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INTRODUCTION 
 

Collectively, the group of disorders classified as 

cardiovascular disease (CVD) are the foremost cause of 

death worldwide [1]. A staggering 19.8 million deaths 

were attributed to CVD in 2022 [2], which equates to 

approximately 1/3 of global deaths annually [3]. 

Moreover, the prevalence of CVD is expected to rise 

[4], which can be attributed to a global aging population 

and increasing risk factors, including environmental 

(e.g. pollution), metabolic (e.g. blood pressure, 

diabetes) and behavioural (e.g. exercise, alcohol, 

smoking) [2]. Therefore, it is crucial to implement 

prevention and management strategies to alleviate the 

burden of CVD. While the contribution of various risk 

factors to different aspects of CVD has been extensively 

studied, sarcopenia has emerged as a significant 

comorbidity of CVD [5]. Importantly, the presence of 

CVD and its risk factors, such as obesity, insulin 

resistance, and inflammation, significantly increases the 

likelihood of developing sarcopenia [5, 6]. Furthermore, 

studies have revealed a close link between sarcopenia, 

overall metabolic dysfunction and an increased risk of 

CVD [5]. Clinically, sarcopenia and the presence of 

other CVD risk factors are associated with poorer health 

and worsened surgical outcomes for CVD patients [7, 

8]. Therefore, it is crucial to identify and intervene early 

in cases of sarcopenia to effectively manage and prevent 

the progression and clinical consequences of this 

disease. 

 

Definition of sarcopenia 
 

The term Sarcopenia was initially introduced to 

describe the progressive loss of skeletal muscle mass 

typically observed during aging [9]. This definition has 
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expanded to include reduced muscle strength (function) 

and impaired physical performance [10]. In 2016, 

sarcopenia was classified as a disorder of muscle and 

given the code M62.84 under the international 

classification of disease, tenth revision clinical 

modification (ICD-10-CM) system [11]. 

 

Clinical diagnostic guidelines 
 

Several working groups have described consensus 

guidelines for testing and diagnosing sarcopenia in the 

clinic. These studies have proposed several population-

specific cut off values for a group of important clinical 

tests for sarcopenia, which are summarized in Table 1. 

 

Initially in 2010, the European Working Group on 

Sarcopenia People (EWGSOP1) introduced a clinical 

guideline to diagnose sarcopenia as a syndrome, 

focusing on a progressive loss of skeletal muscle mass 

as well as function (physical performance or strength) 

(Table 1) [12]. The EWGSOP1 further suggested 

different stages for sarcopenia, consisting of pre-

sarcopenia (decreased muscle mass, but no changes  

in strength or performance), sarcopenia (decreased 

muscle mass, with either decreased muscle strength or 

performance) and severe sarcopenia (decreased muscle 

mass, strength and performance) [12]. Skeletal muscle 

mass is typically determined by imaging, and function 

is generally measured using hand-grip strength and 

physical performance, evaluated through a gait speed 

test or SPPB (Short Physical Performance Battery test) 

which is a combined test consisting of gait speed, 

balance and chair stand assessments. SPPB is scored out 

of a possible maximum of 12 points (where 0-6 is 

considered low; 7-9 intermediate and 10-12 high 

performance) [12] (Table 1). 

 

EWGSOP2 revised the definition in 2019 and 

introduced low muscle strength as the primary 

sarcopenia indicator, rather than loss of muscle mass 

[13]. Severe sarcopenia was defined as low muscle 

strength with decreased physical performance and pre-

sarcopenia as decreased muscle strength alone  

(Table 1). Moreover, EWGSOP2 sub-categorized 

sarcopenia as acute or chronic, with acute sarcopenia 

categorised as lasting for <6 months and chronic if it is 

present for ≥6 months [13]. 

 

However, in 2014 the Asian Working Group for 

Sarcopenia (AWGS) [14] offered a sarcopenia 

definition that differed from the above, in requiring all 

the criteria to be considered, including low muscle 

mass, low physical performance and muscle strength 

(Table 1). Differing cut-off points were also proposed, 

based on findings from an Asian population group [14]. 

In 2019 the AWGS updated the definition of sarcopenia 

with different cut-off points proposed based on an Asian 

population, with diagnosis requiring loss of muscle 

mass in addition to decreased muscle strength and/or 

decreased physical performance (Table 1). Severe 

sarcopenia was considered when all criteria were 

present [15]. The AWGS also introduced “possible 

sarcopenia” as having low muscle strength or low 

physical performance. Moreover, the EWGSOP1, 

EWGSOP2, and AWGS Algorithms suggested that 

muscle mass be expressed relative to height2, termed the 

skeletal muscle index (SMI). The International Working 

Group on Sarcopenia (IWGS) considered low muscle 

mass and poor performance to diagnose sarcopenia 

(Table 1) and further defined a population of individuals 

that should be considered for sarcopenia and subsequent 

muscle mass assessment [16]. This includes all patients 

who are older and present with reduced strength, 

physical function or overall health, including bedridden 

patients, individuals who cannot rise from a chair 

unassisted and patients with a reduced gait speed 

(<1m/s) [16]. The Foundation for the National Institute 

of Health (FNIH) included muscle mass, physical and 

strength performance in the sarcopenia definition, 

recommending adjustments of muscle mass by BMI 

[17]. The Australian and New Zealand Society for 

Sarcopenia and Frailty Research (ANZSSFR) has 

suggested using the EWGSOP1 criteria, and population-

specific cut-points [18]. 

 

Despite significant advancements in our understanding 

of sarcopenia, important limitations persist in the 

diagnostic strategies outlined above. One major 

challenge lies in the lack of consensus across diagnostic 

criteria, which vary substantially between international 

guidelines such as EWGSOP2, AWGS, and FNIH. This 

is critically important, as without a harmonised 

diagnostic framework, the inconsistencies in population-

specific cut-offs for muscle mass, strength, and 

performance, will continue to complicate cross-study 

comparisons and hinder global implementation of 

standardized screening protocols. 

 

Prevalence of sarcopenia 
 

The variation in diagnostic criteria and in the setting 

where studies have been performed, has led to 

discrepancies in reported prevalence rates globally, 

thus creating challenges in comparing results. A 

systematic analysis of previous studies has revealed 

the highest rates of sarcopenia in nursing homes, 

followed by hospitals, then in individuals in the general 

population [19]. Furthermore, it revealed a higher 

prevalence of sarcopenia in community-dwelling 

individuals from non-Asian countries when compared 

to Asian countries, specifically 13% versus 9% in men 

and 11% versus 8% in women, respectively [19]. 
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Table 1. Common clinical diagnosis guidelines of sarcopenia. 

