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A B S T R A C T

Configuring a community energy storage system (CESS) helps balance energy supply-demand and increase the 
self-consumption rate of distributed renewable energy based generation on the user side. However, a CESS 
primarily relies on battery storage, whose high economic cost makes large-scale development and practical 
application difficult. Given this background, the optimal sizing and operational strategy for a community hybrid 
energy storage system (CHESS) is proposed in this paper, which comprises the slow-response energy storage 
device (SRESD) and the fast-response energy storage device (FRESD). Firstly, considering the community’s 
willingness to deploy storage and the impact of storage on smoothing load fluctuations, a multi-objective opti-
mization model aiming to maximize community profits and minimize load fluctuations is proposed, which is 
transformed into a single objective optimization by incorporating a penalty factor. Then, the Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) algorithm is employed to derive typical community 
load and electricity price curves which are used to schedule the monthly charge and discharge periods for the 
SRESD, subsequently developing the optimal sizing and annual 8760-hour operational strategy for a CHESS 
based on this schedule. On this basis, three storage configurations (CHESS, SRESD, and FRESD) are compared, 
and it is found by simulation results that the CHESS combines the advantages of both SRESD and FRESD, offering 
larger arbitrage opportunity with the peak-valley price spread and being more effective in managing load 
fluctuations. Finally, the impacts of declining battery costs on optimization results are examined and experi-
mental verification based on real data from Australia is carried out, with the feasibility and sustainability of the 
proposed sizing and operational strategy for a CHESS demonstrated.

Nomenclature

Abbreviations

BESS Battery energy storage system
CESS Community energy storage system
CHESS Community hybrid energy storage system
DBSCAN Density-Based Spatial Clustering of Applications with Noise
FRESD Fast-response energy storage device
PTES Pumped thermal energy storage
PV Photovoltaics
SRESD Slow-response energy storage device
WEM Wholesale electricity market

(continued on next column)

(continued )

NSGA-II Nondominated Sorting Genetic Algorithm II
MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition

Parameters

D Total number of days in a calendar year (365 or 366)
OFw/o

2
Sum of the daily standard deviations of net load for the entire year without 
CHESS deployment

Pload
d,t Community load at the t-th interval on the d-th day
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(continued )

Pw/o
d

Average power within a day without CHESS

r Discount rate
T The number of half-hour intervals per day
λWEM

d,t WEM price at the t-th time interval on the d-th day

λslow
CRF Capacity decay factor of SRESD

λfast
CRF

Capacity decay factor of FRESD

γslow Planning horizon of SRESD
γfast Planning horizon of FRESD
μslow Unit capacity investment cost of SRESD
μfast Unit capacity investment cost of FRESD
ξslow The ratio of the annual O&M cost to the initial investment of SRESD

ξfast The ratio of the annual O&M cost to the initial investment of FRESD
ηc Charging efficiency of SRESD
ηd Discharging efficiency of SRESD
Δt Time interval

Variables

β Penalty factor
Cm,w/o Community annual costs without deploying CHESS
Cm,w Community annual costs with deploying CHESS
Cess Annual investment of CHESS
Cess,slow Annual investment of SRESD
Cess,fast Annual investment of FRESD
Eslow Energy capacity of SRESD
Efast Energy capacity of FRESD
OF1 Annual revenue with CHESS deployment
OF2 Sum of the daily standard deviations of net load for the entire year with 

CHESS deployment
Pess,slow,cap Power capacity of SRESD
Pess,fast,cap Power capacity of FRESD
Pw

d
Average power within a day with CHESS

Pess,slow
d,t

Charging/discharging power of SRESD at the t-th time interval on the d- 
th day

Pess,fast
d,t

Charging/discharging power of FRESD at the t-th time interval on the d- 
th day

Tn Charging duration of SRESD
Tm Discharging duration of SRESD
tc Charging start time of SRESD by monthly plan
tc+n Charging end time of SRESD by monthly plan
td Discharging start time of SRESD by monthly plan
td+m Discharging end time of SRESD by monthly plan

1. Introduction

In recent years, rapid advancements in renewable energy generation 
technologies and significant cost reductions have enabled numerous 
distributed photovoltaics (PV) to integrate into modern power systems 
at many user terminals. For instance, Australia added 520 MW of rooftop 
PV capacity in the first quarter of 2023 [1]. However, the intermittency 
and variability of power outputs from distributed energy resources 
(DERs) cause power supply-demand imbalances and pose new chal-
lenges to the secure and economic operation of power systems [2]. 
Therefore, enhancing flexibility of users in providing power regulation is 
crucial for ensuring secure and reliable power supply as well as pro-
moting the capability of accommodating intermittent renewable energy 
generation.

In this context, the energy storage as a backup for renewable energy, 
is expected to play a significant role in modern power systems. However, 
the high investment costs of energy storage devices, which are one-time 
expenditures, mean that most storage systems primarily serve for 
maintaining power system secure operation. Providing storage for in-
dividual users yields low returns on investment and results in low uti-
lization rates, leading to significant resource waste [3]. To promote the 
utilization rate of energy storage devices and the accommodation level 
of intermittent renewable energy generation, the so-called community 
energy storage system (CESS) has already undergone pilot studies in 
countries such as Germany [4] and Australia [5], which can serve large- 
scale, multi-region user groups, promoting rapid development of 

commercial storage utilization [6]. Additionally, CESS plays a positive 
role in providing voltage regulation for distribution networks, 
enhancing the utilization of DREs [7], and reducing carbon emissions 
[8]. However, the high costs of current energy storage systems hinder 
their large-scale and extensive applications [9]. Therefore, optimizing 
the allocation of energy storage capacity and operational strategy is 
crucial to ensuring reasonable returns on CESS investments.

