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Abstract: Virtual power plant (VPP) is a critical platform for modern distribution systems
with distributed generators (DGs). However, its cybersecurity is susceptible to cyber-attacks
such as false data injection attacks (FDIAs). The impacts of FDIAs on VPP-distribution
cyber–physical power systems have not been thoroughly investigated in the literature.
This study concentrates on the distribution–VPP joint system and designs a new FDIA
framework, topology-distributed-generator attack (TDA), that manipulates power network
topology and DG outputs. An attack vector is designed carrying incorrect topology, falsified
DG outputs, and tampered power flow information that can bypass the existing bad data
detection and topology error identification, misleading the decision-making in the control
center. Additionally, TDA models are formulated to optimize attack vectors based on
objectives of attack investment, VPP economic loss, and operational security. A hybrid
solution framework is then proposed for the optimization problem above, where the
corresponding submodules realize the bad data detection, topology error identification,
and optimal dispatching in the optimal attack vector. The effectiveness and superiority of
the proposal are numerically verified on a 62-node cyber–physical system. Key findings
highlight that VPP-integrated distribution systems are more vulnerable under low-level
renewable energy penetration and the urgent need for enhancing backup power supplies
to mitigate such threats.

Keywords: cyber-topology attacks; false data injection attacks; hybrid optimization; virtual
power plant (VPP)

1. Introduction
1.1. Motivation

The modern distribution power system is a typical cyber–physical power system
(CPPS) equipped with advanced measurement sensors and computing resources. In a CPPS,
the cyber network of information transmission cooperates in real-time with the physical
power systems, providing infrastructures for new power businesses, such as virtual power
plants (VPPs), that are emerging in distribution systems [1–3]. While facilitating interactions
among energy entities, the cyberspace of power systems is exposed to the huge threats
of cyber-attacks. Branch overload, power imbalances, and even cascading failures can be
triggered by cyber-attacks, resulting in considerable economic losses and social instability,
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such as what happened in the 2015 Ukraine blackout [4]. Therefore, it is necessary to
enhance the cyber-security of modern distribution power systems with VPPs.

To support the target of “carbon peaking and carbon neutrality” in China, the cyber-
security of power systems is the basis of power industry reform and development [5].
The State Grid has detailed cyber-security from three perspectives: (1) system security,
which ensures the accessibility of communication systems; (2) information security, which
involves the integrity, availability, and confidentiality of data; (3) transaction security, which
cares about the reliability of power businesses [6]. Cyber-attacks, in various forms such
as false data injection attacks (FDIAs), man-in-the-middle (MITM) attacks, etc., always
target the supervisory control and data acquisition (SCADA) system and disturb the data
transmission or even falsify the data. Thus, modeling cyber-attacks is a key tool for
analyzing attackers’ intent, simulating potential damage, and guiding protection measures.

Distributed generators (DGs) are geographically separated in a modern distribution
power system. To aggregate and manage these distributed resources, VPPs are introduced
with more efficient, economic, and intelligent operations to integrate DGs while also
gradually opening the originally private cyberspace of power systems to the public [7],
forming a public–private (i.e., heterogeneous communication) power network (PPPN).
Since public networks that execute communications between DGs and VPP aggregators do
not have as solid firewalls and detection mechanisms as private power networks do [8–10],
attackers can inject attack vectors into the VPP-DG metering devices and transmission
channels. Correspondingly, the distribution power system will suffer from incorrect data
flow from coordinated cyber-attacks via communication links with VPPs. To mitigate
operation risks, it is of great importance to model the cyber-attack on the PPPN and analyze
its impacts on distribution power systems.

In summary, the primary research questions addressed in this work are as follows.

• How to develop a cyber-attack model that considers the emerging background of
PPPNs? How to implement such an attack that considers the coordination between
VPPs and the distribution system operator (DSO)?

• How to design the cyber-attack process without being detected by the control center?
What are the economic and security impacts of this attack on the joint operation of
VPP aggregators and the distribution power system?

1.2. Literature Review
1.2.1. Attack Targets

As one of the most popular cyber-attacks on power systems, FDIAs on power
flows/loads [11–15], network topology [16–18], and DGs [19] can lead to serious dam-
age to the physical power system. Extensive research has been conducted on the modeling
of FDIAs. In [12,15], multi-stage attack models are formulated where the stealthy intrusion
is guaranteed by simulating the bad data detection (BDD) process. Then, the contaminated
measurements of power flows are optimized to maximize the attack impacts. Reference [16]
has proposed a topology cyber-attack to mislead the control center with incorrect network
information. The topology attack is then enhanced in [17,18] as a line-switch topology
attack (LTA) with detailed assumptions and specific processes. The fundamental of launch-
ing a successful topology attack is to bypass the topology error identification (TEI). On the
demand side, there are more kinds of information that can be manipulated, such as DG
output data [20], node load data [11,19], and price signals [21]. The above studies have
investigated attacks on the conventional power system with simplified system frameworks,
while emerging businesses such as VPPs have attracted researchers to design new attack
models. Reference [22] has modeled a simplified FDIA on VPP as a state variable of each DG
where the detection means of power systems are ignored, which is unpersuasive in practice.



Energies 2025, 18, 1597 3 of 22

Reference [23] focuses on power grids that have experienced major blackouts as the target,
indicating that attackers may launch FDIAs during the most vulnerable moments. Com-
monly, the implementation of launching attacks on modern distribution systems remains
in the traditional way that attacks take place in homogeneous communication networks,
resulting in incorrect impact analysis and conclusions. Moreover, existing studies mainly
focused on launching single-type cyber-attacks while neglecting coordinated attacks could
cause more severe damage.

