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Abstract: Laser powder bed fusion (LPBF) is an outstanding additive manufacturing (AM) technol-
ogy that can enable both complicated geometries and desired mechanical properties in high-value
components. However, the process reliability and cost have been the obstacles to the extensive
industrial adoptions of LPBE. This work aims to develop a powder recycling procedure to reduce
production cost and minimize process uncertainties due to powder degradation. We used a recycle
index (R) to reuse Ti-6Al-4V powder through 10 production cycles. Using this recycle index is more
reasonable than simply replying on recycle numbers as it incorporates the powder usage history.
A recycling procedure with simple virgin powder top-up can effectively mitigate powder degra-
dation and maintain stable powder properties, chemical compositions, and tensile properties. The
experimental finding points to a sustainable recycling strategy of Ti alloy powders with minimal
material waste and without noticeable detriment to observed mechanical performance through LPBF
production cycles.
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1. Introduction

Additive manufacturing (AM) utilizes a layer-by-layer approach to build complex
3D shapes from simple 2D slices. This method provides more freedom to design unique
geometries and the ability to integrate multiple assemblies into a single part. There are
multiple techniques under the broad umbrella of AM and they are generally categorized by
the feedstock forms (powder, wire, liquid, etc.) and the joining techniques (laser sintering,
electron beam melting, liquid bonding, UV curing, etc.) [1]. LPBF has been a main AM
technology applied in critical sectors because of its ability to produce metallic components
with high product quality and mechanical properties [1]. In LPBF processes, only a small
portion of the powder is melted and consumed for the final components. The remaining
powder is usually retrieved for the next production cycle. This recycling practice is one
of the most important measures to reduce the total cost of LPBF. Powder recycling in AM
productions can minimize material waste, which has been a paramount feature in modern
technologies in the context of sustainability, circular economy, and environmental impact [2].

However, powder degradation occurs with the powder recycling through powder bed
AM production cycles, which brings uncertainties in feedstock quality and part integrity.
Powder recycling in LPBF production cycles can cause changes in particle sizes, particle
morphologies, powder rheology, and chemical composition [3-5]. These changes mainly
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result from the excessive energy from the laser fusion process. Apart from the desired melt-
ing and re-solidification processes, the heating source also forms spatters and agglomerates
of partially melted particles [6-8].

In LPBF, the powder re-coater blade moves across from the powder dispenser and
coats a uniform layer over the build plate. This process requires a good “spreadability” of
the powder to ensure a uniform thin layer of powder. While the spreadability is a qualitative
description of the powder, it is usually correlated to the powder flowability which can be
quantitatively measured. The powder flowability, a bulk property, depends on its particle
size distribution (PSD), morphology, surface chemistry, and moisture level [9]. The powder
size and morphology are important considerations in powder metallurgy [10-12]. High
densification from high packing density is desired. The powder compaction depends
on the powder size distribution and the morphologies. These properties are known to
change, and the feedstock variation can affect performance of the final parts produced by
LPBF [13-15]. This work selected the Ti-6Al-4V alloy for the reuse study considering it is
one of the most important AM alloys for high-value parts widely used in aerospace [16]
and biomedical industries [17]. Ti-6Al-4V accounts for up to 60% of all titanium (Ti) alloy
production, thanks to its excellent combination of ductility and strength at room and high
temperatures [18].

Previous studies have demonstrated this impact on the total LPBF production costs of
Ti powders due to the lack of standard powder recycling procedures [19].

Controlling the feedstock quality is critical to the final part quality in LPBE, particularly
the microstructure and mechanical properties. Oxygen is an alpha stabilizer and is a known
issue in Ti alloy processing as it embrittles the materials and reduces toughness and fatigue
properties. The study by Jia [20] showed that increasing oxygen content of Ti-6Al-4V
powder during LPBF introduced anisotropy in tensile behavior primarily due to the change
of 3 grain size. Various studies have shown a clear consequence on the microstructure with
powder recycling [21]. It was found that increased oxygen content in recycling of Ti-6Al-4V
powders was accommodated in the 3 phase in the LPBF parts. The oxygen pickup and the
change of microstructure can reduce fatigue performance and fracture toughness in the
LPBF parts built with reused powders.