Currently, CESSs primarily rely on battery energy storage systems 
(BESSs), and some research work has been conducted on the optimal 
sizing of CESSs. The optimization methods for a BESS under different 
ownership structures based on net present value (NPV) are presented in 
[8–10]. A capacity optimization framework for a BESS with the objec-
tives of minimizing electricity costs and peak demand is presented in 
[13], using a price response model. An optimization framework based 
on machine learning and artificial ecosystem optimization (AEO) algo-
rithms is introduced in [14] to determine the optimal BESS capacity and 
charge/discharge strategies. An optimization model is presented in [15] 
that considers both the investment return and operational costs of a 
BESS, identifying the most cost-effective storage capacity through sim-
ulations of various capacity scenarios. A cooperative energy storage 
business model is developed in [16] based on a sharing mechanism, 
which determines the optimal energy storage configuration through 
coalition games.

To account for seasonal fluctuations of wind and solar energy based 
generation, some studies have considered efficient planning methods 
over the entire year (8760-h). The optimal sizing problem of PV and 
BESS in renewable energy communities is investigated in [17], consid-
ering the impacts of different battery operation strategies and sizing on 
the power system. An effective source-grid-storage coordination plan-
ning model is introduced in [18], describing hourly operation 
throughout a year into the multi-time-scale power balance planning of 
power systems. A design and operational optimization framework for 
multiple energy systems is presented in [19], including seasonal energy 
storage. An energy system configuration planning method is proposed in 
[20] based on time-series coupling. An optimal sizing adjustment 
method for a CBESS is presented in [21], with the long-term economic 
performance of community batteries considered.

However, the aforementioned studies have certain limitations. On 
one hand, the planning process is simplified in [8–14], without 
considering the full annual operation of storage (8760-h), instead 
relying on a few representative scenarios for simulations. This approach 
captures only the characteristics of intermittent renewable energy based 
generation and load fluctuations under typical conditions, neglecting 
power variability on longer time scales (weekly, monthly, annually), 
which may introduce errors compared to planning based on full-year 
simulations. On the other hand, relying on a limited number of typical 
scenarios does not accurately reflect the conditions of every natural day 
throughout the year, particularly for power variations caused by 
extreme weather events whose fluctuation trends and magnitudes are 
difficult to capture through typical scenarios. Therefore, methods based 
on a few typical scenarios for short-term [8–14] or full-year simulations 
[15–19] are insufficient to ensure an appropriate storage sizing.

Additionally, to further enhance the profitability of a CESS, some 
studies have explored potential revenue-generating services. An inno-
vative interactive voltage regulation platform for the BESS is presented 
in [22], which exchanges voltage regulation services with Distribution 
Network Service Providers (DNSPs). A short-term scheduling method is 
presented in [23] for the BESS that integrates day-ahead energy and 
ancillary services markets. Operation strategies for batteries to provide 
demand response considering community-level disaster recovery are 
proposed in [24]. Besides, the capability and value of the BESS in 
providing grid support are analyzed in [25]. Although current com-
mercial models for the CESS are diverse, the profitability remains un-
certain and is heavily reliant on subsidies (including government grants 
and network innovation funding) [26], making it crucial to achieve self- 
sustaining profitability for large-scale development.
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In addition to battery-based storage, some CESSs have also explored 
other forms of energy storage configurations. a community hybrid en-
ergy storage system (CHESS) integrating hydrogen and electricity stor-
age components to enhance the economic and environmental 
performance of community integrated energy systems is proposed in 
[27]. A collaborative model for communities, encompassing electricity, 
heating, cooling, and an emerging hydrogen network equipped with 
shared hybrid energy storage is developed in [28]. An innovative 
distributed energy system combining solar energy utilization with 
hybrid storage technologies is introduced in [29], including thermal and 
electricity storage. However, the aforementioned studies primarily 
emphasize the operation of CHESS and their reliance on complex energy 
forms makes it challenging to achieve economic benefits that are 
attractive enough for communities to adopt such configurations.