Classification Definition Muscle mass Muscle strength 
Physical 

performance  

EWGSOP 

(2010) [12] 

Sarcopenia: low muscle mass and 

low muscle strength or low 

physical performance 

DXA 

ASM/height2 

Men 7.26 kg/m2  

Women <5.5 kg/m2 

BIA 

SM/height2 

Men <8.87 kg/m2 

Women<6.42 kg/m2 

Handgrip Strength 

Men <30 kg 

Women <20 kg 

Men and women 

Gait speed <0.8 m/s 

SPPB ≤8 

EWGSOP2 

2019 [13] 

Probable Sarcopenia: low muscle 

strength 

Confirmed Sarcopenia: low 

muscle mass and low muscle 

strength 

Severe Sarcopenia: low muscle 

mass, low muscle strength and low 

physical performance 

DXA 

ASM/height2 

Men <7.0 kg/m2 

Women <5.5 kg/m2 

Handgrip Strength 

Men <27 kg 

Women <16 kg 

Chair stand 

>15s for 5 chair rises 

Men and women 

Gait speed <0.8 m/s  

SPPB ≤8 

TUG ≥20s 

400m walk test, 

failure to finish or 

finish in ≥6 min 

AWGS 

2014 [14] 

Confirmed Sarcopenia: low 

muscle mass with low muscle 

strength and/or low physical 

performance 

DXA 

ASM/height2 

Men 7.0 kg/m2  

Women <5.4 kg/m2 

BIA 

ASM/height2 

Men <7.0 kg/m2 

Women <5.7 kg/m2 

Handgrip Strength 

Men <26 kg 

Women<18kg 

Men and women 

Gait speed ≤0.8 m/s 

AWGS 

2019 [15] 

Possible Sarcopenia: low muscle 

strength or low physical 

performance 

Confirmed Sarcopenia: low 

muscle mass with either low 

muscle strength or low physical 

performance 

Severe Sarcopenia: low muscle 

mass, low muscle strength, and 

low physical performance 

DXA 

ASM/height2 

Men 7.0 kg/m2 

Women <5.4 kg/m2 

BIA 

ASM/height2 

Men <7.0 kg/m2 

Women <5.7 kg/m2 

Handgrip Strength 

Men <28 kg  

Women <18 kg 

Gait speed <1.0 m/s 

SPPB ≤9 

Chair stand 

>12s for 5 chair 

rises 

IWGS 

2011 [16] 

Confirmed Sarcopenia: low 

muscle mass and low physical 

performance  

DXA 

Men ≤7.23 kg/m2 

Women ≤5.67kg/m2 

 
Men and women 

Gait speed <1.0 m/s  

Table summarising current commonly used guidelines for diagnosing sarcopenia. ASM: appendicular skeletal muscle mass; 
AWGS, Asian Working Group for Sarcopenia; BIA, bioelectrical impedance analysis; BMI, body mass index; CT, computed 
tomography; DXA, dual-energy x-ray absorptiometry; SPPB, Short Physical Performance Battery test; TUG, timed up and go 
test, which assesses the time taken to rise from a chair, walk a distance, return and sit down; SM, predicted skeletal muscle 
mass from BIA; EWGSOP, European Working Group on Sarcopenia in Older People; IWGS, International Working Group on 
Sarcopenia. 

 

These differences could be attributed to several 

factors, including genetic, cultural and environmental 

differences between these populations. 

 
Significant differences in sarcopenia prevalence in 

community-dwelling adults have been noted between 

different populations, leading to a range of reported 

prevalence rates. Among Chinese adults who were at 

least 60 years of age, prevalence was reported to  

range between 21.6% in women to 19.2% in men [20]. 

In Japanese adults 60 years of age or older, the  
pooled prevalence rates from a systematic review were 

estimated to be between 9.8% for men and 10.1% for 

women [21]. One study revealed the prevalence of 
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sarcopenia in Taiwanese adults aged over 65, to vary 

from 0.4% to 6.7% in women and men, respectively 

[22]. Whereas, a second study determined the prevalence 

rates to range between 4.1% to 9.3% in Taiwanese 

women and men aged 65 or older, respectively [23]. 

These differences could be heavily influenced by 

population differences as well as the variation in the cut-

off values for sarcopenia noted between each study. 

 

Amongst non-Asian populations, research in Brazilians 

aged 60 years or over has revealed an average overall 

prevalence of sarcopenia 17%, with rates of 20% in 

women and 12% in men [24]. In a study of individuals 

aged 65 years or older in Belgium, sarcopenia was 

reported to range from 9.25% to 18%, with the 

differences noted caused by variation in the cut-off 

values that were used in this specific study [25]. In the 

Maastrict study from the Netherlands, approximately 

23% of adults 65 years or older were sarcopenic [26], 

and in the USA, in adults 60 years of age or older, 

prevalence is as high as 36.5% [27]. Additionally, it is 

reported that the prevalence of sarcopenia is 6.2% of 

men and 9% of women aged 65 years in Australia [28]. 

Despite available records, data for nominated Australia 

sub-populations, including Indigenous communities or 

for that matter indigenous groups in other national 

populations, are absent. Therefore, studies are required 

to provide a comprehensive understanding of sarcopenia 

prevalence in these and other groups, with the goal of 

developing effective targeted public health prevention 

and management strategies. 

 

In addition, to the overall differences in sarcopenia 

prevalence noted above between men and women, a 

study by Kirchengast and Huber noted a higher 

prevalence of sarcopenia in women aged less than 70 

years (females 31% vs. males 18.2%), but higher 

prevalence of sarcopenia in males aged over 80 years 

(males 50% vs. females 43.8%) [29]. This was suggested 

to relate to the more rapid decrease in steroid hormones 

that are responsible for the maintenance of muscle mass, 

in post-menopausal females. However, after the age 80, 

testosterone concentrations in males decline, which leads 

to a greater reduction in muscle mass in men of this age 

group, when compared to females [29]. 

 

Mechanism of sarcopenia 
 

The genetics of sarcopenia 

Studies to date have explored the relationship between 

Single Nucleotide Polymorphisms (SNPs) and 

sarcopenia, focusing on vitamin D receptor (VDR), 

interleukin-6 (IL6), alpha-actinin-3 (ACTN3), and 

Myostatin (MSTN) polymorphisms [30–34]. These 

revealed an association between ACTN3 and VDR gene 

variants and sarcopenia, while no such association was 

observed for IL6 variants and a specific MSTN variant 

linked to strength in athletes [30–35]. It is worth noting 

that these studies, employed both low muscle mass and 

impaired muscle function as criteria for defining 

sarcopenia. Other SNPs associating with sarcopenia 

include, fat mass and obesity associated gene (FTO) 

rs9939609 from fat, sex hormone Estrogen receptor 1 

gene (ESR1) rs4870044, nitric oxide synthase 3 gene 

(NOS3) rs1799983 in the vascular endothelium, and 

Thyrotropin-releasing hormone receptor (TRHR) 

rs783255 [36]. Telomere attrition is another important 

mechanism to consider during ageing-associated 

sarcopenia progression [37]. For example, in older 

Chinese adults, longer telomeres have been linked to a 

slower decline in grip strength [38]. Moreover, a recent 

study has shown an association between shorter 

telomere length and increased sarcopenia incidence and 

persistence on older adults [39]. 

 

The epigenetics of sarcopenia 

Epigenetic modifications are widely recognized as 

significant regulators of skeletal muscle mass and repair 

[40]. Alterations in DNA methylation patterns and the 

presence of specific microRNA species are factors 

linked to age-related dysfunction in skeletal muscles, 

including sarcopenia [40]. Findings from the 

Hertfordshire Sarcopenia Study (HSS) show that the 

methylation changes associated with sarcopenia are 

concentrated in genes related to myotube fusion, 

oxidative phosphorylation, and voltage-gated calcium 

channels [41]. Moreover, it was observed that treatment 

of human primary myoblasts with GSK343, a histone 

methyltransferase Enhancer of Zeste Homolog 2 (EZH2) 

inhibitor, led to increased expression of the paired box 

transcription factor PAX7, which was associated with 

impaired myotube fusion and increased production of 

ATP. Treatment with GSK343 further altered the 

methylation status of genes linked to muscle energy 

generation (oxidative phosphorylation) and muscle 

growth (myogenesis) [41]. 

