
Optimising the power regeneration and chemical oxygen demand removal 
in microbial fuel cell systems using integrated soft computing methods and 
multiple-objective optimisation

Mohammad Reza Chalak Qazani a,b , Mostafa Ghasemi c,d,**, Houshyar Asadi e,*

a College of Science and Engineering, James Cook University, Townsville, QLD, 4814, Australia
b Faculty of Computing and Information Technology, Sohar University, Sohar, 311, Oman
c Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
d Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, 311, Oman
e Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, 33216, Australia

A R T I C L E  I N F O

Keywords:
Biological wastewater
Microbial fuel cell
Integrated soft computing
Deep learning

A B S T R A C T

Microbial fuel cells (MFCs) have recently emerged as a sustainable technology for simultaneously treating 
wastewater and generating electricity. However, optimising their operational parameters to enhance perfor
mance remains a complex challenge. This study proposes an integrated framework that combines advanced 
machine learning models—long short-term memory (LSTM) and gated recurrent unit (GRU)—with a multi- 
objective genetic algorithm (MOGA) to optimise chemical oxygen demand (COD) removal and power output. 
Experimental data were obtained by varying glucose concentrations (1–9 g/L), yeast extract concentrations (1–5 
g/L), and aeration rates (0–110 mL/min). Among the models evaluated, the LSTM model performed best in 
predicting COD removal. In contrast, the GRU model outperformed the others in power prediction. These sur
rogate models were incorporated into the MOGA to identify nine Pareto-optimal solutions. Experimental vali
dation confirmed the high accuracy of the proposed approach, with average errors of 5.47 % for COD and 3.29 % 
for power. This work offers a cost-effective and scalable optimisation strategy, significantly reducing the need for 
exhaustive experimental trials while improving the efficiency and applicability of MFCs in real-world scenarios.

Nomenclature

Symbols:
Bi-LSTM Bi-directional Long Short-Term Memory
CC Correlation Coefficient
CE Coulombic Efficiency
COD Chemical Oxygen Demand
DT Decision Tree
GRU Gated Recurrent Unit
ISC Integrated Soft Computing
LSTM Long Short-Term Memory
MFC Microbial Fuel Cell
MLP Multi-Layer Perceptron
MOO Multi-Objective Optimisation
MSE Mean Square Error
NRMSE Normalised Root Mean Square Error
ORR Oxygen Reduction Reaction
R2 R-square

(continued on next column)

(continued )

RMSE Root Mean Square Error
SEM Scanning Electron Microscopy
StD Standard Deviation
Acronyms:
b number of electrons transferred per mole of oxygen
fj

t
Forget gates regulate memory retention

F Faraday constant
ht Hidden state update at time t
ĥt Candidate state

ijt Input gates regulate memory retention
I Current
M Molecular weight of oxygen
nxi Normalised input data for the itℎ entry
R External Resistance
V Voltage
Van Volume of the anode chamber
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x Minimum values within the dataset
x Maximum values within the dataset
yi(n) Output of the previous neuron
zt Update gate
η Learning rate
νi(n) Local induced field

1. Introduction

Addressing the global challenges of providing clean water and 
ensuring a sustainable energy supply is paramount. Both water scarcity 
and climate change pose significant threats to life on Earth. The rapid 
global population increase and improvements in living standards have 
escalated the strain on existing water and energy resources [1–3]. 
Additionally, the pervasive influence of global capitalism has led to 
heightened resource consumption. It has been predicted that in less than 
5 decades, almost 30 % of the global population may have no access to 
clean water. Also, around 13 % of the global population won’t have 
access to electricity [4,5]. The environmentally friendly energy sources 
have been seen as a new urgent demand by governments to minimise 
environmental impact. Microbial fuel cells (MFCs) are a new technology 
that can reduce environmental pollution from carbon dioxide emissions 
and treat wastewater. MFCs produce electricity through the reaction of 
microorganisms using the wastewater substance, including carbon and 
nitrogen. They are an effective and sustainable energy source [6].

Furthermore, MFCs present an environmentally friendly option as 
they are renewable energy resources that produce no carbon emissions. 
Even in comparison to processes such as treatment plants, MFCs do not 
consume large amounts of energy. In MFCs, the chemical oxygen de
mand (COD) removal is also carried out by electroactive bacteria, which 
oxidise organic compounds, hydrogen ions, free electrons, and protons 
to the electrode, serving as the electron acceptor [7,8]. Several types of 
microorganisms are involved in the operation of MFCs, and these mi
croorganisms contribute to electricity generation through their 

participation in biochemical processes. The biofilm facilitates electron 
transfer via pili or conductive nanowires to the anode. Various factors 
affect the efficiency of MFCs, such as electrode material, separator, and 
catalyst. The most important factor is the medium that provides nutri
ents for microorganisms, which in turn determines the generation of 
bioelectricity and the effectiveness of wastewater treatment [9,10]. 
Research by Ji et al. [11] has demonstrated the capability of MFCs in 
removing per- and polyfluoroalkyl substances in integrated wetland 
systems. However, these substances harmed nitrogen removal and 
electricity production. More recently, Ullah [12] demonstrated that 
photosynthetic MFC using untreated domestic wastewater as a catholyte 
performs better in wastewater treatment and energy recovery than 
wetland-treated wastewater. Ballestas et al. [13] evaluated plant MFC 
using native plants and low-cost substrates for renewable energy gen
eration, demonstrating the potential for sustainable, cost-effective 
electricity production in remote areas.

Soft computing methodologies have recently been applied across 
various fields, including materials microstructure, renewable energy, 
and energy production [14–18]. Fang et al. [19] achieved the maximum 
coulombic efficiency and power density of an MFC using a hybrid model 
that combined uniform design, relevance vector machine, and genetic 
algorithm. Garg et al. [20] proposed a surrogate model, including 
multi-gene genetic programming, feedforward neural networks, and 
support vector regression, to predict the voltage based on temperature 
and ferrous sulphate concentrations. Chen et al. [21] proposed a hybrid 
model incorporating wavelet analysis, extreme learning machines, and 
genetic algorithms to predict proton exchange in MFCs of electric ve
hicles, utilising humidity, current, hydrogen pressure, and temperature 
as inputs. Kannan et al. [22] integrated Monte Carlo simulations with 
reduced regression models to quantify uncertainties in PEMFC operation 
across activation, ohmic, and concentration loss regions. It develops 
reduced regression models for accurate performance prediction, 
enhancing robust control strategy development and operational effi
ciency. Dwivedi et al. [23] reviewed current research on MFCs, 

Table 1 
Comparative analysis of key related works on MFC optimisation.