Given the above context, more advanced energy storage technolo-
gies/solutions are emerging, and are expected to play a significant role 
in the CESS, particularly the slow-response energy storage device 
(SRESD), whose low-cost characteristics can address the limited 
deployment issues of the CESS [30]. For instance, the pumped thermal 
energy storage (PTES), which uses excess electricity for heating thermal 
storage and converts the stored thermal energy into electricity when 
needed [31], shows potential for small- and medium-scale applications 
[32]. This paper explores the capacity sizing and operational strategy of 
a CHESS, including the SRESD represented by PTES and the fast- 
response energy storage device (FRESD) represented by BESS. The 
research work in this paper can be summarized as follows: 

i. By integrating the SRESD and FRESD, a multi-objective optimi-
zation model for a CHESS to maximize community profits and 
minimize load fluctuations is proposed, thereby enhancing the 
community’s willingness to deploy energy storage.

ii. Utilizing accurate annual 8760-h simulations, the operational 
strategy for the CHESS is developed, which could effectively 
enhance community revenue and mitigate the impacts of load 
fluctuations on the power system.

iii. Based on community net load curves and wholesale electricity 
market (WEM) price curves, the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithm is employed to 
derive the typical net load and electricity price curves which are 
used to schedule the monthly charge and discharge periods for 
the SRESD.

iv. The proposed method is validated using actual community data 
from Australia and evaluated against various energy storage so-
lutions, demonstrating the feasibility and sustainability of the 
proposed sizing and operational strategy for the CHESS.

The structure of this paper is as follows: Section 2 presents the 
structure and planning framework of a CHESS used in this study. Section 
3 examines the impact of the CHESS on community profits and load 
fluctuations in the distribution network, establishing an 8760-h 
simulation-based optimization model for the CHESS. Section 4 de-
scribes the planning method for the monthly charging and discharging 
schedule of the SRESD using the DBSCAN algorithm. Section 5 compares 
various energy storage configurations and investigates the impacts of 
advancements in battery technology on the CHESS, with analysis and 
validation provided based on actual community data from Australia. 
Finally, Section 6 presents conclusions and suggests future research in 
this field.

2. Problem description

2.1. Structure of the community microgrid

This paper focuses on a CHESS that integrates both SRESD (such as 
PTES) and FRESD (such as BESS), as depicted in Fig. 1. On the supply 
side, the system includes rooftop PV arrays within the community and 

the local grid. The distributed PV generation system and the local grid 
are connected to the AC bus via inverters and transformers, respectively, 
allowing for the surplus PV energy to be fed back into the grid. On the 
load side, the system includes both fixed loads and flexible loads such as 
electric vehicles (EVs). Additionally, both SRESD and FRESD are con-
nected to the bus via inverters, enabling the community to perform peak 
shaving and load balancing.

2.2. Sizing and operation framework of the CHESS

As illustrated in Fig. 2, the proposed CHESS sizing and operation 
framework includes four components: the planning of the SRESD oper-
ating schedules, the CHESS economic planning model, the load fluctu-
ation optimization model, and the optimization model solution. The 
framework utilizes the DBSCAN algorithm to extract typical community 
daily net load curves for every month and determines the monthly 
operating schedules for the SRESD in conjunction with WEM prices. To 
ensure the community profitability while addressing the requirements of 
the distribution network, a multi-objective optimization model for a 
CHESS with the annual 8760-h simulation and load fluctuation evalu-
ation is developed. By introducing penalty factors, the multi-objective 
model is converted into a single-objective model for solution, leading 
to the determination of the optimal CHESS sizing and operational 
strategy.

Fig. 1. Community microgrid structure.

Fig. 2. Sizing and operation framework of CHESS.

L. Wan et al.                                                                                                                                                                                                                                     Journal of Energy Storage 119 (2025) 116209 

3 



3. Mathematical formulation

A mathematical model for the sizing and operational strategy of the 
CHESS is developed in this section, based on accurate annual 8760-h 
simulations, with both the investment and operational costs of storage 
systems considered and the need for load fluctuation smoothing 
addressed.

3.1. Objective functions

Economic feasibility remains a crucial factor for the community 
when selecting energy storage systems. It is necessary to compare the 
community costs before and after the implementation of the CHESS, 
with the difference representing the realized profits from the CHESS 
deployment. Therefore, the objective function for community profits is 
defined as: 

max OF1 = Cm,w/o − Cm,w (1) 

Cm,w/o =
∑D

d=1

∑T

t=1
Pload

d,t λWEM
d,t Δt (2) 

Cm,w =
∑D

d=1

∑T

t=1

(
Pload

d,t +Pess,slow
d,t +Pess,fast

d,t

)
λWEM

d,t Δt +Cess (3) 

Cess = Cess,slow +Cess,fast (4) 

Cess,slow = λslow
CRFμslow Eslow + ξslowμslowEslow (5) 

Cess,fast = λfast
CRFμfastEfast + ξfastμfastEfast (6) 

λslow
CRF =

r(1 + r)γslow

(1 + r)γslow − 1
(7) 

λfast
CRF =

r(1 + r)γfast

(1 + r)γfast − 1
(8) 

The objective function Eq. (1) represents the annual profits from 
deploying energy storage within the community, calculated as the dif-
ference in community costs before and after implementing the CHESS. 
This difference is equivalent to the arbitrage revenue derived from peak- 
valley electricity prices. A community equipped with the CHESS func-
tions as both a producer and consumer of electricity, thereby actively 
participating in the WEM. Therefore, Eq. (2) denotes the community cost 
of participating in the WEM without the CHESS. The community cost 
with CHESS is divided into two components: the cost of participating in 
the WEM and the annual costs of storage deployment, as shown in Eq. 
(3). The annual cost of the CHESS deployment, including both invest-
ment and operational costs, is detailed in Eqs. (4)–(6) [33]. Besides, Eqs. 
(7) and (8) represent the capacity degradation factor, which allocates 
the total investment across each year.

