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Abstract

The ability to identify patient-specific vulnerabilities to guide cancer treatments is a vital area of research. However, predictive
bioinformatics tools are difficult to translate into clinical applications due to a lack of in vitro and in vivo validation. While the
increasing number of personalised driver prioritisation algorithms (PDPAs) report powerful patient-specific information, the results do
not easily translate into treatment strategies. Critical in addressing this gap is the ability to meaningfully benchmark and validate PDPA
predictions. To address this, we developed Tumour-specific Algorithm for Ranking GEnetic Targets via Synthetic Lethality (TARGET-SL),
which utilises PDPA predictions to produce a ranked list of predicted essential genes that can be validated in vitro and in vivo. This
framework employs a novel strategy to benchmark PDPAs, by comparing predictions with ground truth gene essentiality data from
large-scale CRISPR-knockout and drug sensitivity screens. Importantly TARGET-SL identifies vulnerabilities that are more exclusive to
individual tumours than predictions based on canonical driver genes. We further find that TARGET-SL is better at identifying sample-
specific vulnerabilities than other similar tools.
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Introduction
Cancer drug development is increasingly focusing on personalised
treatments targeting patient-specific cancer vulnerabilities that
arise from genetic alterations. This requires clinicians to match
patients to therapies based on curated lists of actionable muta-
tions and their corresponding treatment. However, these lists are
often short and based on frequently recurrent mutations in each
cancer type, considered canonical ‘driver genes’. Resultingly, if a
patient’s mutation is not on the list, they will unlikely benefit from
personalised treatment. Furthermore, this approach assumes that
mutations in canonical driver genes must be driver mutations,
though this is not necessarily the case [1].

Thus, there is a clear need for algorithmic approaches to pri-
oritise patient-specific target genes based on individual tumour
molecular profiles. Personalised driver prioritisation algorithms
(PDPAs) attempt to achieve this by combining genomic and tran-
scriptomic data to link genetic alterations with the cancer phe-
notype, prioritising impactful driver mutations [2]. These driver
mutations result in increased activity through gain-of-function
(GOF) mutations in oncogenes, or decreased activity via loss-of-
function (LOF) mutations in tumour suppressor genes (TSGs).
Despite this critical difference, PDPAs do not distinguish between
GOF and LOF mutations.

Evaluating driver gene predictions in a personalised context
requires prohibitively extensive experimental validation. This has
led to difficulties in performing accurate benchmarking, with
most approaches suffering key limitations [3]. Firstly, PDPAs are
typically evaluated based on their ability to identify canonical
driver genes, such as the Cancer Gene Census (CGC) [4] genes,
in a publicly accessible cancer cohort. This strategy contradicts
the personalised nature of these algorithms, involving no patient-
specific ground truth. Secondly, a rank-aggregate-evaluate strat-
egy is often utilised, where the predicted drivers from a cohort are
aggregated into a single consensus list before comparison with the
reference set, biassing the results by increasing the likelihood of
finding commonly occurring driver genes. To address this, some
authors have suggested a rank-evaluate-aggregate (REA) strategy
[5], where precision is calculated before averaging the results.
Finally, the varying input requirements of various PDPAs makes
cross-algorithm comparisons challenging. This includes weighted
or unweighted, and directed or undirected gene interaction net-
works (GINs), and the need for both tumour and normal data.
These limitations have resulted in poor utilisation and develop-
ment of these tools.

The Cancer Cell Line Encyclopedia (CCLE) [6, 7] offers a
potential solution to this problem. CCLE includes over a thousand
cell lines with genomic and transcriptomic sequencing, as well as
drug-sensitivity screening and genome-wide CRISPR knock-out
(CRISPR-KO) gene essentiality screening, which identify genes
critical to cell growth. No previous PDPA evaluation strategy
has utilised gene essentiality screening. This is because not all
driver genes are essential. Indeed, while GOF driver mutations
promote cell growth, usually making them essential genes, LOF
mutations occur in tumour-suppressor genes, which normally
suppress cell growth. This means that LOF drivers themselves
are not essential genes. However, given that synthetic lethality
(SL) describes a lethal relationship upon loss of two partner
genes, we hypothesise that the SL partners of LOF drivers are
essential genes. Moreover, extensive research has resulted in a
wealth of quality databases of both predicted and experimentally
validated SL pairs [8–15], many of which have been previously
reviewed [16].