Other minor elements (e.g., C, N, H) picked up during powder recycling can also affect
the powder quality. Silverstein and Eliezer [22] showed that trapped hydrogen during
LPBF can lead to formation of TiH that can embrittle the final parts. The source of carbon
contamination mainly occurs during powder handling stages and storage. Dissolved
carbon in Ti-6Al-4V alloys is known to improve mechanical strength due to precipitation
hardening or solid solution strengthening. However, increase in carbon content has been
shown to promote grain growth [23]. Presence of nitrogen during LPBF has been shown
to increase yield strength and ultimate tensile strength due to a nitrogen solid solution.
Further, formation of nano-f phases has been shown to increase with N content during
LPBF [24]. However, presence of titanium nitrides can lead to formation of brittle TiN
phases that can strengthen the alloy at the cost of reduced ductility.

Nandwana et al. [13] reported a gradual oxygen increase from 0.138 wt.% in the virgin
powder to 0.182 wt.% after just five build cycles in electron beam powder bed fusion of
Ti-6Al-4V powder. This implies an oxygen pickup rate of 0.011 wt.% per reuse cycle. If the
starting feedstock was Ti-6Al-4V Grade 5 powder (max. 0.2% oxygen), it would exceed the
qualification range after about 6 times of recycling. Another study of electron beam powder
bed fusion of Ti-6Al-4V also reported a very different oxygen pickup rate at about 0.005%
increase per reuse cycle from 0.08 wt.% in the virgin powder to 0.19 wt.% after 21 times of
recycling [14]. To maintain the material qualification for Ti-6Al-4V ELI powder (Grade23,
max. 0.13 wt.% oxygen), this production condition would allow recycling up to about
10 times. The actual experiment results showed that the powder went above 0.13 wt.% after
only 6 reuse cycles. This indicated that relying on the number of reuse cycles to control the
powder quality is not reliable. Quintana et al. [4] performed a study on recycling Ti-6Al-4V
powders in LPBF production cycles, which also showed a progressive increase at about
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0.000645% per cycle in oxygen pickup, from 0.09 wt.% in the virgin powder to 0.11 wt.%
after 31 reuse cycles. To maintain the material qualification for Ti-6Al-4V ELI powder,
their LPBF production setup would allow recycling up to about 62 times. Another similar
study on Ti-6Al-4V powder recycling with a different LPBF system showed a similar trend
but different oxygen pickup rate [25]. Shalnova et al. [26] studied the effect of powder
recycling in laser direct energy deposition (DED). They found that the argon protection
could effectively control powder oxidation. The parts built with initial powder (0.079%
oxygen) and recycled powder (0.099% oxygen) showed negligible microstructure difference.
The micro hardness increased slightly in the parts built with recycled powder. The strength
fluctuated without showing an obvious trend with more recycling. They concluded that
no tangible changes to mechanical properties were detected in the annealed DED samples
with an increase of used Ti-6Al-4V powder content up to 50% in the build. Different from
Shalnova et al. [26], Yang et al. [27] conducted a recycle study in a reactive atmosphere
with various oxygen level. They found that parts built with recycled powder had coarse «
lamellar thickness and higher 3 phase content than those built with fresh powder. They
found that the tensile strength increased slightly with more oxygen pickup in the final
parts, which agrees with the study by Shalnova et al. [26]. Derimow and Harabe [28]
showed that oxidation rates Ti-6AL-4V powder differed during LPBF and electron beam
PBF irrespective of the powder reuse strategy. This was attributed to the higher temperature
achieved during build production. Formation of surface oxide layer on powder particles
can lead to a lack of fusion during electron beam PBF, which will cause a reduction in part
strength [15]. Lastly, residual oxygen content present in the powder handling systems
could also contribute to an increase in oxygen content.