1.2.2. Solving Strategy of Cyber-Attack Models

Currently, optimization problems of cyber-attack models are addressed in three major
ways, including (1) mathematical methods, (2) analytical methods, and (3) heuristic meth-
ods. In [11], a load-altering attack (LAA) has been modeled as a mixed integer non-linear
problem (MINLP), which is directly solved by the Generalized Bender Decomposition algo-
rithm, with local optima obtained. References [20,24] have formulated their cyber-attacks as
a bi-level optimization model which is transformed into single-level by the Karush–Kuhn–
Tucker condition. Even though their method has found global optima, the attack model
made unreasonable assumptions by neglecting critical functions of power systems such as
state estimation and BDD. The analytical method [25] analyzes the impacts of attacks based
on a large number of simulations, thus easily falling into the “curse of dimensionality”.
Malware-induced cyber-attacks are simulated in [14], and the vulnerability risk of devices
from both cyber and physical sides is revealed based on graph theory in [26]. By contrast,
heuristic optimization algorithms are widely used in solving attack complex models. In [12],
a multi-objective attack model is solved using a non-dominated sorting genetic algorithm.
Differential Evolutionary methods are applied in [13,15] to optimize multi-step attack
strategies. The Natural Aggregation algorithm is applied in [17] to optimize the LTA model
which is formulated as a MINLP. The solution quality of heuristic algorithms is guaranteed
based on the large number of populations, thus causing poor computation efficiency.

1.2.3. Attack Scenarios of PPPNs

A VPP is designed for the third party to operate on a public communication network,
where cyber security risks may arise while interacting with the private power network.
Some scholars have noticed that this evolution may bring new risks to the reliable operation
of power systems. In [27], a complex network analysis on the structure characteristics of
VPPs shows that the VPP control is highly dependent on the aggregators’ control center,
which has poor flexibility against cyber-attacks. Reference [28] firstly demonstrates that, in
a PPPN, the private network has higher authority than the public network in monitoring
and controlling, and the transmitted information through the edge of private and public
networks should be restrained as electricity bills and DG outputs for the sake of system
security. Substantial concerns for PPPNs have arisen for the half-open space essence
which enforces deformity [29]. In general, as DSOs delegate the DG management to VPP
aggregators [30,31], cyber attackers can easily sneak into PPPNs and launch FDIAs to bring
more serious impacts on the distribution systems. Reference [32] has investigated the
injection and propagation routes of denial-of-service attacks on a VPP.

In summary, current FDIA models typically follow a “one-shot” attack strategy, ex-
pecting that a single FDIA can disrupt the operation of the distribution system. However,
attackers in practice often have multiple opportunities to launch attacks, which may shift
their objectives from optimal attacks to more rational ones. With long-term goals, attackers
can manipulate with suboptimal FDIAs in the short term but optimal FDIAs in the long
run. Moreover, current FDIAs are formulated based on existing power network environ-
ments, with insufficient consideration for new distribution network operation scenarios
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such as PPPNs and VPP integration. There is also a lack of anticipation for new FDIAs in
these emerging scenarios, making it hard for distribution systems to respond effectively to
real-time cyber-attacks. Regarding the model and optimization framework of cyber-attacks,
the following deficiencies can be outlined based on the literature survey above.

• The communication heterogeneity between private power and public VPP networks
is always ignored, and the impact analysis is unreasonable and even incorrect when
cyberattacks take place on PPPNs.

• Network topology and DG outputs are critical data for VPPs, but existing FDIA models
only consider launching cyber-attacks from a single aspect.

• To the best of the authors’ knowledge, there exists no effective optimization framework
of FDIA designed for balancing computation accuracy and efficiency.

1.3. Contributions

Considering the above challenges, this paper proposes a novel FDIA model consider-
ing both network topology and DG outputs to disturb the operation of distribution systems
and VPP aggregators in the background of PPPNs. Firstly, the concept of the PPPN is
introduced, where the vulnerabilities of this novel distribution network are analyzed. This
paper designed a novel FDIA model to address the gap between traditional distribution
networks and PPPNs. Within the attack model, the false data of network topology, DG out-
puts, and power flow are injected into the control center, where BDD and TEI are deceived.
The paper then develops a hybrid optimization framework for solving the proposed attack
model, where the heuristic optimization process is guided by a mathematical method.
Numerical studies are conducted on a 62-node CPPS test system at different renewable
energy sources (RES) penetration levels. Through numerical results, the effectiveness of
the proposed attack model is demonstrated, and cyber-attacks on PPPNs can cause worse
situations with lower costs than normal FDIAs.

The key contributions of this study to the research field can be summarized as follows:

• Developing a new cyberattack framework considering the scenario of PPPN operations
and analyzing the cyber vulnerability of the DSO and VPP aggregators.

• Proposing a topology–DG joint attack model where an attacker compromises the data
of DG outputs and network topology information by, respectively, injecting the bad
data into the PPPNs.

• Proposing a hybrid optimization framework that realizes the critical solution functions
by inner-layer second-order cone programming (SOCP) and outer-layer particle swarm
optimizer (PSO).

1.4. Paper Organization

The remainder of this paper is organized as follows. The preliminaries of the PPPNs
are introduced in Section 2. The proposed topology–DG joint attack model is presented in
Section 3. In Section 4, the hybrid optimization method is constructed. In Section 5, the
mechanism and the impact of the attack model are validated using a state-of-the-art CPS
test case. Finally, conclusions are presented in Section 6.

2. Communication, State Estimation, and NTP Assumptions
This section introduces the communication architecture of DSO and VPP based on

the PPPN, as shown in Figure 1, while the active state estimation and network topology
processing (NTP) are reviewed in the subsequent parts.
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Figure 1. The PPPN framework illustrating the power and data flow.

2.1. Communication Architecture

A VPP consolidates geographically separated DGs, such as RESs and energy storage
systems (ESSs), with the help of advanced measurement and communication technologies.
To benefit from the energy market, VPP aggregators participate in the optimal control of the
energy management system (EMS). The communication framework for the proposed attack
model is constructed based on the international standard of power system automation
IEC-61850. Figure 1 shows a PPPN based on the VPP framework along with its power
and information flows [32]. A VPP aggregator possesses and controls a VPP cloud service
center (VCC) that receives the generation commands from the DSO via a public–private
interactive channel and sends the corresponding control instructions to the submissive
DGs via public channels. Each DG is also equipped with a VPP edge service center (VEC)
to execute information interactions with the VCC. Assuming K DGs within the VPP, the
output data of the kth DG is represented by (pk, qk) where k ∈ [1, K]. In addition, various
meters and sensors, such as feeder terminal units (FTUs) and distribution terminal units
(DTUs), within the physical system measure and transmit the data to the superior devices
via the channels in the private network. After receiving the data from the two networks,
the DSO calculates the optimal dispatch strategy for the next period.