 

Biomarkers in sarcopenia: a complex interplay 

of mechanisms 
 

The progression of sarcopenia is principally associated 

with a series of changes, including neuromuscular 

junction modifications, changes in the endocrine 

system, altered growth factor expression, increased 

muscle protein turnover and changes in physiological 

behaviour. Consequently, it would be highly improbable 

that a single biomarker gene or protein could accurately 

and precisely determine the presence of sarcopenia in 

patients. To understand the underlying mechanisms 
more completely and to accurately identify elderly 

individuals with sarcopenia, it is important to develop a 

key panel of precise biomarkers for these pathways. 
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Specific biomarkers are essential for clinical assessment 

to enable the identification of individuals with 

sarcopenia, or at risk of developing sarcopenia, and to 

monitor the effectiveness of prevention and treatment 

strategies. These biomarkers can be categorized 

according to different pathophysiological mechanisms 

associated with sarcopenia, which are outlined below. 

 

The neuromuscular junction (NMJ) 

Sarcopenia pathogenesis frequently involves neuro-

muscular junction (NMJ) dysfunction. NMJs are crucial 

for transmitting muscle action potentials, and their 

malfunction can lead to neuromuscular fatigue, limiting 

exercise in individuals, especially the elderly [42–44]. 

Studies have suggested that NMJ dysfunction may 

result from increased proteolytic cleavage of agrin, 

which stabilizes the acetylcholine receptor (AChR). 

This cleavage produces a C-terminal agrin fragment 

(CAF) and is measurable in the serum. Elevated CAF 

levels associate with sarcopenia and neuromuscular 

fatigue, and correlate with loss of lean mass in the 

elderly [45]. Further markers of NMJ stability, notably 

brain-derived neurotrophic factor (BDNF), and glial cell 

line-derived neurotrophic factor (GDNF) have been 

assessed and a reduction in the levels of both have been 

associated with muscle loss and sarcopenia in 

Parkinson’s disease patients [46]. 

 

The endocrine system 

Hormonal imbalances play a significant role in 

sarcopenia. Essential hormones include growth 

hormone (GH), insulin-like growth factor-1 (IGF-1), 

dehydroepiandrosterone (DHEA), and testosterone. GH 

levels decrease with age, leading to lower daily 

secretion when compared to young adults [47]. The 

growth-promoting effects of GH are mediated through 

IGF-1, a hormone that stimulates muscle growth and 

regeneration, which is also decreased in sarcopenia [48, 

49]. The levels of the adrenal steroid DHEA decline 

with age, influences muscle growth via IGF-1 and has 

varying associations with muscle strength [50]. 

Testosterone shows properties that counteract muscle 

breakdown, including reducing inflammation, and 

promoting muscle growth [51, 52]. Importantly, 

testosterone supplementation can prevent the reduced 

muscle mass and impaired muscle strength observed in 

elderly men, however, there are potential risks to 

treating with high doses of testosterone [53]. 

 

The levels of inflammatory proteins and cytokines are 

further altered during sarcopenia and an overall status of 

increased systemic inflammation in the body is associated 

with reduced muscle mass and impaired muscle function 
[54]. The levels of the inflammatory marker C-reactive 

peptide (CRP) have been shown to increase in circulation 

in patients with sarcopenia [55, 56]. Furthermore, 

elevated levels of the inflammatory cytokines, TNF-

alpha and IL6, are associated with reduced muscle 

mass, muscle function and sarcopenia [56–58]. 

 

Growth factors 

Sarcopenia associates with an imbalance between factors 

that enhance and suppress muscle cell growth. In this 

regard, the transforming growth factor-β (TGFβ) 

superfamily member myostatin (GDF8), a potent 

negative muscle growth regulator, has received interest 

[59]. Some studies have reported elevated serum levels of 

myostatin in older individuals, however, the results are 

contradictory [60–63]. However, elevated levels of 

MSTN have been linked to decreased muscle function 

during aging [64, 65]. In addition, treatment with 

follistatin (FSTN), a myostatin inhibitor, has been shown 

to significantly increase muscle mass [66] and levels of 

FSTN have been shown to decrease during aging [67]. 

Further TGFβ superfamily members Activin A and 

Activin B have been implicated in muscle mass 

regulation, and in some conditions these growth factors 

have shown a more significant role in promoting muscle 

wasting than myostatin [68]. Levels of Growth 

Differentiation Factor-15 (GDF15), also a TGFβ 

superfamily member, are positively associated with aging 

and sarcopenia, but negatively associated with muscle 

mass [69, 70], supporting GDF-15 as a potential 

important biomarker of sarcopenia. The secreted pro-

myogenic growth factor Irisin, has also been shown to 

play important roles in muscle growth, differentiation, 

repair, and regeneration [71, 72]. Additionally, the levels 

of Irisin are decreased during ageing and delivery of 

Irisin protein has been shown to improve sarcopenia in 

mice [73], providing evidence to support the importance 

of Irisin during sarcopenia. 

 

Muscle protein turnover 

Early structural changes in skeletal muscle associated 

with sarcopenia are detectable through measuring distinct 

serum markers. The turnover of collagen type VI, and 

subsequent production of the degradation fragment 

(C6M) and type VI collagen N-terminal globular domain 

epitope (IC6), may serve as biomarkers of muscle mass 

[74]. However, the utility of these biomarkers in 

assessing muscle mass in aged individuals remains to be 

clarified. 3-Methylhistidine (3MH), a methylated form of 

histidine specific to myofibrillar proteins (e.g., myosin 

and actin), is another molecule associated with muscle 

proteolysis and assessment of serum levels of 3MH has 

been used to assess breakdown of muscle [75]. However, 

3MH is also found in cardiac and smooth muscle tissue, 

so analysis of 3MH will not provide a specific measure of 

skeletal muscle protein breakdown alone [76]. Elevated 
levels of the skeletal-muscle isoform of Troponin T 

(sTnT), an important component of the muscle contractile 

unit, can also signify muscle damage [77]. Additionally, 
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serum creatinine, a marker of muscle mass, has been used 

in conjunction with cystatin c (a protein produced by all 

nucleated cells) to create the sarcopenia index for 

assessing muscle mass [78]. However, further work 

needs to be done to validate the accuracy of this approach 

in diagnosing sarcopenia [79]. 

 

Disease-related factors 
 

Hypertension and sarcopenia 

Given the ever-increasing aging population and the 

rising prevalence of sarcopenia and hypertension 

(HTN), exploring the relationship between these two 

conditions has been considered. Several studies have 

provided a clear link between sarcopenia, elevated 

blood pressure and hypertension (HTN) [80, 81].  

In agreement, a correlation between reduced muscle 

mass/strength and hypertension has been reported [82, 

83], which is associated with increased risk of 

sarcopenia in older individuals [84]. Sarcopenia is 

associated with a chronic inflammatory state in the 

body, which is often linked to obesity, or what is called 

sarcopenic obesity, and insulin resistance (IR) [85]. 

Mechanistically, this chronic inflammation can 1) 

trigger the release of catabolic cytokines that are 

responsible for the breakdown of muscle proteins [85] 

and 2) stimulate the downstream renin-angiotensin-

aldosterone system (RAAS), where overactivation of 

RAAS leads to the development of HTN [86]. Moreover, 

there is a defined relationship between IR, increased 

activity of RAAS and HTN [87, 88], which will further 

contribute to the reduced insulin response and increased 

HTN commonly observed in sarcopenic patients. 

