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Abstract: The increasing penetration of distributed generation (DG) brings about great
economic and environmental benefits, while also negatively affecting the operation of
distribution networks due to its high intermittency. Although distributed energy storage
(DES) can effectively deal with the problems caused by massive DG penetrations by de-
coupling the generation and consumption of electricity, the placement of DES significantly
determines the effectiveness of its capabilities. Unfortunately, existing DES placement
studies are commonly based on a balanced network model, whereas practical distribution
networks are unbalanced. In addition, existing DES placement studies are mostly based
on an extreme scenario and rarely consider the operational complexity resulting from the
uncertainties of DGs and loads. To address the aforementioned challenges, this paper
proposes a hierarchical and sequential DES placement strategy in distribution networks by
considering multi-scenario operations. Specifically, the proposed hierarchical framework
for DES placement includes three sequential layers: outer, inter, and inner. In the outer layer,
a multi-scenario comprehensive loss sensitivity index (MSCLSI) is first introduced to search
for the most effective DES placement location. Subsequently, the sizing and scheduling
of DES for the selected location are conducted through coordinated optimization across
the inter and inner layers, which can be solved using a hybrid method combining particle
swarm optimization and second-order cone programming (PSO-SOCP). Finally, a series
of detailed simulations are carried out over the IEEE-33 test system and the experimental
results demonstrate that the proposed scheme can provide significant effectiveness and
superiority compared to the state-of-the-art schemes.

Keywords: distributed energy storage; optimal placement; hybrid optimization

1. Introduction
To address sustainability and environmental issues, distributed generations (DGs)

have been developing rapidly worldwide [1]. Meanwhile, the growing integration of
DG may negatively impact the operation of distribution networks because, due to its
high intermittency and uncertainty, operation issues arise, such as reverse power flow,
frequent voltage violation and serious power loss [2]. The mismatch between load and
DG also causes a larger peak–valley difference and a higher energy cost [3]. For the issues
mentioned above, distributed energy storage (DES) provides the most effective solutions
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by decoupling generation and consumption times and storing lower-cost off-peak energy
while discharging it during peak hours [4–6]. However, due to the still high price, the DES
potential benefits are highly related to its optimal placement [7].

Generally, DES placement involves the selection of battery type, installation location,
energy capacity and the charging/discharging power schedule [8]. By far, the problem
of DES placement has been widely studied. For example, in [9], the study aimed to
determine the optimal placement and capacity of the DES in the IEEE 33- and 69-bus
distribution systems connected with PV and EV penetrations by considering overall system
costs, which include investment, replacement, operation and maintenance costs as the
objective functions to be minimized. In [10], given installation locations, a DES placement
model considering conservation voltage reduction was proposed to determine the optimal
DES size for reduced investment and operation costs. In [11], the DES placement was
formulated as a duck curve phenomenon and optimized using a metaheuristic algorithm
with high exploration and exploitation ability, known as the Whale Optimization Algorithm
(WOA). Considering the budget limit, the optimal placement of DES in power networks
was formulated in [12] for load shifting and generation cost reduction. In [13], a newly
proposed optimization algorithm named the crayfish optimization algorithm (COA) was
applied to solve the problem of DES placement. A heuristic optimization strategy based on
voltage sensitivity analysis was used in [14] to determine the optimal placement (number,
locations, sizes) of ESSs and prevent voltage violations.

Nevertheless, as power systems grow in scale and precision, the computation chal-
lenge of any optimization approach to solving an OPF DES placement problem increases
exponentially [15]. To minimize the computation and memory demands of DES placement
in complex distribution networks, a common practice is to conduct a sensitivity analysis
and pre-select the locations with the highest sensitivities [16]. The power injection (i.e., dis-
charging) model is used in current sensitivity calculations for DES placements, although
DES uses bidirectional flow, which has opposite impacts on sensitivity. To address the
above-mentioned challenges on sensitivity and unbalance, our previous study proposed a
CLSI-based sequential DES placement strategy to allow more practically feasible and ap-
propriate locations in distribution networks [17]. However, reference [17] only considered a
CLSI based on a single operation scenario, which makes the results difficult to apply to the
actual operation situation. Also, the optimization algorithm (PSO) used in reference [17]
caused the computation process to be time-consuming and complicated, infeasible for the
large-scale unbalanced distribution networks of this study.