Two assumptions are made in the proposed cyber-attack model:

• The attacker masters the principle of operating the power system and has knowledge
of the target power grid. Furthermore, the attacker has access to the public–private



Energies 2025, 18, 1597 6 of 22

power network and can manipulate any meter measurement in the target power grid.
This assumption is consistent with other studies on FDIAs.

• For the simplicity and clarity of this work, a powerful DSO is created to handle the
dispatching of both the power grid and VPP’s submissive DGs. Despite a DSO having
no authority to directly give instructions to the DGs within a VPP in practice, both the
DSO and the VPP aggregator have the same interests in facing cyber-attacks.

2.2. State Estimation Model and BDD Principle

State estimation is an approach to calculate the power system’s state variables (i.e.,
voltages, magnitudes, and angles across the network nodes) based on the measurement
data, which are collected by meters as analog data, including nodal active and reactive
power and branch power flow. The obtained state variables are used as elements in the EMS
calculations, such as optimal power flow [2], voltage control [3], and forecasting tasks [7].

Here, the distribution system’s network is represented by a graph G = (N, ϑ), where N
is the node set of the distribution system, and ϑ is the branch set. The supervisory control
and data acquisition (SCADA) system of the control center collects measurements as

z = h(x, ϑ) + e (1)

where z is the measurement vector from the meters. Assuming M meters in the distribution
system, the measurement vector of each meter is denoted by zm ∈ z, m ∈ [1, M]. In (1), h()
represents a non-linear function [16] related to the system state x and the topology ϑ, while
e is the measurement error, which is assumed to be a Gaussian noise.

The state variables are estimated using the WLS method from

x̂ = argmin
y

(z − h(y, ϑ))TR−1(z − h(y, ϑ)) (2)

where R is the error covariance matrix.
The control center often implements BDD based on the residual error of the system

states [33,34]. The residual error is calculated from

res = (z − h(x̂, ϑ))TR−1(z − h(x̂, ϑ)) (3)

Whenever the residual value exceeds the threshold value of τ, the new measurement
vector of z will not pass the BDD. Thus, the BDD is realized by

res ≤ τ (4)

Therefore, the measurements z and topology ϑ are considered valid only if the residue
is less than τ.

2.3. NTP and TEI

The NTP constructs the distribution system’s topology from the received break-
ers/switches status data [16] and other modules in EMS, such as state estimation, ob-
servability analysis, power network modeling, etc. [17]. Telemeter devices collect the
digital signals of the topology of the physical distribution system. Then exchangers and
routers in the private network compile the digital data and send them to the NTP in EMS
to construct the network topology information as an incidence matrix of A ∈ RN×ϑ with its
elements demonstrated by
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ail =


1, i ∈ l is the parent node
−1, i ∈ l is the child node
0, i /∈ l

, l ∈ ϑ, ail ∈ A (5)

Then, the TEI module in the NTP evaluates the connectivity and the radiality of
the constructed virtual topology for the distribution system. To keep the nomenclature
consistent, we apply the incidence matrix in (5) to represent the radial constraints instead
of using the adjacency matrix. Given the incidence matrix A, the al is denoted as the lth
column vector of A, and then the connectivity and radiality are verified by (5) and

n

∑
i

ail = 0, ail ∈ al , l ∈ ϑ, al ⊆ A (6)

n

∑
i
|ail | =

{
2, ail ̸= 0
0, ail = 0

, ∀ail ∈ al , l ∈ ϑ, al ⊆ A (7)

card{ail |ail = −1, ail ⊆ A} = nnode − nslack (8)

where card{} counts the number of elements in the set. Equation (5) bounds all ail ∈ A to be 0
or ± 1. Equations (6) and (7) indicate that each branch either has only one start and one end
or all the elements are equal to 0, while (8) restricts the total number of connected branches.

3. Topology–DG Joint Attack Model of Distribution-VPP CPPS
In this section, the vulnerability of the PPPN against cyber-attacks is first analyzed;

then, the formulated attack vector as the false data injected into the PPPN is presented.
Finally, to optimize the attack vector, the designed optimization model is introduced.

3.1. Launching a Topology–DG Attack

The PPPN supports the VPP aggregator’s businesses with the DSO using advanced
communication technologies. On the public side, the VPP aggregator controls the submis-
sive DGs using its VCC to send dispatching orders to the VECs. Moreover, the VCC also
gathers the output data from the DGs and sends them to the control center via the private
network. These transmitted data on the public network (internet) are of poor confidentiality
and easy to access, thus making them vulnerable to cyber-attacks such as FDIAs [31]. On the
private side, terminal devices such as FTU/DTU on breakers/switches are also vulnerable
to cyber-attacks [10]. Suffering attacks from both sides, the control center receives falsified
data regarding three perspectives: topology, power flow, and the VPP (i.e., clustered DGs)
outputs. In this case, the consistency of the power system information security is impaired,
and the security and stability of the physical system operation are threatened. Figure 2
schematically illustrates the process of launching a topology–DG attack.

The proposed topology–DG attack is composed of four stages, as introduced below:

• S0, Pre-attack stage: The distribution system is in the normal operation state following
the optimal dispatching order, and only tolerable measurement errors exist between
the physical state and the estimated state in cyberspace.

• Sa, Attack stage: The attacker intrudes into VECs with falsified DG output data via the
channel in the public network while the connection information and the power flow
data from terminal devices are also altered.