To test our hypothesis, we designed the Tumour-specific
Algorithm for Ranking GEnetic Targets via Synthetic Lethality
(TARGET-SL), which uses PDPA rankings to predict essential genes
and drug sensitivity based on known or predicted SL databases
and variant effect databases. Using the TARGET-SL benchmarking
mode, predictions are compared to ground truth information
for CCLE essentiality and drug sensitivity screens, which are
evaluated using a REA approach. Here, we present TARGET-SL as
a novel tool for gene essentiality and drug sensitivity prediction,
which is highly specific to individual target tumours or cell lines,
while also being an evaluation framework for PDPAs.

Material and methods
Overview
TARGET-SL is a gene-essentiality and drug-sensitivity prediction
tool (Fig. 1a), and an evaluation framework for PDPAs (Fig. 1b),
taking ranked, sample-specific driver gene predictions, and con-
verting them into essential gene and drug-sensitivity predictions.
In benchmark mode, it uses gene essentiality and drug screening
data as ground-truth for evaluation.

Benchmark data
Input data
CCLE data was sourced from DepMap (www.depmap.org, release
22Q4) [7], including expression data [transcripts-per-million (TPM)
and RSEM expected counts], somatic mutations, and gene-level
copy number. X-chromosome copy numbers were corrected for
sex (Supplementary Methods and Supplementary Fig. S1). STRING
database (v11) [17] was used as a GIN for all algorithms. Data were
filtered (Supplementary Methods and Supplementary Fig. S2)
such that all PDPAs had access to identical data, amounting to
1290 cell lines across 22 cell types with 3773 genes. The final GIN
contained 30 319 unique edges and 3773 nodes.

Gene Effect
Project Achilles genome-wide CRISPR-KO gene effect data were
retrieved from DepMap (22Q4), whereby greater negative mag-
nitude means more restricted cell growth. This was filtered to
genes with mean TPM > 5. Gene effect was further converted into
a gene uniqueness index (UIG) (Supplementary Methods), whereby
a more negative value indicates less cell growth relative to other
cell lines, particularly those of the same cell type.

Drug sensitivity
Drug sensitivity data came from PRISM log-fold change (LFC)
viability (DepMap 23Q2), and GDSC lnIC50 (www.cancerrxgene.
org, Release 1 and 2) [18]. These were filtered to drugs with
known genetic targets and inhibitory action in the Drug-Gene
Interaction Database (DGIdb) [19] by filtering for the following
drug-types: antibody, antisense oligonucleotide, blocker, cleavage,
inhibitor, inverse agonist, and negative modulator. The final list
of drugs included in our analysis and their targets are listed in
Supplementary Table S1. GDSC lnIC50 was further converted into
a drug uniqueness index (UID) (Supplementary Methods), whereby
a more negative value indicates greater toxicity relative to other
cell lines, particularly those of the same cell type.

Ground truth essential gene sets
Pickles (v3) [20] was used to create ground truth essential gene
sets for CCLE lines. We took a consensus of essential genes from
the Avana [21] and Score [22] essentiality screens from the three
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Figure 1. TARGET-SL overview. (a) PDPAs predict driver genes from DNA and RNA sequencing data. Based on variant-effect annotation and SL partner
identification using external databases, essential genes are predicted, and further filtered to predict rare essential genes. Finally, known small molecule
inhibitors of predicted essential genes are predicted as sensitive drugs. (b) In benchmark mode, TARGET-SL uses PDPAs to predict essential genes and
drug sensitivity for CCLE cell lines, with identical input data. Predictions are evaluated with ground-truth data from essentiality screens (PicklesV3 and
Achilles/Avana-Chronos) and drug sensitivity screens (PRISM and GDSC1/2).

available methods using the following thresholds: CHRONOS [23]
score < −0.5; BAGEL2 [24] score > 8; and z [20] score < −3. This
gene set for each cell line was called ‘All Ground Truth Essential
Genes’. This set was then filtered to only include genes that are
essential in <50% of cells globally, and <25% of cells of the same
tissue type. We call this set ‘Rare Ground Truth Essential Genes’.