Authors/Year Methodology Input Parameters Output/Target Key Contribution

Fang et al. [19], 
2013

RVM and GA for optimisation COD level, operational 
conditions

Coulombic efficiency, 
power output

Integrated relevance vector machine and GA to optimise 
energy efficiency in MFCs.

Garg et al. [20], 
2014

Multi-gene GP, SVR, FFNN for 
surrogate modelling

Temperature, FeSO4, voltage Output voltage Built and benchmarked predictive surrogate models for fuel 
cell voltage with hybrid ML methods.

Chen et al. [21], 
2019

Hybrid model: Wavelet + ELM +
GA

Humidity, hydrogen 
pressure, load current

Output power Provided real-time PEMFC performance prediction under 
fluctuating conditions.

Kannan et al. 
[22], 2020

Monte Carlo simulation with 
reduced regression models

Catalyst type, current density PEMFC performance Enabled uncertainty quantification in fuel cell simulations to 
support robust system design.

Coşgun et al. 
[24], 2021

Decision Trees and Rule Mining 
for Algae Biofuel

Nutrient levels, pH, and 
media composition

Biomass, lipid yield Developed interpretable rules for algae cultivation to maximise 
renewable energy yield.

Dwivedi et al. 
[23], 2022

Comprehensive review of soft 
computing in MFCs

– – Identified trends and future directions in AI applications for 
MFC control and prediction.

Shahbeik et al. 
[26], 2022

Random Forest for sludge 
pyrolysis prediction

Sludge type, temperature, 
and retention time

Biochar yield, syngas 
composition

Developed a robust predictive model for optimising waste-to- 
energy recovery from sludge.

Ghasemi et al. 
[27], 2023

MLP and SVR models for MFC 
prediction

Glucose, resistance, 
temperature

Power density Demonstrated that SVR provides superior prediction accuracy 
over MLP for MFC performance modelling.

Nguyen et al. 
[28], 2023

Comparative analysis using XAI 
and ML

Flow rate, concentration, pH, 
temperature

Power output Applied explainable AI to improve interpretability and 
optimisation in membraneless MFCs.

Hossain et al. 
[29], 2023

Boosted SVR and Regression Tree 
for prediction

Membrane thickness, 
resistance, and anode area

Power generation Demonstrated high accuracy in power prediction using boosted 
ML models.

Ballestas et al. 
[13], 2024

Experimental plant-based MFC 
setup

Native plant type, substrate 
type

Voltage output Validated the feasibility of using native plants for low-cost 
renewable electricity generation in remote areas.

Ullah et al. 
[12], 2024

Comparative study of catholyte 
types in photosynthetic MFCs

Catholyte type (domestic vs 
treated), light exposure

COD removal, voltage Provided that untreated wastewater improves energy and 
treatment efficiency in MFCs.

Pan et al. [31], 
2024

GBRT with Evolutionary 
Optimisation for gasification

Biomass-coal ratio, 
temperature, equivalence 
ratio

H2 concentration, 
syngas yield

Achieved improved H2 yield through ML-driven optimisation 
in gasification processes applicable to MFCs.

Kebede et al. 
[30], 2024

Bi-LSTM + Attention +
Autoencoder for PEMFC lifecycle

Voltage cycles, operational 
time

Remaining Useful Life 
(RUL)

Advanced deep learning model for predictive maintenance in 
fuel cell systems.

This study Deep learning (LSTM & GRU) +
MOGA optimisation

Glucose, Yeast Extract, 
Aeration

COD removal, Power 
output

Proposed and validated a novel surrogate-based multi- 
objective optimisation framework with <5.5 % error, reducing 
experimental costs.
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emphasising the role of soft computing techniques in enhancing their 
performance. Coşgun et al. [24] utilise decision trees and association 
rule mining to identify optimal microalgae conditions for high biomass 
and lipid production, facilitating efficient renewable biofuel production 
and guiding future experimental and industrial applications. Yang et al. 
[25] utilised gradient boost regression to model biomass microwave 
pyrolysis, effectively predicting product quantities (biochar, bio-oil, 
syngas). It demonstrates cost-effective and time-saving potential for 
optimising sustainable rural biorefineries. Shahbeik et al. [26] utilised 
random forest regression to accurately predict sludge pyrolysis product 
distribution, demonstrating the potential of soft computing methods to 
optimise bioenergy production from wastewater sludge while minimis
ing experimental costs and labour.

Ghasemi et al. [27] significantly improved MFC performance pre
dictions by employing a multi-layer perceptron with various hidden 
layers, resulting in a performance increase of 5.1819 compared to 
traditional support vector regression methods. Later, Ghasemi et al. [28] 
combined the fuzzy model with a salp swarm optimiser to enhance the 
efficiency of MFC in terms of power density, COD removal, and 
coulombic efficiency. Nguyen et al. [28] conducted a comparative 
analysis of multiple methods, including nine machine learning and three 
bio-inspired evolutionary algorithms. They discovered a higher effi
ciency of DT and particle swarm optimisation algorithms with a 
239.024 % boost in power density. Hossain et al. [29] combined 
Bayesian optimisation with support vector regression. They boosted the 
regression tree to predict the MFC’s power generation using membrane 
thickness, external resistance, and anode area as input operational pa
rameters. Kebede et al. [30] use the transfer learning method by 
combining an autoencoder, bi-directional long short-term memory 
(Bi-LSTM), and attention mechanism to predict the remaining useful life 
of proton exchange MFC. Pan et al. [31] developed a gradient-boosting 
regression model. They employed an evolutionary algorithm to optimise 
biomass-coal co-gasification, enhancing syngas quality and identifying 
optimal parameters for maximum H2 production and Fischer-Tropsch 
performance. To contextualise the novelty of the current work, 
Table 1 provides a comparative summary of key related studies, high
lighting their methodologies, target outputs, and scientific contribu
tions. This helps establish a clearer understanding of the current state of 
the art and underscores the unique aspects of the present study. This 
study addresses the existing research gap by proposing an integrated 
surrogate-based multi-objective optimisation framework for microbial 
fuel cells. It is hypothesised that combining deep learning models with 

genetic algorithms will enable accurate, experimentally validated pre
dictions of COD removal and power generation while reducing the need 
for costly and time-intensive trials.