 

Diabetes mellitus and sarcopenia 

The risk of sarcopenia in Type 2 Diabetes Mellitus 

(T2DM) patients is greater when compared to non-

diabetic individuals [89]. T2DM and Sarcopenia 

exhibit a bidirectional association [90], with the 

presence of each increasing the risk of the other [91]. 

The main pathology associated with T2DM is IR. 

Skeletal muscle, as a peripheral tissue, is a major target 

insulin action in the body and importantly, impaired 

insulin action promotes protein degradation, leading to 

reduced skeletal muscle mass and strength [92]. 

Mitochondrial dysfunction is a common comorbidity 

of sarcopenia and is fundamentally linked to decreased 

muscle mass and function [93] and development of 

insulin resistance [94]. Mitochondrial dysfunction in 

diabetics results in impaired lipid oxidation and IR, 

leading to increased lipids in muscle cells and the 

development of sarcopenia [95]. Furthermore, loss of 

muscle mass, secondary to age and sarcopenia, causes 

metabolic dysregulation leading to decreased insulin 

sensitivity, changed oxidative defences, and impaired 

mitochondrial function [96]. In addition, testosterone 

and IGF1, which are hormones involved in muscle 

protein synthesis, are decreased in patients with T2DM  

[97, 98]. 

 

Heart failure and sarcopenia 

Altered muscle composition and function are important 

factors associated with heart failure progression [99]. 

Importantly, a common catabolic response and loss of 

myofibrillar proteins is noted in skeletal muscles during 

chronic heart failure [100]. Sarcopenia can cause a poor 

prognosis in heart failure patients, and a recent 

systematic review noted that 34% of patients suffering 

from heart failure also had sarcopenia [101]. Heart 

failure patients on medications, such as digoxin and 

diuretics, are prone to develop nausea and gastro-

enteropathy, which ultimately causes anorexia, 

malabsorption, weight loss and eventual loss of muscle 

mass and strength [102, 103], potentially exacerbating 

the sarcopenic phenotype. In addition, physical 

inactivity, which is common in heart failure patients, 

can cause decreased insulin sensitivity which can 

adversely affect muscle metabolism [104]. In 

agreement, heart failure is commonly associated with IR 

[105]. Moreover, low physical activity can impair 

mammalian target of rapamycin (mTORC1) signaling, 

which interferes with muscle protein synthesis and 

skeletal muscle growth [106]. 

 

Coronary artery disease and sarcopenia 

Coronary Artery Disease (CAD) is the most common 

form of CVD, with HTN and T2DM being important 

risk factors for the occurrence of CAD [107]. Handgrip 

strength is known to be an independent predictor of 

CAD [108], and an inverse association between muscle 

mass and CAD has been reported [109]. One potential 

mechanism to explain this relationship is that lower 

muscle mass may reduce whole-body energy 

expenditure, leading to fat accumulation and a greater 

risk of CAD. 

 

Studies have examined sarcopenia as a predictive factor 

for poor major adverse cardiovascular event (MACE) 

outcomes in patients with CAD [110]. This can be 

explained in part due to altered expression and secretion 

of muscle-specific growth factors (Myokines) from 

sarcopenic muscle. The levels of specific myokines are 

variable in patients with heart failure and CAD. 

Specifically, the levels of the promyogenic factor Irisin 

are decreased in CAD [111], which is important as 

Irisin has been shown to have several cardiac protection 

functions in pre-clinical models [112]. In contrast, 

levels of the inhibitory myokine Myostatin are 

increased in heart failure patients [111], where over-
expression of Myostatin in the myocardium is 

associated with increased fibrosis in the heart [113]. 

The myokine BDNF is primarily cardioprotective, with 
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lower levels of BDNF observed in CAD patients [114]. 

An overview of sarcopenia biomarkers and interactions 

between cardiovascular disease risk factors and 

sarcopenia is summarized in Figure 1. 

 

Cardiac surgery and sarcopenia 

Cardiac surgery is becoming prevalent in more complex 

cases that include elderly frail patients who have 

multiple comorbidities, including sarcopenia. In 

addition, research has shown that patients with 

characteristics of sarcopenia are at increased risk of 

postoperative complications [115–117]. Cardiopulmonary 

bypass (CPB) is a technique that temporarily takes  

over heart and lung function during cardiac surgery. 

Controversy relating to the duration of CPB in 

sarcopenic and non-sarcopenic patients has been 

reported, with some studies revealing a prolonged CPB 

time in sarcopenic patients, while others reported no 

effect of sarcopenia on the duration of CPB [118–120]. 

In addition, intubation times for Sarcopenic patients are 

increased when compared to non-sarcopenic patients, 

which can be explained by diminished respiratory 

muscle function and lower physiological reserve, which 

is the capacity for cells, tissues and organs to function 

beyond their baseline level [7]. As a result, these 

patients are more prone to complications and longer 

stays in intensive care units and display higher rates of 

early and late mortality post cardiac surgery [7]. 

Generally, sarcopenia is reported to also be a significant 

predictor of mortality in other major surgeries [8]. 

Nonetheless, despite the increased mortality rate in 

patients with sarcopenia, no significant difference in the 

risks of surgical wound infection, arrhythmia, and 

stroke, following cardiac surgery in sarcopenic patients 

has been reported [7]. 

 

Furthermore, the presence of sarcopenia has a 

significant effect on the duration of hospital stay, 

discharge transfers and cardiac rehabilitation [120, 121]. 

This may be due to the decreased ability of these 

patients to tolerate the physiological stress of surgery, 

which results in a slower recovery. Thus, cardiac 

rehabilitation programs may be critical in meeting  

the challenges associated with sarcopenia. Moreover, 

involving multiple professional specialisations, includ-

ing physicians, physiotherapists, and nutritionists during 

cardiac rehabilitation has been shown to significantly 

improve the outcomes of patients undergoing cardiac 

surgery [122]. In the future it will be important to 

consider how identification of sarcopenic patients and 

subsequent intervention in the form of rehabilitation 

prior to surgery could potentially prevent and manage 

the associated complications. 

 

Importantly, several risk models, including the 

European System for Cardiac Operative Risk 

Evaluation, EuroSCORE II [123] and the Society of 

Thoracic Surgeons predicted Risk of Morbidity and 

 

 

 

Figure 1. The bidirectional association of CVDs and their comorbidities with sarcopenia. Diagram showing the complex 

interactions that contribute to sarcopenia development in CVDs (coronary artery disease and heart failure) and their comorbidities 
(hypertension and diabetes mellitus). Significant changes in key proteins (circulating biomarkers) associated with muscle function, 
neuromuscular junction, protein turnover and the endocrine system contribute to sarcopenia. ↑ = Increase and ↓ = decrease. CVDs and 
their comorbidities all contribute to sarcopenia and importantly, this relationship is bidirectional, with the presence of sarcopenia also 
contributing to the CVD comorbidities. CVD; Cardiovascular Disease. 
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Mortality (STS-PROMM) [124] have introduced risk 

scoring in cardiac surgery. However, these risk models 

focus on medical comorbidities and do not include the 

functional status of frailty or sarcopenia. Given the 

association of sarcopenia with poorer health and 

surgical outcomes, consideration of sarcopenia status 

may be important for future iterations of these risk 

scoring systems for cardiac surgery. 