Although previous studies have made certain progress, three technical issues have
not been well addressed so far. Firstly, the previous studies were usually based on a
fixed extreme operation scenario, while the uncertainties of DGs and load may cause the
operation of distribution networks to be more complicated. Thus, a single fixed scenario
cannot represent real operations well, causing the DES placement solutions to be less
effective. Secondly, the previous sensitivity methods were always based on a single fixed
scenario, making it difficult to cope with complex operational scenarios, especially in
large-scale DG-integrated distribution networks. Thirdly, DES placement can be solved
through heuristic searches or mathematical programming methods, but due to a series
of assumptions and approximations, it is easy to produce suboptimal or even infeasible
solutions. Meanwhile, the global optimal solution of heuristic searches can also easily lead
to high time consumption.

To address the challenges above, this study proposes a hybrid optimization-based
sequential placement model for the optimal siting, sizing and scheduling of DESs in
distribution networks. The main contributions of this paper are as follows.



Energies 2025, 18, 474 3 of 16

- A multi-scenario comprehensive loss sensitivity index (MSCLSI) is redefined, which
determines the DES installation location by considering the impacts of both DES
charging and discharging under typical seasonal operation scenarios.

- A sequential DES placement strategy is proposed to decide the siting of all DESs
in distribution networks sequentially. For each placement, the optimal sizing and
operation scheduling of DES under multiple operation scenarios is formulated for the
maximum economic benefits.

- A hybrid solution strategy of PSO and SOCP is further proposed to balance the solution
optimality and computation efficiency, making the proposed placement model suitable
for large-scale unbalanced distribution networks.

The rest of this paper is organized as follows. Section 2 reviews the integrated DES
sizing and scheduling model. Furthermore, we provide a detailed explanation of the
proposed hybrid solution in Section 3 and present a MSCLSI-based sequential placement
strategy in Section 4. Subsequently, we implement a series of case studies to evaluate
the performance of our scheme and show the corresponding experimental discussions in
Section 5. Finally, Section 6 concludes the paper.

2. Integrated DES Sizing and Scheduling Model
2.1. Storage Type Selection

Existing energy storage types can be mainly categorized into electrical, mechanical,
electrochemical and thermal energy storage according to the form of energy storage. Among
them, electrochemical energy storage has been becoming an international research focus,
due to its advantages in terms of site requirement, response time, conversion efficiency
and size expandability. In this study, the DES placement is proposed for unbalanced active
distribution networks with high renewable penetrations to enhance the network operation
safety and economic benefits within the planning cycle. Thus, as the most advanced and
developed electrochemical energy storage, lithium-ion battery storage is selected for its
higher power, larger capacity, longer life cycle and lower maintenance requirements. It
should be noted that the energy storage placement model proposed in this study is generic
and can be adjusted for other types of energy storage.

2.2. DES Placement Objective Function

An integrated DES sizing and scheduling model is proposed here to minimize costs
and maximize savings. Specifically, the objective function is defined to reduce the cost of
DES investment CI, the cost of DES maintenance CM, and the cost of DES degradation CD,
while increasing the savings through DES auxiliary services of load shifting SLS and loss
reduction SLR.

Min OF = CI + CM + CD − SLR − SLS (1)

(1) Cost of DES investment:

The cost of purchasing DES is included as the equivalent annual cost of the original
investment and relevant fixed investments of DES installation:

CI = ∑3
p=1 ∑i∈Nchosen

δB·E
p
B,i·

r(1 + r)Y

(1 + r)Y − 1
, (2)

where δB and Ep
B,i are the annual cost factor and energy capacity of DES at phase p, bus i,

with Ep
B,i calculated by

Ep
B,i = BNp

i × EN , (3)
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where Np
i is the number of batteries installed in phase p of node i; EN is the rated capacity

of individual batteries, Y is the DES useful life and r is the investment discount factor.