The main contribution of the following study can be divided into two 
main objectives: 

1. The best surrogate models are generated to mitigate the functionality 
of the MFCs in terms of COD removal and power output, using 
operational parameters such as glucose, yeast extract, and aeration 
rate as inputs. Then, integrated soft computing (ISC) methods, 
including decision trees (DT), multi-layer perceptrons (MLP), gated 
recurrent units (GRU), and long short-term memory (LSTM) net
works, are used to predict COD removal and power output in MFCs 
after the training processes of the models.

2. A multi-objective optimisation (MOO) using a genetic algorithm is 
employed to determine the optimal operational parameters (glucose, 
yeast extract, and aeration rate) that maximise COD removal and 
power output. It should be noted that the objective functions of the 
MOO are the two distinct ISC models, which were constructed to 
accurately predict COD removal and power output in the previous 
step.

The key contribution of this study is the development of a systematic 
hybrid model, combining ISC techniques and MOO, called ISC-MOO, 
which automatically extracts optimal solutions without the need for 
extensive practical testing, thereby reducing the time and cost of the 
process. In the first step, a comprehensive experimental study is 
designed using a full factorial mode to evaluate the effects of different 
input operational parameters on COD removal and power. This work 
represents the first comprehensive assessment of various ISC techniques 
applied to optimise the operational conditions of MFCs. The optimisa
tion criteria, namely COD removal and power generation, were chosen 
because they represent the core performance metrics of MFC systems, 
directly correlating to wastewater treatment efficiency and renewable 
energy production.

The MFC process is analysed in detail in Section 2, which explains 
input operational parameters and the system’s outputs. The experi
mental setup and data collection are also explained in this section. The 
proposed methodology, which utilises a hybrid of highly efficient ISC- 
MOO, is explained in detail in Section 3. Section 4 presents a detailed 
comparative analysis and discussion of the results obtained from the 
model, which was implemented using the MATLAB software. Lastly, 

Fig. 1. The schematic structure of an MFC.
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Section 5 concludes the study by summarising and emphasising the key 
findings derived from the research.

2. Materials and Methods

2.1. Microbial fuel cell configuration

The structure of the MFC mirrors the design used in a prior study 
[32]. This MFC comprises two compartments separated by a proton 
exchange membrane, specifically Nafion 117. This highly selective 

membrane allows only protons to pass through to the anode. Electricity 
generation occurs via the oxygen reduction reaction (ORR) at the 
cathode electrode surface, with the voltage being monitored and 
recorded on a computer. Fig. 1 illustrates the schematic layout of the 
MFC.

2.2. Media and inoculation

Various concentrations of glucose (1–9 g/L) were used as the carbon 
source, while yeast extract in amounts ranging from 1 to 5 g/L served as 
the nitrogen source. The mineral and vitamin components were included 
as previously described. Nitrogen gas was flushed into the anode 
chamber for 15 min before the experiment to establish anaerobic con
ditions. An aquarium pump was used to supply air to the cathode 
chamber to facilitate the ORR. The media was inoculated with palm oil 
mill effluent from Selangor, which acted as anaerobic sludge in an 
anaerobic container. Before the operation, 10 ml of sludge was added to 
the media. The attached microorganisms were observed using scanning 
electron microscopy (SEM-Supra-55vp-Zeiss, Germany). The samples 
were dried and coated with a thin layer of gold before imaging. Fig. 2
illustrates the experimental setup used to measure COD removal and 
power generation, with varying glucose levels, yeast extract, and aera
tion levels. To ensure the highest accuracy of the system, a full factorial 
experimental design was employed, varying each input parameter as 
detailed in Table 2.

To conclude, the experiments were conducted at ambient tempera
ture (25 ± 2 ◦C), with pH values maintained between 6.5 and 7.5 using a 
phosphate buffer. The electrode configuration, reactor volume (250 
mL), and external resistance (1000 Ω) were kept constant throughout all 
trials. A full factorial design was employed with the following input 
parameter ranges: glucose (1–9 g/L), yeast extract (1–5 g/L), and 
aeration rate (0–110 mL/min).

2.3. Analysis and calculation

A voltammeter measured the generated voltage every second, with 
data being recorded and stored on a PC. The formulas below were used 
to calculate the current and power: 

Fig. 2. The experiment setup for capturing the COD removal and power gen
eration based on glucose, yeast extract, and aeration.

Table 2 
Different levels of the input parameters for the design of the experiment.

Parameters L1 L2 L3 L4 L5

Glucose (g/L) 1 3 5 7 9
Yeast Extract (g/L) 1 2 3 4 5
Aeration (mL/min) 0 20 50 80 110

Fig. 3. The graphical introduction of the whole process in this research, including the practical experiment, ISC, and MOO/validation.
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I=
V
R

(1) 

P=V × I (2) 

where I represents the current, V denotes the voltage, and R is the 
external resistance.

The chemical solutions, which utilise high-range COD reagents, are 
used to determine the COD of MFCs. A sample was taken from the anode 
chamber and diluted ten times in water. Then, 2 mL of the diluted 
sample was added to high-range COD vials and heated to 150 ◦C. It 
should be noted that a spectrophotometer measures the COD levels [33]. 
The system’s coulombic efficiency (CE) was calculated using the 
following formula: 

CE=
M

∫ t
0 I dt

F b VanΔCOD
(3) 

where M, F, b = 4, ΔCOD, and Van are the molecular weight of oxygen, 
Faraday constant, number of electrons transferred per mole of oxygen, 
change in COD, and volume of the anode chamber. Purging the nitrogen 
gas into the anode chamber for 10 min establishes anaerobic conditions. 
At the same time, the air pump supplied air to the cathode chamber, 
facilitating the ORR reaction.