In addition to considering the community profits from deploying the 
CHESS, it is crucial to also account for the technical benefits it brings 
[34]. The storage configuration should not exacerbate fluctuations in 
net load, which is the most immediate impact of an energy storage on 
the distribution system. Moreover, accounting for that standard devia-
tion is a well-regarded measure for assessing data volatility in power 
systems [35], the standard deviation of net load is used as an indicator of 
load fluctuation as shown in Eq. (9). A smaller standard deviation im-
plies smoother load fluctuations and a stronger capability for the com-
munity to self-consume renewable energy. The average daily load after 
deploying the CHESS is represented in (10). Given that Eq. (9) is a 
nonlinear objective function, it can be converted into a norm form for 
the solver computation. Thus, the objective of minimizing load fluctu-
ations can be expressed as Eq. (11). 

min OF2 =
∑D

d=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1

(
Pload

d,t + Pess,slow
d,t + Pess,fast

d,t − Pw
d

)2
/

T

√
√
√
√ (9) 

Pw
d =

∑T

t=1
Pload

d,t + Pess,slow
d,t + Pess,fast

d,t

T
(10) 

min OF2 =

∑D

d=1

⃦
⃦
⃦
⃦
∑T

t=1

(
Pload

d,t + Pess,slow
d,t + Pess,fast

d,t − Pw
d

)⃦
⃦
⃦
⃦

2

2̅̅̅
T

√ (11) 

3.2. Technical limitation and operating constraints

Due to its inherent characteristics, the SRESD cannot adjust charging 
and discharging power in real-time, with its response time typically 
being on the minute scale or longer [9], necessitating the pre-planning of 
its operational schedule. For ease of regulation, this paper employs the 
SRESD to perform charging and discharging at a constant power during 
fixed time periods each month, with a daily cycle occurring once per day 
[36]. The approach is specifically detailed as follows: 

Pess,slow
d,tc = Pess,slow

d,tc+1
= ⋯ = Pess,slow

d,tc+n
(12) 

Pess,slow
d,td

= Pess,slow
d,td+1

= ⋯ = Pess,slow
d,td+m

(13) 

Eqs. (12) and (13) respectively represent the constant charging and 
discharging power of the SRESD during fixed time periods. The monthly 
operation scheduling plan is detailed in Section 4.

To ensure the safe and stable operation of the system, it is necessary 
that both SRESD and FRESD return to their initial daily states after each 
cycle. Therefore, the total daily charging and discharging power is set to 
zero, as shown in Eqs. (14) and (15), which are written independently 
for each d-th design day, decoupling each day from both the previous 
and the next [19]. When considering the charging and discharging ef-
ficiency of the FRESD, binary integer variables would inevitably need to 
be introduced to distinguish between charging and discharging power 
while ensuring that both processes do not occur simultaneously. Besides, 
since this study involves 8760-h simulations, incorporating efficiency 
would transform the problem into an extremely large-scale mixed- 
integer problem, which is challenging for solvers to address directly. To 
avoid the computational complexity with considering that the efficiency 
of the FRESD approaches 100 % [37] and its energy capacity is designed 
with sufficient margin, the charging and discharging efficiency of FRESD 
is ignored for simplification. 
∫ tc+n

tc
Pess,slow

d,t ηcdt+
∫ td+m

td
Pess,slow

d,t

/

ηddt = 0 (14) 

∫

T
Pess,fast

d,t dt = 0 (15) 

The charging and discharging power of the SRESD and the FRESD are 
constrained by maximum power limits, as indicated in Eqs. (16) and 
(17). 

− Pess,slow,cap ≤ Pess,slow
d,t ≤ Pess,slow,cap (16) 

− Pess,fast,cap ≤ Pess,fast
d,t ≤ Pess,fast,cap (17) 

Based on the security margin for energy storage capacity (0.1 SOC to 
0.9 SOC) [38], the capacity sizing constraints that ensures the SRESD 
and the FRESD operate effectively under extreme conditions are devel-
oped. For the SRESD, the extreme condition is defined as operating at 
maximum power during specified charging or discharging periods, with 
its capacity traversing the entire security margin, as shown in Eq. (18). 
However, for the FRESD, the extreme operation condition involves 
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running at maximum charging power for half a day and at maximum 
discharging power for the other half, which is modeled by Eq. (19). 

0.8Eslow = max
{∫ tc+n

tc
Pess,slow,capηcdt,

∫ td+m

td
Pess,slow,cap

/

ηddt
}

(18) 

0.8Efast =

∫

T/2
Pess,fast,capdt (19) 

Both SRESD and FRESD have capacity state constraints, as outlined 
in Eqs. (20) and (21). Besides, the capacity states of the SRESD and the 
FRESD during the optimization period are modeled by Eqs. (22) and 
(23). 