(2) Cost of DES maintenance:

The cost of DES maintenance refers to the expenses that need to be incurred during the
operation of DES in order to ensure its normal operation, maintenance and management.
The definition is as follows:

CM = εb·∑3
p=1 ∑i∈Nchosen

Ep
B,i·

r(1 + r)r

(1 + r)Y − 1
, (4)

where εb is the annual maintenance cost of DES, Nchosen configures a collection of nodes
for DES, Ep

B,i is the annual cost factor and energy capacity of DES at phase p, bus i, Y is the
DES useful life and r is the investment discount factor.

(3) Cost of DES degradation:

During the placement cycle of DES, its life span will be reduced. Accordingly, the
degradation cost of DES is considered and defined as follows:

CD = ∑T
t=1 δ·

(∣∣∣pp
i,t

∣∣∣+ ηL·E
p
B,i·∆t

)
· r(1 + r)r

(1 + r)Y − 1
, (5)

where T is the typical daily scheduling cycle, δ is the cost factor for DES life loss, pp
i,t is the

charging/discharging power of phase p at node i and ηL is the DES leakage factor.

(4) Savings of DES loss reduction:

The yearly savings from reducing energy loss are calculated by the sum of savings
under multiple operation scenarios and different load levels, pre- and post-installation of
the DES (represented as PLoss,t and P′

Loss,t).

SLR = ∑S
s=1 ∑l=1,3 ∑T

t=1

(
PLoss,t − P′

Loss,t
)
·el (6)

In Equation (6), PLoss,t is defined by

PLoss,t = ∑N−1
β=1 Re


[

Iα
β,t

∗ Ib
β,t

∗ Ic
β,t

∗
] Zaa

β Zab
β Zac

β

Zba
β Zbb

β Zbc
β

Zca
β Zcb

β Zcc
β


Iα

β,t

Ib
β,t

Ic
β,t


, (7)

to consider the impacts of branch self (i.e., Zaa
β , Zbb

β and Zcc
β ) and mutual (i.e., Zab

β , Zbc
β , Zca

β ,

etc.) phase coupling in unbalanced networks [18]. Ip
β,t is the current through the phase p of

branch β at time t.

(5) Savings of DES load shifting:

In existing studies, energy storage systems mainly participate in auxiliary services
through frequency regulation and load peak regulation [19–21]. Considering the DES
considered in this study is only used for distribution networks, and cannot support system
frequency regulation, only the savings of load shifting are considered here and defined as
an objective function. The market incentive from DES participation in the peak-shaving
valley-filling auxiliary service is determined by the amount of electricity charged with the
energy storage device during the peaking period and the corresponding compensation
price, which is expressed as follows:

SLS = ∑Tv

t=1 pv
i,t·∆t·λsub, (8)
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where Tv is the DES peaking period, pv
i,t is the scheduling when DES participates in peaking

at t and λsub is the price of DES participation in peaking compensation.
The savings including SLR and SlS take into account optimization scenario variations

and net load (i.e., load minus DG) profiles. Four typical season scenarios: spring, summer,
autumn and winter (denoted, respectively, by s = 1, 2, 3 and 4) are used to represent
different optimization scenarios where the network net load profile is categorized into three
typical levels—high, medium and low—based on the load factor, represented by l = 1, 2
and 3, respectively [22].

2.3. DES Placement Constraints

The proposed integrated DES sizing and scheduling model should satisfy the con-
straints of unbalanced network operation, DES operation and decision variables.

(1) Power flow equations:

For distribution networks, power flow equations in the form of DistFlow are employed
in this study, as given in Equations (9)–(11) [23].