• S1, Decision stage: The tampered data bypasses the BDD and TEI, and the incorrect
data enter the control center. DSO recalculates the optimal power flow based on the
data and sends new instructions to the VPP aggregator.
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• S2, Damage stage: the VPP aggregator readjusts the outputs of the submissive DGs
according to the new commands, and the distribution system reaches a new operation
state after the attack.
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3.2. Constructing Attack Vector

The topology–DG attack is considerably different from other FDIAs. Studies
like [11,17,18] have focused on the internal cyberspace of power systems, also known
as the power private internet. This paper extends the background and involves the VPP
in the operation of distribution systems, where the cyberspace of the power system is
half-opening to the external internet. Thus, constructing the injected attack vector should
be characterized by the interactions within the PPPN. The attack vector consists of (1) the
attack variables on the network topology and DG outputs and (2) the auxiliary data (e.g.,
power flow) for covering up the impacts of attack variables.

An example of launching a topology–DG attack is depicted in Figure 2. An attacker
alters the incidence matrix A by cutting branches (2,3) and connecting branches (3,5).
Different from altering the topology in the transmission network [18,32,33], the attack
vector injected into the distribution network not only ensures the connectivity of the
falsified topology but also guarantees its radiality, as suggested in (5)–(8). The topology
attack vector ϑ is composed of binary variables where ϑl = 1 and 0 indicate, respectively,
the closed and open status of the lth branch (l ∈ ϑ). On the other hand, the attacker tampers
with the DG outputs as an attack vector denoted by (p, q) which is composed of (pk, qk)

where k ∈ [1, K]. To avoid alerts in the VCC, the tampered DG output vector should be
bounded by the output constraints in the form of

pmin
k ≤ pk ≤ pmax

k (9)

qmin
k ≤ qk ≤ qmax

k (10)

where pmin
k and pmax

k are, respectively, the minimum and maximum active power lim-
its of the kth DG, while qmin

k and qmax
k are its minimum and maximum reactive power

limits, respectively.
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When an attacker plans to change branch l’s status from ‘close’ to ‘open’, the power
flow data on that branch needs to be wiped out, and a group of falsified power flow data
will be injected. This falsified data will alter the power flow on the entire distribution
system. Thus, even the power flow data on non-targeted branches will also suffer from
the false data injection. Given the attack variables ϑ and (p, q), the attacker simulates a
power flow calculation and obtains an auxiliary vector z that consists of falsified power
data zl = (pl , ql) in each branch p and q are constrained by

−ϑl pmax
l ≤ pl ≤ ϑl pmax

l (11)

−ϑlqmax
l ≤ ql ≤ ϑlqmax

l (12)

where pmax
l and qmax

l are the maximum active and reactive power of branch l, respec-
tively. Equations (11) and (12) correspond the attack vector (ϑ, p, q) with the falsified
measurements of power flow z, which helps evade the BDD in (1)–(3) and the consistency
checking [16].

So far, a complete attack vector is composed of topology and DG outputs attack
vectors (ϑ, p, q) which are the optimization variables, as well as an auxiliary vector z to
avoid the detections.

3.3. Topology–DG Attack Model
3.3.1. Attack Objectives

To investigate the influence of topology–DG attack on the DSO and the VPP aggregator,
three objectives are designed where objective 1 is to launch a low-cost cyber-attack, objective
2 impairs the operational benefits of the VPP aggregator, and objective 3 introduces service
disturbance on the physical system. Each objective is shown as follows:

Objective-1 is given by

obj = min
∥∥ϑ − ϑ

∥∥
0 + ∥z − z∥0 + ∥(p, q)− (p, q)∥0 (13)

and aims to disturb the physical system with the least investment in manipulating measure-
ment meters. Thus, it minimizes the number of manipulated meters while causing at least
one branch to overload in the physical system, which is indicated as an extra constraint in
the form of

ps2
l ≤ pmax

l , ∀l (14)

Objective-2 is expressed by

obj = min ∑
k∈NVPP

(πD2V − πV2DG
k )ps2

k (15)

and aims at adversely affecting the VPP’s economic operation and minimizing the revenue
of the VPP aggregator. In (14), πD2V is the tariff when the DSO purchases power from the
VPP aggregator; πV2DG is the tariff when the VPP aggregator purchases power from the
submissive DGs; and ps2

k is the actual active output of the kth at stage S2.
Objective-3 is introduced by

obj = maxps2
l , ∀l (16)

and maximizes the overloading of a branch in the network to introduce the worst disturbance.
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3.3.2. Attack Constraints

The constraints of the topology–DG attack model are formulated according to the
four-stage attack process as follows. The initial power flow information at stage S0 is
calculated from (17) and based on an optimal power flow (OPF) function, as discussed
and formulated in the following subsection. Equations (9)–(12) show the restrictions of
tampering with data in stage Sa as well as the detections of BDD and TEI, given by (4)–(8).
Equation (18) presents the newly calculated optimal dispatching at stage S1. Finally, a new
power flow distribution is formed at stage S2 based on the new dispatch orders. Following
the new instructions from the control center, the VPP aggregator in stage S2 readjusts the
outputs of submissive DGs constrained by (19) and (20) that cover the situations in which
the control center overestimates or underestimates the response capabilities of DGs after
receiving the falsified data. The power flow of the physical system in stage S2 is constrained
by (21)–(24). {

ps0
k , qs0

k , Ps0
ij , Qs0

ij

}
= f opf(ϑ, p, q) (17){

ps1
k , qs1

k , Ps1
ij , Qs1

ij

}
= f opf(ϑ, p, q) (18)

ps2
k =


ps1

k , pcap,min
k ≤ ps1

k ≤ pcap,max
k

pcap,max
k , ps1

k > pcap,max
k

pcap,min
k , ps1

k < pcap,min
k

(19)

qs2
k =


qs1

k , qcap,min
k ≤ qs1

k ≤ qcap,max
k

qcap,max
k , qs1

k > qcap,max
k

qcap,min
k , qs1

k < qcap,min
k

(20)

ps2
i = −ps2

k + pload
i + Vs2

i ∑
j∈i

Vs2
j (gij cos θs2

ij + bij sin θs2
ij ), ij ∈ l (21)

qs2
i = −qs2

k + qload
i + Vs2

i ∑
j∈i

Vs2
j (gij sin θs2

ij − bij cos θs2
ij ), ij ∈ l (22)

ps2
ij = Vs2

i Vs2
j (gij cos θs2

ij + bij sin θs2
ij ) + gij(Vs2

i )
2
, ij ∈ l (23)

qs2
ij = Vs2

i Vs2
j (gij sin θs2

ij − bij cos θs2
ij ) + bij(Vs2

i )
2
, ij ∈ l (24)