2.4. Range of control parameters

The choice of control parameters —glucose concentration, yeast 
extract level, and aeration rate —was based on their well-documented 
impact on microbial action, substrate accessibility, and oxygen ex
change in MFC frameworks. The glucose concentration (1–9 g/L) was 
chosen to represent the full range of natural stacking conditions 
commonly found in genuine wastewater streams, ensuring the relevance 
of the results to both residential and industrial effluents. Yeast extract 
(1–5 g/L) was chosen as a nitrogen source and microbial development 
enhancer at concentrations regularly utilised in MFC studies for biofilm 
development and electron exchange enhancement. The aeration rate 
(0–110 mL/min) was adjusted to simulate oxygen accessibility within 
the cathode, ranging from restricted to high oxygen exchange rates, as 
observed in field-scale wastewater treatment plants. These parameter 
ranges were also chosen to provide adequate flexibility for robust sur
rogate model preparation and to ensure that the optimised arrangements 
are relevant and adaptable for real-world MFC applications.

3. Simulation method

The schematic representation of the proposed method, ISC-MOO, is 
represented in Fig. 3, which comprises three main steps. It is used to 
enhance the efficiency of the MFC process in terms of COD removal and 
power outputs. Also, the optimisation framework developed in this 
study is flexible and can incorporate different input parameters specific 
to regional wastewater characteristics and resource availability, 
ensuring its global applicability.

In the first step, experiments are designed and conducted to extract 
datasets that connect the input operational parameters (glucose con
centration, yeast extract, and aeration) to the outputs (COD removal and 
power generation). It consists of experiments, measurements, and the 
generation of datasets. The full factorial experimental design method 
ensures robustness in understanding process dynamics by generating a 
rich dataset.

In the second step, the surrogate models of MFC behaviour are 
developed using ISC methods, including DT, MLP, LSTM, and GRU. Each 
model is trained and evaluated to predict the system’s outputs, including 
COD removal and power generation in MFC systems. Then, the models 
with the highest performance in predicting COD removal and power 
generation are selected as the best potential candidates for representing 

MFC behaviour.
In the third step, the selected predictive models from the second step 

are considered inside the MOO framework as objective functions. It is 
worth noting that the genetic algorithm is considered the most suitable 
method for representing MOO. As a result, the Pareto-optimal set of 
operating conditions is extracted to balance the MFC application’s 
maximum COD removal and power generation. The extracted optimal 
input operational parameters offer valuable insights for enhancing the 
MFC performance. The numerical surrogate models (LSTM and GRU) 
were trained using data generated from the full factorial experimental 
design. The models were constrained to operate within the same input 
bounds used experimentally. They assumed steady-state conditions with 
stable pH, temperature, and microbial activity.

However, the applicability of the proposed ISC-MOO cannot be 
approved without a practical evaluation of the extracted solution in this 
research. Then, the experiments were conducted using the extracted 
optimal input operational parameters to prove the effectiveness of our 
proposed methodology. It can assure the potential for widespread 
adoption in environmental engineering and sustainable energy 
production.

3.1. Preprocessing

The extracted dataset via the full factorial experiments cannot be 
used without implementing the preprocessing task. The most significant 
issue encountered during the data preprocessing of our model is the 
removal of outliers, as they can compromise the robustness of the 
developed model. In addition, other issues, such as irrelevancy, dupli
cation, noise, and missing data, are considered and addressed in the 
dataset based on their presence.

In the next step, the normalisation process is implemented in the 
dataset to normalise the data distribution and reduce the computation 
load of the proposed ISC. The dataset can be normalised as follows: 

nxi =
xi − x
x − x

(4) 

where nxi, x, and x are the normalised input data for the itℎ entry, 
minimum, and maximum values within the dataset, respectively.

Also, the dataset is partitioned into 80 %, 10 %, and 10 % for 
training, validation, and testing, respectively. It ensures the integrity 
and generalizability of the developed models. This partitioning scheme 
ensures the model is rigorously evaluated on unseen data, enhancing its 
predictive capabilities and real-world applicability. The testing data are 
withheld from the network until the final testing stage, ensuring an 
unbiased assessment and reliable performance metrics for the proposed 
models.

3.2. Decision tree

DT is the first investigated model in this research as it has proven its 
efficiency in the data mining and analysis sectors [34]. DT can handle 
classification and regression problems based on the nature of the data
sets. It can be considered a supervised learning method. The architecture 
of the DT is developed using nodes, branches, and leaves. Nodes are 
divided into two types: root and internal. The starting and 
decision-making points are specified using root and internal nodes. The 
branch is used to connect notes using arrows. They used to specify a 
potential decision and reaction inside the DT. The leaves, which are the 
furthest branches of the DT, extract the final outputs of the system. The 
most famous DT algorithms are CART, C4.5, and Chi-squared automatic 
interaction detection [35]. The higher regression capability of the CART 
algorithm, with no parameter dependency, was the primary motivation 
for choosing this method in this research.
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3.3. Multi-layer perceptron

The MLP is an advanced form of feedforward neural network with 
multiple layers. It can be used for classification and regression problems 
based on the provided datasets. It can be considered a supervised 
learning method. During the training of MLP, the goal is to minimise the 
loss function by adjusting the network’s parameters (weights and biases) 
using backpropagation. The weights are calculated using the gradient 
descent method as follows: 

Δwij(n)= − η ∂ε(n)
∂νi(n)

yi(n) (7) 

where η, yi(n), and νi(n) are the learning rate, the output of the previous 
neuron, and the local induced field, respectively. The Levenberg- 
Marquardt learning method is employed to determine the weights of 
the MLP in this study [36].

3.4. Gated recurrent unit

The GRU is a modified version of a recurrent neural network that 
cooperates with gating mechanisms, which can handle time-series and 
analyse datasets [37]. GRU’s architecture comprises the update gate, 
reset gate, and candidate activation vector. The update gate is respon
sible for retaining the previous hidden state and adding the amount of 
candidate activation to the new hidden state. The hidden state update at 
time t is extracted as follows: 

ht =(1 − zt)⨀ĥt + zt⨀ĥt− 1 (14) 

where ĥt and zt represents the candidate state and update gate, 
respectively.

The reset gate determines whether to reset or forget the previous 
hidden state based on the current input. The candidate activation vector 
is calculated using a transformed version of the previous hidden state 
and the current input to be added to the memory of the GRU.

