise correlation matrix was computed across the selected
features using Pearson’s correlation coefficient. This matrix quantifies the linear relationship
between feature pairs, with values ranging from —1 (perfect negative correlation) to +1
(perfect positive correlation). The resulting correlation structure is visualized in Figure 5,
which presents a heatmap of the correlation coefficients. This visualization highlights
the relationships among features and provides insight into the overall redundancy or
complementarity of the selected features. By ensuring a low degree of correlation among
the input variables, the final dataset becomes more robust and informative for subsequent
model training, reducing overfitting and improving generalization.
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Figure 5. Correlation heatmap of the top 50 selected fNIRS features, illustrating the pairwise relation-
ships among features after feature selection.

To train and evaluate the EEGNet model, we employed a 5-fold cross-validation
strategy. This approach was chosen to ensure robust model performance and to minimize
the potential for overfitting, particularly given the limited size and high dimensionality of
the dataset. In each fold, the dataset was partitioned into five equal subsets: four were used
for training, and one was used for validation. This process was repeated five times, with
each subset serving as the validation set once, allowing for a more generalized assessment
of model performance.

For model optimization, we utilized the Adam optimizer, known for its adaptive
LR capabilities and efficiency in training deep neural networks. To examine the effect
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of LR on model performance, three different LRs were tested: 0.1, 0.01, and 0.001. The
model was trained over 200 epochs with a batch size of 63, which was selected to balance
convergence stability and computational efficiency. In addition to model training, we also
explored the impact of temporal segmentation strategies on classification performance.
Specifically, we evaluated the model using both overlapping and non-overlapping time
window segments of 10 s, 20 s, and 30 s. This segmentation was applied to the time-series
input data to investigate how different windowing strategies affect the model’s ability to
capture temporal patterns associated with cognitive load. The results for the overlapping
segmentation evaluations are presented in Table 4, while the results for the non-overlapping
segmentation are detailed in Table 5.

Table 4. Classification performance of EEGNet using overlapping time window segments (10's, 20's,
30 s) across 5-fold cross-validation. Results are reported for various LRs, illustrating the impact of

window size and overlap on model accuracy.

Window Size Learning Rate  Accuracy AUC Recall Precision F1-Score

10s 0.1 0.5929 £0.0491 0.7773 +0.0296  0.5929 £ 0.0491  0.6102 + 0.0509  0.6102 £ 0.0509
20s 0.1 0.5693 £0.0343  0.7737 +0.0348  0.5693 £ 0.0343  0.6345 4 0.0260  0.6345 £ 0.0260
30s 0.1 0.5610 £ 0.0267  0.7568 & 0.0258  0.5610 £ 0.0267  0.5900 & 0.0117  0.5900 +£ 0.0117
10s 0.01 0.9134 £0.0102  0.9651 4 0.0064 0.9134 £0.0102  0.9138 4 0.0106  0.9138 £ 0.0106
20s 0.01 0.9418 £ 0.0157  0.9772 4+ 0.0060  0.9418 £ 0.0157  0.9430 4= 0.0151  0.9430 £ 0.0151
30s 0.01 0.8879 + 0.0427  0.9485 £ 0.0179  0.8879 £ 0.0427  0.8932 4 0.0384  0.8932 £ 0.0384
10s 0.001 0.9995 £ 0.0002  0.9997 4 0.0002  0.9995 £ 0.0002  0.9995 4 0.0002  0.9995 + 0.0002
20s 0.001 0.9999 £ 0.0001  1.0000 & 0.0000  0.9999 £ 0.0001  0.9999 4 0.0001  0.9999 =+ 0.0001
30s 0.001 1.0000 £ 0.0000 1.0000 = 0.0000  1.0000 % 0.0000 1.0000 = 0.0000  1.0000 = 0.0000

Table 5. Classification performance of EEGNet using non-overlapping time window segments (10's,

20 s, 30 s) across 5-fold cross-validation.