These recycling studies all pointed to a fact that the number of reuse cycles cannot be
used as a reliable index to control the feedstock quality regarding oxygen pickup. To control
the quality of the reused powder, the process history of each build cycle must be considered.

Build number or recycle number has been the common metric to evaluate the powder
degradation during powder recycling in LPBF productions. However, the actual powder
degradation depends on the process conditions and environment in LPPBF system, espe-
cially the energy input and solidification volume, which generates spatters as the main
source of contaminants [21,29]. This work aims to develop and evaluate build volume ratio
(BV ratio) and recycle index (R index) to consider the solidification percentage and powder
usage history through LPBF builds. The findings can contribute to more reliable powder
recycling to reduce material cost and improve the sustainability of LPBF productions.

2. Methods
2.1. System and Powder

This work used an industrial LPBF system EOS M290 (EOS GmbH, Krailling, Germany),
which is equipped with a 400 W Yb-fiber laser and a beam focus of 100 pm. All the LPBF
productions used high-purity argon gas (purity > 99.997%) to ensure minimal oxidation. All
components and test samples manufactured in this study used a layer thickness of 30 um.
The process parameters were optimized parameters developed for Ti-6Al-4V powders to
obtain high-density parts (relative density > 99.9%).

Commercially available plasma atomized Ti-6Al-4V Grade 23 powder (supplied by AP&C
Inc., Montreal, QC, Canada) was used in the LPBF builds. This study refers to the as-received
powder from the manufacturer as the virgin powder (Composition specification shown in
Table 1). The virgin powder had a particle size range between 15 pm and 45 um. The chemical
composition of the reused powders was investigated throughout the recycle builds.

Table 1. Chemical composition of the Ti-6Al-4V Grade 23 virgin powder.

Ti

Al \'% Fe (0] C N H

wt.%

Balance

6.27 3.94 0.20 0.107 0.019 0.009 0.002
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2.2. Characterization and Testing

The chemical compositions were analyzed by a commercial lab (Luvak Inc., Boylston,
MA, USA). The elements were measured according to the methods specified in international
standards: inert gas fusion for oxygen and nitrogen (ASTM E1409) [30], combustion infrared
detection for carbon (ASTM E1941) [31], inert gas fusion for hydrogen (ASTM E1447) [32],
and direct current plasma emission spectroscopy for all other elements (ASTM E 2371) [33].

The physical properties analyzed for the reused powders included: (1) presence
of contaminants; (2) particle size and shape; (3) apparent density; (4) flowability; and
(5) moisture. The particle size distribution of the powders was determined using a laser
diffraction instrument (Mastersizer 2000, Malvern, UK) according to the method as specified
in ASTM E2651-19 [34]. The particle size analysis has a repeatability of £0.5 um.

The powder flowability was determined using the Hall flow test. It measures the time
taken for exactly 50 g of powder to flow through an orifice, reported as seconds/50 g. Free
flowing powders are defined as powders that can pass the Hall flow test and non-free flowing
powders refers to powders that are unable to pass this test. This work used the Carney
flow test to measure the flowability of non-free flowing powders in the Hall flow test. The
procedures for the Hall flow test and the Carney flow test were conducted according to
ASTM B855 [35] and ASTM B964-16 [36] standards, respectively. The apparent density of
the powders was also measured to quantitatively compare the packing efficiency of the
reused powders. In the SLM process, the packaging efficiency of the powders between the
individual layers can affect the laser absorption, defect formation, and surface finish of the
final parts. The measurement of apparent density was carried out for free-flowing powders
according to ASTM B417 standard [37] and non-free flowing powders according to ASTM
B212 standard [38].