Ground truth sensitive drug sets
lnIC50 values (GDSC1, GDSC2) or LFC viabilities (PRISM) were
converted into global z-scores based on the mean and standard
deviation for all cell lines in the CCLE. Negative values reflected a
more detrimental effect to cell growth. Drugs with a z-score < −1
were considered as ‘All Ground Truth Sensitive Drugs’. This list
was filtered to retain drugs that were sensitive in <50% of cells
globally and <25% of cells of the same tissue type, called the ‘Rare
Ground Truth Sensitive Drugs’.

Essential gene and drug sensitivity prediction
Driver prioritisation
A total of nine PDPAs were utilised in this study (Supplementary
Methods and Supplementary Fig. S3). PDPAs were run using
default or recommended parameters except for the changes

outlined in the Supplementary Methods. A ‘PDPA consensus’ of
DawnRank, OncoImpact, PersonaDrive, and sysSVM2 was created
using a modified Borda Count, as well as randomised controls for
comparison (randomDriver and randomDrug) (Supplementary
Methods).

Tumour-specific algorithm for ranking genetic targets via
synthetic lethality
Ranked driver genes were annotated as LOF or GOF drivers using
several existing databases of variant effect annotation [4, 25–30]
combined to a consensus confidence score (Supplementary Meth-
ods and Tables S2 and S3). LOF drivers were replaced with their SL
partners (Supplementary Table S4), which were again combined
from several existing databases (Supplementary Methods) [8–15]
in order of decreasing confidence score, with duplicated essential
genes predictions removed. This resulted in a rank-ordered list for
each algorithm called ‘All Predicted Essential Genes’. These were
further filtered to genes with significantly higher ranking in a cell
line compared with other cell lines of the same tissue type using
a Mann–Whitney U test (P value <.05), creating a list called ‘Rare
Predicted Essential Genes’. Drug sensitivity predictions were made
from these two lists based on drug-gene pairs in our ‘ground truth
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drug sets’ prioritising drugs with the fewest known gene targets.
This resulted in the sets ‘All Predicted Sensitive Drugs’ and ‘Rare
Predicted Sensitive Drugs’, respectively.

Results
Driver prioritisation algorithms produce highly
variable predictions
Nine PDPAs were included in our comparison: CSN_NCUA [31],
DawnRank [32], OncoImpact [33], PersonaDrive [5], PhenoDriverR
[34], PNC [35], PRODIGY [36], SCS [37], and sysSVM2 [38]. These
algorithms were used to predict driver genes in 1290 CCLE cell
lines using identical input data with STRING (v11) [17] as the
underlying GIN.

We assessed the similarity between PDPAs by considering the
exclusivity and intersection of their top 1 and top 10 predictions,
respectively (Fig. 2a and b). For individual algorithms we consid-
ered the proportion of their predictions that were not shared by
any other PDPA (exclusive predictions). For the top prediction,
the most unique algorithms were PhenoDriver, PRODIGY, and
sysSVM2, with 77%, 71%, and 71% of their predictions being
entirely exclusive, respectively, while exclusive drivers amounted
to just 15% and 12% for PersonaDrive and DawnRank (Fig. 2a).
Expectedly, these values were much lower when considering the
top 10 predictions, though still at 45% and 37% for SysSVM2 and
PRODIGY, respectively (Fig. 2b). For similarity between multiple
PDPAs, we considered the proportion of their combined total
predictions that were shared (inclusive intersection). The top
prediction was shared 64% of the time between PersonaDrive
and DawnRank, both of which also had high similarity with
OncoImpact (Fig. 2a). This overlap remained high at 33% for the
top 10 predictions, matched by a 33% overlap between PNC and
CSN_NCUA (Fig. 2b). In summary, the predictions from PDPAs
using the same input data were highly variable, with the highest
similarity between PersonaDrive and DawnRank, as well as PNC
and CSN_NCUA. sysSVM2, PRODIGY, and PhenoDriver gave the
most unique predictions.