 

Screening 
 

Detecting sarcopenia before any apparent symptoms can 

minimize the risk of severe consequences. As such, 

screening questionnaires have been created and trialled 

for this purpose. Several years ago, Malmstrom and 

Morley et al., introduced the SARC-F questionnaire 

[125]. SARC-F is a questionnaire considering: Strength 

(S), Assistance walking (A), Rising from a chair (R), 

Climbing stairs (C), and Falls (F) on a scale of 0 to 2 for 

each component (see Table 2 for details). SARC-F has 

been a popular screening tool for sarcopenia, however, 

studies have reported SARC-F to be highly specific but 

have low sensitivity [126]. More recently, Barbosa-

Solva et al., introduced a modified questionnaire, that 

included calf circumference (CC) as an additional 

measurement, called SARC-CalF (SARC-F combined 

with Calf Circumference), and this was reported to be a 

highly sensitive and specific questionnaire [127]. An 

additional questionnaire, the mini sarcopenia risk 

assessment (MSRA), which is available in short 

(MSRA-5) and full (MSRA-7) versions has been 

introduced, but there is still a lack of evidence to 

support the use of this questionnaire to date [128]. 

 

According to the EWGSOP2 definition, sarcopenia is 

represented by loss of muscle mass with clinical 

repercussions, in other words a loss of muscle function. 

The proposed SARC-CalF predicts subjects to be 

positive for sarcopenia when they display a total of 11 

points, which is comprised of low muscle mass (10 

points) and a minimum of one symptom of muscle 

function loss (1 to 10 points) [127]. Participants who 

present symptoms of muscle function loss without low 

muscle mass, do not under the EWGSOP2 definition 

have sarcopenia and are also not identified as having 

sarcopenia according to SARC-CalF. 

 

The study by Barbosa-Solva et al. also compared 

SARC-F with SARC-CalF and used the receiver 

operating characteristic (ROC) curve and considered the 

area under the curve (AUC) for this comparison [127]. 

The SARC-F performance as a screening tool for 

sarcopenia showed an AUC of 0.592, which suggested 

insufficient sensitivity for detecting sarcopenia. 

However, the inclusion of CC with SARC-F improved 

the questionnaire sensitivity 2-fold (from 33% to 66%) 

without compromising its specificity with an AUC of 

0.736 [127]. A further study by Krzymińska-Siemaszko 

et al. also supported the use of SARC-CalF when 

validated against all diagnostic criteria with a sensitivity 

as high as 75% and an AUC ranging between 0.711-

0.874 [129]. 

 

It has been reported that a limitation in CC assessment 

is the influence of intramuscular or subcutaneous 

adipose tissue deposition and peripheral oedemas [130, 

131], as a result, obese patients can show a high CC. As 

increased adiposity is a common comorbidity of 

sarcopenia, which is referred to as sarcopenic obesity 

[132], questionnaires alone may be inadequate for 

screening obese patients for sarcopenia with a more 

formal diagnostic evaluation required. 

 

A concise summary of the four common screening 

questionnaire tools is provided in Table 2. 

 

Imaging in sarcopenia 
 

A wide spectrum of radiological imaging modalities, 

including dual-energy X-ray absorptiometry (DXA), 

computed tomography (CT), magnetic resonance (MR), 

and ultrasound (US), are used to assess muscle quality 

and mass to facilitate the “clinical” diagnosis of 

sarcopenia. A summary of the imaging modalities used 

for sarcopenia and their benefits and limitations is 

provided in Table 3. 

 

Dual-energy X-ray absorptiometry (DXA) 

DXA is the most commonly used radiological tool, 

employing an x-ray source to evaluate body 

composition. This allows the concurrent measurement 

of lean mass (LM), fat mass (FM), and bone mineral 

content (BMC). LM evaluation can estimate all non-

fat/non-bone tissues [133]. The appendicular lean mass 

(ALM) value (the sum of LM measurements from lower 

and upper limbs) is the calculated measurement for 

muscle mass obtained from DXA scans, where the 

ALM is then indexed to height, to calculate the ALM 

index (ALMI = ALM/height2), which forms an 

important measure for sarcopenia [134]. The new 

EWGSOP guidelines have slightly modified prior 

diagnostic cut-off values, recommending an ALMI of 

<5.5 kg/m2 in females and an ALMI of <7.0 kg/m2 in 

males to define low muscle mass and confirm the 

presence of sarcopenia [13]. DXA cannot assess muscle 

quality (muscle fat infiltration), and its measurements 

are affected by the hydration status of patients [134, 

135]. However, clinically, the benefits of DXA 

outweigh the limitations. Thus, the EWGSOP 

guidelines suggest that DXA be used as the first tool for 

clinical assessment of sarcopenia, with MR and CT-

based approaches more suited to research studies [13]. 
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Table 2. Screening tools for sarcopenia. 

Questionnaire Domains and specific questions Comments 

SARC-F [125] • Muscle Strength: Q: How much difficulty do you have in lifting and 

carrying 10 pounds (4.5 kg)? (score: none = 0, some = 1, a lot or unable 

= 2) 

• Ambulation: Q: How much difficulty do you have walking across a 

room? (score: none = 0, some = 1, a lot or unable without help = 2) 

• Chair rise: Q: How much difficulty do you have transferring from a 

chair or bed? (score: none = 0, some = 1, a lot or unable without help = 

2) 

• Stair Climbing: Q: How much difficulty do you have climbing a flight 

of 10 stairs? (score: none = 0, some = 1, a lot or unable without help = 2) 

• Falls: Q: How many times have you fallen in the past year? (score: none 

= 0, 1-3 falls = 1, 4 or more falls = 2) 

Positive if score ≥ 4 

Advantages: 

• Highly specific 

• Self-reporting 

• Quick 

Disadvantage: 

• Low Sensitivity 

SARC-CalF 

(SARC-F + Calf 

Circumference) 

[127] 

Questions and scoring for the first 5 domains are identical to SARC-F 

above: 

• Muscle Strength (score 0-2) 

• Ambulation (score 0-2) 

• Chair rise (score 0-2) 

• Stair Climbing (score 0-2) 

• Falls (score 0-2) 

• The new component is measurement of Calf Circumference (CC): 

Measure the patient's exposed right CC with the legs relaxed and feet 20 

cm apart from each other (score 0 or 10) 

○ Score 10: CC ≤ 33 cm in female 

○ Score 10: CC ≤ 34 cm in male 

Positive if score ≥ 11 

Advantages: 

• Highly specific 

• Highly sensitive 

MSRA 5 [128] • Age (score ≥70 years = 0 or <70 years = 5) 

• Hospitalisation history in last year (score: >once = 0, once = 10 or none 

= 15) 

• Physical activity capacity (score: walk <1000m = 0 or walk >1000m = 

15) 

• Three meals a day (score: no = 0, yes = 15) 

• Weight Loss in the last year (score >2kg = 0 or ≤2kg = 10) 

Positive if score ≤ 45  

Advantage: 

• Higher Specificity than MSRA 

7 

Disadvantages: 

• Lower Sensitivity than MRSA 

7 

• Limited use in cardiac patients, 

given questionnaire validated 

only in NYHA class 0-1 

patients, that have normal 

kidney function and no 

cognitive impairment.  