3.5. Long-short term memory

LSTM is an improved version of the recurrent neural network that 
uses a memory cell to solve the vanishing gradient problem. The ar
chitecture of LSTM is composed of the input, forget, and output gates. 
These gates add, remove, and output information from the memory cell. 
The existence of a memory cell is the primary reason for robust pre
dictions across long sequences within an LSTM, as it retains the temporal 
states. The cell state is updated with the combination of previous and 
new memory values, as follows: 

cj
t = f j

t c
j
t− 1 + ijt c̃

j
t (24) 

where f j
t and ijt are forget and input gates that regulate memory reten

tion, respectively. Backpropagation through time and gradient descent 
are used for training and minimising the error within the loss function.

3.6. Multiple-objective genetic algorithm

The MOO-GA employs genetic algorithms to efficiently solve com
plex multi-objective problems. Integrating mutation and crossover 
techniques generates new populations iteratively, preserving optimal 
solutions via elitist strategies. The Pareto front is extracted in a single 
run, streamlining computational efficiency.

Objective functions in this study evaluate discrepancies between 
experimental and predicted values: 

JCOE(G,YE,A)=100 −
1
n
∑n

i=1
(CODi − ĈODi)

2 (29) 

JP(G,YE,A)=1000 −
1
n
∑n

i=1
(Pi − P̂i)

2 (30) 

where COD and ĈOD are the actual and predicted chemical oxygen 
demand values, respectively. Also, P and P̂ are the actual and predicted 
chemical power generation, respectively. The optimisation seeks to 
maximise COD removal and power output.

While COD removal and power generation serve as critical perfor
mance metrics, the optimised solutions also demonstrate promising 
economic and environmental sustainability implications. For instance, 
reducing COD levels contributes to cost savings in wastewater treatment 
processes. At the same time, the power generated can offset energy 
consumption in industrial applications. Future work could include 
developing a multi-criteria decision-making framework that in
corporates additional parameters, such as economic feasibility, scal
ability, and lifecycle environmental impact.

4. Results and discussions

This section is structured into four distinct subsections, each 
addressing crucial aspects of the experimental investigation. The initial 
subsection examines microbial colonisation patterns on the surface of 
electrodes, shedding light on the intricate dynamics of microorganism- 
electrode interactions. The subsequent subsection focuses on devel
oping advanced computational models tailored to predict key perfor
mance metrics, namely COD removal and power generation. These 
models are meticulously trained and validated using data encompassing 
variations in glucose concentration, yeast extract, and aeration levels. In 
the following subsection, we embark on a detailed analysis of the in
fluence of input parameters (glucose, yeast extract, and aeration) on the 
dynamic behaviour of the MFC system. Leveraging insights from the 
developed computational models, we unravel the complex relationships 
between input variables and system outputs, providing invaluable in
sights for process optimisation. Subsequently, attention shifts towards 
integrating predictive models within a multi-objective optimisation 
framework. The most adept computational models for predicting COD 
removal and power generation are seamlessly integrated into an MOO 
using a genetic algorithm to extract optimal operating conditions. 
Through iterative optimisation, using a genetic algorithm, the MOO 
identifies Pareto-optimal solutions that maximise system performance 
while balancing conflicting objectives. Concluding this section, the 
extracted optimal operating conditions are subjected to rigorous 
experimental validation to assess the efficacy and reliability of the 
proposed methodology. Real-world testing ensures the robustness and 
applicability of optimised operational parameters, affirming the efficacy 
of our approach in enhancing MFC performance. The surrogate models 
were developed under the assumption of steady-state MFC operation 
with spatial homogeneity, based on a well-mixed reactor design. Input 
parameters were bounded within experimentally tested ranges, and the 
models were designed to generalise only within this validated domain. 
Mechanistic reactions were not explicitly modelled, as the approach 
relies on empirical learning from experimental data.

4.1. Experimental methodology

The experimental methodology used to examine the performance of 
the Microbial Fuel Cell (MFC) system is described in detail in this sec
tion. The methodology encompasses the operational processes and MFC 
configuration, as well as the analytical techniques employed to evaluate 
performance, and the structured experimental design used to examine 
the impact of key operational parameters.

4.1.1. MFC set up and procedures
The experimental procedure was carried out utilising a dual-chamber 

MFC configuration, as previously outlined in the Materials and Methods 
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section. The two chambers were divided by a Nafion 117 proton ex
change membrane to facilitate proton transfer. The anode chamber was 
maintained under anaerobic conditions by purging with nitrogen gas for 
15 min before each experiment. Palm oil mill effluent sludge sourced 
from Selangor was employed as the microbial inoculum. Glucose (1–9 g/ 
L) and yeast extract (1–5 g/L) were utilised as the sources of carbon and 
nitrogen, respectively. The cathode chamber was continuously aerated 
with an aquarium air pump to promote the oxygen reduction reaction 
(ORR). The reactor volume was maintained at 250 mL, with an external 
resistance set at 1000 Ω. The voltage across the electrodes was moni
tored and recorded in real-time using a digital voltmeter linked to a data 
acquisition system on a computer.

4.1.2. Measurement methods
A high-range COD testing technique was used to quantify COD 

elimination. Anode chamber samples were taken, diluted ten times, and 
then heated to 150 ◦C in COD digestion vials containing 2 mL of the 
diluted sample. After digestion, the COD concentration was measured 
with a spectrophotometer. The output voltage was continually recorded 
and monitored every second. The recorded voltage and the known 
external resistance were used to compute the current and power density. 
Using phosphate buffer solutions, the pH was maintained between 6.5 
and 7. The studies were carried out at room temperature (25 ± 2 ◦C).

4.1.3. Experimental design and repeatability
A full factorial exploratory plan was utilised, resulting in 125 test 

runs to cover all combinations of glucose, yeast extract, and air circu
lation rate levels, as shown in Table 2. Each test was repeated three 
times, and the average value was used to create and prepare the 

surrogate models (LSTM for COD expulsion and GRU for the control 
era).

4.2. Biofilm

The attachment of microorganisms on the electrode surface is shown 
in Fig. 4. The photo shows thick layers of microorganisms attached to 
the electrode surface. The communities of microorganisms in the 
wastewater and the topography of the surface, as well as the affinity of 
the mixed cultures to the electrode surface, are the primary factors 
influencing the attachment of microorganisms to the electrode surface. 
The SEM photo reveals that the biofilm is composed of a rich mixture of 
Hyla, Proteobacteria, and Firmicutes, which thrive in the absence of 
oxygen and are rich in nutrients [27].