In the above equations, f opf (·) represents the optimal power flow function; superscript
s0, s1, and s2 denote, respectively, stage S0, S1, and S2 of the attack; subscript i denotes
node-i; ps2

k and qs2
k are the active and reactive power outputs of the kth DG; superscripts max

and min denote, respectively, the actual maximum and minimum capacities; pi and qi are the
active and reactive power injections into node i; pload

i and qload
i are the active and reactive

demand at node i; Vi is the voltage magnitude at node i; gij and bij are the conductance and
susceptance of branch ij, respectively; and θij is the angle difference between nodes i and j.

3.3.3. Optimal Dispatching Model

The optimal power flow model used in stages S0 and S1 generates stable and accurate
simulations of DSO’s dispatch instruction, which ensures the success of the topology–DG
attack. The optimal power flow model used in (16) and (17) is formulated based on a
SOCP relaxed branch flow model, as shown in (25), where variables I′ = I2 and V′ = V2 are
introduced. We assume a strong control center to handle dispatching all energy sources, i.e.,
substations and the DGs of VPP, and its objective is to minimize the power purchasing costs
from the main grid and the VPP aggregator, as shown in (25a). The power flow constraints
are modeled in (25b)–(25g). Equations (25h)–(25i) and (25j)–(25l), respectively, show the
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operational constraints of the RESs (e.g., wind and solar) and ESSs. Equation (25m) is the
constraint of supply–demand between the VPP aggregator and the DSO.

min
{psub,pVPP}

∑
i∈Nsub

πmain psub
i + ∑

k∈NVPP

πVPP pk (25a)

s.t.
p f i − I′f ir f i − ∑

j∈Ni

pij − pload
i + pk = 0, ∀i ∈ N f (25b)

q f i − I′f ix f i − ∑
j∈Ni

qij − qload
i + qk = 0, ∀i ∈ N f (25c)

V′
j = V′

i − 2(Pijrij + xijQij) + (r2
ij + x2

ij)I′ij (25d)∥∥∥∥∥∥∥
2Pij

2Qij

I′ ij − V′
i

∥∥∥∥∥∥∥
2

≤ I′ ij + V′ (25e)

(Vmin
i )

2 ≤ V′
i ≤ (Vmax

i )2 (25f)

(Imin
i )

2 ≤ I′ i ≤ (Imax
i )2 (25g)

pmin
k ≤ pk ≤ pk, k ∈ ΩRES (25h)

qmin
k ≤ qk ≤ qk, k ∈ ΩRES (25i)

0 ≤ pch
k /ηch ≤ pch

k , k ∈ ΩBAT (25j)

0 ≤ pdch
k ηdch ≤ pdch

k , k ∈ ΩBAT (25k)

SOCmin
k ≤ SOCk +

Pch
k − Pdch

k
Ek

≤ SOCmax
k (25l)

∑
k∈NVPP

pk = PAS (25m)

where f is the parent node of node i; PAS is the total power demand the control center
requested; and ΩRES and ΩESS are the DG sets of RES and ESS, respectively. Equation (25e)

is the second-order cone form and equivalent to I′ij ≥
P2

ij+Q2
ij

V′
i

.

4. Hybrid Solution Method
To solve the topology–DG attack model, a hybrid optimization framework is designed

and presented here which contains 4 submodules according to the main functions. Figure 3
shows the flowchart of this optimizing solution.

The proposed model is a multi-nested mixed integer non-linear problem (MINLP)
where the decision variables on the topology attack and DG outputs are, respectively, binary
and continuous variables. The active state estimation calculation is based on the WLS,
which is inapplicable for mathematical optimization methods; thus, the PSO is adopted
for merging the submodules and searching for an optimal attack strategy. Each particle of
the PSO (i.e., an individual set of responses generated by the PSO) enters each submodule
sequentially to analyze its impact. Then, these outputs are gathered to calculate the fitness
values of each individual set of responses. The core of the optimization is to find a robust
and feasible strategy for the attacker, who often does not require an absolute optimal
attack vector at all times. To launch a successful cyber-attack, an attacker only has to
carry out an accurate simulation on the optimal dispatch of DSO at stage S1 because the
re-dispatch instruction will directly cause damage to the physical system. The optimal
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dispatch submodule is presented below. Solving the problem consists of the following
five steps:

• Initializing population: Preparing the operation data for stage S0 and initializing
the population in the form of an individual set of responses composed of a group of
attack variables.

• Bypassing BDD and TEI: Generating noised attack vectors based on each particle’s
information. The BDD and the TEI submodules are simulated to decide whether
the attack vector of each particle is allowed to enter the control center. If the attack
vector passes both detections, then it enters the control center; otherwise, the particle
is eliminated.

• Calculating new dispatch instructions: Simulating the dispatch decision for the mis-
guided DSO at stage S1.

• Defining damages on the physical system: Calculating the new power flow for the
physical distribution system with the misguided instructions and the fitness of each
individual is calculated.