The Hausner ratio indicates the compaction of the powder. It is calculated by dividing
the apparent density and tap density. Tap density along with apparent density allows us
to quantify the interparticle friction which is an essential powder characteristic affecting
its ability to produce uniform layers during powder spreading [39]. The tap density was
measured by feeding powder into an empty cylinder. The cylinder is then tapped on a
fixed platform until there is no visible change in the height of the powder. The powder
was then weighed using an analytical balance, the tap density was determined by dividing
the mass with measured volume of the powder [40]. The Hausner ratio is calculated by
dividing the apparent density and tap density.

The porosity and microstructure of samples built with reused powders was measured
using image analysis of polished section. The samples were ground with SiC grinding
papers gradually from 300 up to 4000 grit and polished with 0.25 um OP-S colloidal silica
solution. The images were captured using an optical microscopy (Olympus PMG-3) and
analyzed using Image] software (V1.53k). To observe the microstructure, polished samples
were immersed in Kroll’s reagent for 30 s.

Cylindrical samples were built to investigate the effect of powder recycling on mechanical
properties. The cylindrical bars for tensile specimens were heat treated at 800 °C for6hin a
vacuum furnace after the LPBF builds. This heat treatment is known to give a good balance
of strength and ductility to the final parts [41]. First, it decomposes the brittle « phase to
o+ phases. It also relieves the residual stresses from the laser melting and re-solidification
process. Both effects improve the ductility. After the heat treatment, the cylindrical bars were
machined into tensile specimens and tested according to the ASTM E8/ESM standard [42].
The diameter and length of the gauge section were 48 mm and 6 mm, respectively. The tensile
samples were machined with a fine finishing to the final diameter with a £0.01 mm precision.
The measured diameters were used during tensile testing.

2.3. Quantifying Powder Recycling

This study adopted a powder refreshing method by mixing virgin powder with reused
powder throughout the LPBF builds to control the powder quality. The flow chart in
Figure 1 describes the procedures for the powder feedstock used in each build.
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to méﬂ%easigpéf glgé R t9fgifthat it is compatible with different types of recycling
studies. Currently, two different recycling approaches exist in the literature: the single-

batch and the top-up approaches. At first glance, they are not comparable. However,
both approaches can be made comparable via the R index, if the volumes of the input
powder and solidified material for each build in the series are known. This allows for the
determination of equivalence across different approaches as well as builds of different sizes
or on different machines.

The key assumption made in establishing the R index is that the effect of recycling
correlates linearly with the amount of solid material built and there are no interaction
effects. The reason for this set of assumptions is based on the physical setup of the SLM
process. During the laser melting process, only the powder in a small region near the scan
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from build 8, previously reused powder of various extents of recycling was used in the top-up
process to give an indication of the overall applicability of the present approach.

The R index was used to track the extent of recycling in the present study. The state
of the powder particles as well as the resultant microstructure and tensile properties at
an R index of 0.00, 0.04, 0.15, 0.24, and 0.40 were characterized to understand the effect of
powder reuse. Note that the R index corresponds to the state of the powder at the start of
the build, since the R index would increase at the end of the build due to the solid material
built during the build. These R indices correspond to the use of virgin powder and powder
at the 1st, 3rd, 6th, and 10th reuse cycle (topped up as necessary) in the respective builds.
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3.1.2. Particle Size Distribution

Particle size distribution study using laser diffraction on the powder samples, shown
in Figure 4, revealed that the average particle size of the D50 remains at 31 pm =+ 2 pm over
the entire study. A similar trend could be observed in the case of the D10 and D90, having
an average value of 21 um (£2 pm) and 50 pm (£1 um), respectively. The present results
compare favorably with the existing literature. Quintana et al. [4] reported a steady D10 and
D50 value and a slightly decreasing D90 with increased recycling. The slight reduction in
D90 was attributed to the sieving step included prior to every build; eliminating the larger
particles with satellites and agglomerates which had accumulated because of repeated laser
exposure. In contrast, Alamos et al. [43] reported that while there is no change in the D50
and D90 values, the D10 value increased slightly between the virgin powder and the 1st
recycle build and then remained constant over subsequent builds.
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The unchanging surface morphology, PSD, and flowability characteristics as the
powder is recycled in the various builds indicate that the spreadability of the powder is
maintained. Coupled with the fact that the recycling was using unequal build volumes,