0.1Eslow ≤ Eslow
d,t ≤ 0.9Eslow (20) 

0.1Efast ≤ Efast
d,t ≤ 0.9Efast (21) 

Efast
d,t = Efast

d,t− 1 +Pess,fast
d,t Δt (22) 

Eslow
d,t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eslow
d,t− 1 + Pess,slow

d,t ηcΔt, if t ∈ (tc ∼ tc+n)

Eslow
d,t− 1 + Pess,slow

d,t

/
ηdΔt, if t ∈ (td ∼ td+m)

Eslow
d,t− 1, else

(23) 

3.3. Problem solving

Common algorithms such as Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on 
Decomposition (MOEA/D) are widely used for finding Pareto solutions 
in bi-objective optimization problems. However, the current study in-
volves a high-dimensional multi-objective optimization model for 
CHESS configuration over 8760 h with applying NSGA-II or MOEA/D in 
this context would lead to dimensionality issues [39]. Therefore, to 
balance the profits of CHESS configurations with the impact of load 
fluctuations on the system, the penalty factor β is introduced to refor-
mulate the multi-objective optimization of Eqs. (1) and (11) with con-
straints into a single objective optimization problem [40], as given by 
Eq. (24). After this transformation, the optimization solver can be used 
to obtain the Pareto solutions, each of which is mathematically optimal. 
{

min − OF1 + β*OF2
s.t. (12) − (23) (24) 

To encourage the adoption of the CHESS in communities, Eq. (25) is 
employed to ensure positive profits from storage deployment. Addi-
tionally, the load fluctuations after implementing the CHESS should not 
be more severe than those experienced without the CHESS, as repre-
sented by Eq. (26), with Eq. (27) showing the daily average load without 
the CHESS. 

OF1 ≥ 0 (25) 

OF2 ≤ OFw/o
2 =

∑D

d=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑T

t=1

(
Pload

d,t − Pw/o
d

)2
/

T

√
√
√
√ (26) 

Pw/o
d =

∑T

t=1
Pload

d,t

T
(27) 

Initially, the penalty factor β is set to zero and incremented in large- 
step size for testing. The upper limit of the penalty factor can be deter-
mined from Eq. (25), while the lower limit is determined from Eq. (26). 
Once the range for β is identified, the step size is reduced to refine the 
search and obtain a denser set of Pareto-optimal solutions, and the 
smaller the step size, the denser the obtained Pareto optimal solutions. 
In summary, the model leverages penalty factors to transform the multi- 

objective optimization problem into a single-objective formulation, 
achieving precise Pareto-optimal solutions.

4. Scheduling of the SRESD operations

Due to lower investment costs, the SRESD primarily serve the pur-
poses of integrating renewable energy and arbitraging peak-valley price 
spreads. To determine its operational scheduling, it is essential to 
consider variations in community load and energy prices. This section 
introduces the operational scheduling process for the SRESD based on 
community load data [41] and WEM data [42] from Australia, as 
illustrated in Fig. 3.

To mitigate noise interference and improve the identification of 
diverse curve patterns, daily load curves from the entire year are treated 
as individual data points and clustered using the DBSCAN algorithm 
[43,44] based on their Euclidean distances. Then, the cluster with the 
most samples is selected, excluding noise points, and its average load 
curve represents a typical daily load curve. The charging duration Tn for 
the SRESD is determined using the negative periods of this typical daily 
load curve, during which the renewable energy generation exceeds 
community electricity demand. For instance, as shown in Fig. 4-a, the 
charging duration is 6.5 h in this paper.

Based on Eq. (18), to maximize the utilization of the SRESD and 
prevent loss of arbitrage opportunities, it is essential to ensure that the 
sizing in both extreme scenarios are as similar as possible, as indicated in 
Eq. (28). Consequently, Eq. (29) can be derived to determine the dis-
charging duration Tm based on the established charging duration Tn. In 
this paper, with a charge-discharge efficiency of 79 % [31], the dis-
charging duration is set to 4 h. 
∫ tc+n

tc
Pess,slow,capηcdt ≈

∫ td+m

td
Pess,slow,cap

/

ηddt (28) 

Fig. 3. Scheduling method for the SRESD operation time.
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Tnηc = (tc+n − tc)ηc ≈ (td+m − td)/ηd = Tm/ηd (29) 

Finally, based on monthly load and price data clustering, the 
charging and discharging time for each month is determined. The 
charging time is prioritized during periods with negative net loads, and 
if these periods are shorter than the required charging duration Tn, 
extending charging time towards the lower price in the price clustering 
curve to meet the duration requirement. Conversely, high-priced 
charging periods are reduced to meet the duration requirement. More-
over, the discharge time is selected based on the overlap of peak load 
and peak price periods, with priority given to price peak. Fig. 4-b\c\d 
illustrates the load and price clustering curves and their corresponding 
charging and discharging time for January to March, and the annual 
schedule for the SRESD charging and discharging time is shown in 
Table 1.

5. Results analysis and discussions

Community load data from 300 users alongside WEM price data from 
Australia [41,42] are employed in this paper, and the load data en-
compasses net load information from distributed PV generation, fixed 
loads, and flexible loads. The primary parameters are detailed in 

Table 2, where the penalty factor β is determined by constraints Eqs. 
(25) and (26), which is appropriately extended with increments of 
0.005. Computational simulations are performed using MATLAB with 
the Gurobi solver, on an Intel(R) Core(TM) i9-12900K processor oper-
ating at 2.50 GHz, equipped with 16 cores, 128.0 GB RAM, and a 64-bit 
version of Windows 10.