4.3. Modelling

Four ISC methods, DT, MLP, GRU, and LSTM, are individually 
trained using the extracted datasets to predict COD removal and power. 
It should be noted that the datasets are reported in the supplementary 
material, which consists of 125 sets (full factorial) of experiments based 
on the provided values in Table 2. To validate the results to extract the 
most efficient ISC methods, the correlation coefficient (CC), mean 
square error (MSE), root means square error (RMSE), normalised root 
mean square error (NRMSE), mean of error, standard deviation (StD), 
and R-square (R2) are used in this study. The calculation of each vali
dation parameter is mentioned in the Appendix Section. Table 3 presents 
the training and testing results for all datasets employed in the imple
mented ISC methods in this study, including DT, MLP, GRU, and LSTM, 
for calculating COD removal. The bold style is used to indicate the best- 
extracted parameter inside Table 3. In terms of CC, MSE, RMSE, NRMSE, 
Std, and R2, GRU and LSTM achieve better results during training, 
testing, and across all datasets than those of DT and MLP. It proves that 
GRU and LSTM are more efficient than DT and MLP. Additionally, it is 
worth noting that LSTM is more efficient in predicting COD removal 
than GRU. Then, COD-LSTM was selected as the most efficient method 
for predicting COD removal based on glucose, yeast extract, and aera
tion. As it is evident, LSTM defeats the GRU in point of CC (Training, 
testing, and all), MSE (training and all), RMSE (training and all), NRMSE 
(training and all), mean (testing), StD (training and all), and R2 

(Training, testing, and all).
Table 4 presents the training and testing results for all datasets 

employed in the implemented ISC methods in this study, including DT, 
MLP, GRU, and LSTM, for calculating power generation. During the 
training process, DT defeated the other ISC methods (MLP, GRU, and 
LSTM) in terms of MSE, RMSE, NRMSE, mean of error, StD, and R2, 
based on the represented results in Table 3. Also, GRU was able to defeat 
the other ISC methods (DT, MLP, and LSTM) in terms of MSE, RMSE, 
NRMSE, mean of error, StD, and R2, based on the represented results in 
Table 3 during the testing process. Furthermore, LSTM was able to 

Fig. 4. The attachment of microorganisms on the electrode surface.

Table 3 
The extracted results for investigation of implementing ISC methods (DT, MLP, GRU, and LSTM) for calculation of COD removal (%) based on glucose (g/L), yeast 
extract (g/L), and aeration (mL/min).

Method Stage CC MSE RMSE NRMSE Mean StD R2

DT Train 0.9156 31.90 5.65 0.11 ¡3.20 £ 10¡15 5.68 0.8634
Test 0.8215 182.47 13.51 0.30 2.64 13.52 0.5880
All 0.8889 62.02 7.88 0.16 0.53 7.89 0.7798

MLP Train 0.8323 86.89 9.32 0.18 3.01 × 10− 1 9.36 0.6386
Test 0.7404 239.17 15.47 0.34 − 1.39 15.72 0.2341
All 0.8033 117.35 10.83 0.21 ¡0.03 10.88 0.5444

GRU Train 0.8973 44.32 6.66 0.13 7.13e-1 6.65 0.8083
Test 0.8719 111.89 10.58 0.23 0.80 10.77 0.7010
All 0.8861 57.84 7.61 0.15 0.73 7.60 0.7813

LSTM Train 0.9471 18.79 4.45 0.09 − 1.86 × 10− 1 4.47 0.9159
Test 0.8742 116.3 10.78 0.24 0.55 11.00 0.7035
All 0.9226 39.09 6.25 0.12 − 0.04 6.28 0.8560
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Table 4 
The extracted results for investigation of implementing ISC methods (DT, MLP, GRU, and LSTM) for calculation of power (mW/m2) based on glucose (g/L), yeast 
extract (g/L), and aeration (mL/min).

Method Stage CC MSE RMSE NRMSE Mean StD R2

DT Train 0.9933 544.90 23.34 0.07 2.27 £ 10¡15 23.46 0.9904
Test 0.9735 2352.29 48.50 0.17 − 3.95 49.34 0.9622
All 0.9910 906.37 30.11 0.09 − 0.79 30.22 0.9845

MLP Train 0.9391 5062.91 71.15 0.21 − 1.52 71.50 0.9092
Test 0.9352 5118.68 71.54 0.25 14.10 71.59 0.9276
All 0.9444 5074.07 71.23 0.21 1.61 71.50 0.9149

GRU Train 0.9897 1348.77 36.73 0.11 3.49 36.74 0.9763
Test 0.9729 789.35 28.10 0.10 ¡1.68 28.62 0.9873
All 0.9890 1236.90 35.17 0.11 2.46 35.22 0.9788

LSTM Train 0.9953 775.53 27.85 0.08 0.66 27.98 0.9862
Test 0.9806 960.66 31.00 0.11 − 2.70 31.51 0.9843
All 0.9941 812.56 28.51 0.09 ¡0.02 28.62 0.9859

Fig. 5. The regression of the dataset (a) using COD-LSTM for prediction of the COD removal (%) with implementation of training data; (b) using COD-LSTM for 
prediction of the COD removal (%) with implementation of testing data; (c) using P-GRU for prediction of the power (mW/m2) with implementation of training data; 
(d) using P-GRU for prediction of the power (mW/m2) with implementation of testing data.
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defeat the other ISC methods (DT, MLP, and LSTM) in terms of CC, MSE, 
RMSE, NRMSE, mean of error, StD, and R2, based on the represented 
results in Table 3 during the implementation of all datasets (training and 
testing). As the testing process is the most critical part of evaluating the 
results, the GRU is chosen to predict power in the MFC process, and it is 
referred to as P-GRU.

The interplay between glucose and aeration significantly influenced 
COD removal, with optimal performance observed at a glucose con
centration of 8.6 g/L and an aeration rate of 12.08 mL/min. These 
findings align with Shahbeik et al. [26], who demonstrated the critical 
role of substrate concentration in enhancing microbial activity and 
biofilm formation. However, our work extends this understanding by 
quantifying these relationships through machine learning models, of
fering a scalable framework for real-world applications.