MSRA 7 [128] • Age (score ≥70 years = 0 or <70 years = 5) 

• Hospitalisation history in last year (score: >once = 0, once = 5 or none = 

10) 

• Physical activity capacity (score: walk <1000m = 0 or walk >1000m = 

5) 

• Three meals a day (score: no = 0, yes = 5) 

• Food consumption 1, milk or dairy products (score: not every day = 0, at 

least once a day = 5) 

• Food consumption 2, protein (score: not every day = 0, at least once a 

day = 5) 

• Weight Loss in the last year (score >2kg = 0 or ≤2kg = 5) 

Positive if score ≤ 30 

Advantage: 

• Higher Sensitivity than MRSA 

5 

Disadvantages: 

• Lower Specificity than MRSA 

5 

• Limited use in cardiac patients, 

given questionnaire validated 

only in NYHA class 0-1 

patients, that have normal 

kidney function and no 

cognitive impairment. 

Table summarising current screening tools for sarcopenia. SARC-F, Strength, Assistance walking, Rise from a chair, Climb 
Stairs, and Falls; SARC-CalF: Strength, Assistance Walking, Rise from a chair, Climb Stairs, Calf circumference and Falls; MSRA: 
Mini Sarcopenia Risk Assessment questionnaire; NYHA, New York Heart Association. 
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Computer tomography (CT) 

Computer Tomography (CT) can be used to assess both 

muscle mass, muscle density and muscle quality 

(muscle fat) [136]. CT can distinguish lower density fat 

pixels from higher density muscle pixels, which allows 

the effective subtraction of intramuscular fat from 

muscle mass. In contrast, DXA offers estimation of 

whole-body lean mass, while CT can measure muscle 

attenuation (density) and size in distinct regions [136]. 

Measurements obtained from a single cross-sectional 

area (CSA) of a CT slice are very accurate in 

estimating body composition, and there is a strong 

association between skeletal muscle distribution, 

whole-body and single-slice adipose tissue [137]. 

Notably, CSA is not commonly applied alone but 

indexed for height (CSA/height2) to obtain the Skeletal 

muscle index (SMI) for muscle mass. Some sarcopenia 

studies have used thigh CT analysis to classify 

sarcopenia [138, 139]. In addition, the pectoralis major 

muscle has also been identified as another target 

muscle for confirming sarcopenia [140]. However, 

abdominal CT imaging of the psoas muscle at L3 or L4 

level, appears to be the preferred method for evaluating 

sarcopenia [141]. Notably, recent work has revealed 

that analysis of only the psoas muscle at these single 

points may not be the best approach in all conditions, 

with analysis of all muscles at L3 suggested as a more 

reliable analysis [142]. 

 

CT has the advantage of being routinely utilised for 

staging in several conditions, such as during cancer 

follow-ups and during pre-cardiac surgery assessment 

and is therefore optimal for opportunistic assessment of 

sarcopenia without the need of additional examinations. 

However, no consensus is currently available for 

standardized CT thresholds to diagnose sarcopenia. 

Nonetheless, CT is currently used for research purposes 

in several retrospective and prospective analyses [143]. 

 

Magnetic resonance imaging (MRI) 

MRI can measure the amount of fat and muscle because 

of its multipara-metricity and high contrast resolution. 

Like CT, MRI has a very high accuracy in evaluating 

fat and muscle volumes [144] and has been shown to be 

a useful tool for estimating skeletal muscle mass [137]. 

MRI has the potential to be an optimal tool for 

sarcopenia imaging as it has no radiation exposure. 

However, it is mainly used for research and cannot be 

effectively used in clinical practice because of its long 

scan and post-processing time, high expense, and lack 

of current protocol standardization. 

 

Ultrasonography 

Ultrasound (US) scans can be used to reliably assess 

muscle quality and mass and have potential for 

sarcopenia [145]. It has high inter-reader reliability to 

evaluate muscle CSA and shows no significant 

difference to that of MRI in muscle CSA and volume 

measurement [146]. Ultrasound is highly utilised for 

several musculoskeletal diseases and is readily available 

and cost effective [147]. However, despite the potential 

for US in diagnosing sarcopenia, there are currently no 

defined cut-off values for muscle mass loss and muscle 

quality parameters, which limits its use for sarcopenia 

in clinic [148]. 

 

Treatment of sarcopenia 
 

Sarcopenia management and treatment should be based 

on a thorough understanding of its pathophysiology. 

Importantly, both pharmacological and non-

pharmacological approaches have been considered for 

treating sarcopenia, a summary of which is provided in 

Table 4. 

 

To date, treatment options for sarcopenia in clinical 

practice include nutritional supplementation and 

resistance training [149, 150], which links with 

decreased patient hospitalization through increases in 

muscle trophism and strength [150]. 

 

Nutrition 

Although the effectiveness of nutritional intervention 

without exercise is not known in sarcopenia 

management, some dietary patterns, including adequate 

intake of vitamin D, protein, antioxidants, and long-

chain polyunsaturated fatty acids have been reported to 

be effective [149]. Moreover, a combination of high-

protein diet and resistance exercise is described to 

increase muscle strength [151]. Branched chain amino 

acids including the essential amino acid Leucine are 

important for protein synthesis in the body [152]. 

Importantly, soluble Leucine-enriched protein 

supplementation, is effective in enhancing muscle  

mass and to a lesser extent muscle function in older 

individuals [153, 154]. Although protein intake 

requirements will most likely vary between individuals 

and different populations around the world, 

recommendations from the European Society for 

Clinical Nutrition and Metabolism (ESPEN) expert 

group suggest between 1.0-1.2g protein/kg/day for 

healthy individuals and between 1.2-1.5g protein/kg/day 

protein for individuals with chronic illness [155]. 

Whereas the US Food and Nutrition Board (FNB) 

recommends protein intakes for all adults of 0.8g 

protein/kg/day [156]. 

 

The “Mediterranean diet” is known to be rich in 

nutrients has been associated with improved muscle 

mass and function [157] and has important health 

benefits for individuals with coronary heart disease 

[158]. 
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Table 3. Imaging tools for sarcopenia. 

Tool  Measurement Advantages Disadvantages 

Dual-energy  

X-ray 

absorptiometry 

(DXA) [133–

135] 

• Appendicular and 

whole body lean 

mass  

• Inexpensive 

• Widely Available 

• Fast Acquisition 

• Low Radiation Risk 

• Cut-off values available 

• Simultaneous measurement of whole-

body fat mass and bone mass 

• Highly recommended by EWGSOP  

• 2-dimentional data 

• Not including trunk muscles 

• No muscle quality data 

• Confounded by oedema and 

obesity   

Computer 

Tomography 

(CT) [136, 137] 

• Cross sectional 

area of individual 

or group of 

muscles  

• Attenuation 

values 

• Measures muscle mass and muscle 

quality 

• Numerous indications allow 

opportunistic use 

• Highly accurate 

• Differentiate between fat and fat free 

mass  

• Expensive 

• High Radiation Risk 

• No cut-off values 

• Low Availability 

• Time consuming 

segmentation process 

• Commonly used at L3 level, 

which has low opportunistic 

utility in cardiac conditions.  