Additionally, PDPAs varied significantly in the number of
reported drivers per sample, evident in their varying set sizes
(Fig. 2a and b). For example, PhenoDriver failed to report any
driver for 47% of samples, while all the other algorithms generally
reported at least one. SCS, OncoImpact, and PRODIGY reported 4.3,
5.4, and 11.5 drivers per sample on average, while the remaining
PDPAs reported an average of 25.8 to 102 drivers per sample.

Previously, PDPAs have been benchmarked against canonical
driver lists. Thus, we performed a similar analysis using identical
input for each PDPA. Predictions were compared against a list of
370 canonical driver genes from the CGC. The top 10 predicted
driver genes were assessed incrementally by precision (Fig. 2a)
following the approach of previous studies [5, 32, 33, 35–37]. Cell
lines with fewer than 10 mutated genes in the CGC list were
removed.

PersonaDrive, OncoImpact, and DawnRank had the highest
mean precision for their top predictions, which decreased for all
PDPAs over increasing numbers of predictions. Given the ground-
truth set makes up a large proportion (∼10%) of the considered
gene list, we suspected that precision may be over-inflated. To
address this, we compared predictions with a completely random
selection of driver genes (randomDriver) repeated 10 times for
every cell line (n = 12 900) with the results averaged. We found that
randomDriver predicted CGC driver genes with ∼15% precision,
consistently lower than all PDPAs.

Given the low agreement between algorithms, we evaluated
the performance of a PDPA consensus. Specifically, we evalu-
ated the combination of DawnRank, PersonaDrive, OncoImpact,
and SysSVM2. While the PDPA consensus yielded only a slight
improvement to PersonaDrive alone (Fig. 2a), the difference was
significant after 10 predictions, and all PDPAs performed signifi-
cantly better than randomDriver (Supplementary Fig. S4).

The algorithms differed significantly in terms of runtime
and memory utilisation (Supplementary Fig. S5). DawnRank
had the shortest runtime completing analysis of the largest
cell line groups in under 2 min, and small sample sizes taking
<20 s (Supplementary Fig. S5B). PRODIGY, SCS, and OncoImpact
tended to have the longest runtime, taking 15 min to 2 h
depending on sample size. OncoImpact had very low memory
requirements (maximum 100 MiB), due to its extensive generation
of temporary files rather than storing data in memory. The other
PDPAs varied from 100 MiB to 10 GiB depending on cohort size
(Supplementary Fig. S5A).

TARGET-SL identifies tumour-specific gene
targets
TARGET-SL predicts essential genes based on the functional
impact of driver gene mutations, by identifying SL-partners of
LOF drivers. In benchmarking mode, TARGET-SL allows evaluation
of PDPAs by comparing predicted essential genes with drug
sensitivity and gene-essentiality screens.

To test our approach, we evaluated whether the PDPA step of
the TARGET-SL pipeline offered improvement over simply focus-
ing on canonical CGC drivers. We used TARGET-SL to make gene
essentiality and drug sensitivity predictions for each cell line in
the CCLE using the top driver prediction from our PDPA consensus.
Separately, we used TARGET-SL to make the same predictions but
using mutated tier 1 CGC driver genes in each cell line. Finally, as a
comparison, we randomly sampled background genes and drugs
for each cell line that weren’t predicted to be essential or sensi-
tive by either approach. Gene effect and drug sensitivity (lnIC50)
was compared between these three groups. In all cases, values
with greater negative magnitude indicate higher essentiality or
sensitivity. Using the TARGET-SL pipeline, both CGC tier 1 drivers
and the PDPA consensus predicted genes and drugs with greater
gene effect (Fig. 3a) or sensitivity (Fig. 3b) than the background,
respectively, with the CGC tier 1 drivers performing slightly bet-
ter. Thus, TARGET-SL can convert driver gene-predictions into
essential gene predictions, though driver prioritisation did not
outperform canonical driver genes in this sense.

