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H I G H L I G H T S

• An efficient machine learning framework is designed to meet the demands of producers and customers for food security.
• Feature selection strategy is used to reduce the risk of overfitting by removing redundant features and strengthen the model predictive power.
• Hybrid resembling technique improves the model’s ability to generalize to new seed or unknown seed, reducing classification bias towards the majority classes.
• Confusion matrix is followed to represents how the classification model is confused when it makes predictions. That is, it provides insight not only the errors which 

are made by the classifier but also types of errors that are being made.
• Feature importance is analyzed to illustrate, which types of geometric features influence the model’s predictions significantly.
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A B S T R A C T

The imbalanced classification problem poses a significant challenge in machine learning, often resulting in biased 
models and poor performance for minority classes. This study introduces an innovative hybrid resampling 
technique combining Synthetic Minority Oversampling Technique and Edited Nearest Neighbours (SMOTE- 
ENN), optimized using Bayesian Optimization, to address these limitations. The proposed framework integrates 
advanced feature pre-processing, hybrid resampling, and machine learning models to enhance classification 
performance. Using the publicly available dry bean dataset containing 16 geometric features of seven seed va
rieties, the methodology demonstrates remarkable improvements in predictive accuracy and class balance. 
Employing cutting-edge classifiers, the improved Light Gradient Boosting Machine (LBM) with Bayesian opti
mization achieved an unprecedented accuracy of 99.59 %, outperforming traditional approaches. Results reveal 
the potential of hybrid resampling techniques and Bayesian optimization in effectively capturing feature pat
terns, enhancing model diversity, and ensuring robust classification of imbalanced datasets. This research un
derscores the application of soft computing methods to real-world multi-class classification challenges, offering 
practical insights for similar domains.

1. Introduction

Data imbalance is a major challenge in data mining and machine 
learning, arising from a highly skewed data distribution across different 

classes. In such scenarios, the majority class dominates the learning 
process. In contrast, the minority class is often underrepresented, lead
ing to biased models that perform poorly on rare but potentially critical 
cases [1,2]. This imbalance can substantially impact the performance 
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and generalizability of machine learning models. The impact is espe
cially pronounced in real-life applications such as finance (e.g., fraud 
detection, loan default prediction), healthcare (e.g., genetic disorders, 
cancer detection, diabetes or heart disease onset prediction), agriculture 
(e.g., outbreaks of rare crop diseases or pests, classification of rare bean 
or fruit varieties), and rare event prediction. In these cases, the minority 
class holds greater practical significance. However, it lacks sufficient 
data for the model to learn effectively during training [3–5]. For 
instance, in healthcare, this issue is especially prominent in diagnostic 
applications, where certain diseases—such as genetic disorders or 
early-stage cancers—occur far less frequently than in healthy cases. This 
imbalance can lead standard machine learning algorithms to become 
biased toward the majority (healthy) class, resulting in poor sensitivity 
and elevated false negative rates for the minority (disease) class. Such 
misclassifications can have serious clinical implications, including 
delayed diagnoses, inappropriate treatment plans, and overlooked early 
interventions, compromising patient outcomes [6]. Similarly, in agri
culture, detecting rare plant diseases or pest outbreaks amidst a vast 
majority of healthy crops requires accurate classification to avoid sig
nificant economic losses. Even without data imbalance, issues like label 
noise, overlapping class distributions, and other challenges may arise in 
typical real-world datasets. Label noise, which may result from human 
error or sensor inaccuracies, introduces incorrect or inconsistent anno
tations that distort the true decision boundaries. On the other hand, 
overlapping class distributions—where the feature values of different 
classes are not separable—complicate the learning process by increasing 
classification ambiguity.

In agricultural technology, imbalance classification problems like 
dry beans pose a dual challenge, impacting the accuracy and effective
ness of systems deployed in precision farming, automated sorting, and 
food quality control [7–10]. This issue can undermine precision farm
ing’s key objectives, including crop health monitoring, disease outbreak 
detection, and dependable yield prediction. Consistent misidentification 
of rare but economically or nutritionally important bean varieties may 
result in inadequate agronomic interventions, reducing productivity and 
causing financial losses. Furthermore, inaccurate classification can 
distort resource optimization strategies—such as targeted irrigation, 
fertilization, or pesticide application—resulting in inefficient input 
usage and potential environmental impacts. In automated sorting sys
tems—such as those used for grading beans based on size, shape, and 
quality—imbalanced data can adversely affect the overall efficiency and 
profitability of the sorting process. This may lead to errors in sorting out 
defective or lower-quality beans. Moreover, the importance of accurate 
classification cannot be overstated in food quality control, as it directly 
influences consumer safety and satisfaction. The challenge here is that 
imbalanced data may lead to the failure to detect less common but 
critical quality issues, such as slight defects or contamination, which are 
essential for meeting regulatory standards. This can result in compro
mised product quality, potentially leading to financial losses, consumer 
dissatisfaction, or health risks.

Despite continuous advancements in research over the past decades, 
learning from data with imbalanced class distributions remains a 
compelling and challenging study area. Earlier approaches to dry bean 
classification exhibit several limitations at both the data mining and 
machine learning stages [11,12]. For instance, undersampling methods 
such as NearMiss and Edited Nearest Neighbour (ENN) discard poten
tially informative samples from the majority class. This leads to a loss of 
data diversity and increased sensitivity to small changes. Conversely, 
oversampling methods like Random Over-Sampling (ROS) duplicate 
minority class instances, which can result in overfitting. This increases 
training time and computational costs and risks the model memorizing 
minority instances rather than learning generalizable patterns. Conse
quently, the lack of additional variance reduces its ability to generalize 
to unseen data. Other widely used oversampling techniques include the 
Synthetic Minority Over-sampling Technique (SMOTE) and its variants, 
such as Borderline-SMOTE, ADASYN, and Safe-Level-SMOTE. However, 

these methods often generate duplicate samples, ignore underlying data 
distributions, introduce potentially inaccurate instances, perform poorly 
with high-dimensional data, and are highly sensitive to noise.

Additionally, they may distort the natural distribution of geometric 
features and increase model complexity without improving generaliza
tion. At the data mining stage, few studies have investigated correlations 
among geometric features, and many overlook the elimination of highly 
correlated attributes (e.g., perimeter, convex area, major axis length, 
and minor axis length). This oversight can lead to classification confu
sion and reduced accuracy by redundantly capturing similar bean shape 
or size aspects. Finally, existing approaches lack automated hyper- 
parameter tuning and fail to provide insights into feature importance 
or identify which geometric features significantly influence the model’s 
predictions.

Specific challenges still need to be addressed for real-life applications 
of imbalanced classification problems, such as data mining, appropriate 
feature extraction or selection, and reliable classifier performance. 
Considering these challenges, this work contributes to imbalanced 
multi-class classification in agricultural datasets. The key topics covered 
are summarized as follows: 

1. Imbalanced learning aims to design intelligent systems capable of 
robustly tackling data distribution bias, enabling learning algorithms 
to handle imbalanced data more efficiently.

2. It introduces a hybrid SMOTE-ENN resampling strategy to mitigate 
class imbalance, particularly enhancing minority class representa
tion effectively.

3. It integrates Bayesian Optimization for automated and efficient 
hyper-parameter tuning, reducing the need for manual intervention 
while improving model performance.

4. The proposed framework is rigorously evaluated on the real-world 
multi-class dry bean dataset, demonstrating its practical applica
bility and robustness.

5. A combined approach of feature selection and Principal Component 
Analysis (PCA) is employed to address feature redundancy and 
improve computational efficiency.

6. Finally, SHAP (SHapley Additive exPlanations) analysis ensures 
model interpretability, offering insights into feature contributions 
and supporting transparent decision-making.

In this work, Fig. 1 illustrates a complete machine-learning pipeline 
for classifying dry bean varieties. The process begins with inputting raw 
dry bean data and then extracting geometric features, which undergo 
pre-processing to ensure data quality and consistency. A resampling 
technique is applied before splitting the data into training and testing 
sets to address class imbalance. A learning model is trained and opti
mized through Bayesian optimization to fine-tune its hyper-parameters. 
The model generates predictions for dry bean classes, and its perfor
mance is evaluated using a colour-coded confusion matrix that high
lights classification accuracy across the different bean types.