As the COD-LSTM and P-GRU are the most efficient ISC methods in 
calculating COD removal and power, the results of these two 

investigated methods are analysed in the rest of the paper. Fig. 5a–d 
illustrate the correlations between the outcomes derived from the 
experimental study and the forecasts generated for COD removal using 
COD-LSTM and P-GRU during the training and testing dataset imple
mentation, respectively. As indicated in Fig. 5a and b, the predictive 
performance of COD-LSTM in estimating COD removal exhibits R2 

values of 0.9159 and 0.7035 for the training and testing datasets, 
respectively. Similarly, Fig. 5c and d illustrate a distinct pattern, where 
R2 for P-GRU in the domain of power prediction is 0.9763 and 0.9873 for 
the training and testing datasets, respectively.

Fig. 6a–b displays COD removal and power assessment within the 
MFC process during the testing process of the COD-LSTM and P-GRU, 
respectively. This appraisal involves employing both the experimental 
results and the suggested COD-LSTM and P-GRU models during the 
testing phase of the network. The experimental results serve as the 
benchmark against which the outcomes of COD-LSTM and P-GRU are 

Fig. 6. The experimental and predicted outputs of the MFC process using (a) COD-LSTM for prediction of the COD removal (%); (b) P-GRU for prediction of the 
power (mW/m2).
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juxtaposed, facilitating an evaluation of the proposed models’ precision. 
Fig. 6a delineates the computation of COD removal for 25 testing sam
ples, utilising both the experiment and COD-LSTM. As evidenced by the 
findings in Fig. 6a, the CC between the experimental outcomes and the 
extracted COD removal yielded by the proposed COD-LSTM model 
amounts to 0.8742. Furthermore, Fig. 6b demonstrates that encom
passing 25 testing samples, the CC between the experimental results and 
the proposed P-GRU model’s extracted power stands at 0.9729.

Fig. 7a and b illustrate the discrepancy between the anticipated and 
reference (experimental) values for COD removal and power pre
dictions, employing the COD-LSTM and P-GRU. Analysing the outcomes 
depicted in Fig. 7a, it becomes evident that the MSE between the pre
dicted and experimental COD removal, as determined by the proposed 
COD-LSTM, equates to 116.3 (%). Similarly, Fig. 7b shows that the MSE 
of the predicted and experimental power is 789.3 (mW/m2). Addition
ally, the RMSE values for the predicted and experimentally recorded 

COD removal and power are 10.78 and 28.10, respectively, as shown in 
Fig. 7a–b. Lastly, assessing the NRMSE, it is deduced that P-GRU boasts 
superior predictive accuracy compared to COD-LSTM, given its lower 
value of 0.2366 compared to 0.0986 (Fig. 7a and b). An error analysis 
was performed using standard statistical metrics (MSE, RMSE, NRMSE), 
with the results summarised in Tables 3–4 and visually represented in 
Fig. 7. These metrics quantify the prediction error margins of the sur
rogate models in comparison to experimental observations.

4.4. Influence of parameters

Fig. 8a–c shows the rule surface of the extracted COD-LSTM in 
calculating the COD removal based on arrangements of the input process 
parameters, including glucose-aeration, glucose-yeast extract, and yeast 
extract-aeration, respectively. To be precise, Fig. 8a presents the varia
tion of COD removal based on the variation of glucose (from 0 to 10 g/L) 

Fig. 7. The error between the experimentally captured and predicted value using the proposed T2FNN models to predict (a) COD removal (%); (b) power (mW/m2).
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and aeration (from 0 to 110 mL/min) with consideration of constant 
yeast extract (3 g/L). In addition, Fig. 8b shows the variation of COD 
removal based on the variation of glucose (from 0 to 10 g/L) and yeast 
extract (from 1 to 5 g/L) with consideration of constant aeration (55 mL/ 
min). Also, Fig. 8c shows the variation of COD removal based on the 
variation of yeast extract (from 1 to 5 g/L) and aeration (from 0 to 110 
mL/min) with consideration of constant glucose (5 g/L). In total, Fig. 8a 
and b show that increasing glucose normally increases COD removal. 
However, there is a local optimal point based on the amount of aeration 
and yeast extract. It proves the necessity of implementing the optimi
sation method in extracting the optimal solution of the process. Fig. 8b–c 

shows that the increasing yeast extract normally reduces the COD 
removal. However, there is a locally optimal point with a variation of the 
yeast extract, as observed in the glucose variation assessment. It is 
challenging to determine the influence of aeration on the variation in 
COD removal based on Fig. 8a and c. It demonstrates that aeration has 
the least influence on the variation in COD removal compared to glucose 
and yeast extract. However, some local optimal points should be 
extracted in the optimisation stage of the research.

Fig. 9a–c shows the rule surface of the extracted P-GRU in calculating 
power generation based on the arrangements of input process parame
ters, including glucose-aeration, glucose-yeast extract, and yeast extract- 

Fig. 8. COD-LSTM rule surface for calculation of COD removal (%) using (a) glucose-aeration; (b) glucose-yeast extract; (c) yeast extract-aeration.

Fig. 9. P-GRU rule surface for calculation of power (mW/m2) using (a) glucose-aeration; (b) glucose-yeast extract; (c) yeast extract-aeration.
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aeration, respectively. Fig. 9a presents the variation of power based on 
the variation of glucose (from 0 to 10 g/L) and aeration (from 0 to 110 
mL/min) with consideration of constant yeast extract (3 g/L). In addi
tion, Fig. 9b shows the variation of power based on the variation of 
glucose (from 0 to 10 g/L) and yeast extract (from 1 to 5 g/L) with 
consideration of constant aeration (55 mL/min). Also, Fig. 9c shows the 
variation of power based on the variation of yeast extract (from 1 to 5 g/ 
L) and aeration (from 0 to 110 mL/min) with consideration of constant 
glucose (5 g/L). Fig. 9a–c shows that the system’s behaviour in response 
to power variation, based on the different arrangements of glucose, yeast 
extract, and aeration, is simpler than that of COD removal compared to 
Fig. 9a–c. Fig. 9a and b demonstrate that the increase in glucose en
hances the system’s power generation. Additionally, Fig. 9 b and 9c 
show that the increase in yeast extract reduces power generation. 
Additionally, Fig. 9a and c demonstrate that the variation in aeration has 
a distinct influence on power, depending on the arrangement of glucose 
and yeast extract.