To validate the CHESS sizing and operation strategy model devel-
oped in Section 3, the simulation scenarios focus on maximizing the 
profits of the CHESS deployment and minimizing community load 
fluctuations. These two objectives are inherently conflicting, as maxi-
mizing community profits through peak-valley price arbitrage increases 
load fluctuations, while minimizing load fluctuations reduces commu-
nity profits.

5.1. Solution results

5.1.1. Pareto front
The optimal Pareto front for the test scenario is presented in Fig. 5. 

Utilizing the Gurobi solver ensures that each point on the Pareto front 
represents an exact optimal solution, strictly adhering to the constraints 
of the mathematical model presented in Section 3. When configuring 

Fig. 4. Load and WEM price clustering curves based on annual and monthly data. (a) Year; (b) January; (c) February; (d) March.

Table 1 
The charging and discharging time schedule for the SRESD.

Month Charging time Discharging time

1 9:30–16:00 17:00–21:00
2 10:00–16:30 17:00–21:00
3 9:30–16:00 16:30–20:30
4 9:00–15:30 17:00–21:00
5 9:00–15:30 16:00–20:00
6 9:00–15:30 16:30–20:30
7 9:00–15:30 16:30–20:30
8 9:00–15:30 17:00–21:00
9 9:00–15:30 17:00–21:00
10 9:30–16:00 17:00–21:00
11 9:30–16:00 17:30–21:30
12 9:00–15:30 17:00–21:00

Table 2 
The characteristic parameters for the SRESD and the FRESD.

Parameters Unit Value

Discount rate (r) [37] % 3
Calendric life of SRESD (γslow) [45] year 30
Calendric life of FRESD (γfast) [37] year 15
Capital cost of SRESD (μslow) [46] $/kWh 70
Capital cost of FRESD (μfast) [37] $/kWh 200
O&M coefficient of SRESD (ξslow) [47] % 1.5

O&M coefficient of FRESD (ξfast) [48] % 1
Charge efficiency of SRESD (ηc) [31] % 79
Discharge efficiency of SRESD (ηd) [31] % 79
Penalty factor (β) – 0.2–0.9 (S:0.005)
Days of one year (D) day 365
Optimization period of one day (T) 0.5 h 48
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CHESS, there is a trade-off between mitigating load fluctuations and 
maximizing community revenue, as they are inversely related. Higher 
economic profits tend to exacerbate load fluctuations, while reducing 
load fluctuations often comes at lower profits. Moreover, given con-
straints Eqs. (25) and (26), every solution within the feasible region 
defined by these constraints represents a viable option for enhancing 
both the economic and technical benefits of the CHESS.

Table 3 provides the numerical results for points A, B, and C, as 
illustrated in Fig. 5. The maximum community profit is $10,425.67 at 
point A, whereas the minimum community load fluctuation is 
24,103.65 kW at point C. The selected balance point (point B) yields a 
profit of $5701.52 and a load fluctuation of 31,611.04 kW. Compared to 
point A, the community profit at point B decreases by 45.31 %, while the 
load fluctuation decreases by 33.78 %. In comparison to point B, point C 
shows a 98.13 % reduction in community profit and a 23.75 % reduction 
in load fluctuation. The result indicates that, in the context of the CHESS 
sizing and operational strategy, community profit is more sensitive to 
changes than load fluctuation, and this sensitivity becomes more pro-
nounced as the penalty factor increases.

5.1.2. The CHESS sizing and cost analysis
Fig. 6-a illustrates the capacity, as well as the maximum charge and 

discharge power sizing for the SRESD and the FRESD. As the penalty 
factor increases, the capacity and power sizing of the SRESD gradually 
decreases. However, the sizing of the FRESD exhibits two distinct trends: 
initially, both capacity and power sizing are zero, but they increase in 
the latter half once the penalty factor reaches around 0.71. This behavior 
is attributed to the higher cost of the FRESD, which is primarily used for 
regulating load fluctuations. Therefore, when the penalty factor is low 
(emphasizing community profit), the inclination to configure the FRESD 
is minimal. However, as the penalty factor increases (emphasizing load 
fluctuation suppression), the configuration of the FRESD begins.

This is further evidenced by Fig. 6-b, which shows a distinct inflec-
tion point in the load fluctuation curve when the penalty factor reaches 
0.71. This inflection point signifies the minimum load fluctuation 
regulation achievable with the SRESD configuration, thus requiring an 

increase in the FRESD capacity to more effectively suppress load fluc-
tuations. Moreover, the revenue curve from the WEM demonstrates that, 
as the penalty factor increases, the cost of the SRESD gradually de-
creases. However, due to the high cost of the FRESD, peak-valley arbi-
trage does not generate profit, resulting in no inclination to deploy the 
FRESD at the initial stage, thus the cost remains zero. When the penalty 
factor increases to 0.71, the load fluctuations begin to decrease signifi-
cantly, while the community’s profits also declines rapidly. Notably, the 
intersection (point star) of the revenue curve and the CHESS configu-
ration cost represents the optimal point for regulating load fluctuations 
with only $106.4479. profits, corresponding to point C in Fig. 5.

