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Abstract
1. Underwater photogrammetry is routinely used to monitor large areas of com-

plex and heterogeneous ecosystems, such as coral reefs. However, deriving data 
on benthic components (i.e. sand, rubble, coral and algae) from photogrammetry 
products has remained challenging due to the highly time- consuming process of 
manual data extraction.

2. We developed a machine learning approach to quantify benthic community com-
position in coral reefs from orthomosaics, which requires no manual delineation 
of benthic components for training or implementation. The current study pre-
sents RapidBenthos, an automated workflow that segments and classifies large- 
area images. Our pipeline (1) uses a pre- trained segmentation model, eliminating 
the need for manually generated fine- scale segmented training data, and (2) clas-
sifies the resulting segments from multiple views using the underlying survey im-
ages, allowing for classification to fine taxonomic levels.

3. Within a test photomosaic built from a coral reef area of 40 m−2, the model auto-
matically detected 43 different benthic classes. Validation resulted in an overall 
classification accuracy of 0.96 and a segmentation accuracy of 0.87, when com-
pared to a manually digitised replica. The RapidBenthos workflow was 195 times 
faster than manual segmentation and classification. Additional validation of 524 
Acropora coral colonies from 11 additional test plots resulted in a segmentation 
accuracy of 0.92 and classification accuracy of 0.88 to the coarser ‘Acropora’ 
group.

4. RapidBenthos has the capability to extract an unprecedented level of data from 
photomosaics of coral reefs or other complex environments, allowing to sustaina-
bly scale photogrammetric monitoring technique both in replicate and survey ex-
tent, which consequently can lead to new research questions and more informed 
ecosystem management.
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1  |  INTRODUC TION

Community composition is the type and relative abundances of 
taxa present in an sample (Bowker et al., 2021). It quantifies met-
rics describing the spatial organisation and entropy of ecosystem 
constituents (Loke & Chisholm, 2022) and is fundamental to assess 
ecosystem status and condition. In- situ time- series data on commu-
nity composition allow for tracking changes in ecosystem condition 
and resilience (Vercelloni et al., 2024), providing valuable insights 
for management. For example, understanding shifts in community 
composition following a disturbance can inform spatial prioritisation 
for interventions, leading to more effective management or resto-
ration (Bellwood et al., 2019; Boström- Einarsson et al., 2020; Evans 
et al., 2015; Nolan et al., 2021). However, for coral reefs, assessing 
changes over time is challenging due to the high heterogeneity and 
complexity of reef communities, the varying scales of study (from 
centimetres to thousands of kilometres), the remoteness of some 
marine environments and difficulties in underwater data collection 
(Hamylton, 2017; Madin et al., 2016; Obura et al., 2019).

Over the past decade, the adoption of close- range underwa-
ter photogrammetry (hereafter referred to as photogrammetry) 
in coral reef studies has grown significantly, becoming a standard 
method for monitoring these ecosystems (Bayley et al., 2019; 
Figueira et al., 2015; Miller et al., 2021; Nocerino et al., 2020; 
Obura et al., 2019; Remmers et al., 2023; Urbina- Barreto, Garnier, 
et al., 2021). Photogrammetry is the science of measuring and inter-
preting objects from images, typically by combining individual images 
into 3D reconstructions of large seafloor areas (tens to thousands 
square metres). This technique allows for continuous observation 
of the seafloor while preserving the spatial distribution of benthic 
features (Aber et al., 2010; Figueira et al., 2015; Luhmann, 2011). 
Orthomosaics, the two dimensional projections of these recon-
structions, enable the derivation of community- level metrics, such 
as colony size frequency distribution, clustering, density and tradi-
tional habitat metrics such as percentage cover of benthic classes 
(Ferrari et al., 2021; Hopkinson et al., 2020; Marre et al., 2019; Miller 
et al., 2021; Urbina- Barreto, Chiroleu, et al., 2021). This ecologi-
cal information is essential to build robust indicators of ecosystem 
status and trends, informing scientists, practitioners and decision- 
makers in coral reefs management (Bellwood et al., 2019; Boström- 
Einarsson et al., 2020; Evans et al., 2015; Ferrari et al., 2021; Nolan 
et al., 2021).

A key challenge in using photogrammetry for coral reef studies 
is the limited capacity to efficiently quantify community composi-
tion and extract colony- level metrics from orthomosaics (Bellwood 
et al., 2019; Johnson- Roberson et al., 2006; Remmers et al., 2023; 
Rossi et al., 2021; Shihavuddin et al., 2013). Two common methods 
to quantify community composition at the scale of individual reef 

images are: (1) point classification, where several points are ran-
domly or systematically placed and labelled (Beijbom et al., 2012; 
Kohler & Gill, 2006), and (2) segmentation, where similar pixels are 
grouped to delineate object contours (Pavoni et al., 2020). Currently, 
few techniques can apply these methods to orthomosaics, which 
cover much larger reef areas than individual photographs and can 
be scaled using ground control points (GCPs) of known position 
(Lechene et al., 2019). Classifying and segmenting orthomosaics 
would greatly increase our ability to quantify coral colony size, com-
munity composition, per cent cover, taxa distribution and mortality 
(Ferrari et al., 2021; Hopkinson et al., 2020; Marre et al., 2019; Miller 
et al., 2021; Urbina- Barreto, Chiroleu, et al., 2021).