e can reach Fhe canclitecion that ac lono ac the R indoevy 1¢ helaw 0 40 +he recant charac-
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It should be mentioned that the virgin powder (at build 0), although it had a size
similar to the recycled powder, showed worse flowability. The powder did not pass the
Hall flow test, therefore there is no Hall flow rate at build 0 in Figure 5d. A possible reason
is that the power of a size at 31 um (D50) is in the transition zone from non-flowing powder
to free-flowing powder, as reported in the work by Shen et al. [46]. They reported that the
flowability of Ti alloy powder of around 30 um can be very sensitive to moisture level. The
flowability can be improved significantly as the heat in a build cycle reduces the moisture
level [46].

The unchanging surface morphology, PSD, and flowability characteristics as the powder
is recycled in the various builds indicate that the spreadability of the powder is maintained.
Coupled with the fact that the recycling was using unequal build volumes, one can reach the
conclusion that as long as the R index is below 0.40, the recoat characteristics are preserved.

3.1.4. Powder Chemistry

The powder chemistries of reused powder shown in Figure 6 appear to be very similar
except for a slight increase in oxygen content. The chemical composition of the reused
powder remained within standard specifications for Ti-6Al-4V grade 23. The source of
the increased oxygen content can be attributed to spatter inclusion in the powder batch
during laser exposure [4]. Nandwana et al. [13] showed that source of oxygen was more
from the sudden absence of vacuum in the powder recycling system of electron beam
melting machines, this was further illustrated in multiple studies [21]. Harkin et al. [47],
utilizing a top-up recycling strategy for laser powder bed fusion, indicated that oxygen
content reached the maximum acceptable value of 0.13% at the 8th cycle of powder reuse.
In our study (as shown in Figure 6), the increase in oxygen reported between each build
is small due to the recycling strategy that was employed here. Adding virgin powder to
every build cycle progressively dilutes the oxygen content and allows the powder batch to
remain within specifications for Ti-6Al-4V grade 23 powder. Furthermore, the correlation
of R index and oxygen content (Figure 6¢), were found to be higher compared to build
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3.2. Build Material Characterisation

3.2.1. Density and Microstructure

The built material exhibited very high density across all the recycle builds. A material
density of between 99.51% to 99.92% was achieved in all builds in the present study. Fig-
ure 7 shows a typical cross section of the built material.
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Figure 6. Variation of oxygen content as a function of (a) build number, (b) BV ratio, and (c) R index.
Dashed lines at 0.13% and 0.2% show the maximum allowable oxygen content for Grade 23 and
Sustainability 2023, 15, 15582 Grade 5 Ti-6Al-4V powders, respectively. Solid lines show the linear fitting. R? and rootunsary
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Figure 7. (ab) Reprasentative cross-seetional images taken from tweo different regions of the as-built
samples (recycle 10 build) showing very little visible porosities. The measured relative density was
above 99.9% for all samples.
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Figure 8. The heat-treated samples built with different levels of recycling show similar microstruc-
ture, showing visible prior f boundaries, colonies of acicular a phases, and transformed 3 phases.
(a) recycle build 2 and (b) recycle build 6.

The highly consistent microstructure in Figure 8 was also mirrored by the fractird

surfaces where identical features were exhibited (Figure 9).