The article is organized as follows: Section 2 presents an extensive 
literature review. Section 3 describes the necessary materials and 
methods. Cutting-edge ML techniques with parameter optimization are 
discussed in Section 4. Section 5 presents experimental results, 
graphical discussions, and comparative studies. The article concludes 
with Section 6.

2. Literature reviews and motivations

This section overviews exploratory data analysis-based multiclass 
classification learning models using various data imbalance techniques. 
Most of the conventional machine learning models are designed to 
perform on balanced data with roughly equal sample sizes between 
different classes. From the perspective of applications, various types of 
features such as colour, shape, texture, diagnostic, physical, meteoro
logical and morphological features are utilized when training machine 
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learning models.
Firstly, Koklu et al. [7] introduced an automated computer vision 

system for dry bean classification into genetic varieties using geometric 
and shape features. Debjit et al. [13] designed a healthcare monitoring 
system to detect COVID-19 using Harris Hawks’s optimization and 
diagnostic features. Islam et al. [14] proposed a predictive model for 
forecasting the chances of cesarean or C-section (CS) delivery using 
Henry gas solubility optimization. Numerous factors contribute to the 
risk of heart disease, highlighting the urgent need for accurate and 
efficient diagnostic methods. In response, Subathra and Sumathy [15]
introduced a novel framework using Bolstered-up Beetle Swarm opti
mization based feature selection to enhance heart disease detection 
performance. Alam et al. [16] explored credit card default prediction by 
using k-means SMOTE oversampling to enable proactive risk mitigation, 
emphasizing the importance of accurate forecasting in financial 
decision-making. Almost all of their frameworks [7,13–16] used tradi
tional ML models such as Logistic Regression (LR), Extreme Gradient 
Boosting (XGB), Random Forest (RF), Dense Stacking Ensemble (DSE), 
Weighted Ensemble Learning (WEL) and Gradient Boosted Decision Tree 
(CAT), etc. based on raw features. The model performances fluctuate 
between 88.3 % and 96.98 % to their corresponding experimental 
imbalanced datasets. However, the trade-off between accuracy and ef
ficiency has become the key challenge in realistic situations like medical 
sciences due to having more chances of fault predicting.

In addition, lack of interpretability on unknown cases, limited data 
access to learn, expensive computations, etc., are the drawbacks of 
traditional ML algorithms. Deep learning is an advanced subset of ma
chine learning for these tasks to overcome these obstacles and draw
backs. In, [8] Taspinar et al. proposed pre-trained CNN-based transfer 

learning approaches, namely InceptionV3, VGG16, and VGG19 struc
tures, for feature extraction and classification operations. In later 
research, the same authors [9] developed an ELM-based salp swarm 
optimisation algorithm (SSA) using image features via GoogLeNet 
transfer learning. The success rates of InceptionV3 DL and SSA-based 
ELM models were 84.48 % and 83.71 % on the haricot bean dataset 
consisting of 33,064 images of 14 genetic varieties. Fahim et al. [17]
developed a highly accurate classification model for distinguishing ge
netic variations among dry bean varieties. The custom CNN model 
achieved an impressive accuracy of 99.85 % with high computational 
cost. The Xception and MobileNet models showed slightly lower accu
racy at 82 %. These DL models cannot classify the complex patterns in 
the imbalanced data due to the lack of hypermeter optimization, and 
they are becoming more complicated. However, the decision boundaries 
defined by the learning algorithms exhibit bias toward the majority class 
due to having imbalanced data within different classes. The problem of 
imbalanced data classification presents numerous challenges that have 
been extensively studied in [18–20] like this style [12–16]. Several 
sampling algorithms can be applied in different contexts to address these 
issues, depending on the dataset’s characteristics and learning objec
tives. Khan et al. [10] focused on outlier removals and distinguished 
classification performance between balanced and imbalanced datasets 
using dry beans. With an accuracy rate of 95.40 %, the XGB model 
outperformed the other methods with the help of the Adaptive Synthetic 
(ADASYN) oversampling algorithm.

Macuácua et al. [21] followed data mining and augmentation tech
niques to improve the classification outcomes. The overall accuracies 
were 92.4 % without any feature pre-processing, 92.8 % with 
hyper-parameter optimization, and 95.9 % using original data, 

Fig. 1. The graphical abstract of the proposed methodology.
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optimized hyper-parameters, and Synthetic Minority Oversampling 
Technique (SMOTE) balancing, respectively. There was a significant 
increase of around 2.6 % in the KNN model. Feizi et al. [22] produced a 
data dictionary that prioritizes samples based on their importance 
within each manifold, incorporating weighted manifold scores and 
k-nearest neighbours. It identifies the significance of synthetic data 
generation using a linear combination of multiple manifolds, leveraging 
the data’s inherent substructures. Djafri [23] introduced PRO-SMOTE, 
an extension of SMOTE that reduces majority classes and optimally in
creases the minority class based on conditional probabilities. 
PRO-SMOTEBoost improved performance by 10–40 % but may risk 
reducing dataset quality by incorrectly removing or failing to identify 
the right samples.

A framework for multi-class imbalanced big data on Spark is pro
posed by Sleeman and Krawczyk [24], focusing on balancing classes by 
analysing instance-level difficulties. Though effective, the model’s reli
ance on Spark infrastructure and specific resampling strategies may 
limit its flexibility and adaptability in non-Spark environments. Shirvan 
et al. [25] designed deep generative models to address multiclass 
imbalanced data problems by using Generative Adversarial Networks 
(GANs) and Variational Autoencoders (VAEs). Each of the models dis
cussed has unique strengths and limitations in terms of scalability, 
training complexity, and susceptibility to bias. These factors should be 
evaluated based on the nature of the data and the specific application. 
For instance, GANs often struggle to capture the full diversity of the data 
due to issues like mode collapse, which leads to reduced variation in 
generated outputs. Borowska and Stepaniuk [26] developed a 
rough-granular approach (RGA) for selective oversampling and neigh
bourhood editing. This method effectively handled imbalanced data by 
focusing on specific regions of the feature space, reducing misclassifi
cation rates. Ng et al. [27] introduced a cost-sensitive localized gener
alization error model (c-LGEM) to prioritize minority class accuracy. 
This approach effectively balanced error across classes and demon
strated superior performance on multiple datasets. Zheng et al. [28]
introduced a genetic algorithm to optimize sampling ratios, enhancing 
classification stability. However, the approach’s reliance on algorithmic 
fine-tuning may limit its effectiveness on datasets with highly dynamic 
or evolving imbalances. Doan et al. [29] proposed a cluster-based data 
splitting technique (WICS) combined with SMOTE-NC for impact dam
age classification in imbalanced datasets. Their results highlighted im
provements in classification performance, achieving stability and 
precision in small, imbalanced datasets. An equalization ensemble 
method [30] uses an equalization under-sampling scheme and weighted 
integration to improve classification accuracy in large, imbalanced 
datasets. Despite its strengths, the model’s dependency on 
under-sampling can lead to a loss of valuable majority-class information, 
potentially affecting accuracy in cases of extreme imbalance. Dixit and 
Mani [31] addressed noise and borderline examples in imbalanced data 
using the SMOTE-TLNN-DEPSO method. Their hybrid approach opti
mized noisy samples rather than removing them, maintaining class 
balance and enhancing classification accuracy.

Recently, Pepsi et al. [32] addressed the challenges of non-stationary 
data with class imbalance using a Hybrid Firefly Optimization algorithm 
and an oversampling technique to enhance minority class representa
tion. However, the model’s performance may be limited in real-world 
scenarios with highly dynamic data streams requiring rapid adjust
ments. Alex et al. [33] proposed the GA-SMOTE-DCNN technique, which 
integrates a genetic algorithm for feature selection, SMOTE for over
sampling, and a deep convolutional neural network for classification. 
Their study demonstrated significant accuracy improvements, high
lighting the scalability of the approach across high-dimensional and 
imbalanced data classification problems. Using federated learning, Liu 
et al. [34] introduced a privacy-preserved hotel customer classification 
model. By incorporating an attention mechanism and a dynamic client 
selection strategy, their model effectively balanced global and local 
performance, enhancing accuracy and preserving privacy in imbalanced 

datasets. Kamro et al. [35] presented a metaheuristic-driven space 
partitioning and ensemble learning framework, which combines SMOTE 
with space partitioning to create balanced subspaces. Their method 
outperformed state-of-the-art approaches, offering a promising solution 
for minimizing alterations to the original data distribution. Other 
methods do not rely solely on synthetic sampling techniques. Instead, 
they explore alternative strategies for selecting data mining stages or 
classification algorithms to suit the characteristics and requirements of 
imbalanced datasets.