5.1.3. 8760-hour operation strategy for the CHESS
The operating strategy for the CHESS with maximum profit (point A 

in Fig. 5) is illustrated in Fig. 7. At this point, the SRESD has an energy 
capacity of 2577 kWh and a power capacity of 401 kW, while the FRESD 
has no capacity configured. Fig. 7-a depicts the community load after 
configuring the CHESS, while Fig. 7-b illustrates the original load 
without the CHESS, revealing no improvement in load fluctuation. The 
annual operation strategy for the SRESD is presented in Fig. 7-c, with 
significant charge-discharge power variations, aiming to maximize 
peak-valley price spread arbitrage in the WEM. Fig. 7-d displays the 
annual operation strategy for the FRESD, where the power remains at 

Fig. 5. Pareto front produced by the proposed approaches.

Table 3 
Comparison of outcomes at different points on the Pareto front.

Solution Profits ($) Fluctuations (kW)

A 10,425.6664 47,734.9585
B 5701.5172 31,611.0366
C 106.4479 24,103.6469

Fig. 6. The CHESS sizing and cost analysis under different penalty factors. (a) 
Capacity sizing; (b) cost and fluctuation

Fig. 7. The CHESS operation strategy with maximum profit (point A in Fig. 5). 
(a) Load with the CHESS; (b) load without the CHESS; (c) charge/discharge 
power of the SRESD; (d) charge/discharge power of the FRESD.
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zero due to lack of configuration under high-profit expectations.
The operating strategy for the CHESS with minimum load fluctuation 

(point C in Fig. 5) is presented in Fig. 8. At this point, the SRESD has an 
energy capacity of 1240 kWh and a power capacity of 193 kW, while the 
FRESD has an energy capacity of 369 kWh and a power capacity of 25 
kW. Fig. 8-a illustrates the community load after implementing the 
CHESS, compared to the original load without the CHESS in Fig. 8-b, 
demonstrating a significant reduction in load fluctuations, approxi-
mately by 49.98 %. The 8760-h charge and discharge strategies for the 
SRESD and the FRESD are illustrated in Fig. 8-c and -d, respectively.

Additionally, as shown in Fig. 9, further observations are made on 
May 31 and June 1 under conditions of minimum load fluctuation (point 
C in Fig. 5). Fig. 9-a illustrates the impact of the CHESS on load during 
these two days, showing a significant reduction in load fluctuation. 
Fig. 9-b shows that on May 31, from 09:00 to 15:30, the SRESD charges 
at a constant power during the original load’s valley period, and dis-
charges at a constant power from 16:00 to 20:00 during the original 
load’s peak period, effectively flattening the load peaks and valleys. The 
operation of the SRESD also aligns with the peaks and valleys of the 
WEM price curve, indicating potential for arbitrage opportunities. Be-
sides, supplementary configuration of the FRESD further improves load 
fluctuation. On June 1, although peak-valley arbitrage shifts the load 
peak and valley periods, the overall load fluctuation is still reduced. 
Besides, this is the opposite of the typical peak and valley periods in a 
traditional distribution network, which helps stabilize the overall load 
fluctuations of the system, demonstrating the effectiveness of this 
method.

5.2. Comparison and analysis

5.2.1. Comparison of different configuration schemes
Three different energy storage configuration schemes are compared 

and analyzed in this paper: 

• Configuring the SRESD and the FRESD (CHESS);
• Configuring the SRESD;
• Configuring the FRESD.

Fig. 10 shows that configuring the SRESD can yield some community 
profits and regulate load fluctuations. However, its adjustment capa-
bility is limited, with a minimum optimization of load fluctuations up to 
28,900 kW. In contrast, configuring the FRESD is highly effective at regulating load fluctuations, but its high cost prevents it from benefiting 

from peak-valley price spread arbitrage, resulting in negative profits. 
Nevertheless, the CHESS combines the advantages of both SRESD and 
FRESD, offering a greater range for regulating load fluctuations 
compared to the SRESD, and achieving positive profits in contrast to the 
FRESD. Therefore, configuring the CHESS is the superior choice for 
community energy storage. Notably, The initial part of the CHESS Pareto 
fronts curve overlaps with the SRESD curve because the FRESD within 
the CHESS has no configuration intention under high profit 
expectations.

5.2.2. Impact of battery cost development on the CHESS configuration
According to the findings presented in [49], the cost of battery is 

expected to decrease due to advancements of battery raw materials 
mining and manufacturing technologies, reaching an estimated 100 
$/kWh by 2025. To account for this trend, three cases are analyzed in 
this paper: 

• Case 1: with the FRESD capital price of 200 $/kWh;
• Case 2: with the FRESD capital price of 150 $/kWh;
• Case 3: with the FRESD capital price of 100 $/kWh.

The Pareto curves for the three cases are illustrated in Fig. 11. It is 
evident that Case 3 achieves the optimal balance between maximizing 

Fig. 8. The CHESS operation strategy with minimum load fluctuation (point C 
in Fig. 5). (a) Load with the CHESS; (b) load without the CHESS; (c) charge/ 
discharge power of the SRESD; (d) charge/discharge power of the FRESD.

Fig. 9. Operating conditions from May 31 to June 1 in 2013 under minimum 
load fluctuation (point C in Fig. 5). (a) Load; (b) CHESS

Fig. 10. Pareto fronts under different configuration schemes.
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community profit and minimizing load fluctuation, owing to the lowest 
FRESD cost, which facilitates effective peak-valley price spread arbi-
trage. Moreover, further analysis reveals based on Eqs. (1)–(3) that the 
price at which peak-valley price spread arbitrage balances with the 
FRESD costs is approximately 129$/kWh.