Although few studies (Mills et al., 2023; Schürholz & 
Chennu, 2022) have successfully achieved high- thematic detail 
classification of underwater images using hyperspectral imagery, 
hyperspectral cameras remain significantly more expensive and re-
quire advanced user training, posing logistical constraints for their 
routine deployment in monitoring programmes. A recent review on 
photogrammetry in coral reef ecology revealed that less than 45% 
of studies used benthic annotation methods to quantify commu-
nities, missing valuable data (Remmers et al., 2023). Notably, only 
five out of 55 studies used automatic orthomosaic segmentation, all 
limited to eight classes (Remmers et al., 2023). This gap is due to the 
substantial human effort required for manual segmentation—about 
1 h per square metre (Pavoni et al., 2020). Furthermore, automating 
segmentation with deep learning faces challenges due to the high 
complexity, heterogeneity, and diversity of constituents and reef 
habitats, and the large amount of training data required to repre-
sent them (Beijbom et al., 2012; González- Rivero et al., 2020; Li 
et al., 2024; Pavoni et al., 2020; Yuval et al., 2021).

A terrestrial case study on urban street scenes (called 
‘CityScape’), featuring 30 classes grouped into eight categories, 
required the manual input of 5000 densely segmented images and 
20,000 weakly annotated images totalling over 9833 h of manual la-
bour before deep learning model training (Cordts et al., 2016). Given 
the lower complexity and heterogeneity of urban images—charac-
terised by contrasting colours, well- defined edges, straight lines 
and right angles—compared with coral reefs, this underscores the 
substantial manual effort needed to apply such techniques to this 
more complex environment. Thus, there is a strong need for rapid, 
automated and repeatable technique to segment, classify and ex-
tract community composition data from underwater orthomosaics 
to fully leverage the benefits of photogrammetry.

Widespread development of artificial intelligence (AI) has en-
abled its integration into monitoring tools. One such tool, ReefCloud, 
utilises a machine learning (ML) model trained on coral reef ben-
thic images collected by the Australian Institute of Marine Science 
(AIMS) Long- Term Monitoring Program (LTMP), which consists of 

K E Y W O R D S
artificial intelligence, automatic segmentation, benthic community composition, coral reefs, 
machine learning, photogrammetry, ReefCloud point annotation, Segment Anything Model
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millions of image points classified by professional benthic ecologists. 
ReefCloud requires users to label a subset of their uploaded images 
to fine- tune the model to the specifics of their dataset and provide 
accurate label predictions. This approach allows automated esti-
mates of coral reef benthic composition to be generated up to 700 
times faster than manual assessment (González- Rivero et al., 2020; 
ReefCloud, 2022).

Recently released foundational models have shown improved 
performance on novel datasets, such as underwater images, even 
when applied with little or no in- domain training data. The Segment 
Anything Model (SAM) is a highly generalisable segmentation model, 
which can comprehend and make predictions about unfamiliar ob-
jects or concepts (e.g. seafloor orthomosaics) not encountered 
during its training phase (Kirillov et al., 2023).

We introduce ‘RapidBenthos’, a workflow for automated se-
mantic segmentation and classification of large- extent orthomosa-
ics (40–72 m2). Our workflow utilises the pre- trained SAM (Kirillov 
et al., 2023) in conjunction with the online ReefCloud point classi-
fication tool (ReefCloud, 2022) to eliminate the need for manually 
segmented training data. We describe the RapidBenthos method-
ology, including segmentation, classification and quantification of 
community composition from orthomosaics. Subsequently, the 
model is validated using performance metrics (e.g. Intersection over 
Union [IoU], F1 score, accuracy). Finally, the results, advantages and 
limitations of the method are discussed.

2  |  METHOD

2.1  |  Data acquisition

Data for the primary validation of the RapidBenthos workflow 
were collected on an exposed reef slope off Lizard Island (14.69° S, 
145.46° E) in the northern offshore Great Barrier Reef (GBR) in 
October 2021 (Figure 1a). The site had an average depth of five 
metres, covered an area of 72 sq. m and featured diverse benthic 
components, composed of a mix of hard and soft coral, algae and 
abiotic substrate elements such as sand and rubble. The site was 
selected for primary validation due to its diverse benthic composition 
and moderate coral cover (~20%), which rendered it suitable for 
complete (100% of area) manual segmentation and classification. 
To evaluate RapidBenthos across various environmental conditions 
and reef habitats, the most common class, Acropora corymbose, was 
validated against manually segmented colonies at an additional 11 
sites (72 sq. m) across the GBR and Torres Strait (see Supporting 
Information S1 for details). This work was conducted under the 
Great Barrier Reef Marine Park permit G21/44774.1.

All sites were imaged using a standardised diver- rig photogram-
metry workflow described by Gordon et al. (2023). High- resolution 
benthic images (5686 × 3217 pixels) were captured using two Nikon 
D850 DSLR cameras with 20 mm Nikkor prime lens shooting at 0.5 s 
intervals (full camera settings described in Gordon et al., 2023). 

F I G U R E  1  Study location and site imaging techniques. (a) Lizard Island showing the primary validation site on the wave- exposed eastern 
side (green dot); (b) SCUBA diver with DSLR photogrammetry camera rig; and (c) photogrammetry imaging pattern showing camera location 
(blue and yellow dots), images used for analyses (yellow dots) and data analysis extent (red line).
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Cameras were housed in Nauticam underwater housings with 8.5- 
inch dome ports and were mounted on an aluminium rig at a dis-
tance of 57 cm between lenses (Figure 1b). Around 3000 nadiral 
and oblique photographs were captured per site at an altitude of 
approximately 1.5 m (80% overlap between adjacent images) using 
a ‘lawn- mowing’ swim pattern consisting of five longitudinal passes 
and an additional four to eight perpendicular passes (Figure 1c). Six 
GCPs were distributed across the depth gradient of the site prior im-
aging to scale and orient resultant models in X, Y and Z axes (details 
provided in Gordon et al., 2023). Depth was also recorded for each 
GCP to incorporate bathymetric information into 3D model building.