Despite these challenges, addressing class imbalance is crucial for 
advancing agricultural technology and promoting more sustainable & 
efficient agricultural practices. The aforementioned techniques have 
shown significant potential in tackling imbalanced classification prob
lems. The novelty of this work lies in incorporating a hybrid resampling 
method, feature selection, cost-sensitive learning models, and auto
mated hyper-parameter tuning to enhance classification performance on 
minority classes without compromising overall accuracy. More specif
ically, the hybrid resembling technique integrates SMOTE and Edited 
Nearest Neighbour (ENN) to reduce the trend of bias towards the ma
jority class and increase model diversity. Feature correlation analysis 
and selection are performed to strategically reduce inter-class ambigu
ities and enhance the model’s predictive power, interpretability, 
generalization, and computational efficiency. Furthermore, cost- 
sensitive learning models with automated hyper-parameter tuning can 
be effective alternatives to traditional machine learning and deep 
learning techniques for high-dimensional, large-scale classification 
problems, data mining, and related tasks.

3. Materials and methods

This section provides an overview of the proposed machine learning 
approach, which incorporates two schemes: geometric feature concat
enation and robust classifier selection. Outliers may affect each bean’s 
dimensional and shape features on different scales. These unnecessary 
outliers will be removed to prevent deviation in predictions. At the same 
time, the remaining features will be standardized into uniform numeric 
values within a fixed range, ensuring consistency and conformity. In this 
work, SMOTE generates a set of synthetic instances without considering 
the proximity of the majority class, which may lead to overlapping or 
ambiguous class boundaries. Then, the ENN technique is applied to 
remove instances that differ from most of their k-nearest neighbours, 
aiming to improve generalization. The experimental dataset was split 
arbitrarily into training and testing sets to train the ML models. The ML 
classifiers’ influential hyper-parameters are selected, and their optimal 
values are explored using the Bayesian optimization technique and 
statistical evaluations. Fig. 2 illustrates the proposed framework using 
exploratory data analysis.

3.1. Dataset

For multiclass seed classification, Koklu et al. [7] collected a dataset 
of dried beans under varying imaging conditions from various cultiva
tion sites in Turkey. The collection includes 13,611 images of 7 varieties 
of dry beans. The geometric features consist of 12-dimensional and 4 
shape-related features for each bean, which were measured after seed 
segmentation using Otsu’s global thresholding method. This study em
ploys geometric features due to their strong ability to capture the 
structural and morphological characteristics of the investigated objects. 
These features are often highly discriminative, especially when dealing 
with small variations in appearance between different types of object 
varieties. As a result, this makes them particularly useful for classifica
tion tasks where other features might not capture the subtle differences. 
Compared to purely texture- or colour-based descriptors, geometric 
features exhibit a high degree of robustness against lighting, back
ground, and imaging conditions variations. They are often invariant to 
transformations like rotation, scaling, and translation, enhancing the 
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model’s generalizability across different imaging setups. Since the ge
ometry of an object is closely tied to its biological or physical properties, 
incorporating these features allows for a deeper understanding of un
derlying patterns and differences between object varieties. Therefore, 
including geometric features was essential for improving both the reli
ability and the interpretability of the model outcomes in this research.

Weight variances are owing to the weight variations in seed varieties 
since the instances were obtained from the identical weight of each 
variety. The number of observations (pieces) and weight in terms of 
average gram per seed for each variety are listed in Table 1. The genetic 
varieties of dry beans are defined as the target classes: Bombay, Seker, 
Barbunya, Dermason, Cali, Sira, and Horoz. Their raw dataset was 
collected from the UCI ML Repository Website, https://archive.ics.uci. 
edu/ML/datasets/Dry+Bean+Dataset.

The grains yielded a dataset of 16 characteristics, including 4 shapes 
and 12-dimension forms. The spatial features are 1) Area (A): Area 
counts the number of pixels within the bean region and its boundaries; 
2) Convex area (C): The area of a bean that belongs to the smallest 
convex polygon; 3) Perimeter (Pm): The length of a bean’s border is its 
perimeter; 4) Major axis length (L): The distance of a bean’s longest line 
measured horizontally between its ends; 5) Equivalent diameter (Ed): It 
defines the diameter of a circle with a similar area of bean seed, i.e., Ed =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(4A/π)

√
; 6) Minor axis length (l): The distance of a bean’s longest line 

that is measured vertically concerning the main axis; 7) Aspect ratio 
(Ar): The ratio of major axis length (L) to minor axis length (l), i.e. Ar =

L/l; 8) Eccentricity (Ec): Eccentricity refers to how round or flat a bean’s 
shape is; 9) Solidity (S): The ratio of the area (A) to the convex area (C), 
i.e., S = A/C. It is also defined as convexity. 10) Roundness (R):

R = 4πA/P2
m; 11) Extent (Ex): The ratio of the area (A) to the 

bounding box (Bb) i.e. Ex = A/Bb; 12) Compactness (Co): The ratio of 
equivalent diameter (Ed) to major axis length (L), i.e., Co = Ed/L; 13) 
ShapeFactor1: The ratio of major axis length (L) to the area (A), i.e., SF1 

= L/A; 14) ShapeFactor2: The ratio of minor axis length (l) to the area 
(A), i.e., SF2 = l/A; 15) ShapeFactor3: SF3 = 4A/πL2. 16) Shape
Factor4: SF4 = 4A/πlL. The statistical measures, such as minimum 
(Min.), maximum (Max.), mean, and standard deviation (Std. devia
tion), of the geometric features are obtained from all the dry bean in
stances. There exist many inconsistencies among the feature distribution 
that can reduce normality. For instance, Eccentricity to ShapeFactor4 
has minimum values of less than 1, and the values of ShapeFactor1 & 
ShapeFactor2 are negligible compared to others. On the other hand, the 
feature values of Area & Convex Area are too high. That is, they can 
cause bias and/or influence estimates. However, the geometric measures 
are randomly distributed due to being tiny, which makes the feature 
distribution more complicated. The statistical measures concerning 
geometric features are listed in Table 2.

3.2. Data pre-processing

The data pre-processing approach detects and eliminates the null 
values and outliers using a boxplot and the interquartile range (IQR) of 
the Python program. The first quartile Q1 & third quartile Q3 are 
determined by the midpoint method, and then the IQR is computed by 
the following: 

IQR = Q3 − Q1 (1) 

In the presence of outliers, standardisation can become skewed or 
biased, which leads to several issues like slow convergence, unstable 
gradients, difficulty setting hyper-parameters, deviation from the 
model’s prediction and numerical issues. The dry bean dataset contains 
outliers in most geometric features except ShapeFactor2, as shown in 
Fig. 3.

The vertical line displays the first quartile(Q1) and third 
quartile(Q3), arranged from bottom to top. In contrast, the blue hori
zontal line within IQR denotes the median. The bounds of the upper 
quartile (Q3) and lower quartile(Q1), are calculated with (Q3+1.5IQR) 
and (Q1− 1.5IQR). The vertical dots outside the upper and lower bounds 
are known as outliers, illustrated in Fig. 4.

Removing outliers helps standardisation rescale the given features 
with unit variance and zero means. The advantage of StandardScaler 
over normalisation is that it just scales and alters the distribution of each 
feature, not changing its form [36]. Consequently, each geometric 
measure xi,n of the input features is converted into standard score zi,n to 
make the ML process more efficient and effective with the help of: 

Fig. 2. The architectural framework of the proposed dry bean classification model.

Table 1 
The distribution of dry bean varieties.

No. Name of Varieties Piece Weight

1 Bombay 522 1.92
2 Seker 2027 0.49
3 Barbunya 1322 0.76
4 Dermason 3546 0.28
5 Cali 1630 0.61
6 Sira 2636 0.38
7 Horoz 1928 0.52

Total 13,611 4.96
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zi,n =
xi,n − μi

σi
(2) 

Where, σi and μi are the standard deviation and mean of data, 
respectively.