When comparing Case 1 and Case 2 under high profit expectations, 
the FRESD costs remain prohibitively high, resulting in zero willingness 
to configure the FRESD, which caused the Pareto curves for both cases 
overlap. Conversely, under expectations of lower load fluctuations, Case 
2 performs better because its lower cost facilitates a more favorable 
trade-off between reducing load fluctuations and sacrificing profit 
margins.

Specifically, Table 4 presents the configuration schemes for the 
special points illustrated in Fig. 11. It is evident that Case 3 achieves a 
maximum benefit that is 16.54 % higher than that of the other two cases 
when comparing A1, A2, and A3. Besides, in the context of minimizing 
load fluctuations, the ratios of energy capacity between SRESD and 
FRESD under B1, B2, and B3 are 3.36, 1.67, and 0.47, respectively. The 
increasing proportion of energy capacity allocated to the FRESD in-
dicates that the FRESD is more effective at managing load fluctuations 
compared to the SRESD, although cost constraints limit its configura-
tion. Furthermore, Fig. 12 demonstrates the community load under B1, 
B2, and B3, demonstrating that Case 3 has a superior capability for 
controlling load fluctuations while maintaining similar profits.

5.2.3. Sustainability verification
To validate the enduring value of this method, two consecutive years 

of load data from 300 users, along with WEM price data are utilized in 
this paper. The data from the first year is used as prior information to 
determine the CHESS energy capacity sizing. Then, based on this 
determined capacity sizing, the second year’s data is used as posterior 
information to develop the 8760-h operational strategy using the pro-
posed model, evaluating the economic and social benefits of the CHESS. 

Fig. 13-a shows the Pareto front generated using the prior data. As PV 
capacity increases and system fluctuations become more pronounced, a 
randomly selected test point from Fig. 13-a, which demonstrates better 
load fluctuation adjustment ability, has the configuration of the SRESD 
with 1109 kWh and FRESD with 47 kWh.

As shown in Fig. 13-b, simulating the configuration of the test points 
with the posterior data demonstrates that even with the maximum 
benefit (approximately 4808$), the method effectively mitigates load 
fluctuations. Moreover, with the minimum load fluctuation (approxi-
mately 28,322 kW), the method also yields significant economic bene-
fits. Thus, the sizing and operational strategy developed by this paper 

Fig. 11. Pareto fronts under the different FRESD cost.

Table 4 
Comparison of special configuration schemes under different cases.

Solution Profit ($) Fluctuation (kW) SRESD power capacity (kW) SRESD energy capacity (kWh) FRESD power capacity (kW) FRESD energy capacity (kWh)

A1 10,425.6664 47,734.9585 401 2577 0 0
A2 10,425.6664 47,734.9585 401 2577 0 0
A3 12,149.6005 47,420.6270 349 2239 100 1506
B1 106.44786 24,103.6469 193 1240 25 369
B2 91.9034 20,914.0063 181 1161 46 696
B3 46.7971 12,680.0066 123 790 112 1679

Fig. 12. Community load fluctuations with minimum load fluctuation under 
different cases (point B1, B2, B3 in Fig. 11). (a) Case1; (b) Case2; (c) Case3; (d) 
without the CHESS.

Fig. 13. Pareto fronts based on prior and posterior data. (a) Prior; (b) posterior.
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exhibit sustainable effectiveness.

6. Conclusions

The sizing and operational strategy for the CHESS, composed of the 
SRESD and the FRESD, was proposed to address the challenge of high 
costs that hinder large-scale development and application. Initially, a 
multi-objective model was developed to maximize community profits 
and minimize load fluctuations, based on a community microgrid 
framework. Then, the DBSCAN algorithm was employed to derive the 
typical community load and electricity price curves which were used to 
schedule the monthly charge and discharge periods for the SRESD, 
subsequently developing the optimal sizing and 8760-h operational. 
Finally, an experimental analysis based on actual community load and 
electricity price data from Australia led to the following conclusions: 

(1) The CHESS offers a significant cost advantage over the FRESD, 
providing greater arbitrage opportunities from peak-valley price 
spreads and thereby can help promote the large-scale develop-
ment of community energy storage.

(2) The primary advantage of the SRESD lies in arbitrage of peak- 
valley electricity prices, while it can also somewhat reduce 
community load fluctuations through optimized operational 
strategies. In contrast, the FRESD is more effective in regulating 
load fluctuations.

(3) As the cost of battery storage systems decreases, the FRESD may 
directly balance its cost through arbitrage in peak-valley price 
spread. This paper finds that the battery price at which arbitrage 
balances with the FRESD costs is approximately 129$/kWh.

(4) The configuration scheme derived from prior data continues to 
yield high profits and effective load fluctuation control when 
tested with posterior data, verifying the sustainability of the 
sizing and operational strategy developed by this paper.

This paper demonstrates the theoretically promising value of the 
CHESS. Future research should explore its application in various elec-
tricity markets and further investigate configuration methods for the 
CHESS in higher voltage level distribution networks.
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