• Updating populations: Updating the position and velocity for each PSO particle and
updating the information of the best particle and starting the solving process of the
next iteration until the optimization process reaches the maximum iterating number.
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5. Case Study
To evaluate the performance, effectiveness, and superiorities of the proposed attack

model with different attack objectives and RES penetration levels, a numerical study has
been conducted and discussed here. A modified version of the 62-node CPPS of [35] is used
here as the study case. As shown in Figure 4, on the physical side, the distribution network
consists of 12 DGs and 65 lines (including 5 contact lines), with the DG parameters listed in
Table 1. On the cyber side, each sectional switch is equipped with an FTU, each breaker
is equipped with a DTU, and each DG is equipped with a meter and a VEC. Thus, the
CPPS has a total of 142 m/sensors, including 65 × 2 m, respectively, for digital and analog
measurements of branches and 12 m for the DGs. A VPP aggregator is deployed to manage
DGs in this system and their communications are realized based on the public internet.
The power output commands assigned by the control center PAS are fixed at 6 MW. To
demonstrate the effectiveness of the proposal, 9 cases combined with three objectives and
three RES levels are assumed, as listed in Table 2. Furthermore, other state-of-the-art FDIA
methods are compared to show the superiority of the proposal model, including:

• Line-switch topology attack on the measurements of topology and power flow [17];
• Load-altering attack (LAA) on traditional electrical loads [11].
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Table 1. Assumed parameter of DGs in Figure 4.

DGs Bus Rated Power
(MW)

πV2DG
k

(¥/MW)

RES Level pact,max
k (MW)

Low Mid High

PV1 22 1 150 0.21 0.45 0.72
PV2 31 1 150 0.24 0.51 0.70
PV3 54 1 150 0.19 0.49 0.78
PV4 61 1 150 0.25 0.57 0.74
WT1 25 1 120 0.30 0.42 0.70
WT2 28 1 120 0.22 0.48 0.78
WT3 46 1 120 0.23 0.56 0.76
WT4 19 1 120 0.26 0.62 0.82
ESS1 12 1.5 180 \ \ \
ESS2 53 1.5 180 \ \ \
ESS3 11 0.8 110 \ \ \
ESS4 33 1 100 \ \ \

Table 2. Cases with different RES levels.

RES Level
Attack Objective Min Attack

Resources (r)
Min VPP

Revenue (e)
Max Overload

Power (o)

Low (l) Case l-r Case l-e Case l-o

Mid (m) Case m-r Case m-e Case m-o

High (h) Case h-r Case h-e Case h-o

The studies are conducted in MATLAB 2020a on a PC (Intel i7-12700Kf, 32GB RAM).
The SOCP optimal power flow calculations in stages S0 and S1 are built by Yalmip and
solved by GUROBI, while the active state estimation is based on the WLS method, and the
power flow calculations are conducted with the help of MATPOWER.

5.1. Performance Evaluation
5.1.1. Objective-1: Minimizing the Attack Resource

Objective-1 is designed for an attacker with limited attack resources that aims to
disturb the operation of the distribution system. This objective minimizes the number of
manipulated meters while causing at least one feeder to overload at stage S2, as suggested
by (13)–(14). The topology attack vector and the number of manipulated meters under
different RES levels are listed in Table 3, and the DG attack vector, along with the misguided
dispatch instructions at stage S1 and the actual DG outputs at stage S2, are depicted in
Figure 5.

From the perspective of a cyber-attacker, the attack target will bring disturbance to
the physical system. As seen from Table 3, the overloaded feeders appear in stage S2 in
all cases, while no feeder is overloaded at stage S1. The most serious situation is in the
case l-r, with a 107.06% load rate on a branch 43-44. On the attack investment side, the
number of manipulated meters shows an increase with the RES level. The total number of
manipulated meters increases from 51 (out of 142) at the low RES level to 58 at the high RES
level, where this change is mainly due to more power flow measurements being falsified,
from 35 (out of 65) at the low RES level to 45 at the high RES level. Respectively, 12, 12, and
11 DGs are manipulated in these three cases, and their power outputs are characterized by
RES levels, as detailed in Figure 5.
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Table 3. Analysis results of Objective-1.

Case l-r m-r h-r

Sa Stage

Topology attack 11-12(−), 18-19(−),
13-44(+), 19-35(+)

11-12(−), 18-19(−),
13-44(+), 19-35(+) 18-19(−), 19-35(+)

Falsified DGs 12/12 12/12 11/12

Falsified branch meters 35/65 38/65 45/65

Total falsified devices 51/142 54/142 58/142

S2 Stage
Overloaded feeder (rate) 23-24 (105.89%),

43-44 (107.06%) 23-24 (102.07%) 23-24 (101.30%)

Minimum bus voltage
magnitude 0.8525 0.8258 0.8974
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It can be seen from Figure 5a–c that the output power of RES at stage Sa (blue bars) is
consistent with that in stage S1 (red bars) because the operator needs to consume renewable
energy as much as possible. However, the VPP operator does not realize that they are
receiving the manipulated DG output information, misleading the operator to make wrong
decisions for the next dispatch period (i.e., stage S1). Upon receiving the misguided
dispatch order, the VPP aggregator must check the power response ability of each DG. As
demonstrated in Figure 5, the actual output power of each DG (yellow bars) is less than or
equal to the related blue bars, and the power response ability increases with the increase in
RES level. Meanwhile, the ESSs affected by the cyber-attack cannot fill the VPP’s output gap
but comply with the misguided instructions and are on standby. The VPP power gaps in
the cases l-r, m-r, and h-r are, respectively, 3.90, 1.99, and 0.14 MW. In terms of bus voltage,
the attack at a mid-level of RES resulted in a minimum voltage magnitude of 0.8258. Thus,
the study demonstrates that the increasing RES penetration level may mitigate the impact
of cyber-attacks on the VPP.

5.1.2. Objective-2: Minimizing the Revenue of VPP Aggregator

Objective-2 minimizes the net revenue of the VPP aggregator and is designed for an
attacker that aims to hinder the financial profit of the VPP aggregator, as shown in (14).
The topology attack vector and the number of manipulated meters of this objective under
different RES levels are listed in Table 4, while Figure 6 shows the DG output information,
including the attack vectors, the misguided orders, and the actual power outputs of cases
l-e, m-e, and h-e.
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Table 4. Analysis results of Objective-2.