Pp
DG,i + Pp

ij − ∑ Pp
jk = −Pp

j + rp
ij

(
Pp

ij

)2
+
(

Qp
ij

)2

(
VP

i
)2 , (9)

Qp
DG,i + Qp

ij − ∑ Qp
jk = −Qp

j + xp
ij

(
Pp

ij

)2
+
(

Qp
ij

)2

(
VP

i
)2 (10)

(
VP

i

)2
−
(

VP
j

)2
= 2

(
rp

ijP
p
ij + xp

ijQ
p
ij

)
−
((

rp
ij

)2
+
(

xp
ij

)2
)(Pp

ij

)2
+
(

Qp
ij

)2

(
VP

i
)2 (11)

Here, Pp
ij /Qp

ij denote the active/reactive power through the branch between nodes i and j at

phase p while rp
ij/xp

ij represent the branch resistance and reactance. Pp
DG,i/Qp

DG,i and Pp
j /Qp

j

represent the active/reactive DG outputs and load power at phase p buses i, j while VP
i , VP

j

denote their voltage magnitudes. ∑ Pp
jk is the sum of the load active power transmitted

through the branch between buses j and k at phase p, where k are nodes connected with
node j except node i.

(2) Nodal voltage constraint:

The voltage magnitude of each node in the distribution networks should be within
the boundary limits set by network operators at any time moment.

Vmin < Vp
i,t < Vmax (12)

(3) Branch current constraint:

The current running through each branch should be lower than its current rating to
reduce thermal loss.

Ip
β,t ≤ Imax (13)

(4) DES operation constraint:

The enerDecision variables constraintgy charged and discharged during the oper-
ation period T should be equal, and the state of charge (SOC) should also within the
boundary limits.

∑3
p=1 ∑T

t=1 pp
i,t = 0 (14)
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SOCmin ≤ SOCi,1 +
∑3

p=1 ∑h
t=1 pp

i,t·1

∑3
p=1 Ep

B,i
≤ SOCmax (15)

(5) Decision variables constraint:

For the OPF problem of DES placement above, decision variables are the DES capacity
and its daily scheduling under multiple operation scenarios. The decision variables are
subject to constraints, with the maximum capacity (denoted by EBmax) typically determined
by the project objectives and budget, while the maximum charging/discharging power is
defined by its participation in the auxiliary services market and energy capacity.

0 ≤ Ep
B,i ≤ EBmax (16)

−Ep
B,i ≤ pp

i,t ≤ Ep
B,i (17)

0 ≤ pp
i,t ≤ f1·PDES

max (18)

PDES
max is the maximum charging and discharging power of DES; f1 represents the sign

variables of DES in the peaking auxiliary service market.

3. Hybrid Solution to the Proposed DES Placement OPF Problem
3.1. Decomposition of the Proposed DES Placement OPF Problem

The integrated DES sizing and scheduling problem in Equations (1)–(18) is essentially
a mixed integer nonlinear programming (MINLP) problem with both discrete (i.e., energy
capacity) and continuous (i.e., charging/discharging power) variables. Existing heuristic
search or mathematical programming methods make it hard to balance the efficiency and
accuracy of solutions. Thus, a hybrid solution strategy combining heuristic searches and
mathematical programming is proposed considering the OPF problem. Hybrid optimiza-
tions can achieve significant improvements over each individual [24].

Specifically, the proposed OPF problem consists of two parts, i.e., DES sizing and
scheduling under multiple scenarios, which is a mixed integer nonlinear programming
problem with discrete sizing variables. Separate heuristic algorithms or mathematical
planning methods are unable to solve the OPF problem effectively. Thus, a hybrid solver
of PSO and SOCP is proposed in this study. Specifically, for the DES sizing with discrete
energy capacity variables, PSO, as one of the advanced heuristic search methods, is more
applicable, has a faster convergence speed, and has fewer algorithm parameters. For the
DES scheduling with continuous charging/discharging power variables, among mathe-
matical planning algorithms, SOCP has higher computational efficiency compared to other
algorithms under the premise that the relaxation accuracy is the same, so SOCP is usually
the first choice of relaxation techniques. With the siting decided using the MSCLSI-based
sequential strategy, the DES sizing is jointly handled using PSO, with the scheduling under
multiple scenarios addressed using SOCP. The relationship between the two parts is shown
in Figure 1.