However, we hypothesised that PDPAs should lead to predic-
tions that were more unique to individual cell lines. To test
this, we converted the gene effect and drug-sensitivity data into
uniqueness indices for genes (UIG) and drugs (UID), respectively,
which can be interpreted as z-scores. These measures indicate
how much more essential or sensitive a prediction was compared
to other cell lines, particularly those of the same tissue type,
indicating a targeted effect. Based on these metrics, CGC Tier 1-
based predictions had very little uniqueness, while the consensus
driver prioritisation approach produced significantly more unique
predictions (Fig. 3c and d).

Gene essentiality benchmarking of driver
prioritisation algorithms
PDPAs were compared in two ways, using a traditional precision-
based approach and a novel quantitative benchmark. Firstly, pre-
dictions were compared against a ground-truth set of essential
genes for each cell line from Pickles (All Ground Truth Essential

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/3/bbaf255/8158334 by Jam

es C
ook U

niversity user on 08 June 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data


Precision essential gene prediction | 5

Figure 2. Similarity and traditional benchmark of results. PDPAs were used to predict driver genes in cancer cell lines. (a) Similarity of top driver prediction
in each cell line for each algorithm, showing exclusive predictions and inclusive intersections of two or more PDPAs. (b) the same is shown for the top
10 predictions. (c) Mean precision of PDPA top 10 driver predictions using the CGC as ground truth.
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Figure 3. TARGET-SL proof of concept. The TARGET-SL framework was used to predict essential genes (a and c) and sensitive drugs (b and d) using either
mutated canonical driver genes from the CGC (Tier 1 only) or the consensus top driver gene prediction for each cell line. As a comparison, cell-gene
pairs that were not mutated nor predicted to be essential were collected. Gene effect (a), drug lnIC50 (b), gene uniqueness (c) and drug uniqueness (d)
indices were compared. Asterisks indicate significance for a Wilcox Rank Sum test (Benjamini–Hochberg corrected), and D values indicate Cohen’s D
effect size. Notches in boxplots indicate ∼95% confidence intervals around the median.

Genes). To focus on ‘rare predictions’, we also compared against
a subset of rarer sample-specific essential genes, which we term
‘Rare Ground Truth Essential Genes’ (see methods for details).
Predictions of randomDriver were also processed with TARGET-
SL to predict essential genes, making it a control comparison for
the PDPA step.

As expected, precision was higher for PDPAs when consid-
ering the entire ground truth set (Fig. 4a) as opposed to the
smaller rare ground truth set (Fig. 4b). However, in both cases,
PDPAs usually outperformed randomDriver. When detecting all
essential genes, for the topmost prediction, PDPAs were closely
clustered with sysSVM2 and PNC performing slightly better than
other algorithms. However, when considering greater numbers
of predictions, OncoImpact performed better than other PDPAs,
reaching over 50% precision. For predicting rarer essential genes,
OncoImpact, PersonaDrive, and sysSVM2 had the best perfor-
mance, though in all cases their precision decreased rapidly over
increasing predictions. The PDPA consensus rarely outperformed
any individual algorithm but had consistent performance across
increasing numbers of predictions. Statistical comparisons of the
top 10 predictions showed that all algorithms performed sig-
nificantly better than randomDriver for predicting all ground
truth genes (Supplementary Fig. S6A). Only the PDPA consensus,
CSN_NUCA, PNC, and sysSVM2 were significantly higher for the
rare ground truth predictions (Supplementary Fig. S6B).