Window Size Learning Rate  Accuracy AUC Recall Precision F1-Score

10s 0.1 0.7020 £ 0.0219  0.8559 £ 0.0237  0.7020 £ 0.0219  0.7100 £ 0.0267  0.7100 £ 0.0267
20s 0.1 0.6818 = 0.0137  0.8233 = 0.0331  0.6818 £ 0.0137  0.6838 £ 0.0199  0.6838 £ 0.0199
30s 0.1 0.6547 £ 0.0257  0.7987 & 0.0424  0.6547 £ 0.0257 0.6882 £ 0.0418  0.6882 £ 0.0418
10s 0.01 0.9470 = 0.0126  0.9759 & 0.0077  0.9470 &= 0.0126  0.9486 & 0.0117  0.9486 £ 0.0117
20s 0.01 0.9444 £+ 0.0081  0.9705 £ 0.0102  0.9444 £ 0.0081  0.9454 £ 0.0081  0.9454 + 0.0081
30s 0.01 09127 £0.0242 09378 £ 0.0427 09127 £0.0242 09179 £ 0.0245 0.9179 + 0.0245
10s 0.001 0.9731 & 0.0021  0.9888 £ 0.0011  0.9731 % 0.0021  0.9732 = 0.0020  0.9732 == 0.0020
20s 0.001 0.9327 £ 0.0115  0.9678 £ 0.0036  0.9327 £ 0.0115  0.9346 £ 0.0106  0.9346 + 0.0106
30s 0.001 0.8478 +0.0190  0.9014 £ 0.0376  0.8478 £0.0190  0.8550 £ 0.0188  0.8550 + 0.0188

The evaluation results based on overlapping window segments reveal that a window
size of 30 s, in combination with an LR of 0.001, yields the highest classification performance,
achieving an accuracy of 100%. This suggests that longer overlapping windows allow
the EEGNet model to capture more stable and comprehensive patterns of neural activity
associated with cognitive load, leading to near-perfect model performance. The overlapping
approach benefits from the redundancy introduced by the windowing technique, which
may help in smoothing out transient noise and enhancing the temporal context for the
model. In contrast, for the non-overlapping segmentation, the highest accuracy of 97%
is also achieved using an LR of 0.001, but in this case, the best performance is observed
with a shorter window size of 10 s. Unlike the overlapping scenario, increasing the
window size in the non-overlapping setup does not necessarily improve performance.
This may be due to the fact that longer non-overlapping segments could introduce greater
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variability between segments or result in fewer training samples, thereby reducing the
model’s generalizability. These findings demonstrate that while the LR of 0.001 consistently
yields the best performance across both segmentation strategies, the optimal window size
appears to be context dependent. Specifically, overlapping windows benefit more from
longer durations, likely due to richer temporal information and redundancy, whereas non-
overlapping windows may perform better at shorter durations, which offer more training
samples and better granularity. Therefore, the highest classification performance is not
solely determined by window size but rather by the interaction between the segmentation
strategy and the temporal resolution used in pre-processing.

In addition to the segmentation results, an in-depth analysis of LR effects reveals
distinct optimization dynamics between overlapping and non-overlapping segmentation
strategies, as illustrated in Figure 6a,b. For overlapping segments, model performance
varies dramatically across different LRs, ranging from approximately 56-59% accuracy at
an LR of 0.1 to near-perfect performance (99.95-100%) at an LR = 0.001. This substantial
variance suggests that overlapping segmentation introduces a more complex optimization
landscape, likely due to the presence of redundant information across temporally adjacent
windows. High LRs in this context may result in unstable convergence due to conflict-
ing gradient updates from correlated segments. Conversely, when a low LR is applied
(LR = 0.001), the model benefits from greater training stability and is better able to extract
meaningful temporal patterns from the overlapping windows. In contrast, non-overlapping
segments show more stable and gradual performance improvements across LRs, with ac-
curacy ranging from 65-70% at LR = 0.1 to 85-97% at LR = 0.001. This relatively narrow
performance band suggests that non-overlapping segmentation yields a more straightfor-
ward optimization process, as the absence of segment redundancy reduces the complexity
of gradient updates. The model remains relatively robust even under aggressive LRs, but it
exhibits slightly lower peak performance compared to the overlapping setup. This may be
attributed to the limited temporal context available in non-overlapping windows, which
constrains the model’s ability to learn cross-segment dependencies.
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Figure 6. (a) Impact of LR on overlapping time window performance. A sharp accuracy gain
at LR = 0.001 demonstrates that stability is critical when training with overlapping fNIRS segments.
(b) Non-overlapping segmentation performance across varying LRs. The model shows stable conver-
gence and lower peak accuracy.