(1) DES sizing:

Considering the first layer from the DES investor’s point of view, the establishment
of equipment to participate in the power system electric energy market transactions and
the auxiliary services market transactions of the investment planning model, this model
takes into account the costs of investment CI, costs of degradation CD and savings of load
shifting SLS. The objective function of this layer OF1 is calculated as follows:

MinOF1 = CI + CD − SLS (19)
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with the constraints of Equations (15)–(18) kept. Although the solution above is easy, the
feasibility of solutions should also consider the constraints of DES scheduling. Thus, the
solution of DES sizing needs to be set and optimized together with the objective function
in DES scheduling.
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(2) DES scheduling.

The second layer considers the operating cost of the grid-side DES configuration as well
as the scheduling economics from the perspective of system operation economics. Therefore,
the economic factors considered include costs of investment CI, cost of maintenance CM,
cost of degradation CD, savings of load shifting SLS and savings of loss reduction SLR.
The initialized or updated objective function OF1 of the DES sizing is taken as known and
optimized together with the savings as given in Equation (19).

Min OF2 = CM + CI + CD − SLS − SLR (20)

For simplicity, the subscript s is neglected in the following content of this section, to detail
the cost–benefit analysis of a certain scenario. The constraints of the DES scheduling
optimization above are represented by Equations (9)–(18).

3.2. DES Sizing Optimization Using PSO

Heuristic search methods can solve MINLP problems with global optimality through
exhausted searches throughout the solution space. In this study, PSO is employed to
address the inter-layer sizing optimization problem. Since its introduction in 1995, PSO has
been extensively applied to solve different optimization problems in power systems [25].

3.3. DES Scheduling Optimization Using SOCP

The DES scheduling optimization is nonconvex and hard to solve directly due to the
power flow constraints of Equations (9)–(11). In this study, a relaxation technique is used
to convexify the original MINLP problem into solvable SOCP. Specifically, variables are
redefined below for relaxation.

vp
i =

(
VP

i

)2
(21)
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Lp
ij =

(
Pp

ij

)2
+
(

Qp
ij

)2

(
VP

i
)2 (22)

vp
i denotes the square of voltage magnitude at phase p of bus i; Lp

ij represents the square of
branch current at phase p between buses i and j.

Combine Equations (21) and (22) into Equations (9)–(11),

Pp
DG,i + Pp

ij − ∑ Pp
jk = −Pp

j + rp
ijL

p
ij (23)

Qp
DG,i + Qp

ij − ∑ Qp
jk = −Qp

j + xp
ijL

p
ij (24)

vp
i − vp

j = 2
(

rp
ijP

p
ij + xp

ijQ
p
ij

)
−
((

rp
ij

)2
+
(

xp
ij

)2
)

Lp
ij (25)

Lp
ij =

(
Pp

ij

)2
+
(

Qp
ij

)2

vp
i

(26)

In (23), all the equations are linearized except for (26) with square items. To handle it,
SOCP is adopted for relaxation as follows [26].

Lp
ij ≥

(
Pp

ij

)2
+
(

Qp
ij

)2

vp
i

(27)

Equation (27) is then equivalent to Equation (28):

(
Pp

ij

)2
+
(

Qp
ij

)2
+

(
vp

i − Lp
ij

2

)2

≤
(

vp
i + Lp

ij

2

)2

Lp
ij ≥

(
Pp

ij

)2
+
(

Qp
ij

)2

vp
i

(28)

Equation (28) can be rewritten as Equation (29):

∥
2Pp

ij

2Qp
ij

vp
i − Lp

ij

2∥ ≤ vp
i + Lp

ij (29)

As SOCP is used to relax the original nonconvex problem, the accuracy of the solution
after relaxation should be judged. Thus, a difference gap D is defined to calculate the error
between the relaxed and the original power flow.

D =
(

Pp
ij

)2
+
(

Qp
ij

)2
− vp

i Lp
ij (30)

The SOCP DES scheduling problem will be effectively solved using MATLAB2016a
with CPLEX12.10 solvers.