2.2  |  Building 2D and 3D models

All models were constructed using Agisoft Metashape Professional 
v1.7.6 (Agisoft LLC, St. Petersburg, Russia) using a photogrammetry 
processing protocol described in Appendix S1. Images were 
automatically filtered using the ‘Image Quality’ parameter in 
Metashape (quality threshold of 0.5) prior to running initial low- 
quality alignment. GCP markers were then detected, and depth 
information imported to scale models before re- aligning points at 
high quality. Resultant high- quality sparse point clouds were then 
filtered, and cameras optimised to reduce model reprojection error. 
High- quality depth maps were then generated from the filtered high- 
quality sparse point clouds and used to generate textured meshes. 
Textured meshes were cropped to the 72 sq. m area of interest and 
high pixel resolution (~ 0.353 mm2) orthomosaics were generated. To 
ensure even coverage for the primary validation plot, the distorted 
edge was removed by cropping the orthomosaic to an area of 40 sq. 
m for RapidBenthos analysis and validation.

2.3  |  Point classification model training

The online platform ReefCloud was used to classify the 
photogrammetry imagery collected in the current study 
(ReefCloud, 2022). A total of 1700 images were selected from 
photogrammetry imagery of multiple sites around Lizard Island to 
train the point annotation model used for primary validation. Images 
were selected to ensure that the model was trained on images 
encompassing the diversity of benthic components present. A total 
of 33,937 points were manually classified, with 80% used to train the 
classification model and the remaining 20% reserved for testing the 
model's performance.

The label set used for point classification consisted of 73 classes 
and followed a hierarchical design (functional group < coarse class 
< genus < species), to ensure that every benthic component could 
be labelled. The coarse- class categories were selected following the 
Collaborative and Automated Tools for Analysis of Marine Imagery 
(CATAMI) classification scheme (Althaus et al., 2015) and included: 
Acropora, branching non- Acropora, massive coral, foliose, encrust-
ing, columnar, Fungiidae, fire coral, anemone, Zoanthid, soft coral, 

sponge, algae, abiotic substrate, mobile biota, water, markers and 
unidentifiable (Appendix S2).

2.4  |  RapidBenthos workflow

The RapidBenthos pipeline is a two- stage process to segment and 
classify large- area orthomosaics of coral reefs, which utilises: (1) a 
pre- trained, open- source ML segmentation model (SAM) to segment 
the orthomosaic and (2) a point classification model (ReefCloud) 
to classify the resulting segments from multiple views using the 
high- resolution images underlying the orthomosaics (Figure 2; 
Appendix S3). The computational processing conducted in this 
study used Python 3.9.16 on a High- Performance Computing (HPC) 
with a NVIDIA A100 PCIe 40 GB GPU node. All processing steps are 
run on Python IDE, a quick start processing steps is described in 
Appendix S4.

2.5  |  Orthomosaic segmentation

Orthomosaics were segmented using the SAM- geospatial repository 
(Wu & Osco, 2023) with two different sliding windows dimensions 
and number of sampling points per window (4600 pixels with 128 
sample points per side and 8400 pixels with 200 sample points 
per side) (Figure 2a; Appendix S3). Processing the segmentation 
twice with varying sliding window dimensions assured window 
edge overlap and resulted in fully closed geometries. We tested 
various combinations of window sizes and sampling points per side, 
concluding that larger windows more reliably detected larger objects, 
while higher sampling points yielded more precise segmentation. 
As larger windows and more sampling points increased computing 
time, the chosen values represent an optimal balance between 
segmentation accuracy and computational efficiency.

The two resulting rasters were combined using Gdal raster cal-
culator, and the output was transformed to a polygon layer using 
the tiff_to_gpkg function. The Filter_segment function was applied 
to lower the number of segments within colony boundaries, remove 
background polygons (area ≥ 2.5 m2), and polygons smaller than 
0.00005 m2 (Appendix S3). The resulting segments and correspond-
ing centre points were exported as shapefiles (Figure 2b).

2.6  |  Orthomosaic classification

Labelling of segments was attributed from point classification of 
underlying photographs used for orthomosaic generation. Applying 
the camera_point_from_segment_centerPoint function in the 
python IDE, the 3D vertices corresponding to each segment's centre 
point were extracted from the 3D mesh (Figure 2c; Appendix S3). 
Next, all photographs capturing each vertex were selected based on 
two conditions: (1) the camera was enabled in the Metashape Pro 
project; (2) the pixel capturing the vertex was in the 40% central 
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    |  431REMMERS et al.

region of the image (not within a 750- pixel margin of all edges of 
the photograph). These thresholds aimed, respectively, at removing 
low- quality images and classification points located near distorted 
edges of the images.