3.3. Feature selection strategy

The following key criteria and factors are considered in the feature 
selection stage to ensure a robust and generalizable model. The objective 
is to ensure that features are strongly correlated with the target variable 
but minimally correlated with each other. This can occur especially 
when dealing with subtle differences in appearance between various 
types of objects, such as dry beans. Firstly, correlation measurement 
among features is measured to identify which features are most infor
mative and relevant to the target variable. Highly correlated features 
can introduce redundancy, leading to multicollinearity and model 
complexity. Secondly, the predictive power of each feature is assessed, 
with weak or irrelevant features being excluded to prevent them from 
contributing noise to the model. Thirdly, a dimensionality reduction 
technique projects the data into lower-dimensional spaces, preserving 
variance while reducing overfitting.

Additionally, the consistency of features across training and testing 
sets is examined, ensuring that selected features generalize well to un
seen data. This work adopts correlation-based feature selection to pre
vent the model from overfitting or underfitting. The correlation among 
features of dry beans is visualized through a heatmap and correlation 
matrix in Fig. 5a, which shows that the “Perimeter, ConvexArea & 
EquivDiameter”; “Major Axis Length & Minor Axis Length” and “Ec
centricity & AspectRation” features with high correlation are more lin
early dependent. These convey almost similar information regarding the 
target variable. Therefore, only one representative feature from each 
correlated group should be retained to avoid multicollinearity and 
reduce model complexity. The concept of correlation between more 
features is not addressed in the literature. It is more convenient to drop 
features that make no significant contribution to the model’s predictions 
but increase model complexity without adding value. Here, the selected 
correlated geometric features, such as “Perimeter, Area, ConvexArea, 
EquivDiameter”, “ShapeFactor3, Eccentricity, AspectRatio, Compact
ness”, and “MinorAxisLength, ShapeFactor1” are projected using 
dimensionality reduction techniques like PCA, as described in [21]. The 
resulting components, namely PCA1, PCA2, and PCA3, are used instead 
of the original features, as seen in Fig. 5b. Finally, these components are 
concatenated with the rest of the geometric features to construct a 
discriminative feature set. With careful consideration of these criteria 
and domain knowledge, the correlation-based feature selection process 
helps build a robust prediction model that is accurate and 
well-generalizable to unseen data. With careful consideration of these 

criteria and domain knowledge, the correlation-based feature selection 
process helps build a robust prediction model that is accurate and 
well-generalizable to unseen data.

3.4. Hybrid resampling technique

There are diverse resampling techniques to handle imbalanced 
datasets and improve the model’s interpretability, generalizability and 
predictive accuracy. Nonetheless, no resampling technique has an 
apparent advantage over another. This study proposes a SMOTE-ENN- 
based hybrid resembling technique to minimise bias towards the ma
jority class of dry beans [37]. The working procedure of the SMOTE-ENN 
technique is explained mathematically and graphically below.

SMOTE algorithm generates synthetic instances by evaluating 
neighbour instances using linear interpolation for the minority class. For 
every minority instance xi, SMOTE firstly selects its k-nearest neigh
bours kxi from the minority χmin. Fig. 6 a depicts 3-NNs of xi adjoined by 
the blue lines with xi instance. Secondly, SMOTE chooses arbitrarily an 
instance x̂i of the kxi that also belongs to χ min to create a synthetic 
instance xnew. Thirdly, a random number δ is multiplied with the vector 
difference after a distance vector has been computed between xi and x̂i. 
The range of the δ value is from 0 to 1, i.e., δ ∈ [0,1]. Finally, the feature 
vector of xnew is generated by following the formula: 

xnew = xi +(x̂i − xi) × δ (3) 

Here, the chosen instance x̂i belongs to kxi : x̂i ∈ χmin. The feature 
vector is a synthetic instance, as shown in Fig. 6b, which lies between the 
segments connecting the line of xi and the arbitrarily chosen x̂i ∈ kxi 

based on Eq. 3, SMOTE replicates exact instances of the minority class, 
leading to more overgeneralisation. That can result in class overlapping 
because of disregarding neighbourhood heuristic rules. During resem
blance, the minority classes rarely produce some redundant instances 
that do not contribute to the learning of those classes.

To overcome the drawbacks of SMOTE, Edited Nearest Neighbours 
(ENN) is applied to avoid not only enigmatic instances but also class 
overlapping. It neglects the synthetic instances, which are different from 
the 2 instances within 3-NNs, as depicted in Fig. 7 a. The basic idea 
behind the ENN is that it identifies the neighbours of the targeted class 
instances using k-Nearest Neighbours (NNs). Then, the ENN approach 
eliminates the instances if any or most of its neighbours belong to a 
different one. The flowchart of the SMOTE-ENN algorithm is described 
sequentially in Fig. 7 b. It can also be said that SMOTE-ENN is a natural 
extension of SMOTE, whereas ENN functions as a data filter that 
removes noisy and ambiguous instances.

Table 2 
Geometric feature description of dry bean varieties in pixels.

Serial No. Geometric Features Min. Max. Mean Std. deviation

1 Area 20420.00 254616.00 53048.28 29324.09
2 Convex Area 20684.00 263261.00 53768.20 29774.91
3 Perimeter 524.74 1985.37 855.28 214.28
4 Major Axis Length 183.60 738.86 320.14 85.69
5 Equiv Diameter 161.24 569.37 253.06 59.17
6 Minor Axis Length 122.51 460.19 202.27 44.97
7 Aspect Ratio 1.025 2.430 1.583 0.247
8 Eccentricity 0.219 0.912 0.751 0.0927
9 Solidity 0.919 0.995 0.987 0.005
10 Roundness 0.489 0.991 0.873 0.059
11 Extent 0.555 0.866 0.749 0.049
12 Compactness 0.641 0.987 0.799 0.062
13 ShapeFactor1 0.003 0.011 0.007 0.001
14 ShapeFactor2 0.001 0.004 0.002 0.001
15 ShapeFactor3 0.410 0.975 0.644 0.099
16 ShapeFactor4 0.948 0.999 0.995 0.004
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4. Machine learning technique

The Light Gradient Boosting Machine (LBM) is one of the most 
advanced tree-based ensemble learning tools for boosting predictions 
with incredible speed, interpretability and scalability. In 2016, Micro
soft developed a model to handle large-scale datasets with numerous 
features and a wide range of subjects [38]. Its efficiency and flexibility 
come from employing discrete feature histograms to accelerate training 
speed and leaf-wise decision trees to reduce memory usage. It integrates 
Gradient-based One Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB) to address the drawback of the pre-sorted algorithm 
during the training of the Gradient Boosting Decision Tree (GBDT). The 

decision trees support learning the machine from the given space xspace 
to the gradient space y in GBDT. In GOSS, the roles of data instances vary 
on their gradients to calculate information gain; for example, the higher 
gradient instances get the priority to share more information gain. Then, 
GOSS removes the small gradient instances randomly, applying the 
under-sampling approach and considers the high gradient instances 
based on a pre-defined threshold to preserve the accuracy of information 
gained in computation.

For given a supervised training set X = {x1,x2,x3,⋯,xn} with xi 
vector in space, the negative gradients will be Y = {y1, y2, y3,⋯, yN}, 
which derive from the loss function in every iteration of gradient 
boosting corresponding to the model’s outcome. Every node known as 

Fig. 3. The outlier’s visualisation of dry beans using boxplot.
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the greatest information gain is split with the help of a decision tree of 
GOSS that is estimated by the variance g. If l and r are the left and right 
nodes of the splitting feature j at point d, then the variance gain will be 
estimated over the subset p ∪ q as follows:  

Herein, p denotes the subset of top a × 100% instances with greater 

gradient, i.e., pl = {xi ∈ p : xif ≤ h}; pr = {xi ∈ p : xif ≤ h}. Similarly, 
q is an arbitrary subset of b × |pc| from the rest of (1 − a) × 100% in
stances of pc with smaller gradients, i.e., ql = {xi ∈ q : xif ≤ h}; qr =

{xi ∈ q : xif ≤ h}. Additionally, the total of q is normalised over the 

smaller gradients by the constant (1 − a)/b. To find the split point, the 
computed gain ĝ f (h) over the subset of a smaller instance, the subset is 
utilised rather than the accurate gf (h) across all the instances. Finally, 

Fig. 4. The boxplot of geometric features after removing outliers.
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the EFB technique merges the exclusive features into discrete bins. These 
bins employ building feature histograms that make the LBM model 
faster.