4. MSCLSI-Based Sequential Placement Strategy
To account for the effects of DES charging and discharging under multiple operation

scenarios, a multi-scenario comprehensive loss sensitivity index (MSCLSI) is specified and
formulated as

CLSIr
s = λdLSIr

d,s − λcLSIr
c,s (31)
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where LSIr
d,s and LSIr

c,s are the loss sensitivities corresponding to the discharging and
charging of the rth DES placement in scenarios, respectively, as given by

LSIr
c,s =

∂Pr
Loss,c,s

∂Pr
B,c,s

=

∣∣∣∣∣Pr
Loss,c,s − Pr−1

Loss,c,s

Pr
c,s − Pr−1

c,s

∣∣∣∣∣ (32)

LSIr
d,s =

∂Pr
Loss,d,s

∂Pr
B,d,s

=

∣∣∣∣∣P
r
Loss,d,s − Pr−1

Loss,d,s

Pr
d,s − Pr−1

d,s

∣∣∣∣∣ (33)

where λd and λc are the weights of discharging and charging loss sensitivities and can be
adjusted in practice based on their durations and electricity prices so that λd + λc = 1. Pr

c,s
and Pr

d,s represent the charging/discharging power at lowest/highest net load after rth DES
placement under scenario s.

To make the DES location selected using MSCLSIr
s more adaptable to multiple typ-

ical scenarios, the MSCLSIr
s for all scenarios are averaged as the final MSCLSI, with the

calculation formula as follows:

MSCLSIr = ∑S
s=1 CLSIr

s /S (34)

The MSCLSI defined above considers the impacts of DES charging and discharging
under multiple operation scenarios.

Based on the MSCLSI, a sequential placement strategy is then presented to support
the applications of the proposed hybrid optimal DES placement in distribution networks.
The complete process of the MSCLSI-based sequential placement strategy is detailed in
Figure 2.
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Figure 2. Flowchart of DES Sequential Placement based on MSCLSI. Figure 2. Flowchart of DES Sequential Placement based on MSCLSI.

5. Case Study
5.1. Simulated Network and Parameters Setting

To test the proposed hybrid optimization-based sequential DES placement model, the
IEEE 33 node distribution system is taken as an example to simulate the analysis. As shown
in Figure 3, a Ppv1 = 400 kW and Ppv2 = 700 kW PV power station is connected to nodes 7
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and 30, respectively, where the loads are large, and one year’s historical data from the two
PV plants are used for analysis over each individual method [27]. DESs are assumed to be
lithium-ion battery banks with superior life cycles and higher charge/discharge rates.
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Figure 3. Simulated distribution network of IEEE 33 node.

5.2. DES Siting, Sizing and Scheduling

The proposed DES placement problem is solved for the unbalanced distribution
network, with the placement results given in Table 1 and Figure 4. Specifically, bus 31 is
first located with the highest MSCLSI for the 1st placement. Then, the optimal sizing and
scheduling of DES is performed for bus 31. The quantities of DES units in phases A, B and
C are 100, 100 and 100, respectively, marking a total DES capacity of 300 kWh. The objective
function OF is $−33,649.4, including the costs of investment CI $5564.5, maintenance CM
$4989.3 and costs of degradation CD $5342.1, as well as the savings of load shifting SLS
$44,664.2 and savings of loss reduction SLR $4881.1, respectively.

Table 1. DES placement results of the proposed sequential strategy.

Placement 1st 2nd 3rd 4th 5th

Selected Bus 31 5 7 30 4

OF ($) −33,649.4 −41,630 −44,201.7 −47,034.9 −47,034.9
CM ($) 4989.3 7786.8 9040.2 10,941.6 10,941.6
CI ($) 5564.5 13,376.7 22,893 27,038.8 27,038.8
CD ($) 5342.1 4435.7 3648.6 2854.8 2854.8
SLS ($) 44,664.2 61,753.7 76,845.3 84,696.7 84,696.7
SLR ($) 4881.1 5475.5 2938.2 3173.4 3173.4

BN (A/B/C) 100/100/100 100/108/100 107/108/110 110/110/110 0
E (kWh) 300 308 325 330 0

Figure 4. MCLSI profiles after the proposed sequential DES placements.