Further analysis of the performance difference between segmentation strategies, sum-
marized in Figure 7, highlights an LR-dependent interaction that challenges typical as-
sumptions about the advantages of data augmentation through overlapping. At higher LRs
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(LR = 0.1), non-overlapping segmentation outperforms overlapping by 9-11%, indicating
that redundant data may hinder learning when combined with rapid weight updates. At
a moderate LR (LR = 0.01), the performance gap narrows to 2-5%, suggesting a balance
between training stability and data richness. However, at a low LR (LR = 0.001), overlap-
ping windows outperform non-overlapping by a margin of 12-15%, demonstrating their
advantage when training conditions allow for stable convergence.
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Figure 7. Performance difference between overlapping and non-overlapping segmentation strategies
across LRs.

These findings emphasize that neither segmentation strategy is universally superior;
rather, their effectiveness depends critically on the LR and overall training configuration.
While overlapping segments offer rich temporal information, they require careful tuning to
avoid optimization instability. In contrast, non-overlapping segments provide robustness
under a wider range of hyperparameter settings but may limit peak performance. Therefore,
the interaction between the segmentation strategy and LR must be carefully considered to
achieve optimal model generalization and efficiency.

6. Limitations and Future Directions

Despite the promising results, this study presents several limitations that warrant
consideration and offer important directions for future research. First, while the use of a
high-fidelity driving simulator provides a controlled and safe testing environment, it cannot
fully replicate the dynamic, unpredictable conditions of real-world driving. This limitation
may affect the ecological validity of the findings and restrict the model’s applicability in
naturalistic driving contexts. Second, the participant sample (N = 38), although sufficient
for preliminary analysis, may not fully reflect the demographic and cognitive diversity of
the broader driving population. Factors such as age, driving experience, and individual
cognitive profiles can significantly influence physiological responses and, consequently;,
model generalizability. Future studies should aim to recruit more demographically and
cognitively diverse participant cohorts including variations in age, driving experience, and
cognitive capacity to improve the robustness and generalizability of workload detection
models across different user populations. In addition, the integration of more advanced
driving simulators featuring high-fidelity motion-cueing algorithms could significantly
enhance the ecological validity of experimental setups [32,33]. These systems are better
equipped to replicate complex sensory and vestibular feedback associated with real-world
driving, including acceleration, braking, and lateral movement, which are critical for
eliciting authentic cognitive and physiological responses [34,35]. By combining participant
diversity with realistic simulation environments, future research can build more scalable
and context-aware models that are suitable for deployment in real-world driver monitoring
and assistance systems.
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Third, the experimental design employed a random-split 5-fold cross-validation ap-
proach. While this method is widely accepted, applying it to time-series physiological
data such as fNIRS data may lead to data leakage [36], where temporally adjacent or sim-
ilar patterns from the same subject appear in both training and validation sets. This can
artificially inflate model performance and limit its ability to generalize [37]. Although a
random split was used due to the relatively small sample size, future research should adopt
subject-wise or session-wise cross-validation to more realistically evaluate generalizability,
particularly in deployment scenarios targeting individual-independent performance. An-
other limitation relates to the scope of data acquisition. This study focused solely on fNIRS
signals from the prefrontal cortex; a region associated with executive function. However,
cognitive workload is influenced by distributed neural processes that involve multiple
brain regions. To address this, eye-tracking data were collected using Pupil Core glasses
and ECG data were recorded using an Equivital system as backup modalities. While these
were not analyzed in the current study, they offer valuable opportunities for future work.
Expanding cortical coverage or integrating complementary data sources such as driving
behavior, ECG, and eye-tracking may improve model robustness and enable the detection
of cognitive states through multimodal data fusion.