The LBM model defines logistic regression as the loss function 
L
(
y, yi

)
in [38]. During the training of the detector, the loss function 

works as an optimisation-based statistical model calibration because it 
chastises the inconsistency between true and predicted odds. It also 
compares the model-predicted outcomes with the target classes to 
quantify the relative uncertainty.

The Log loss function is formulated as follows: 

L(y, yi) =
1
N
∑N

i=1
[yilog(ŷ)+ (1 − yi)log(1 − ŷ) ] (5) 

Where yi and ŷ represent the true class of the j-th instance and predicted 
probability.

4.1. Bayesian hyper-parameter Optimization

Most machine learning algorithms consist of several parameters, and 
even the classifier is the function of hyper-parameters. So, exploring the 
optimal combination of those parameters is more convenient. In this 
study, the concept of the Bayesian algorithm is chosen for hyper- 
parameter optimization, which is superior to manual, grid, random, 
and hunger game search techniques [39]. It keeps the records of prior 
evaluation metrics. Then, it utilizes them to build a probabilistic 

Fig. 5. (a) The correlation among the geometric features; (b) The selected features of dry beans after applying PCA.

Fig. 6. (a) 3-NNs selection randomly for xi; (b) The way of synthetic instance xnew generation.
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Gaussian mode P(J) by dint of the objective function J(:). The 
weighted f1-score serves as the objective function J(:), evaluating the 
optimizer’s performance after training the model with a specific 
hyper-parameter setting at each iteration. The optimizer selects the next 
set of hyperparameters by maximizing the weighted f1-score. The 
Bayesian optimization algorithm is given below. 

Algorithm. Bayesian Hyper-parameter Optimization

In hyper-parameter tuning, a single implementation is insufficient to 
account for model variability and adequately assess the selected pa
rameters’ reliability and stability. To address this concern, K-fold cross- 
validation averages performance across multiple train-test splits, 
providing a more reliable and stable estimate for each hyper-parameter 
setting. It ensures that the hyperparameters perform well across the 
entire dataset rather than being tailored to a specific partition. Addi
tionally, this process helps stabilize performance estimates, making 
Bayesian optimization viable even when applied to unseen data that 
were not used during model training. The enlisted hyper-parameters in 
Table 3 are optimized with 12-fold cross-validation to determine its 
generalization ability and reduce the model’s instability. The models 
consist of several hyperparameters, and the following hyperparameters 
are considered for optimization, which significantly influence the clas
sification performances. Also, the default values are considered for the 
rest of the parameters.

4.2. Performance evaluation

Several evaluation metrics measure the efficiency, scalability and 
predictive accuracy of a classification model. The classification accuracy 
only computes the ratio of accurately predicted instances to all in
stances, which is insufficient to understand how robust a model is for 
multi-class classification problems. Among these metrics, average pre
cision, recall, F1-score & accuracy are considered to measure the per

formance of the given multi-class problem [40]. These metrics are 
originated from a confusion matrix and mathematically defined as 
follows: 

Average Precision =
1
n
∑n

i=1

TPi

TPi + FPi
(6) 

Average Recall =
1
n
∑n

i=1

TPi

TPi + FNi
(7) 

F1 − score =
2 × Precision × Recall

Precision + Recall
(8) 

Accuracy =
1
n
∑n

i=1

TNi

TPi + TNi + FPi + FNi
(9) 

where n is the total number of classes; true positive (TP) computes the 
number of beans that were positive and predicted as positive; true 
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negative (TN) computes the number of beans that are negative and 
predicted as negative; false positive (FP) computes the number of beans 
that were negative and predicted as positive and false negative (FN) 
computes the number of beans that were positive but determined as 
negative for i class respectively.

Furthermore, K-fold cross-validation is adopted to measure the 
fitness of prediction [7], which enhances the ability to generalize un
known seed varieties by conducting training and testing on a specific 
number of identical size sets several times.

4.3. Feature importance using SHAP analysis

The concept of SHAP analysis has been derived from game theory to 
illustrate the relative impact of each feature on the outcome of a target 
variable concerning the other features in a model [13]. The SHAP value 
has direction and magnitude, although the absolute value form of SHAP 
significance is used for model training. The linear function £(ź ) is 
formulated with the help of the additive attribute method. 

f(ź ) = μ0 +
∑N

i=1
μi źi (10) 

Where the total number of given features is denoted by N and ź ∈

{0,1}M is a coalition vector of the simplified features. The źi variables 
select the feature that is observed (źi = 1) or unknown (źi = 0). The 
feature attribution values (μi ∈ R) are computed from the below equa
tion. 

μi =
∑

Fs⊆M/{i}

|Fs|!(n − |Fs| − 1 )!

n!
[£x(Fs ∪ {i} − £x(Fx) ) ] (11) 

Where Fs is the subset of features, M is the total input features.

5. Results and discussion

In this section, the dry beans dataset was split arbitrarily into 
training (80 %) and testing (20 %) sets to train the ML models. The 
experimental simulations are conducted on an Intel Core i5 laptop with 

4 GB RAM and Python 3.7. Furthermore, the classifier’s diagnostic 
ability is visualized and discussed using the Receiver Operating Char
acteristic curve (ROC) with Area under Curve (AUC), which plots the 
True Positive Rate (TPR) versus the False Positive Rate (FPR) for varying 
decision thresholds.

5.1. Optimal value exploration

A series of independent optimization trials were conducted using a 
Bayesian algorithm across different hyperparameter ranges to avoid 
convergence to local optima. Since different runs of the optimization 
might give different results depending on where the process starts or the 
randomness involved. The resulting accuracy and optimal values of 
hyperparameters obtained across these trials are explored with 12-fold 
cross-validation to support this process with the help of 30 iterations. 
Then, this study investigated how stable or consistent the outcomes were 
across different runs. Despite huge search ranges (e.g., learning rate, 
reg_lambda learning rate and subsample from [0.1, 10000], [0.001, 
1500] and [0.001, 1.0]; max depth up to 5000 or n_estimators & 
num_leaves up to 10000), the optimization still consistently finds 
reasonable, non-extreme values.

If the optimization process were trapped in a local optimum, it would 
be expected that the resulting hyperparameter values would cluster 
irregularly or converge towards the boundaries of the defined search 
space (e.g., reaching maximum or minimum limits). However, the re
sults presented do not exhibit such behaviour, indicating that the search 
effectively explored the space and avoided local optima.

Further, grid search (GSO), random search (RSO), Hunger game 
search (HGSO) and Bayesian optimization (BO) algorithms are adopted 
to evaluate the stability and robustness of these key hyperparameters 
and their optimal values. The optimization algorithm performance is 
listed in Table 4 using the pre-defined hyperparameters with optimal 
values of the LBM model. For the other techniques, such as GSO, RSO, 
and HGSO, the optimal hyperparameter values were estimated using a 
setup similar to that of BO, as shown in Table 5. The executing time is 
also computed in minutes (Mins.) to implement the program with 
computational cost. Although pre-defined parameters like criterion 
(gini), max features (log2) and metric (Minkowski) are run separately to 

Fig. 7. (a) Neighbourhood cleaning rule based on ENN; (b) The flowchart of hybrid SMOTE-ENN resembling technique.
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reduce the computational cost, the executing time is high. The consis
tency across all metrics reflects BO’s robustness and stability, even in 
high-dimensional or complex feature spaces. Also, the highest cross- 
validation score suggests it generalizes unseen data better than others.

These optimal values consistently converged and remained stable 
across the intervals. It shows that the Bayesian optimization process was 
not trapped in a poor local optimum, even in more complex spaces, as 
evidenced by the results from Table 5. The BO technique outperformed 
other tuning strategies, such as Grid Search (99.53 %), Hunger Game 
Search (99.48 %), and Random Search (99.46 %). The superior perfor
mance of the BO technique, both in trials and comparative results, val
idates its ability to efficiently explore the hyperparameters and avoid 
local optima, leading to better generalization and higher predictive 
accuracy.

5.2. Model’s sensitivity analysis

The SMOTE-ENN resampling technique exhibits high sensitivity to 
the choice of the k parameter, as it simultaneously governs the synthetic 
instance generation in SMOTE and the noise filtering strength in ENN, 
directly impacting model performance. A sensitivity analysis was con
ducted to investigate this effect by varying the nearest neighbours (k)

used in both techniques. The corresponding table evaluates how 
different combinations of k values in SMOTE and ENN impact the 
model’s performance.