Secondly, to retain quantitative gene effect data, we compared
the gene effect scores of each ranked prediction (Fig. 4c). This
was done in terms of the average gene effect itself (y-axis) and
the average UIG (x-axis), determined cumulatively with increasing
numbers of predictions. Here, the best performing PDPAs pro-
duce points in the bottom left of the graph, indicating a strong
and targeted effect on cell growth. As expected, randomDriver
produced points in a single cluster that showed no uniqueness,
however, it still produced predictions with negative gene effect
as expected due to the TARGET-SL pipeline. PersonaDrive, the
PDPA consensus, DawnRank, and OncoImpact predictions had the
greatest magnitude UIG scores, indicating better ability to find
sample-specific essential genes. In contrast, CSN_NCUA, PNC, and
sysSVM2 produced predictions with a stronger gene effect, but

with weaker UIG scores, indicating that these genes are essential
in many other cell lines as well. Considering both measures,
PersonaDrive, DawnRank, sysSVM2, OncoImpact, and the PDPA
consensus produced the best predictions. Again, all algorithms
showed improved performance over randomDriver.

Drug sensitivity benchmarking of driver
prioritisation algorithms
Using the DGIdb, TARGET-SL predicts drug sensitivity by identi-
fying known inhibitors of predicted essential genes, prioritising
drugs with the fewest known target genes to maximise specificity.
In benchmarking mode, precision is calculated based on ground
truth information from GDSC1/2 and PRISM. We also compared
drug-sensitivity predictions with their quantitative lnIC50 and
UID from GDSC1/2. Finally, we introduced an additional control,
randomDrug, which makes random drug-predictions for each
cell line.

We compared our results to PanDrugs2 [39], a tool which uses
a similar approach to TARGET-SL for drug prediction and can use
the same input data from the CCLE cell lines. Using PanDrugs2
we made drug predictions for each cell line, filtered these to the
same drug list available for TARGET-SL (inhibitory drugs only).

Overall, precision was worse for drug predictions than essential
gene predictions, as was expected given drug-gene interactions
are far less specific than CRISPR-Cas9 resulting in more off-target
interactions. However, all PDPAs in combination with TARGET-SL
showed improved performance over randomDrug (Fig. 5a and b).
sysSVM2 had the best performance across all numbers of pre-
dictions, and together with PersonaDrive were the only PDPAs to
show consistently better performance than randomDriver. This
suggests that TARGET-SL successfully predicts drug-sensitivity,
but most PDPAs generate only a marginal improvement. Pan-
Drugs2 predictions were consistently lower and similar to ran-
domDrug at higher numbers of predictions.

In predicting rare ground truth sensitive drugs (Fig. 5b), Pan-
Drugs2 initially showed high precision for its top prediction, but
then rapidly decreased in precision with increased predictions.
No single PDPA performed best across all numbers of predic-
tions in this comparison, however OncoImpact, SCS, and sysSVM2

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/3/bbaf255/8158334 by Jam

es C
ook U

niversity user on 08 June 2025

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaf255#supplementary-data


Precision essential gene prediction | 7

Figure 4. Gene-level comparison of driver prioritisation algorithms using TARGET-SL. (a) Essential genes were predicted for cell lines using each PDPA
and compared against all ground truth essential genes. (b) Rare essential gene predictions were compared against the rare ground truth essential genes.
(c) The cumulative average of the gene effect and the gene-uniqueness index (UIG) were compared for the top 100 rare essential gene predictions.
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Figure 5. Drug-level comparison of driver prioritisation algorithms using TARGET-SL. (a) Drug sensitivity was predicted for cell lines using each PDPA and
compared against all ground truth sensitive drugs. (b) Rare drug sensitivity predictions were compared against the rare ground truth sensitive drugs. (c)
The cumulative average of the lnIC50 and the drug uniqueness index (UIG) were compared for the top 100 rare sensitivity predictions.
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had the most improved performance over randomDriver. Overall,
TARGET-SL-based predictions using PDPAs had higher precision
than PanDrugs2, with PanDrugs2 failing to perform better than
randomDrug after the top 7–8 predictions. Statistical comparisons
for the top 10 predictions showed no significance compared with
randomDrug in both precision measures (Supplementary Fig. S7).