To reduce computation time, for each segment the 10 closest pho-
tographs to the centre point of the segment, based on the 2D distance 
between the camera centre and vertex in the 3D mesh, were selected 
(Figure 2d). Once the 10 images were selected for a segment, a single 
point per image was classified using ReefCloud. To attribute a class to 
a segment, we first used the ReefCloud model to assign each point 
within the selected 10 photographs a label and a prediction score 
(representing an estimate of prediction probability), which resulted 
in 10 labels per segment. All labels for each segment were then fil-
tered by the most common coarse class and a prediction score higher 
than 0.4. The final label was selected using Equation (1), and the final 
classes were then assigned to their respective segments by selecting 
the class with the maximum weighted prediction score (Figure 2e).

Example for segment A

• MAX_wPred_S_POC_VER = (8 × 0.85) = 6.8
• MAX_wPred_S_POC_DAM = (2 × 0.6) = 1.2
• Therefore, class = S_POC_VER

where MAX_wPred is the maximum weighted prediction score, N is 
the number of occurrences of a given class, and mPred_score is the 
mean prediction score.

2.7  |  Per cent cover of the benthic components

To obtain a fully annotated orthomosaic and determine site commu-
nity composition as per cent cover of the different benthic compo-
nents, including abiotic and algae cover without distinctive edges, the 
areas between classified segments were annotated using a hexagonal 
grid (hexagrid) of 0.0025 m2 cells. A hexagrid was selected over a regu-
lar square grid as it ensures equal distances to the centroid for each (1)MAX_wPred = N ×mPred_score.

F I G U R E  2  Workflow schematic describing the two- step process of orthomosaic segmentation followed by segment classification. (a) 
The segmentation first applies Segment Anything Model (SAM) using two different sliding windows (i.e. 4600 pix with 128 sampling points 
and 8400 pix with 200 sampling points) resulting in closed geometries due to windows' edge overlap and subsequently; (b) converts the 
output to shapes; (c) the annotation then iterates through all segments to find the 10 best photographs (red cameras icons) capturing the 
segments' centre point (red circle) then; (d) classifies the points on the photographs using ReefCloud and finally; (e) assigns the best label to 
the segment.
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neighbouring point, thereby providing a better representation of the 
area surrounding each point. The hexagrid was then clipped to remove 
any overlapping area with the segmented layer, and the centre point 
for all remaining cells were exported as CSV file. Point classification 
protocols described in Sections 2.3 and 2.4, Figure 2 and Appendix S3 
were then employed. Once the hexagrid was classified, the layer was 
merged with the segmented layer and the per cent cover for all classes 
was determined by computing the proportion of the surface covered 
by each class relative to the total extent of the orthomosaic.

2.8  |  Colony- level metrics

Running SAM twice during the segmentation phase of RapidBenthos 
can lead to single colonies composed of more than one segment 
(Section 2.5). To address this artefact and obtain colony- level met-
rics such as colony count and planar area, segments belonging to the 
same colony can be merged. All segments were first filtered by class 
and all adjacent segments of the same class were merged except for 
the classes included in the coarse classes ‘Acropora’, ‘branching non- 
Acropora’ and ‘soft coral’. Since these remaining classes can have 
neighbouring colonies of the same class, the remaining segments 
were merged based on a size threshold smaller than 0.0025 m2 
(6.2 cm diameter), to minimise the probability of merging adjacent 
colonies. Only segments smaller than the threshold were merged to 
neighbouring segments of the same class.

2.9  |  Validation data

Validation data were created using TagLab V.2023.3.16 9 (Pavoni 
et al., 2021). All visible benthic components were segmented and 
classified to the finest taxonomic resolution possible. A total of 
60 h of manual input was necessary to segment and classify 1027 
benthic components from the 72 m2 orthomosaic (approximately 17 
segments per hour). To ensure the accuracy of orthomosaic annota-
tions, the manually segmented and classified orthomosaic was qual-
ity checked by an additional independent annotator. This quality 
checked process took an additional 5 h of manual input and resulted 
in an additional 57 segments being added. Since all segments were 
classified from the orthomosaic and not the underlying images, as it 
would considerably increase the manual labour, 9% of the segments 
were unidentifiable due to blurriness and distortion of the ortho-
mosaic and 24.9% were annotated to the coarser classes ‘other’ 
(‘_OTH’), including 9.7% Pocillopora (G_POC_OTH), 7.2% branching 
Acropora (AC_BRAN_OTH) and 5.3% massive coral (MAS_OTH).

2.10  |  Model performance metrics

To evaluate RapidBenthos' performance, we used a two- step pro-
cess to independently assess the capabilities of each AI tool, SAM 

and ReefCloud. First, we examined the detection and segmenta-
tion accuracy of benthic components, and second, we assessed 
the classification accuracy. This is particularly important given that 
classification accuracy in ReefCloud depends on the model's train-
ing level, unlike SAM's unsupervised segmentation phase. Table 1 
provides an overview of the experiments conducted to validate our 
method.

The first validation aimed at assessing the performance of 
RapidBenthos to segment benthic components from coral reef or-
thomosaics. As we are not performing any additional training to the 
published SAM model, it is likely that it has never been exposed to 
benthic imagery or underwater scenes. Therefore, verifying that the 
segments generated by this model align with ecologically relevant 
targets is essential. A pixel- wise comparison of the RapidBenthos 
output and validation data was performed. For reliable performance 
metrics, both datasets were filtered to include only the same ben-
thic component classes, excluding background classes (i.e. sand, 
rubble, sponge and the algae sub- classes mostly composed of Turf). 
The filtered output and validation data were then converted to bi-
nary masks, where segmented regions were assigned 1 and the re-
maining pixel 0. These binary masks were enabled the evaluation 
of segmentation performance for benthic components in coral reef 
orthomosaics. Performance metrics used in the evaluation of this 
segmentation phase of the RapidBenthos workflow are described in 
the Appendix S5.