Energies 2025, 18, 474 11 of 16

Taking the bus 31 placement as known, DES placement is continued based on the
proposed sequential strategy. As shown in Table 1, buses 5, 7 and 30 are subsequently cho-
sen for the 2nd, 3rd and 4th DES placements, with the objective function OF continuously
reduced to $−41,630, $−44,201.7 and $−47,034.9, respectively, which marks an increasing
net profit. Correspondingly, the DES capacities of these three placements are 308 kWh,
325 kWh and 330 kWh. The objective function (OF) and individual objectives after the
5th placement stay the same as those after the 4th placement, with the DES capacity being
zero. This indicates that the 5th placement would lead to a decrease in net profit due to
costs surpassing the savings, making it financially unviable. Therefore, the result following
the 4th placement is the most optimal for the simulated network. It is worth noting that as
DES investment costs and capacity increase, there is a significant growth in the revenues
from peaking ancillary services. This is because the returns in the peaking service market
are largely dependent on the capacity of the energy storage device being built. It should
also be noted that the savings of loss reduction continuously reduced from $4881.1 for the
1st placement to $5475.5, $2938.2 and $3173.4 for the remaining three placements. This is
because DES is generally not designed for loss reduction but for peak shaving and valley
filling. It can also be seen through Table 1 that as the number of placements increases,
the DES degradation cost decreases from $5342.1 to $2854.8. DES charging/discharging
is accompanied by chemical reactions and physical changes within the batteries, leading
to capacity degradation and increased internal resistance, which in turn accelerates the
DES lifetime loss. In this paper, the DES is sequentially placed, and the placement order
determines the frequency and depth of DES charging and discharging as well as the balance
of load distribution. Among the four placements, the DES assigned to node 31 takes a
larger load and undergoes deeper and more frequent charging/discharging cycles than
those assigned to nodes 5, 7 and 30, and therefore the DES assigned to node 31 is more
validated for the costs of degradation than the other DESs. The daily net load profiles of
four seasonal scenarios with and without DES are compared in Figure 5 below. It can be
seen that DES has played a significant role in load shifting.

5.3. Performance Test of the Proposed Hybrid PSO-SOCP

Another main aspect of this study is suggesting the hybrid solution strategy of PSO-
SOCP to balance optimization costs and accuracy. For comparison, the OPF problem
of DES placement is solved again using PSO and SOCP, respectively, with the results
given in Table 2. Considering PSO has the theoretical capability of global optimality by
searching throughout the whole solution space, it is taken as the accuracy benchmark.
The computation performance is marked using error for accuracy, which is calculated
with Equation (25), and using time for efficiency. Specifically, in terms of accuracy, we
conducted three sets of experiments, which were as follows: (1) SOCP processed the
optimal placement of DES in a single scenario (E1); (2) PSO-SOCP processed the optimal
placement of DES in a single scenario (E2); (3) PSO-SOCP processed the optimal placement
of DES in multiple scenarios (E3). Then, we compared the difference gap between the
three experiments in the same scenario and the result is shown in Figure 6. It can be seen
that the difference gap of E2 is much smaller than E1. This is because relaxations and
assumptions are made in SOCP, while PSO in the hybrid method has global optimality.
Influenced by multiple operational scenarios, the difference gap of E3 is larger than E2
but smaller than E1. Although the accuracy of E3 is affected by the consideration of
multiple scenarios, the benefit of placement is greatly improved. In terms of efficiency, we
compared the solution time of PSO, SOCP and PSO-SOCP to optimize the single scenario
DES placement problem. PSO as an independent method suffers a serious computation
burden, making it the worst among the three methods. Compared to PSO, the proposed
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hybrid optimization is much faster and cost-acceptable. Therefore, the proposed PSO-
SOCP hybrid optimization improves efficiency with guaranteed accuracy, which makes it
more suitable for the proposed DES placement in unbalanced distribution networks under
multiple operation scenarios.
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Figure 5. Daily net load profiles for MSCLSI-based simulated networks with and without DES:
(a) spring, (b) summer, (c) autumn, (d) winter.