Figure 3 Frachure suface of sample from reeyels Build 1 (@) and recydls Build 6 (B):
3.2.2. Tensile Performance

The tensile results from this study are shown in Table 2. The changes of the tensile
properties are minor, and the properties conform with the AMS 4928 (Committee 1957)
mechanical properties minimum standard, i.e., 896-930 MPa tensile strength, 820-860 MPa
yield strength, 8-10% elongation, and a 10-25% area reduction. The mechanical properties
from work on reused powder builds in the literature are also shown and compared in
Table 2. Most of the existing literature utilized the single batch approach recycling with
sieving, where no powder is added during recycling. This method would be considered
the more adverse condition for the reused powder than the top-up method used in the
present study using virgin powder to refresh the feedstock.

The present mechanical results are consistent with that reported in the literature. Very
minor increases in YS and UTS with increasing extent of recycling have been attributed
to oxide inclusions during powder recycling [20] and/or pick-up during the building
process [14,48]. However, others have reported no correlation between oxygen pick-up and
the small increase in the YS and UTS [4]. On the other hand, the oxygen content of the built
components in the present study was not a good indicator of the mechanical properties of
heat treated components, which is in contrast with Tang et al.’s [14] finding.
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Table 2. Comparison of tensile results of the AM build between present study and literature.

Process Recycle Recycle Times/BV Powder/ Mechanical Properties
e Ratio/ Part) Oxygen
Condition Method R Index (Com)em L YS (MPa) UTS (MPa) E (o) RA (%)
0/0.12/0 0.107 948 + 8 1034+ 5 160+20 3646
L 1/0.12/0.04 0.109 946 + 14 1035+ 6 170+10 38+2
if;em LPgogir&d 6h§at treated féf;’;:}ﬁrfnd 3/0.13/0.15 0.118 929 + 23 1035 + 6 170£10 3843
v at 8 6/0.12/0.24 0.115 939 + 27 1033 + 17 160+14 37+5
10/0.16/0.40 0.129 930 + 28 1033 + 17 145+£10 40+5
0 (0.125) 933 +5 1030 + 4 157 4£05 5642
3] LPBE %}&d hﬁa;treated Sieving onl 1 (0.110) 938 £ 9 1027 +5 173404 5941
32625(}’1 3 h then 800 gonly 4 (0.120) 947 + 6 1034 £ 3 153+£03 54+1
8 (0.125) 958 + 7 1043 + 2 153+£03 51+1
1 0.090 839 1012 7 14
12 0.103 934 1052 12 30
LPBF and heat treated o 18 0.119 921 1056 17 42
251 i vacuum Steving only 24 0122 918 1051 7 12
31 0.119 897 1041 10 18
38 0.121 989 1095 17 47
1 011 879 £ 7.6 984 + 0.6 14406  44+06
, LPBFand HIP at920°C .- 4 0.13 871 % 6.0 988 £ 1.0 15406  45+12
4] 102 MPa 2 h Sieving only 17 0.12 893 + 3.1 1001 + 0.6 15 40.0 47 +0.0
31 0.11 881 + 3.6 1003 + 1.2 15406  44+06
) LPBF and heat treated P 0 0.10 992 1090 14.0 -
4] at704°C1h Sieving only 15 0.12 978 1073 14.5 -
0 0.08 834 £ 10.0 920 + 10.0 16+03  54+3.0
2 0.097 870 + 8.0 970 + 10.0 15403  46+3.0
, . L 6 0.14 822 £ 25.0 910 + 20.0 14+10  53+£40
(14]  FBM,preheatto730°C  Sievingonly 0.17 892 + 45 987 + 3.5 18408 50410
16 018 940 £ 3.6 1028 + 4.1 15+18  42+41
21 0.19 960 £ 30.0 1039 + 2.7 16+09 -