For the quantitative UID analysis, compared with the gene
effect-based analysis, we observed less cases of the desirable
trend towards the bottom-left quadrant in these plots (Fig. 5c).
However, for drug-sensitivity, the uniqueness of the effect (x-axis)
is of greater importance than the IC50 of the drug, which varies
for different compounds. Hence, focusing on the UID, OncoImpact,
PhenoDriver, PersonaDrive, DawnRank, sysSVM2, and the PDPA
consensus performed best in identifying targeted drug sensitiv-
ity. When comparing PDPAs and TARGET-SL with PanDrugs2, we
observed that both approaches performed similar in terms of raw
drug sensitivity prediction (lnIC50), however, TARGET-SL’s predic-
tions were far more unique, with PanDrugs2 failing to outperform
the randomised controls in this regard.

Top driver-essential gene pairs
We also examined frequent driver mutations associated with
the highest sensitivity to TARGET-SL-predicted essential genes
or drugs (Supplementary Fig. S8). Across all CCLE cells, HRAS
and SIRT2 GOF mutations were most strongly associated with
sensitivity to their genetic knockout, while LOF MAPK1 driver
mutations incurred the strongest sensitivity to its predicted
synthetic lethal partner, MTOR. Cell type-specific GOF mutations
such as breast-KRAS, myeloid-BCR, biliary-BRAF, skin-PPM1D,
myeloid-ABL1, skin-BIRC2, and oesophageal-ERBB2 mutations
also conferred sensitivity to inhibition of their respective drivers
within their corresponding cell types, while LOF SMARCA4
mutations in liver cells incurred sensitivity to SMARCA2 as a
synthetic lethal partner. In most cases, strong driver-essential
gene relationships did not necessarily correspond with strong
sensitivity to known small-molecule inhibitors of these genes.
The top cell type-specific predictions and cell type-agnostic
predictions are available in Supplementary Tables S5 and S6,
respectively.

Discussion
The major limitation of PDPAs is that their predictions are not
readily actionable or able to be evaluated leading to their under-
utilisation and underdevelopment. To address this, we developed
TARGET-SL, combining data from several databases to predict
essential genes and drug sensitivity based on PDPA predictions.
This allows direct evaluation using LOF screening approaches like
CRISPR-KO and inhibitory drug screens. This is a major advance-
ment for the field, as TARGET-SL offers a novel method for gene-
essentiality and drug-sensitivity prediction and serves as a bench-
marking strategy for PDPAs.

TARGET-SL has several key innovations as a framework for
PDPA benchmarking. Currently, the common practise is to com-
pare predicted driver genes with canonical driver genes. This pro-
cess misses novel drivers and ignores sample-specific informa-
tion, making this a poor ground-truth for benchmarking. TARGET-
SL solves this problem by utilising sample-specific ground-truth
data. Additionally, by comparing algorithms with identical inputs,
including reference GIN, TARGET-SL enables a fairer compari-
son. Additionally, we created a novel quantitative benchmark
that eliminates arbitrary thresholds for true positives, offering a
clearer view of the data.

To this end, we used TARGET-SL to compare nine PDPAs.
Generally, all algorithms outperformed randomised drivers (ran-
domDriver) that were subjected to the TARGET-SL pipeline. This
demonstrates that driver prioritisation itself plays an important
role in successfully identifying essential genes, separate from
variant-effect and SL considerations. PersonaDrive, DawnRank,
OncoImpact, and SysSVM2, in combination with TARGET-SL, were
the most effective PDPAs, with precision dropping after the first
1 to 5 predictions. Interestingly, this list encompasses one of the
most recent algorithms in the field (PersonaDrive [5]) as well as
two of the oldest (DawnRank [32] and OncoImpact [33]).

We observed surprisingly little agreement between the various
algorithms. The greatest similarity was between DawnRank and
PersonaDrive. This was unexpected given that these two algo-
rithms utilise very different approaches, namely different GIN
types and prioritisation approaches. DawnRank only considers
information from the single sample it is analysing, while Per-
sonaDrive considers the connectedness between mutated and
differentially expressed genes in other samples as well [5, 32].
On the other hand, PNC and CSN_NCUA showed expectedly high
similarity given their similar approach to driver prioritisation [35].