To quantify how accurately the predicted benthic components 
were segmented, IoU was calculated between the ground truth and 
predicted overlapping segments (Equation 2). The IoU is a measure 
of how well the predicted segment aligns with the actual object by 
quantifying the overlap between the predicted and the ground truth 
segments.

Finally, a confusion matrix was used to evaluate the segment 
classification phase of the RapidBenthos workflow. The confusion 
matrix displays the distribution of model predictions for each class, 
highlighting which classes the model tends to ‘confuse’ with others. 
All these metrics range from zero to one. Scores closer to one in-
dicate a higher level of agreement between model predictions and 
validation data, thereby reflecting a more accurate representation 
of the data.

3  |  RESULTS

The RapidBenthos workflow automatically segmented and classi-
fied 2808 segments (Figure 3a) from 43 different classes, including 
515 segments after filtering out background classes (Section 2.10) 
in one 40 sq. m orthomosaic. In comparison, the manual annota-
tion of the same orthomosaic (Figure 3c) had 757 segments from 
43 different classes, made up of 444 segments after filtering.

(2)IoU =
Area of Overlap

Area of Union
.
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3.1  |  Performance of RapidBenthos 
segmentation phase

The overall accuracy of RapidBenthos segmentation phase was 
0.96 (max. score of 1.0) indicating that it correctly identified 96% 
of the pixels either as background or benthic components (Table 1). 
The macro average F1 score was 0.93. The precision and recall for 
the benthic components were 0.85 and 0.92, respectively, result-
ing in a F1 score of 0.88. The confusion matrix for the background 
class and detected benthic constituent had a normalised score of 
0.97 and 0.92, respectively (Appendix S6). This result implies that 
RapidBenthos correctly identified 97% of the background pixels as 
background (False–False), and 92% of the benthic constituent pix-
els were detected correctly (True–True). The overall IoU was 0.79 
when comparing all segments but increased to 0.87 when select-
ing only overlapping segments. While the former IoU reflects SAM's 
object detection performance, the latter more accurately represents 
its segmentation precision. Calculating the IoU for overlapping seg-
ments indicates how closely SAM detected object edges compared 
with manual segmentation.

Upon visual inspection, the largest of the segmentation errors 
primarily resulted from distortion in the orthomosaic reconstruction 
causing errors on the edges of colonies (Figure 4). In these instances, 
the model either omitted (Figure 4a) or committed (Figure 4b) large 
section of segments, contributing to the observed discrepancies.

3.2  |  Point classification model accuracy and 
performance of RapidBenthos classification phase

To assess the performance of the point classifier, 20% of the 
33,937 manually annotated points were withheld from the classi-
fier during training. Of the 73 classes included in the label set, 59 
were present in the images collected off Lizard Island (Figure 1a) 
used in the ReefCloud model trained for the primary validation. 
The point classifier correctly identified 76% of the points in this 
test set, resulting in an overall F1 score of 0.821 (Figure 5). All the 
classes ‘Other’ (_OTH) were less accurate than their most specific 
counterparts, except for the coarse class ‘Foliose’. This can be ex-
plained by training a class with points that are either from colonies 
similar to the ones included in the higher taxonomic resolution 
classes (e.g. Acropora Branching Other [ACO_Bran_OTH]) or that 
includes multiple disparate colonies (e.g. Massive Other [MAS_
OTH]). The highest performing classes with a score of 1.0 were 
of uncommon and very distinct forms which included the classes 
‘Foliose Other Lettuce like’ (FOL_OTH_L), ‘Soft Coral Fan’ (SCF), 
‘Soft Coral Whip’ (SCW), ‘Sponge Massive’ (SPM) and ‘Sponge 
Erect’ (SPE).

When compared to the manual annotations, RapidBenthos' most 
accurate classification were ‘Montipora’ (G_MON), ‘Star Fish’ (MOB_
SF), ‘Acropora digitate’ (ACD), ‘Background’, ‘Acropora millepora’ 
(ACO_MIL), ‘Diploastrea’ (G_DIP), ‘Lobophyllia’ (G_LOB) and ‘Marker 
Dumbbell’ (MDB), scoring above 0.96 in the confusion matrix 
(Figure 6). The least accurate high taxonomic resolution hard coral 
was ‘Goniastrea’ (G_GOS) with a score of 0.31. The confusion for this 
class was predominantly with ‘Background’. This may be due to the 
small size of individuals (<8.51 cm2) found at this site, which were 
used in the ReefCloud training. As a result, some training patches 
contained a small proportion of pixels representing the targeted 
class, while the majority of pixels belonged to the ‘Background’ 
class (Appendix S10). Five classes had an accuracy of zero, with 
three of them belonging to the ‘Other’ category: ‘Pocillopora Other’ 
(G_POC_OTH), ‘Coral Branching Other Coarse’ (CB_OTH_C) and 

TA B L E  1  Experiments conducted to validate the RapidBenthos workflow, along with their corresponding tests, evaluations and 
manuscript sections.