As shown in Table 2, this work obtained very consistent tensile properties. The
variation of average yield strength is only —22% (—19 MPa) from the virgin powder build.
The results from the work by Park et al. [25] and Tang et al. [14] showed a significant
increase olfs X%@Egtg}&;‘h +150 MPa (+18%) and +126 MPa (+15%). The incr%ag%can be
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The key issue in the present work is to establish whether the proposed methodology
can ensure that the used powder can be returned to a state that is comparable to that of
virgin powder to ensure consistent powder properties and material performance. Previ-
ously, in Section 3.1, the quality of the processed powder was evaluated and it was
demonstrated that the recycled powder met the same characteristic and performance cri-
teria as the virgin powder. In addition, Section 3.2 established that the performance of the
built material was indistinguishable from that built using the virgin powder. In this sec-
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3.3. Assessment of Powder Processing Methodology

The key issue in the present work is to establish whether the proposed methodology
can ensure that the used powder can be returned to a state that is comparable to that of vir-
gin powder to ensure consistent powder properties and material performance. Previously,
in Section 3.1, the quality of the processed powder was evaluated and it was demonstrated
that the recycled powder met the same characteristic and performance criteria as the virgin
powder. In addition, Section 3.2 established that the performance of the built material was
indistinguishable from that built using the virgin powder. In this section, heat-affected pow-
der collected near the gas outlet and the oversized powder collected in the sieving process
were analyzed to gain a better understanding of the mechanism behind the effectiveness of
the proposed processing methodology.

In the EOS M290 LPBF machine (EOS GmbH, Krailling, Germany) used in this study,
the protective argon gas forms a shielding gas flow over the powder bed to remove fumes
and spatters during the LPBF process. The heat-affected powder samples were collected
from the build platform near the gas outlet. This sample was composed of unused powder
and the heated-affected particles that were redistributed by the gas flow. The sieved-out
spatter samples were the oversized particles sieved out using a 53 um mesh. These particles
were formed from partial sintering of powder particles into clusters due to the laser energy
in the LPBF process as well as any larger process-affected material. The oversized particles
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content, (b) Ritrogen content.
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ficient to affect the overall process, as demonstrated by the stable chemical composition
throughout the entire recycling program. Thus, it can be concluded that the proposed re-
cycling methodology is effective over the studied range.
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reference virgin powder, i.e., the D10 of the oversized powder was higher than the D50
and close to the D90 of the heat-affected powder. This suggests that the sieving process
can effectively remove powder outside the PSD range of the reference virgin powder. The
heat-affected powder PSD indicates that the process-affected powder is substantially
larger than the original powder size, which would be effectively removed by sig¥inig?

——_________ Whileitis possible that there i5 process-atfect material inside the PSD Tange of the refer-
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ence virgin material, their volume and associated accumulation of trace element is insuf-
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usage history) than recycle number and BV ratio. With the fixed processing condi-
tions (chamber oxygen level and laser process parameters), the powder degraded
close to the Grade 23 limit after about 40% powder consumption or 10 builds in this
work with 0.107% in the virgin powder to 0.129% in the 10th recycled powder.
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usage history) than recycle number and BV ratio. With the fixed processing conditions
(chamber oxygen level and laser process parameters), the powder degraded close to
the Grade 23 limit after about 40% powder consumption or 10 builds in this work with
0.107% in the virgin powder to 0.129% in the 10th recycled powder.

4.  The tensile properties showed slight change in yield strength while ultimate strength
and ductility (elongation and reduction of area) only fluctuated slightly. The yield
strength had the best linear correlation to the BV ratio, then R index and least to
recycle number. This implies that the in situ powder degradation (due to thermal
exposure and spatters) probably had a more detrimental effect on the yield strength.
A possible reason is the potential defects from more spatters generated in a larger
printing volume.

In conclusion, powder recycling by sieving and refreshing with virgin powder can
effectively control the powder properties except oxygen content. A better powder handling
method, including better storage conditions and lower chamber oxygen level, can reduce
the powder degradation. Moreover, other powder reprocessing methods (e.g., oxidation
reduction) can further reduce material waste. This will be considered in future work to
improve the sustainability of LPBF productions.
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