The 3D plot illustrates the variation in misclassification rates as a 
function of the number of neighbours (k) in both ENN and SMOTE 
methods across different model configurations on the dry bean dataset. 
It is clear from Fig. 8a that performance remains consistently high 
(above 0.99) across almost all combinations. This suggests that the 
model is not overly sensitive to specific k values and performs reliably 
within a reasonable range (k = 3to7). The overall performance tends to 
remain high when both SMOTE and ENN are in the range of 4–7, though 
using very low values (e.g., k = 3) occasionally leads to minor drops in 
performance. The highest performance (0.9959) was achieved when k =

5 in SMOTE and k = 3 in ENN. This suggests that generating synthetic 
instances based on 5 nearest neighbours while filtering noise using 3 
neighbours provides consistency between sample diversity and noise 
reduction. These findings indicate that the choice of k significantly in
fluences model performance and should be carefully tuned according to 
the specific characteristics of the dataset. In the case of dry bean clas
sification, the LBM model achieved the best performance, attaining a 
misclassification rate of only 0.4 % with optimally tuned hyper
parameter settings.

Table 3 
Hyperparameter optimization including range and optimal values.

Classifiers (Clf) No.of Parameters z ∈ Z Hyperparameters Range Optimal Value

RF 4

n estimators [100,400] 283
max features ​ log2
max depth [1,20] 19
criterion ​ gini

DT 6

max depth [1,25] 22
splitter ​ best
criterion ​ gini
min samples leaf [1,15] 1
min samples split [2,20] 2
random state [1,50] 49

kNN 2
n neighbours [3,10] 3
metric ​ minkowski

SVM 3
kernel ​ rbf
gamma [1,1000] 1
C [0.001,21] 14.084612161396330

MLP 6

max iter [100,500] 259
alpha [0.0001,0.11] 0.0217698117826773
activation ​ tanh
solver ​ lbfgs
max fun [1000,25000] 6432
random state [1,50] 42

CAT 5

depth [1,16] 6
learning rate [0.01,1] 0.1899999976158142
n estimators [100,800] 500
l2 leaf reg [1,9] 3
rsm [0.1,1] 0.9999878675433323

GBC 5

max depth [1,15] 12
learning rate [0.01,1] 0.1072375031768350
n estimators [100,400] 120
max features ​ log2
subsample [0.1,1] 0.9082556675433323

XGB 5

max depth [1,15] 14
learning rate [0.1,1] 0.1170370031768306
n estimators [1,1000] 117
subsample [0,1] 0.5624877067927799
reg lambda [0,1] 0.9082556675433323

LR 4

max iter [10, 500] 273
C [1, 500] 306.74327276709280
l1 ratio [0.01,1] 0.9019875584709440
tol [0.0001,1] 0.3877247381193835

LBM 7

boosting type ​ gbdt
max depth [1,20] 5
learning rate [0.1, 1] 0.5141185668939924
reg_lambda [0.1, 1] 0.3892109603412833
subsample [0.1, 1] 0.5019007442352383
n_estimators [100, 400] 110
num_leaves [20, 100] 50
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5.3. Influence of K-fold Cross-validation in Bayesian optimization

In Bayesian hyperparameter optimization, K-fold cross-validation 
reduces variance. It provides a more accurate estimate of model per
formance, helping the optimization process find the best hyper
parameters more effectively. Fig. 8b presents the performance metrics of 
the SMOTE-ENN resampling strategy, evaluated in terms of precision, 
recall, F1-score, accuracy (%), and cross-validation score across different 
K-fold cross-validation settings (K ranging from 5 to 14). The model 
consistently demonstrates exceptionally high performance, with preci
sion, recall, and F1-scores ranging from approximately 0.994 to 0.996 
and accuracy varying between 99.41 % and 99.59 %. These results 
indicate that the model is highly accurate and reliable with very low 
misclassification rates. Higher K values (K = 13,12,11,8,7) resulted in 
slightly improved accuracy and cross-validation scores compared to 
lower K values. However, excellent performance was maintained across 
all settings. This trend reveals that the higher K-fold values can give a 
better generalization at the cost of longer computation time. Notably, all 
cross-validation scores exceeded 0.985, which confirms excellent 
generalization ability — the model performs consistently well on unseen 
data. The highest performance was achieved with K = 12, yielding an 
accuracy of 99.59 % and a cross-validation score of 0.9886, suggesting 
that K = 12 folds might be optimal among the tested values. Addition
ally, the precision, recall, and F1-score are almost identical across all 
folds, showing that the model is well-balanced (i.e., neither over- 
predicts positives nor negatives).

5.4. Resampling performance

In real life, most classification problems are not uniformly distrib
uted into the class variants, i.e., they are imbalanced. To address this 
issue, the discriminatory power of Synthetic Minority Oversampling 
Technique-Edited Nearest Neighbours (SMOTE-ENN) is compared to the 
customized NearMiss, RUS, Random Over Sampler (ROS), Adaptive 
Synthetic (ADASYN) sampling approach, Synthetic Minority Over
sampling Technique (SMOTE), Synthetic Minority Oversampling 
Technique-Borderline (SMOTE-Borderline), Synthetic Minority Over
sampling Technique-Support Vector Machine (SMOTESVM), and Syn
thetic Minority Oversampling Technique-Tomek (SMOTETomek) with 
similar settings of LBM classifier.

It is clear from Table 6 that the oversampling techniques improve the 
success rate of minority classes compared to undersampling. The Near
Miss and RUS perform equally to “None” because they randomly elim
inate instances from their targeted classes. In contrast, the accuracy of 
the ADASYN and SMOTE methods will converse in similar scores. On 
average, the ROS outperforms SMOTE by 0.61 % and ADASYN by 
0.64 % in the F1-score with random replication of minority samples. 
However, the prior SMOTE method adds noisy and irrelevant instances 
during the oversampling of the minority class that overlaps overlapping 
classes and makes inaccurate predictions. It occurs not to focus on the 
relevant or quality synthetic instance and not consequently to officiate 
the underlying distribution of the minority class. The hybrid algorithms’ 
precision, recall and F1-score are significantly improved compared to 
the SMOTE algorithm.

The hybrid approaches show that SMOTE-Tomek, SMOTE- 

Borderline, and SMOTE-SVM perform equally well. At the same time, 
SMOTE-Borderline and SMOTESVM reduce performance by 0.02 %, and 
SMOTE-Tomek increases performance by 0.34 % compared to SMOTE- 
Borderline. The results converge toward a consistent accuracy level, as 
shown in Fig. 9 a; however, ENN significantly improves the general
ization performance of SMOTE with the highest classification accuracy 
of 99.59 %. Regarding the AUC, a few resembling approaches like 
“None, NearMiss, RUS, ADASYN and SMOTE” acquire low accuracy but 
show high AUC due to bias toward positive classes. It is evident from 
Table 6 that SMOTE-ENN improves performance by approximately 3 % 
with low computational cost, as the technique effectively avoids noise 
and ambiguous instances in the synthetic data by combining over
sampling with intelligent data cleaning. Additionally, this hybrid 
resampling technique reduces model complexity and enhances the 
model’s ability to generalize well to unseen data.

5.5. Classification performance

The model’s performance measures thoroughly against a set of 
cutting-edge classifiers, for instance, DT, LR, RF, gradient boosting 
(GBC), XGB, MLP, categorical gradient boosting (CAT), SVM, KNN, and 
LBM, as listed in Table 7. The F1-scores have overlapped in most clas
sifiers that allude to a balanced evaluation of the model’s performance, 
especially in scenarios with imbalanced data.

At first glance, the performance of the SVM and KNN classifiers may 
appear similar in Table 7. However, the SVM classifier performs 
significantly better than KNN in terms of ROC analysis, as shown in 
Fig. 9b. The LBM model outperforms all other classifiers with the highest 
accuracy of 99.59 %, along with the top F1-score (0.9957), indicating an 
excellent balance between precision and recall. It slightly edges out SVM 
and KNN, achieving 99.57 % accuracy. However, LBM maintains a 
marginally better F1-score, demonstrating more consistent performance 
in Table 7. Meanwhile, ensemble methods like XGB, GBC, and RF also 
perform strongly, with accuracies above 99.2 %, but not as good as 
LBM’s results. In contrast, the DT and LR models show considerably 
lower accuracies of 98.01 % and 98.32 %, respectively, indicating that 
they may not capture complex patterns in the data as effectively as 
boosting or deep learning-based models like MLP (99.50 %).