Case l-e m-e h-e

Sa stage
Topology attack

10-11(−),
18–19(−),
28-29(−),
13–44(+),
17-29(+),
19–35(+)

9-10(−),
26–27(−),
57-60(−),
13–44(+),
17-29(+),
24–62(+)

12-13(−),
18-19(−),
26-27(−),
13-44(+),
17-29(+),
19-35(+)

Falsified DGs 12/12 12/12 12/12

Falsified branch meters 44/65 45/65 48/65

S1 stage
Expected VPP benefit ¥17,190 ¥17,190 ¥17,190

Expected VPP outputs 6 MW 6 MW 6 MW

S2 stage

VPP actual benefit ¥4127 ¥8508 ¥12,641

VPP actual outputs 1.44 MW 2.97 MW 4.42 MW

Minimum bus voltage
magnitude 0.8851 0.9015 0.9045
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After receiving falsified system information, the VPP’s decision-maker calculates the
power flow and comes out with an expected state of operation, including an expected VPP
benefit of JPY 17,190 and an expected power supply of 6 MW among the three cases, as
seen in Table 4. However, the misguided instructions lead to the aggregator’s economic
losses in actual operation (i.e., stage S2), as well as the response power. After being attacked
and receiving wrong instructions, the net revenues of the VPP aggregator in the three cases
are, respectively, JPY 4127, 8508, and 12,641, while the total power outputs of VPP are,
respectively, 1.44, 2.97, and 4.42 MW. Like Objective-1, the values of Objective-2 also show a
correlation with the RES level, and the profit loss and the output power in stage S2 decrease
with the increase in the RES level.

More information about DG output power is demonstrated in Figure 5d–f, which
shows that the RES outputs in all the attack vectors are either 0 or 1 MW, and their
sum is 6 MW. Meanwhile, all the ESSs are inactive at stage S1 because, according to the
manipulated information received by the VPP’s decision-maker, the outputs of RESs meet



Energies 2025, 18, 1597 17 of 22

the requirement of the distribution system. In terms of bus voltage, the attack at a low
level of RES resulted in a minimum voltage magnitude of 0.8851. These results show that
the attacker tries to enlarge the gap between the actual power response ability and the
falsified outputs of RESs. Accordingly, the gap between the expected revenue and the
actual revenue is dilated. Nonetheless, the output gap will shrink as the RES level increases.
Therefore, the study illustrates that the VPP aggregators operating at low RES levels are
more vulnerable to economic-oriented cyber-attacks.

5.1.3. Objective-3: Maximizing the Overload Rate of One Feeder

Objective-3 represents an aggressive attacker that aims at bringing the most serious
physical impact, represented by the maximum overload power of a feeder, as shown by
(15). Table 5 shows this attack’s information and situations of the actual physical system
after the cyber-attack in cases l-o, m-o, and h-o. The DG output results in these cases are also
given in Figure 5g–i.

Table 5. Analysis results of Objective-3.

Case l-o m-o h-o

Sa stage

Topology attack

34-35(−),
36-37(−),
57-60(−),
3-39(+),

19-35(+),
24-62(+)

12-13(−),
27-28(−),
36-37(−),
57-60(−),
3-39(+),

13-44(+),
17-29(+),
24-62(+)

12-13(−),
17-18(−),
37-38(−),
57-60(−),
3-39(+),

13-44(+),
19-35(+),
24-62(+)

Falsified DGs 10/12 11/12 12/12

Falsified branch meters 42/65 46/65 53/65

S2 stage

VPP actual outputs 2.96 MW 4.39 WM 5.22 WM

Overloaded feeder (rate)

43-44
(113.86%),

23-24
(106.59%)

43-44
(113.86%)

43-44
(113.86%)

Minimum bus voltage
magnitude 0.8712 0.8964 0.9125

It can be seen from Table 5 that the different attack vectors are injected into the CPPS
while they have the same objective value, i.e., branches 43-44 with a demand of 11.386 MW
and a loading of 113.86%. This is the highest overloading of a branch in the considered test
system when the DGs downstream of branches 43-44, including PV2, PV3, WT3, and ESS2,
upload zero power, which is the common characteristic between cases l-o, m-o, and h-o, as
shown in Figure 7. Following misguided dispatch orders and shutting down the DGs, the
VPP aggregators cannot aggregate enough power supply to the distribution system and
leave behind power gaps of 3.04, 1.59, and 0.78 MW, respectively, in cases l-o, m-o, and h-o.
In terms of bus voltage, the attack at a low level of RES resulted in a minimum voltage
magnitude of 0.8721. Because of the lack of power supply from the VPP resulting from this
kind of cyber-attack, the distribution network may apply unrequired load-shedding.
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5.2. Comparative Analysis

Objectives 1 and 3 aim to impair the power system, an issue that has been widely
investigated as the target of cyber-attacks in literature. As such, two existing FDIA models
of line-switch topology attack (LTA) [17] and LAA [11] are selected here to compare the
performance of the proposed topology–DG attack against them within the study case of
Figure 4. The LTA manipulates the network topology information and the relevant power
flow measurements, while the LAA alters the load information of the power system.

Objective-1 endangers system operation while seeking a low-budget attack strategy.
Figure 6 depicts the number and the proportion of compromised devices in three cyber-
attacks under different RES levels. LTA, respectively, manipulates 66, 89, and 108 devices
under the low-, mid-, and high-RES levels, and the proportions of manipulated devices
are, respectively, 50.77, 68.45, and 83.08%. On the other hand, the LAA manipulates 96
and 102 devices, respectively, in the low- and mid-RES levels (i.e., 73.86 and 78.46%),
and no feasible solution is found at the high-RES level. With the proposed topology–DG
attack, fewer devices are manipulated compared to the LTA and LAA cases (i.e., 39, 42,
and 47 devices in the private network, and 12, 12, and 11 devices in the public network,
under the three RES levels). By manipulating VECs in the VPP from the public side, cyber-
attackers can put fewer resources into attacking the devices of the private network. Since
the public network is completely open to outsiders, tampering with VEC information is
easier than tampering with the devices of the private network. Therefore, the emergence of
VPP along with the forming of the PPPN, allows cyber-attackers to introduce disturbance
at lower costs and leads to a more vulnerable power system from the DSO perspective.