Table 2. Performance comparison of single and hybrid optimizations.

Algorithm PSO SOCP PSO-SOCP

Time 22 h 142.34 s 156.44 s
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5.4. Performance Test of the Proposed MSCLSI

Another key aspect of this study is suggesting the MSCLSI to take into account the
effects of DES charging/discharging under multiple operation scenarios. To show its
superiority, the proposed MSCLSI is compared against the single-scenario CLSI of spring,
with the results given in Table 3. It can be observed that the four locations with the highest
sensitivities are buses 31, 6, 9 and 30, which differ significantly from those (buses 31, 5, 7
and 30) identified using the proposed MSCLSI in Table 1. In detail, the savings of load
shifting SLS using the proposed MSCLSI of $44,664.2 are much higher than those of the
single-scenario-based CLSI of $37,842.3. Meanwhile, the DES considering the MSCLSI
sequential placement has an expected gain of $33,649.4, while the DES based on the CLSI
placement has an expected gain of only $25,724.5, which is 23.55% lower in comparison.
This is because only the spring net load profile was considered when performing the
MSCLSI, and the load and PV profiles of the four seasons vary significantly. Comparing
Figures 5 and 7, it can be seen that the effect of the peak shaving and valley filling of other
scenarios in the CLSI is not as strong as in the proposed MSCLSI. This is because the load
and PV profiles of the four seasons vary significantly. Therefore, the proposed MSCLSI is
more suitable for all scenarios, with the sensitivities of four typical scenarios averaged to
decide the DES placement locations.

Table 3. DES placement results of the CLSI based sequential strategy.

Placement 1st 2nd 3rd 4th

Selected Bus 31 6 9 30

OF ($) −25,724.5 −28,013.8 −35,894.4 −39,231
CM ($) 4989.3 6597.8 8967.5 9758.8
CI ($) 5564.5 12,874.7 22,594 26,869
CD ($) 4547.2 3843.3 2965.8 2674.8
SLS ($) 37,842.3 46,652.8 67,954.8 75,985.8
SLR ($) 2983.2 4676.8 2466.9 2547.8

BN (A/B/C) 100/100/100 90/100/90 107/108/110 100/100/100
E (kWh) 300 280 325 300
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6. Conclusions
In this study, a sequential placement strategy is proposed, to determine the placement

of DESs in unbalanced distribution networks. To solve the integrated DES sizing and
scheduling problem, a hybrid solver of PSO-SOCP is proposed. The proposed hierarchical
and sequential placement of DESs is tested by performing detailed simulations on the IEEE
33 distribution network. It can be concluded that: (i) the results of DES placement based
on the MSCLSI are 36.47% lower in terms of expected gain compared to the results based
on the CLSI, which indicates that the MSCLSI can better account for the impact of DES
charging and discharging in multiple scenarios, and the results of the configuration are
more reasonable; (ii) DES placement based on IEEE 33 shows that DES plays an important
role in load shifting, and the proposed hierarchical and sequential strategy effectively takes
into account the impact of the three-phase imbalance in the active distribution network,
and the results are more consistent with the actual operation of the grid and more feasible;
(iii) comparing the DES placement results produced with PSO, SOCP and the proposed
PSO-SOCP, respectively, the hybrid solver of PSO-SOCP proposed in this paper achieves a
better balance between efficiency and accuracy, making it more suitable for DES placement
in large-scale networks and under various operation scenarios.
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This paper focuses on the optimal allocation of DES in unbalanced networks in multi-
ple scenarios. Based on the environment of multi-system development, considering the
characteristics of DES with a small capacity, flexible layout and dispersion, the market
mechanism suitable for DES participation can be specified in the future, and the way in
which DES can coordinate with other adjustable flexible resources can be expanded.
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