During the evaluation, the Horoz variety always shows the lowest 
classification performance for all models. It is misguided by the Sira 
variety because of overlapping in the feature space, i.e., flatness and 
roundness. Also, most of the classifiers are higher than 99.28 % in ac
curacy. However, DT and LR have the lowest accuracy, around 98 %, in 
all the metrics. The improved LBM model performs best due to its ability 
to mitigate overfitting and effectively handle class imbalance by 
assigning weights to minority and majority classes. Combined with a 
hybrid resampling technique, this approach further enhances the 
model’s robustness. Notably, tuning influential hyperparameters using 
Bayesian optimization improves the performance of LBM classifier by 
0.13 %, demonstrating its effectiveness. Furthermore, estimating a 
mean AUC for the ROC curve provides an additional layer of statistical 
validity. Together, these techniques contributed to a more accurate, 
efficient and interpretable solution for multi-class classification in 
imbalanced datasets.

Table 4 
The optimal values of the optimization techniques, including hyperparameters and their intervals.

Methods
List of hyperparameters with their ranges

boosting type max depth learning rate reg_lambda subsample n_estimators num_leaves

​ [‘gbdt’, ‘dart’] [1,20] [0.1, 1] [0.1, 1] [0.1, 1] [100, 400] [20, 100]
Bayesian optimization gbdt 5 0.5141185668939924 0.3892109603412833 0.5019007442352383 110 50
Hunger game search gbdt 18 0.17221455 0.59364584 0.20916457 159 59
Grid search gbdt 6 0.19 0.35 0.2 120 40
Random search gbdt 7 0.1 0.1 0.1 279 29
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5.6. Summary of seed classification

The classification of dry bean varieties is performed using an 
improved LBM classifier optimized via Bayesian methods and enhanced 
by the SMOTE-ENN resampling technique. Table 8 presents the confu
sion matrix for the classification of dry bean varieties, displaying both 
the raw classification counts and their corresponding percentage values. 
Correct classifications are located along the matrix diagonal, while off- 
diagonal elements represent misclassifications. The classifier demon
strates high overall accuracy, correctly identifying 4464 out of 4482 dry 
beans, yielding an accuracy of 99.59 % and an error rate of 0.41 %. 
Notably, the Bombay class achieved 100 % accuracy, indicating perfect 
model performance for that variety, likely due to its distinctive features 
representation in the training data. The Seker, Barbunya, Cali, Derma
son, Sira, and Horoz classes followed closely, with accuracy rates of 
99.70 %, 99.70 %, 99.55 %, 99.46 %, 98.74 % and 99.55 %, respec
tively. These high performances indicate that the model effectively 
distinguishes these classes, although minor misclassifications occur
red—for example, 8 Dermason beans were classified as one Seker, one 
Horoz, and six Sira beans. A few bean varieties—except for Bom
bay—were confused with other varieties due to inter-class similarities 
and overlapping morphological characteristics. Overall, the model 
demonstrates excellent reliability in dry bean classification, and its 

strong performance underscores its suitability for high-accuracy agri
cultural sorting and automated quality control tasks.

5.7. Performance of SMOTE-ENN technique

This study employs a learning curve to illustrate the proposed 
model’s performance in the training data perspective. The boldface 
curves refer to the mean score values, and the light-shaded region sur
rounding the curves denotes the range of its standard deviation. The red 
and blue curves for training and testing scores depict the model’s sta
tistical performance using 12-fold cross-validation.

Though the training score is consistently high along with the itera
tions irrespective of the training set’s size, a sign of proper fit is visu
alized in Fig. 10 a with the increased testing score. At a time, its 
performance has reached a fixed point that is not good enough to deal 
with realistic seeds. This implies that the model’s performance can be 
improved by tuning hyper-parameters, selecting features/engineering, 
or collecting more training seeds. The convergence of learning curves in 
Fig. 10 b at a satisfactory score indicates that the LBM model is neither 
overfitting nor underfitting. The training score is always high through 
the iterations and training seeds. On the contrary, the training seed size 
remains constant while the test score increases. Indeed, it rises until it 
hits a plateau, which indicates that it may no longer be convenient to 
add more seeds for the model’s training as the ability of generalization 
will no longer improve. The learning curves demonstrate that a robust, 
complex model is built to capture all the complexity in the seeds.

5.8. Feature importance using SHAP analysis

The importance of each feature is illustrated in the summary plot, 
which includes the distribution of each class. The priority of each feature 
is rearranged from top to bottom in descending order. Each feature’s 
colour distribution represents each class’s average absolute SHAP values 
to allow comparison by class. For example, “Perimeter” is the most 
important feature among the geometric features, and the contribution of 
SHAP value for the “Dermason” variety is high over the other seed va
rieties. Fig. 11 shows simultaneously that the importance of “Solidity”, 

Table 5 
Comparison of performance with optimization techniques.

Optimization Technique Avg. Precision Avg. Recall F1-score Accuracy (%) CV score (%) Time (Mins.)

GSO 0.9950 0.9950 0.9950 99.53 98.77 72.77
RSO 0.9943 0.9943 0.9943 99.46 98.77 33.49
BO 0.9957 0.9956 0.9957 99.59 98.86 22.49
HGSO 0.9945 0.9946 0.9946 99.48 98.83 32.39

Fig. 8. (a) The model’s sensitivity to the value of k in both SMOTE and ENN; (b) Illustration of K-Fold cross-validation for reliable model performance estimation.

Table 6 
Comparison performance of resampling algorithms.

Resample Algorithms Avg. Precision Avg. Recall F1-score Accuracy (%)

None 0.9362 0.9339 0.9350 92.17
NearMiss 0.9304 0.9290 0.9289 92.88
RUS 0.9268 0.9261 0.9258 92.61
ROS 0.9641 0.9641 0.9640 96.41
ADASYN 0.9577 0.9578 0.9576 95.81
SMOTE 0.9581 0.9579 0.9579 95.79
SMOTE-Borderline 0.9617 0.9613 0.9612 96.13
SMOTE-SVM 0.9610 0.9611 0.9610 96.11
SMOTE-Tomek 0.9645 0.9643 0.9643 96.47
SMOTE-ENN 0.9957 0.9956 0.9957 99.59
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“PCA1”, and “PCA2” are the least important features to classify uniform 
seed classification, as the SHAP values of those features are significantly 
lower than others.

5.9. Comparative study

A detailed comparison of recent studies is provided in Table 9, which 
includes various resampling and classification techniques to address the 
challenge of data imbalance. The accuracy of our results should not be 
directly compared with those of other studies. In [41], Coronel et al. 
have taken into account 7 types of morphological shapes as discrimi
native features of the beans. The experimental dataset comprises 3820 
dry beans from 3 varieties, and the accuracy of SVM was 93.12 % on 764 
beans with overfitting. However, our approach substantially enhances 
classification performance, consistent with prior research on imbal
anced multi-class classification problems. For instance, studies without 
explicit resampling, such as those by Lopes et al. [42], Prasad et al. [43], 
and Souza et al. [43], reported accuracies of 93.18 % for MLP, 95.00 % 
for ANN, and 98.18 % for the neuro-fuzzy network, respectively. In 
contrast, Koeshardianto et al. [44], Mucuacua et al. [21], and Nayak 
et al. [45] slightly improved performance by applying SMOTE resam
pling with ensemble and kernel-based classifiers. Krishnan et al. [46]
used RUS with CAT and achieved 95.35 % accuracy, while Khan et al. 

Fig. 9. (a) Effects of resampling algorithms; (b) Performance of improved LGB classifier.

Table 7 
Classification performances with a set of cutting-edge classifiers.