More aggressive cyber-attacks to maximize the loading of a branch are studied, and
the power flow results of the distribution system under different cyber-attack strategies
are shown in Figure 7. The target branches of the LTA are branches 43-44 as well, and the
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objective values are 10.85, 10.93, and 11 MW, respectively, under low-, mid-, and high-RES
levels. The LAA attacks branches 23-24 and 43-44 with a loading of, respectively, 10.71 and
10.22 MW under low- and mid-RES levels and no overloaded under the high-RES level. The
proposal outperforms the LTA and LAA and reaches the highest loading of 11.386 MW on
branches 43-44 under each RES level. This is because the proposed method simultaneously
coordinates the attack resources on topology information and DG output information, while
the existing methods are limited to one of those. Hence, the cyber-attacks on manipulating
topology and DG output can cause a more serious situation for the power system.

The proposed TDA model is designed to address the unique vulnerabilities and
operational characteristics of VPP-integrated PPPN environments, which are not fully
captured by traditional models. In scenarios involving PPPN, the TDA model shows better
capabilities in launching long-term and multi-stage FDIAs that introduce more severe
consequences. As shown in Tables 3–5, the proposed TDA exerts significant impacts on
the PPPN when VPP power outputs are their lowest. Compared to the LTA and LAA
models, the TDA model highlights that an insufficient energy storage system or emergency
power supply will significantly increase the vulnerability of the distribution network,
especially under the high-level RES penetration circumstance. Attackers can disrupt
the actual operation of the power grid by falsifying data transmitted between the VPP
and the DSO, potentially causing line overloads, RES shutdowns, or even widespread
power outages. This points out the critical need for robust defensive measures, such as
enhanced data integrity verification and resilient energy storage systems, to mitigate the
risks posed by such FDIAs in PPPNs. However, the assumption of a strong DSO here
results in the neglect of interactions among DGs, which may lead to severe consequences
in scenario evaluations. The autonomous control of DGs enables partial deviation from
compromised power dispatch commands caused by cyber-attacks, allowing prioritization
of local operational status monitoring, thus effectively mitigating operational stress on the
power grid.

5.3. Robustness Analysis

In this part, a comparative experiment is designed to evaluate the effects of attacks
at different load levels, aiming to verify the robustness of the proposed TDA under load
uncertainty. As shown in Figure 8, six load levels are designed, Objective-1 is selected as the
attack strategy, and RES output is fixed at the mid-level. The indices of the analysis focus on
the expected energy not supplied (EENS) and the minimum value of bus voltage magnitude.

It can be observed that at the levels of 50% to 100% of the maximum load, the power
supply shortfall resulting from the attack on the grid is approximately 50%. Among these
cases, the 60% load level case shows the lowest EENS, with a loss of 47.25%, and the maxi-
mum load level case has the highest EENS, with a loss of 51.57%. This indicates that the
proposed model can exert a similar impact on the grid across different load levels, demon-
strating good robustness. Regarding the bus voltage magnitude, as the load level increases,
the impact of the proposed TDA on the voltage magnitude becomes more pronounced. At
a load level of 50%, the minimum bus voltage magnitude is 0.9071, while at a load level of
100%, it decreases to 0.7745. As the load increases, the voltage drop effect caused by the
attack becomes increasingly pronounced. This change indicates that the voltage stability of
the grid under attack deteriorates, resulting in a significant reduction in voltage magnitude.
This phenomenon reflects the grid’s sensitivity to external disturbances under high load
conditions. It is noteworthy that one of the assumptions in this paper is that attackers
possess complete grid information to launch FDIAs. In power grid cybersecurity practices,
this challenge can be addressed by developing encryption and authentication mechanisms
for topology and DG data, thereby limiting attackers’ access to partial information and
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increasing the difficulty of intrusions. Furthermore, machine learning-based detection
strategies enable the identification of anomalies in transmitted data.
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6. Conclusions
The growing interest in the VPP business is resulting in a transition from the private

power network to PPPNs, bringing new vulnerabilities to the cyberspace of the power
system. This paper presents a new FDIA model that considers both the topology and
DG output power information in the attack model, misleading the decision of the DSO
with falsified information. The proposed model was formulated as a MINLP and solved
by a hybrid optimization framework. Multiple objectives were designed considering the
different goals of the attacker. Simulation results demonstrate that the proposed attack
model can bring more severe damage to the distribution system with lower costs for
the attacker. Tampering with tenuous devices in the public network, the attacker can
manipulate fewer meters on the private side. The results also show that for distribution
networks with high RES penetration, the impact of attack during low DG output periods is
three times greater than during high output periods.

In this paper, notable limitations that warrant further exploration, such as the focus
on specific attack paths, may ignore the complexity of multi-faceted threats such as cyber-
attacks on multi-energy integrated systems [36]. These could exploit various vulnerabilities
within the modern distribution system. Future research should aim to develop more
comprehensive attack detection and prevention models, which improve the resilience of
system operation.
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Abbreviations

BDD Bad Data Detection
CPPS Cyber–Physical Power System
DG Distributed Generator
DSO Distribution System Operator
DTU Distribution Terminal Unit
EMS Energy Management System
ESS Energy Storage System
FDIA False Data Injection Attack
FTU Feeder Terminal Unit
TDA Topology-Distributed-Generator Attack
LAA Load-Altering Attack
LTA Line-Switch Topology Attack
MINLP Mixed Integer Non-Linear Problem
MITM Man-in-the-Middle
NTP Network Topology Processing
PPPN Public–Private Power Network
PSO Particle Swarm Optimizer
RES Renewable Energy Sources
SCADA Supervisory Control and Data Acquisition
SOCP Second-Order Cone Programming
TEI Topology Error Identification
VCC VPP Cloud Service Center
VEC VPP Edge Service Center
VPP Virtual Power Plant
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