Magnetic 

Resonance 

Imaging (MRI) 

[137, 144] 

• Cross-sectional 

area of individual 

or group of 

muscles 

• Fat content by 

Dixon imaging 

• Measures muscle mass and muscle 

quality 

• Highly accurate 

• Best spatial resolution 

• Body mass composition differentiation 

• No Radiation Risk  

• Expensive 

• No cut-off values 

• Low Availability 

• Long acquisition time  

Ultrasound 

(US) [145–148] 

• Cross-sectional 

area 

• Muscle thickness 

and echo-

intensity   

• Measures muscle mass and muscle 

quality 

• Inexpensive 

• Widely available 

• Fast Acquisition 

• No radiation 

• Real time visualization of target structure  

• Operator dependent 

• No cut-off points 

• Poor accuracy 

• Scarcely reproducible 

Table summarising current imaging modalities used to assess skeletal muscle mass and clinically diagnose sarcopenia. 
Important advantages and disadvantages for each approach are listed. Dual-energy X-ray absorptiometry (DXA), Computer 
Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US). 

 

Vitamin D effectiveness has also been investigated  

for potential benefits on muscle mass, muscle  

strength and physical performance. Intriguingly, 

vitamin D supplementation has been shown to  

only have a minimal effect on muscle strength and  

no effect on muscle mass in elderly [159, 160]. 

However, supplementation of diet with both protein 

(leucine-enriched) and vitamin D can improve  

muscle function, including stair climbing ability,  

and increase muscle mass in older adults with 

sarcopenia [161]. 

 

Exercise 

Lack of exercise and inactivity are important risk 

factors for sarcopenia [162]. Physical exercise, 

including aerobic and resistance training, can be a safe 

and effective intervention for sarcopenia and has proven 

utility for increasing muscle mass, strength, and 

function [163–166]. 

 

Aerobic exercise, including cycling and walking, has 

been shown to reduce blood pressure in patients with 

resistant hypertension [167], which has important 

implications for overall cardiovascular health. Aerobic 

exercise has been shown to increase muscle CSA and 

improve muscle quality [168, 169] but is less effective 

than resistance exercise at promoting skeletal muscle 

hypertrophy than resistance exercise [170]. 

 

Resistance exercise is the primary non-pharmacological 

treatment for sarcopenia increasing muscle mass, 

strength, function [171] and has important benefits for 

patients with heart failure [172]. Although the 

importance of resistance exercise is clear, no exercise 
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Table 4. Sarcopenia treatments and interventions. 

Modality 
Intervention (with 

reference) 
Effect Notes / Comments 

Nutrition  High-protein diet + 

prolonged 

resistance exercise 

[151] 

↑ muscle mass 

↑ muscle strength 

Synergistic effect is observed when both 

interventions are combined. Conflicting results 

across different studies have been noted. 

BCAAs, especially. 

Leucine [152–154] 

↑ protein synthesis 

↑ muscle mass (some 

functional gain) 

Soluble protein forms are most effective. 

Studies tended to be in healthy older individuals. 

The presence of chronic illness, such as heart 

disease and cancer, was typically an exclusion 

criterion. More studies looking at benefit in 

patients with chronic illness should be undertaken. 

Vitamin D alone 

[159, 160] 

Only minimal ↑ in muscle 

strength 

no effect on muscle mass 

Studied in elderly and postmenopausal women. 

More work needs to be done to understand the 

function of Vitamin D in sarcopenia. 

Vitamin D + 

Leucine-enriched 

protein [161] 

↑ muscle mass & function 

(e.g., chair, sit-stand 

capability) 

Synergistic supplementation in elderly with mild 

to moderate mobility limitations. Patients with 

comorbidities excluded, such as kidney or liver 

failure.  

Exercise 

Aerobic exercise 

(walking, cycling) 

[167–169] 

↑ muscle CSA 

↑ muscle quality (defined 

as strength per unit muscle 

mass) 

↓ blood pressure 

↑ capillary density 

Cardiovascular 

and metabolic 

benefits 

No change in lean muscle 

mass. Less hypertrophic effect 

than resistance training. May 

not be viable for patients with 

functional decline or frailty, 

patients with chronic diseases, 

such as CVD were excluded. 

 

Resistance exercise 

[171, 172] 

↑ muscle mass, strength 

and function 

Primary non-

pharmacological 

approach 

No standardised program 

developed. Patients with 

chronic diseases may require 

different management 

approaches. 

 

Exercise frequency 

& duration  

[173–175] 

1-2 session(s)/week can 

help ↑ muscle strength 

≥3 months required for 

significant clinical effect: 

e.g., a significant ↑ muscle 

strength and physical 

performance. 

Systematic 

review supports 

long-term 

benefit 

Lack of standardisation and 

universal guidelines 

Pharmacological 

Testosterone  

[177–183] 

↑ muscle mass 

↑ muscle strength 

Effective in 

hypogonadal 

men 

Limited clinical trial data. No 

benefit on physical 

performance (muscle function); 

not recommended in patients 

without hypogonadism (limited 

use). Can lead to polycythemia 

and sleep apnoea, which 

negatively impacts patients 

with reduced cardiac reserve. 

Increases risk of cardiovascular 

events. 

 SARMs [184–187] 

↑ muscle and bone mass in 

pre-clinical rodent models 

↑ muscle mass and 

physical function in clinic 

Activates 

androgen 

receptor (AR) 

signalling 

Potential hepatotoxicity effects 

[188, 189] 
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Estrogen/hormone 

replacement therapy 

(HRT) [190–192] 

Conflicting studies. 

Beneficial effects on 

muscle mass & strength in 

postmenopausal women 

have been shown. 

However, studies have 

also shown no effect on 

muscle mass and strength. 

Used in 

estrogen-

deficient women 

Dose and physical activity of 

person important for beneficial 

effects.  

 
Growth Hormone 

(GH) [193–200] 

↑ muscle mass 

Some evidence of 

improved muscle strength 

↓ fat mass 

 

Stimulates IGF-

1 signalling. 

Increases 

metabolism 

↑ Insulin resistance, diabetes 

and metabolic syndrome. 

Increased risk of 

cardiovascular events. Unclear 

muscle function improvement. 

 
ACE inhibitors / 

ARBs [205–209] 

Some benefit for 

improving muscle mass 

and muscle function 

Cardiovascular 

medications 

with secondary 

muscle benefits 

However, conflicting evidence 

is noted: benefits of ACE 

inhibitors on muscle mass, 

function and performance are 

inconsistent. 

 

Ruvembri™ 

(Sarconeos / 

BIO101) [210–213] 

↑ protein synthesis in 

mouse C2C12 myotubes 

and human primary 

myotubes 

↑ myoblast differentiation 

(mouse C2C12 cells) 

↑ Physical performance in 

pre-clinical mouse models 

↑ gait speed in phase 2 

clinical trial 

Activator of 

MasR (a 

receptor of the 

renin–

angiotensin 

system); shown 

effective in 

Phase 2 (SARA-

INT trial) 

Good safety and 

pharmacokinetic profile. 

Phase-2 clinical trial, shown to 

be effective for improving gait 

speed. Phase 3 protocol 

prepared.  

 
Vorinostat (HDAC 

inhibitor) [215] 

Studies using mouse 

C2C12 muscle cells have 

shown that Vorinostat: 

↑ myotube size (diameter), 

↑ muscle cell 

differentiation 

↓ myoblast proliferation 

Only in vitro 

results (C2C12 

muscle cells).  

Seems to inhibit 

proliferation to 

promote 

differentiation 

of muscle cells 

(cell cycle 

regulation) 

No clinical trials yet, requires 

rigorous pre-clinical and 

clinical validation. Already 

FDA approved for T-cell 

lymphoma. As Vorinostat is an 

HDAC inhibitor off-target 

effects, including cardiac 

effects, can be an issue [216]. 