Additionally, although the auditory n-back task effectively modulated cognitive work-
load, it does not encompass the full spectrum of challenges encountered during real-world
driving such as emotional stress, unexpected obstacles, verbal interaction, or decision-
making under time constraints. Incorporating more ecologically valid secondary tasks
could improve the realism and relevance of workload models. The DL model used EEGNet
also introduces interpretability challenges. Like many neural networks, EEGNet functions
as a black-box model, making it difficult to understand the basis of its predictions. This
limitation is particularly critical in safety-sensitive applications such as driver monitoring.
Future research should explore Explainable AI (XAI) techniques, including saliency map-
ping, SHAP values, and layer-wise relevance propagation, to increase model transparency
and support trust and accountability in decision-making.

Finally, while EEGNet achieved near-perfect classification under certain configura-
tions, especially with overlapping window strategies, such high accuracy on a relatively
small and well-controlled dataset raises concerns about overfitting. Redundant infor-
mation in overlapping segments may inflate performance, particularly in combination
with random validation splits. Future research should rigorously test model performance
using independent datasets, varied driving contexts, and real-time scenarios to confirm
generalizability. To further enhance real-world applicability, future work may also in-
vestigate lightweight DL architectures and transfer learning strategies that enable model
adaptation across users. These advancements could support scalable, real-time cognitive
workload monitoring for deployment in intelligent driver-assistance systems and other
human-machine interaction domains.

7. Conclusions

To systematically investigate varying levels of cognitive workload, we developed a
dual-task experimental paradigm in which participants were required to perform a primary
driving task concurrently with a secondary cognitive task, a modified version of the n-
back task delivered through the auditory modality. This setup was carefully designed to
replicate the cognitive demands encountered in real-world multitasking situations, such
as managing complex navigation while processing verbal information. The n-back task
was implemented at three distinct levels of difficulty: 0-back (representing a low cognitive
workload), 1-back (moderate workload), and 2-back (high workload). By systematically
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varying the task difficulty, we aimed to elicit clearly differentiated cognitive states that
could be measured through physiological responses during the driving simulation.

This approach allows us to evaluate the sensitivity and effectiveness of {NIRS in detect-
ing subtle changes in cognitive load under realistic conditions. While previous studies have
primarily focused on two-level workload comparisons (e.g., low vs. high), our three-tiered
workload design introduces a more granular framework for understanding how cognitive
demand escalates across multiple task intensities, offering richer insights into the brain’s
adaptive response to increasing mental strain. In addition to the experimental design, we
employed the EEGNet DL architecture to analyze the recorded fNIRS signals. EEGNet,
originally developed for EEG data classification, has been adapted in our study to process
and classify hemodynamic responses captured by f{NIRS, enabling automated workload
detection. A key methodological contribution of this work is the systematic evaluation of
both overlapping and non-overlapping temporal window segmentation strategies, which
remain underexplored in the existing literature. We also examined the impact of LR on
model performance, finding that a low LR of 0.001 consistently achieved the highest classi-
fication accuracy across conditions. Our results indicate that longer overlapping windows
(30 s) yield superior performance due to the enriched temporal context and redundancy,
while shorter non-overlapping windows (10 s) perform better likely because of reduced
variability and increased training samples. These findings highlight the importance of
segmentation and optimization strategies to the specific characteristics of the data and
model architecture. This study demonstrates the potential of {NIRS-based DL models for
real-time cognitive workload detection in complex task environments. Future work will
extend these findings by incorporating multimodal signals and subject-wise validation to
further improve generalizability and ecological validity.
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