Experiment Test Evaluation Section

RapidBenthos phase 1: 
Segmentation

Binary mask and IoU SAM accuracy in delineating object 3.1 and Table 2

Point annotation model F1 score ReefCloud model classification accuracy 3.2, Figure 5 and 
Appendix S7

RapidBenthos phase 2: 
Classification

Confusion matrix RapidBenthos accuracy in classifying object 3.2, Figure 6 and 
Appendix S7

Community composition Per cent cover RapidBenthos accuracy in extracting per cent 
cover

3.3 and Figure 7

Colony- level metrics Colony count and planar area RapidBenthos accuracy in extracting colony- level 
metrics

3.3 and Figure 7

RapidBenthos application to 11 
diverse plots

IoU and classification of 
‘Acropora corymbose’ colonies

RapidBenthos application across various coral 
reef environments

Supporting 
Information S1

TA B L E  2  Validation metrics report between the validation and 
RapidBenthos overall segmentation, where zero represents the 
background pixels and one the pixels within segments.

Precision Recall F1 score Support

0 0.98 0.97 0.98 2,445,468,064

1 0.85 0.92 0.88 491,353,408

Accuracy 0.96 2,936,821,472

Macro avg. 0.92 0.94 0.93 2,936,821,472
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434  |    REMMERS et al.

‘Coral Branching Other Fine’ (CB_OTH_F). Most pixels from these 
three classes were assigned to finer taxonomic classes, including 
‘Pocillopora verrucosa’ (S_POC_VER), ‘Acropora Branching Other’ 
(ACO_Bran_OTH) and ‘Pocillopora damicornis’ (S_POC_DAM), re-
spectively. The class ‘Leptoria’ (G_LEP) was confused with ‘Platygyra’ 
(G_PLA), likely due to their similar appearance. Lastly, ‘Acropora 
Staghorn’ was misclassified as ‘Pocillopora verrucosa’ (S_POC_VER) 
due to a segmentation error. The majority of the detected pixels 
corresponding to the validation data ‘unidentified’ label were clas-
sified by the model as ‘soft coral’ (25%), ‘Pocillopora verrucosa’ (S_
POC_VER) (14%), ‘Acropora Branching Other’ (ACO_Bran_OTH) (9%) 
and ‘Porites’ (G_POR) (9%). This result suggests that RapidBenthos 
labelled segments that could not be identified manually from the 
orthomosaic.

Annotation errors predominantly arose from obstructing fea-
tures, often resulting from abrupt change in topography or the 
proximity of larger, overtopping benthic components (Figure 4c,d). 
Additionally, instances of commission errors were caused by the 
challenges in distinguishing between living and dead colonies, 
as dead colony was not a class trained in the annotation model 
(Figure 4e). The F1 score and confusion matrix per coarse class are 
displayed in Appendix S7.

3.3  |  Community composition comparison

The predicted community composition in terms of per cent cover 
per class was closely related to the validation data (Figure 7a). For 
ease of reporting and visual clarity, we grouped the classes into eight 
categories. RapidBenthos slightly overestimated the per cent cover 
of most coarse class. The largest overestimate for coral colonies 
was 0.8% for the coarse class ‘massive’ coral. The biggest discrep-
ancy was for the coarse class ‘algae’ which was underestimated by 
6.4%. However, RapidBenthos detected 4% of ‘encrusting sponge’, 
which were not manually annotated. The prediction depicted the 
general trend for the number of colonies and colony size metrics 
(Figure 7b,c). The number of colonies was overestimated for most 
classes with the exception of ‘Foliose’, ‘Fungiidae’ and ‘mobile biota’, 
which had equal count to the validation data (Figure 7b). The coarse 
class ‘massive’ coral had the biggest colony count overestimate of 47 
colonies. Conversely, the planar area was generally underestimated 
by the prediction (Figure 7c). The largest discrepancies were for the 
coarse classes ‘massive’ coral, ‘foliose’, ‘mobile biota’ and ‘markers’.

The overestimation of colony count and the underestimation 
of planar area can be attributed to both the blurriness in model re-
construction, which leads to the generation of multiple segments 

F I G U R E  3  Figure showing the RapidBenthos output: (a) whole orthomosaic analysed; and a subset showing (b) unannotated orthomosaic; 
(c) validation (manually annotated) data; (d) RapidBenthos output filtered for performance metric assessment; (e) segmentation agreement 
between validation data (red) and RapidBenthos (blue) where overlapping segments are displayed in purple; and (f) community composition 
output. The legend represents all the benthic classes grouped by coarse- class hue where the ‘Acropora’ segments are blue, the ‘branching 
non- Acropora’ are purple, the ‘massive’ corals are orange, the ‘foliose’ corals are pink, the ‘soft corals’ are turquoise, the ‘algae’ are green, the 
‘mobile invertebrates’ are brown, and the ‘unidentifiable’ black. The label set hierarchical design and meaning of the acronyms can be found 
in Appendix S2.
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per colony (Figure 4f), and the complex shapes of coral colonies 
(Figure 4g). Additionally, the model detected colonies that were 
omitted in the validation dataset (true negative), contributing to the 
higher colony count (Figure 4h).

4  |  DISCUSSION

A significant challenge in leveraging large- area coral reef images lies 
in efficiently extracting metrics on benthic community composition, 
structure and function, such as diversity, abundance, location, size and 
how these change over time. We developed RapidBenthos, an auto-
mated workflow, to provide a fast, efficient and reliable process for ac-
curately segmenting and classifying coral reef orthomosaics, thereby 
facilitating comprehensive data analyses and ecological assessment. In 
this study, we show that RapidBenthos was able to automatically de-
tect 43 taxonomic benthic classes grouped into eight categories, with 
a segmentation accuracy of 0.96 and a F1 score of 0.88. These results 
highlight the strong potential of this method for automating the seg-
mentation and classification of coral reef orthomosaics and to increase 
the number of classes and taxonomic resolution of previous automatic 
segmentation methods (Mizuno et al., 2020; Mohamed et al., 2022; 
Pavoni et al., 2021; Swanborn et al., 2022; Yuval et al., 2021).