4.5. Optimisation

The two extracted models (COD-LSTM and P-GRU) are the objective 
functions of ISC inside the MOO using a genetic algorithm, investigated 
in Eqs. 29 and 30. Illustrated in Fig. 10 is the distribution of the optimal 
solution’s Pareto front configuration within the context of the process. 
Moreover, the optimal solutions derived are outlined in Table 5. A 
sequence of MFC experiments was conducted to affirm the system’s 
precision using the extracted optimal solution from the recently 

introduced approach. The margin of error between the experiment and 
predicted values of the 9 optimal recommended solutions via the 
investigated COD-LSTM and P-GRU methods is 7.64 % and 3.29 % on 
average for COD removal and power, respectively. It proves that COD- 
LSTM is less accurate than P-GRU. In addition, the lowest margin er
rors for COD-LSTM and P-GRU are captured during the 4th and 7th sets 
of the optimal solution, with 3.02 % and 0.97 %, respectively. The COD 
removal rate of 79.9 % achieved in this study is consistent with the 
findings of Ghasemi et al. [27], who reported similar efficiencies using 
optimised substrate concentrations. However, the integration of 
LSTM-based modelling in our approach enables more precise predictions 
and optimisation, resulting in a reduced margin of error compared to 
traditional methods. Additionally, the power generation efficiency of 
767.9 mW/m2 exceeds that reported by Nguyen et al. [28], highlighting 
the advantages of our GRU-based prediction model in addressing dy
namic operational conditions.

The optimised solutions presented in this study are inherently scal
able due to the modular design of MFC systems. By adjusting input pa
rameters such as substrate type, operational conditions, and 
environmental variables, the proposed methodology can be adapted to 
meet region-specific requirements. For instance, locally available carbon 
and nitrogen sources can be substituted without compromising system 
performance in regions with limited access to glucose and yeast extract. 
Furthermore, climatic factors such as temperature and humidity, which 
influence microbial activity, can be integrated into the optimisation 
framework to enhance applicability across diverse geographies. Future 
research could focus on developing region-specific case studies to vali
date the scalability and adaptability of the proposed solutions.

4.6. Limitations of the study

Although the ISC-MOO framework showed encouraging results in 
enhancing MFC performance, several constraints must be recognised. 
Firstly, the experiments were conducted at a laboratory scale using a 
small reactor volume of 250 mL, which may limit the ability to scale up 
to full industrial applications without further pilot studies. Moreover, 
factors such as temperature variations, changes in the microbial com
munity, and long-term operational stability were not thoroughly 
examined, which could influence system performance in practical sce
narios. Regarding experimental precision, although steps were taken to 
minimise errors through repeated measurements and data processing, 
uncertainties in COD measurements due to sample matrix effects and 
spectrophotometer sensitivity may have led to some variations. Future 
research should aim to validate the models using different types of 
wastewaters, scale up the reactor system, and incorporate economic and 
environmental evaluations to enhance its wider applicability.

5. Conclusion

This study introduced a novel framework for optimising microbial 
fuel cells (MFCs) using a combination of deep learning models and a 
multi-objective genetic algorithm. Specifically, long short-term memory 
(LSTM) networks and gated recurrent units (GRU) were developed as 

Fig. 10. Pareto front of the extracted optimal solution using MOO in the MFC 
process to extract the COD removal (%) and power (mW/m2).

Table 5 
Extracted optimal process parameters of the MFC process using the newly proposed models.

No. G YE A COD Exp COD Pre COD Error P Exp P Pre P Error

1 9.0 1.68 21.38 69.7 80.23 15.11 % 739.1 778.42 5.32 %
2 8.8 2.36 12.20 74.3 80.24 7.99 % 734.7 725.44 1.26 %
3 8.7 2.46 12.19 77.8 80.25 3.15 % 729.6 703.34 3.60 %
4 8.6 2.55 12.08 77.9 80.25 3.02 % 747.2 690.96 7.53 %
5 8.8 2.32 12.55 74.5 80.24 7.70 % 752.3 734.99 2.30 %
6 8.8 2.14 13.21 72.6 80.24 10.52 % 776.8 742.34 4.44 %
7 8.6 2.49 12.18 79.9 80.25 4.40 % 693.7 700.41 0.97 %
8 8.8 2.39 12.57 74.6 80.24 7.56 % 739.4 725.45 1.89 %
9 8.9 2.17 13.68 79.5 80.24 9.30 % 767.9 750.32 2.29 %
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surrogate models to predict chemical oxygen demand (COD) removal 
and power generation, respectively. These models were integrated into a 
multi-objective optimisation approach to identify optimal operational 
parameters.

Experimental validation of the Pareto-optimal solutions confirmed 
high accuracy, with prediction errors of 5.47 % for COD removal and 
3.29 % for power output. The proposed method significantly reduces the 
need for extensive physical experimentation while maintaining reli
ability, thereby offering a scalable and cost-effective strategy for MFC 
system design.

Future research could explore the integration of economic and 
environmental impact indicators into the optimisation framework, as 
well as case-specific adaptation of the model to various regional 
wastewater compositions and operational conditions.
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Appendix 

Correlation coefficient (CC), mean square error (MSE), root mean square error (RMSE), and normalised root mean square error (NRMSE), mean of 
error, standard deviation (StD), and R-square (R2) are employed to validate the investigated methods to choose the most reliable one. These validation 
parameters are calculated as follows: 

CC=

∑n

i=1
(xi − x)(Ti − T)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

(Ti − T)2

√

MSE=
1
n
∑n

i=1
(Ti − T̂i)

2 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Ti − T̂ i)

2

n

√
√
√
√
√

NRMSE=
RMSE

T 

Mean=
1
n
∑n

i=1
(Ti − T̂i)

StD=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

n

√
√
√
√
√

R2 =1 −

∑n

i=1
(Ti − T̂ i)

2

∑n

i=1
(Ti − T)2 

where n, xi, x and T are the number of samples, the ith input, the mean of the inputs and the mean of outputs.
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