Given the similar predictive performance of PDPAs despite their
very different predictions, we used a modified Borda Count to
generate a consensus driver list, in the expectation that this may
yield improved results as previously achieved in similar scenarios
[40]. The PDPA consensus did not drastically increase performance
but provided consistent performance in all comparisons. The
consensus also addresses the issue of individual PDPAs failing to
provide any predictions for some samples.

TARGET-SL also stands alone as a gene-essentiality and drug
sensitivity predictor, with its key advantage being its ability
to produce highly sample-specific predictions. Specifically, we
demonstrated that the PDPA step of TARGET-SL, when compared
with canonical tier 1 CGC drivers, significantly improved the
uniqueness of the predicted gene effect (Fig. 3). TARGET-SL also
offered better drug-prediction performance than PanDrugs2
[39], performing with higher precision in rare drug sensitivity
prediction with most PDPAs, particularly when using sysSVM2,
SCS, and OncoImpact (Fig. 5b). Specifically, TARGET-SL predictions
were similar to PanDrugs2 in terms of raw lnIC50 scores, but the
TARGET-SL predictions had greater uniqueness scores. We also
found that our gene-essentiality predictions outperformed that of
the BROAD-DREAM [41] challenge winner (Supplementary Fig. S9).
However, we excluded this from our main analysis after observing
a lack of correlation between CRISPR-Cas9 essentiality and the
short hairpin RNA (shRNA) essentiality screens used in the
BROAD-DREAM challenge (Supplementary Fig. S10), as noted by
other authors [42]. Overall, we anticipate that the uniqueness of
our predictions could translate to drug predictions with minimal
off-target effects, a question that requires ongoing analyses.

While the primary focus of this manuscript was the broader
performance of individual PDPAs and TARGET-SL, we also
examined a selection of frequent driver mutations that incurred
sensitivity to their target genes, as identified by TARGET-SL. GOF
drivers in well-known cancer-related genes were predominant
in this analysis. However, two interesting LOF drivers show
frequently showed sensitivity with their predicted SL-partners,
MAPK1-MTOR and a liver-specific SMARCA4-SMARCA2 relation-
ship. Indeed, co-targeting of MTOR and MAPK1 has previously
been reported as a potential therapeutic strategy for oral cancer
[43]. Additionally, the SMARCA4-SMARCA2 SL relationship has
been reported frequently in other cancer types [44–46], but has
not been extensively studied in a liver-specific context.
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Some limitations remain, such as TARGET-SL’s reliance on cell
line data for benchmarking algorithms designed for tissue data
and the lack of healthy controls. This could be circumvented
in future implementations by including organoid datasets that
can contain both tumour and normal organoids and better reca-
pitulate in vivo tissue heterogeneity [1]. Additionally, TARGET-
SL relies on external databases that are incomplete. The LOF/-
GOF annotation stage is of particular importance as it marks
the first critical decision point between two opposing treatment
approaches, and most variant-effect predictors are known to
perform poorly for non-LOF mutations [47]. Finally, the gene
inhibition from drug-gene interactions is less specific than the
CRISPR-Cas9-gene interactions, and this is compounded by a lack
of small-molecule inhibitors for many gene targets. Indeed, we
found almost no correlation between CRISPR gene effect scores
and the lnIC50 scores of the drugs predicted to inhibit the same
genes (Supplementary Fig. S11). However, as many personalised-
medicine approaches are targeting methods to screen thousands
of drugs per patient, we believe TARGET-SL offers a valuable
strategy to greatly reduce the number of drugs used in ex vivo
screening.

In summary, TARGET-SL marks an important step on the path
to personalised therapy options for cancer patients. TARGET-SL
predictions are highly unique to individual samples, contributed
to by both PDPAs and our variant effect and SL considerations. We
expect this will translate into targeted treatment approaches with
fewer off-target effects and support the development of PDPAs. In
future, we plan to update TARGET-SL as its dependant databases
improve and to use organoid datasets as they become available.

Key Points

• Algorithms designed to predict personalised cancer
driver genes lack effective means of evaluation.

• TARGET-SL extrapolates these predictions into verifiable
essential gene predictions.

• Combining driver prioritisation and synthetic lethality
produces highly targeted predictions.
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