Most notably, RapidBenthos demonstrated its efficiency in de-
riving community composition and colony- level metrics, achieving 
results in one- tenth of the time needed for manual segmentation 
and classification of the same orthomosaic (Section 2.9), and 195 
times faster than human intervention efforts once the ReefCloud 
model is trained. This substantial reduction, from 65 h of manual la-
bour to less than 6 h of computational time, requiring only 20 min of 
manual data handling, significantly alleviated the need for manual 
inputs. Such efficiency gains can enable unparalleled levels of infor-
mation extraction compared with manual annotation methods for 
2D reconstructions of coral reefs. This scalability allows for rapid 
assessments, long- term monitoring and fine- scale observations over 
massive extents, heralding a transformative shift in coral reef re-
search and evidence- based environmental decision making.

The high IoU score (0.87) for segments created by RapidBenthos 
demonstrates the performance and accuracy of the SAM for detect-
ing and segmenting benthic components in coral reef orthomosa-
ics. The confusion matrix, comparing ReefCloud predictions with 
manual annotations, showed that most coarse classes scored within 
0.04 of the corresponding F1 score of the point- based ReefCloud 
classification model, which indicates that the reported performance 
of the point classifier translated into accurate predictions on the 
mosaic pixels. This similarity between the training F1 score and the 

F I G U R E  4  Example of segmentation 
errors where the validation segments 
are displayed in red, RapidBenthos 
segments in blue and overlapping 
segments in purple. (a) Error of omission 
shown by the red area and (b) error of 
commission shown by the blue area. 
Error of commission shown by the blue 
segments (c) caused by abrupt change 
in elevation, (d) obstruction by larger or 
overtopping benthic constituents and 
(e) misclassification of dead colonies. 
Example of coral colony automatically 
segmented by two segments due to (f) 
being half focused and half blurry, and 
(g) having complex shape. Both examples 
resulting in two smaller segments than the 
validation data. (h) Example of colonies 
detected by the model but omitted in the 
validation data.

 2041210x, 2025, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14477 by Jam
es C

ook U
niversity, W

iley O
nline L

ibrary on [28/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



436  |    REMMERS et al.

classification validation highlights the significance of diligently train-
ing the point classification model.

Overall trends in community composition derived from 
RapidBenthos was representative of the validation data. 
RapidBenthos was able to quantify per cent cover of coral taxa at 
coarse taxonomic resolution within 0.8% of the validation data, 
showcasing the ability of the workflow to accurately quantify 
community composition from coral reef orthomosaics. As per the 
colony- level metrics, the overestimate in colony count and the un-
derestimate in planar area can be explained by both the blurriness 
caused by orthorectification and the complex shapes of coral col-
onies (Li et al., 2024), leading to multiple segments per colony. For 
studies investigating coral demography, it is therefore recommended 
to conduct manual interventions (i.e. border refinement, merging/
dividing segments and label correction) at the end of RapidBenthos 
workflow to increase the accuracy of the colony- level metrics. 
Moreover, manual refinement of colony borders is also essential for 
studies focused on coral growth. This is particularly crucial as coral 
growth measurements demand millimetre to centimetre resolution 
to accurately capture the slow growth rates of some corals (Ferrari 
et al., 2017; Razak et al., 2020).

Results of additional validation analyses of RapidBenthos at 11 
sites across the GBR demonstrated that this method can be used in a 
range of environmental conditions, from clear offshore waters to tur-
bid inshore reefs, at various depths (5–15 m), and for all reef habitats 
(i.e. reef front, flank, back and lagoon) (Supporting Information S1). 
Despite the wide range of coral reef environments and diverse ben-
thic community assemblages (Figures S2 and S3), RapidBenthos 
was still able to achieve high accuracy in segmentation (IoU 0.92) 
(Table S1). Classification accuracy of RapidBenthos across these 
sites was also high, especially at the genus level of ‘Acropora’. Overall, 
88% of segments were assigned a class included in the ‘Acropora’ 
group, echoing the results of 0.89 from the ‘Acropora’ in the coarse- 
class confusion matrix of the primary validation plot (Appendix S7). 
However, further training would be beneficial to reduce the con-
fusion between the Acropora Corymbose (ACO) and Acropora Table 
(ACT). Furthermore, all the colonies mislabelled by turf had gener-
ally a very small planar area (<0.0025 m2) indicating that the clas-
sification model might be less accurate for smaller segments. The 
classifier in ReefCloud's backend makes predictions based on an 
image patch centred on the point in question. If the target segment 
is smaller than this patch area, the model may misclassify the point 

F I G U R E  5  F1 score for all 59 classes present in the images used to trained in the ReefCloud point classification model for the primary 
validation site off Lizard Island.
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due to the presence of other classes in the patch (Appendix S8). This 
is why it is important to incorporate a minimum size threshold for 
segments based on the image patch size.