Name of Classifiers Avg. Precision Avg. Recall F1-score Accuracy (%)

DT 0.9795 0.9794 0.9794 98.01
LR 0.9828 0.9830 0.9829 98.32
RF 0.9925 0.9924 0.9925 99.28
GBC 0.9936 0.9936 0.9936 99.39
XGB 0.9938 0.9939 0.9938 99.41
MLP 0.9949 0.9949 0.9949 99.50
CAT 0.9948 0.9948 0.9948 99.50
SVM 0.9957 0.9955 0.9956 99.57
KNN 0.9953 0.9957 0.9955 99.57
LBM 0.9957 0.9956 0.9957 99.59

Table 8 
Summary of seed classification using confusion matrix.

Predicted Class

Seker Barbunya Bombay Cali Horoz Sira Dermason Total

​ ​ 663 0 0 0 0 1 1 665
​ Seker (14.79 %) ​ ​ ​ ​ ​ ​ (99.70 %)
​ ​ ​ ​ ​ ​ ​ (0.02 %) (0.02 %) (0.30 %)
​ ​ 0 659 0 2 0 0 0 661
​ Barbunya ​ (14.70 %) ​ ​ ​ ​ ​ (99.70 %)
​ ​ ​ ​ ​ (0.04 %) ​ ​ ​ (0.30 %)
​ ​ 0 0 709 0 0 0 0 709
​ Bombay ​ ​ (15.82 %) ​ ​ ​ ​ (100 %)
​ ​ ​ ​ ​ ​ ​ ​ ​ (0 %)
True ​ 0 0 0 662 1 0 0 663
Class Cali ​ ​ ​ (14.77 %) ​ ​ ​ (99.85 %)
​ ​ ​ ​ ​ ​ (0.02 %) ​ ​ (0.15 %)
​ ​ 0 0 0 1 665 0 1 667
​ Horoz ​ ​ ​ ​ (14.84 %) ​ ​ (99.70 %)
​ ​ ​ ​ ​ (0.02 %) ​ ​ (0.02 %) (0.30 %)
​ ​ 0 1 0 0 1 550 1 553
​ Sira ​ ​ ​ ​ ​ (12.27 %) ​ (99.46 %)
​ ​ ​ (0.02 %) ​ ​ (0.02 %) ​ (0.02 %) (0.54 %)
​ ​ 1 0 0 0 1 6 556 564
​ Dermason ​ ​ ​ ​ ​ ​ (12.41 %) (98.58 %)
​ ​ (0.02 %) ​ ​ ​ (0.02 %) (0.13 %) ​ (1.42 %)
Total 664 660 709 665 668 557 559 4482
Accurate Rate (99.85 %) (99.85 %) (100 %) (99.55 %) (99.55 %) (98.74 %) (99.46 %) (99.59 %)
Error Rate (0.15 %) (0.15 %) (0 %) (0.45 %) (0.45 %) (0.26 %) (0.54 %) (0.41 %)
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[10] reported 95.40 % using ADASYN and XGB techniques.
Lee et al. [49] applied natural extensions of SMOTE resampling to 

address imbalanced data, utilizing BLSMOTE and k-means clustering 
algorithms. The classification accuracy of BLSMOTE + k-means + SVM 
on the dry bean dataset is 97.54 %, which is better than 96.98 % of 
k-means + SVM, 93.03 % of BLSMOTE +SVM and 93.75 % of only SVM. 
The SMOTE resampling variant introduced by Dejene et al. [47] ach
ieved 93.03 % accuracy with a soft voting classifier. However, it was not 
as effective as the approach by Lee et al. Although these methods [43,45, 
49] are effective, they lack the synergistic benefits of hybrid resampling 
and automated hyper-parameter tuning. More recent approaches, such 
as the deep-learning-based GA-SMOTE framework by Alex et al. [33], 
have achieved high accuracy but at the cost of greater computational 
complexity. Compared to these, our proposed SMOTE-ENN 
+ Bayesian-optimized LBM framework achieves a superior accuracy of 
99.59 % with fewer computational requirements and better general
ization. Moreover, the improved LBM model has the lowest likelihood of 
being biased in favour of the majority class and is less likely to be 
distracted by various noise implications when fusing geometric features. 
Furthermore, studies such as Pepsi et al. [32] illustrate the growing 
importance of hybrid optimization in classification, a trend that our 
work supports through empirical evidence and comparative analysis. 
The superior performance on the experimental dataset demonstrates 
that the proposed framework balances complexity, interpretability, and 
high accuracy, setting a new benchmark for robust multi-class classifi
cation in imbalanced datasets.

5.10. Advantages, disadvantages, and future studies

Research on dry beans has practical implications in agriculture, 
particularly in quality control, sorting, and breeding. Accurate classifi
cation can lead to better sorting of beans based on quality, size, and 
other characteristics, improving overall product quality. The proposed 
framework can classify beans genetically, which varieties are drought- 
tolerant and disease-resistant under certain climates. This allows 
farmers to plant the right variety of beans for the expected climate, 
increasing yield and reducing crop failure.

The improved LBM model was evaluated using a benchmark and one 
of the largest multi-class datasets, considering only geometrical features 
such as dimensional and shape features, which carry no information 
about the bean colour. Dry beans are sensitive to environmental factors 
like soil quality, weather, and irrigation, limiting the applicability of 
research findings across different regions and climates. The feature se
lection strategy performs better for this dataset to overcome the inter- 
seed ambiguities but may not work well for other datasets. The 

decision was taken to drop irrelevant features, which are highly corre
lated and echoed, to avoid the model’s overfitting. The model was 
established and optimized for dry bean classification. Its architecture is 
inherently flexible due to its reliance on geometric features. The 
addressed issues demonstrate the model’s adaptability, especially when 
dealing with small variations in appearance between bean varieties, 
where other features might fail to capture the subtle differences.

Besides the raw geometric features in this study, incorporating 
colour, texture, and 3D properties can accelerate dry bean classification 
by capturing visual and structural details beyond basic shape and size. 
Colour helps distinguish between visually similar beans that may have 
overlapping geometric characteristics but differ in pigmentation. 
Meanwhile, texture analysis captures surface patterns and irregularities 
not evident from shape alone. Additionally, the 3D property, like the 
suture axis, adds depth and volumetric information, enabling more ac
curate modelling of bean size, curvature, and surface structure. This can 
accelerate classification performance by capturing physical traits absent 
in 2D feature analysis. In industry, seeds move so quickly through the 
orifice of classification machines that 3D analysis becomes more difficult 
and time-consuming.

In addition to achieving satisfactory accuracy for real-life applica
tions, the hybridization of upcoming algorithms, along with ML and DL 
techniques, to automatically learn higher levels of abstraction from raw 
data may be employed to accelerate the model further. After all, geo
metric features are essential for reliable multi-class classification. In 
contrast, colour and texture features are often insufficient or inconsis
tent due to lighting, processing, and natural overlap variations. Further 
studies could explore the generalization of this approach to other agri
cultural datasets, such as dry beans, wheat, maize, and sunflower seeds. 
These studies assess its applicability and effectiveness across different 
crop types and environmental conditions.

6. Conclusions

This work uses data mining approaches to conduct an exploratory 
analysis of the dried beans. The outcomes of the experiment imply that 
applying data mining approaches such as feature selection, dataset 
balance, outlier detection, and robust machine learning algorithms can 
enhance the quality of seed classification. Applying the LBM model with 
hyper-parameter optimization and SMOTE-ENN adjustment yielded the 
highest accuracy of 99.59 %. The classification performances were 
92.94 % for the original imbalanced dataset, 92.36 % using outlier 
detection, 95.70 % using SMOTE except for feature selection, 95.79 % 
using feature selection & SMOTE, and 99.59 % using feature selection & 
SMOTE-ENN hybrid techniques. The overall accuracy increased 

Fig. 10. (a) The learning curve without SMOTE-ENN technique; (b) The learning curve with SMOTE-ENN technique.
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significantly by about 7 % when the data mining strategies were applied 
sequentially. The comparisons with earlier approaches guarantee that 
the proposed framework automatically weighs up the variations of 
features’ relevance with a view to quickly and robustly classifying dry 
bean varieties for evaluation. The improved LMB model proves the 
feasibility of automatically classifying dry beans into genetic variations 
of different planting areas in Turkey. Thus, our proposed method could 
be integrated into real-time seed sorting systems, benefiting small-scale 
farmers and food industries by ensuring faster and more accurate clas
sification. Additionally, these sorting systems help identify bean vari
eties that meet basic standards for planting and marketing, thereby 
promoting both producer and customer satisfaction.
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