Summary of pharmacological and non-pharmacological treatment options for sarcopenia. Relevant references for each 
treatment modality along with known effects and important considerations are included. ↑ = Increase and ↓ = decrease. AR, 
Androgen Receptor; ACE, Angiotensin-Converting Enzyme; ARB, Angiotensin Receptor Blocker; BCAAs, Branched-Chain Amino 
Acids; CSA, Cross Sectional Area; FDA, United States Food and Drug Administration; HDAC, Histone Deacetylases; HRT, 
Hormone Replacement Therapy; MasR, Mas Receptor; SARA-INT trial, Sarcopenia-Interventional trial; SARM, Selective 
androgen receptor modulators. 

 

regime specifically designed to treat patients with 

sarcopenia has been developed, and at this stage the 

programs offered to sarcopenic patients can be quite 

variable [173]. However, reports suggest that as little as 

one exercise session per week has been shown to 

improve muscle strength in aged individuals [174]. 

However, results from a systematic review by Cruz-

Jentoff et al., suggest that periods of at least 3-months of 

exercise interventions are required to significantly 

improve clinical readouts [175]. Mechanistically, 

resistance exercise is reported to suppress chronic 

inflammatory factors, decrease oxidative stress, and 

reduce pathways involved in protein breakdown, such as 

the ubiquitin proteasome-mediated protein degradation 

[176]. 

 

Pharmacology 

Presently the are no specific drugs approved by the 

Food and Drug Administration (USA) for sarcopenia 

treatment. However, research focusing on identifying 
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and validating potential drug-based therapeutics for 

sarcopenia is well underway and the efficacy of several 

strategies and drugs will be discussed below. 

 

Testosterone is an important determinant of muscle 

function and for muscle mass maintenance during 

aging [177]. Studies have reported testosterone 

supplementation to be effective for improving muscle 

mass and strength in older individuals with different 

levels of testosterone and hypogonadism severity 

[178–180]. Nonetheless, the effectiveness of testo-

sterone in physical performance is negligible [177, 

181]. Thus, testosterone treatment is not recommended 

to be used in the absence of clear symptoms of 

hypogonadism [182, 183]. 

 

Selective androgen receptor modulators (SARMs) are a 

class of synthetic androgen receptor (AR) ligands that 

are able to bind AR and activate downstream signalling 

[184]. Clinical studies utilising SARMs have shown 

promise related to improving muscle mass and strength 

in older individuals [185–187]. However, the safety  

of SARMs is questionable, with published reports 

identifying hepatotoxic effects [188, 189]. 

 

The risk of sarcopenia is higher in post-menopausal 

women and is related to declining estrogen levels [190, 

191]. Importantly, studies have reported a beneficial 

effect of hormone replacement therapy (estrogen), and 

in increasing muscle strength, mass and performance in 

post-menopausal women [191, 192]. 

 

Growth hormone (GH), which is the main hormone 

stimulating the secretion of IGF-1, can promote the 

growth and development of organs and tissues, protein 

synthesis and it can affect fat, protein and carbohydrate 

metabolism [193]. Although GH has been shown to 

increase muscle mass, the benefits of GH supplementation 

on muscle function in older individuals are less clear 

[194–196]. Growth hormone can also increase the risk of 

insulin resistance and adversely affects the cardiovascular 

system [197–200]. Thus, there are concerns about the 

overall benefit of using GH supplements. 

 

Reduced Insulin-like Growth Factor 1 (IGF-1) levels are 

associated with sarcopenia [48, 201] and moreover, 

administration of IGF-1 has been shown to promote 

protein synthesis [202, 203]. IGF-1 has been investigated 

for improving muscle strength and function in patients 

with spinal and bulbar muscular atrophy [204], however, 

no improvement in muscle strength or function was noted 

upon treatment with the IGF-1 mimetic (BVS857) [204]. 

 
Studies in older adults have revealed improved muscle 

function upon taking a class of drugs that lower blood 

pressure, including Angiotensin converting enzyme 

inhibitors (ACEis) and angiotensin receptor blockers 

(ARBs), which block angiotensin II production and 

function, respectively [205]. Importantly, these are 

acknowledged medications for the treatment of heart 

failure. However, studies have shown mixed results on 

the benefits of ACEis and ARBs in improving muscle 

mass and function [205–209], as such further work is 

required to further characterise the benefit of ACEis and 

ARBs in sarcopenia. 

 

More recently, a series of drugs have been developed that 

are currently being tested in clinical trials for safety and 

efficacy in treating sarcopenia. Ruvembri™, also known 

as Sarconeos and BIO101, is based on a purified form of 

20-hydroxyecdysone, which is a steroid hormone found 

in arthropods [210]. Ruvembri™ functions as a Mas 

receptor (MasR) activator in the renin-angiotensin system 

and has been shown to promote protein synthesis in 

muscle and improve muscle cell differentiation [211, 

212]. A phase 2 clinical trial (SARA-INT) with 

Ruvembri™ have shown efficacy for treating sarcopenia 

with an increase in gait speed noted over a 400m walking 

test in older individuals [213]. 

 

Isomyosamine (MYMD-1) is a synthetic plant alkaloid 

that functions as a cytokine inhibitor targeting cytokines 

such as TNF-α [214]. Phase 1 clinical trials have been 

completed with decreased levels noted in healthy adults, 

with further clinical trials planned [214]. 

 

Vorinostat, a histone deacetylase inhibitor has also been 

identified [215], which has already been approved for 

treatment of haematological malignancies [216]. Current 

research has demonstrated the utility of Vorinostat in 

muscle cell differentiation, with increased myotube size 

noted upon treatment of C2C12 muscle cells [215]. 

 

Importantly, while several pharmacological interventions 

are under investigation including selective androgen 

receptor modulators (SARMs), growth hormone, and 

IGF-1 analogues many face hurdles in translation to 

clinical use due to inconsistent efficacy and safety 

concerns, such as hepatotoxicity and metabolic dys-

regulation. Although agents like Ruvembri™ (BIO101) 

have shown early promise in improving mobility metrics 

in phase II trials, no pharmacological therapy has yet 

gained approval for sarcopenia, and long-term outcome 

data remain sparse. These limitations emphasize the need 

for robust, large-scale clinical trials that assess both 

efficacy and safety across diverse populations. 

 

CONCLUSIONS 
 

There are shared pathogeneses between sarcopenia and 

CVD which remain to be further studied. Validated 

screening questionnaires and definitional criteria that 
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target specific populations are of great importance in 

detecting early-stage sarcopenia and thereby preventing 

occurrence and reducing severity. This will have the 

follow-on effect of improving the prognosis of 

cardiovascular disease in non-surgical and surgical 

stages of management. Although pharmacological 

approaches are being developed for sarcopenia, non-

pharmacological interventions that include nutritional 

supplements and resistance exercise remain the gold-

standard and are necessary steps to obviate the bi-

directional relationship of sarcopenia with CVD. Pre-

operative rehabilitation could be introduced in selective 

cases with sarcopenia to avoid major intra- and post-

operative independent complications of sarcopenia in 

cardiac surgery. Moreover, including sarcopenia as a 

factor on EuroSCORE II and STS risk scoring systems 

would be important for monitoring patients. 
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