RapidBenthos offers key advantages over existing manual and 
semi- automated benthic segmentation techniques. Its integrated 
AI tools do not require retraining of deep neural networks (Kirillov 
et al., 2023), reducing computational demands and the need for ML 
expertise. This also eliminates the need for labour- intensive, fine- 
scale segmented training data. Developers aiming to train a deep 
learning model to segment coral reef orthomosaics can also utilise 
RapidBenthos to efficiently scale up the generation of training data 
for other applications. Moreover, the entire workflow is processed 
on Python IDE or HPC using a three- script chain, eliminating the 

need for users to directly access Metashape. Due to RapidBenthos' 
capability to swiftly and automatically produce annotated segments, 
user input is limited to quality- checking and refining segment bor-
ders, significantly accelerating the segmentation process.

RapidBenthos leverages the best available data (the underlying 
images) to classify segments. Using the high- resolution images al-
lows for classification with high taxonomic resolution. Consequently, 
the classification model is likely to achieve higher resolution and ac-
curacy compared with a model trained directly on the orthomosaics. 
RapidBenthos also possesses functionality to incorporate custom 
classification models tailored to suit specific user needs. This is es-
sential given the diversity of coral reef communities globally, the var-
ied instruments with differing image resolutions used for coral reef 

F I G U R E  6  Confusion matrix for all 33 filtered classes between the validation data and RapidBenthos for performance metric assessment 
of the primary validation site off Lizard Island.
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model reconstruction, and to capture targeted variables capable of 
answering specific research questions (González- Rivero et al., 2020; 
Remmers et al., 2023). This adaptability also supports the transi-
tion from photo- transect monitoring to photogrammetry, especially 
for research groups already utilising point classification tools like 
ReefCloud and CoralNet to quantify per cent coverage. The inte-
gration of pre- trained point classification models into RapidBenthos 
also enables the extraction of community composition data specific 
to the investigated site, further enhancing its applicability across a 
range of monitoring projects. Moreover, we have demonstrated that 
our model can be applied to one of the most complex environments, 
coral reefs and complex imagery sets, underwater photographs. 
Although we have only tested our model on orthomosaics of coral 
reefs, this workflow has strong potential to be applied to other com-
plex environments surveyed using photogrammetry (e.g. forest can-
opies; Li et al., 2022, and urban areas; Iheaturu et al., 2022).

Although RapidBenthos presents numerous advantages, its main 
limitations stem from the high computing requirements and poten-
tial constraints on labelling accuracy due to imagery acquisition. 
Depending on the model size and image resolution, this method can 
demand high computing capacity. However, since building 3D coral 
reef reconstructions already requires access to substantial compu-
tational power, executing this workflow may not require additional 
hardware if such equipment is already available. Accordingly, while 
HPCs or powerful GPUs are not mandatory to execute the proposed 
workflow, incorporating them would considerably enhance process-
ing speed.

Additional limitations affecting the accuracy of segmenting 
and labelling the orthomosaic are linked to the quality of under-
lying photographs and model reconstructions. Since coral reef 2D 
orthomosaics are a representation of real- life 3D environments, 
segmentation accuracy can be impacted by reconstruction quality 

and characteristics of common natural objects. Factors such as blur-
riness, lack of contrasting colours and indistinct edges in photo-
graphs and orthomosaics may contribute to segmentation errors (Li 
et al., 2024), while label accuracy is influenced by complex topogra-
phy, occlusions and the volume of training data for the point classi-
fier. Furthermore, field data collection may impact class assignment 
accuracy. As shown in Figure 1c, the camera distribution had lower 
coverage in some plot sections, thereby resulting in segments being 
classified using more distant cameras and potentially increasing un-
certainties in classification.

The images collected in this study followed a strict standard 
operational procedure (Gordon et al., 2023), which aimed at quan-
tifying both 3D structural complexity and 2D benthic community 
composition (requiring both nadiral and oblique imagery to be col-
lected). When using RapidBenthos to quantify benthic community 
composition from 2D orthomosaics, image filtering to predominantly 
use nadiral (top- down) image for orthomosaic production could help 
minimise segmentation and labelling errors. While RapidBenthos 
represents a significant step forward in the characterisation of ma-
rine benthic communities across large spatial extents, it only looks at 
a 2D representation of a 3D landscape. In the future, full automated 
segmentation and classification of large- area 3D terrain reconstruc-
tions will continue advancing ecological and evolutionary research 
(Pierce et al., 2021).

5  |  CONCLUSIONS

In conclusion, RapidBenthos represents a major advance in coral 
reef research, addressing the critical challenge of rapidly extracting 
detailed benthic community and colony- level information from im-
agery. By using high- resolution images rather than orthomosaics for 

F I G U R E  7  Performance of RapidBenthos against manually annotated validation data. (a) Per cent cover of taxa estimated by validation 
and RapidBenthos per class grouped by coarse classes; (b) number of colonies estimated by validation and RapidBenthos per class grouped 
by coarse classes, and; (c) boxplot of the estimated colonies planar area (in square metres) by validation (GT) and RapidBenthos (RB) per 
coarse class. The label set hierarchical design and meaning of the acronyms can be found in Appendix S2.
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classification, RapidBenthos achieves superior precision and accu-
racy, capturing of fine- scale features often lost in model reconstruc-
tions. This efficiency reduces the time and manual effort needed 
for segmentation, enabling rapid, large- scale monitoring of coral 
reefs with minimal user input. Its adaptability to various reef envi-
ronments and the ability to integrate custom classification models 
further enhance its value for scientific research and conservation. 
Despite challenges in optimising imagery collection and processing 
speed, RapidBenthos—through its scalability, speed and accuracy—
serves as a transformative tool for coral reef ecology, opening new 
avenues for addressing pressing environmental questions.
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