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 A B S T R A C T

Background: The clinical diagnosis of skin lesions involves the analysis of dermoscopic and clinical modalities. 
Dermoscopic images provide detailed views of surface structures, while clinical images offer complementary 
macroscopic information. Clinicians frequently use the seven-point checklist as an auxiliary tool for melanoma 
diagnosis and identifying lesion attributes. Supervised deep learning approaches, such as convolutional 
neural networks, have performed well using dermoscopic and clinical modalities (multi-modality) and further 
enhanced classification by predicting seven skin lesion attributes (multi-label). However, the performance of 
these approaches is reliant on the availability of large-scale labeled data, which are costly and time-consuming 
to obtain, more so with annotating multi-attributes
Methods: To reduce the dependency on large labeled datasets, we propose a self-supervised learning (SSL) 
algorithm for multi-modality multi-label skin lesion classification. Compared with single-modality SSL, our 
algorithm enables multi-modality SSL by maximizing the similarities between paired dermoscopic and clinical 
images from different views. We introduce a novel multi-modal and multi-label SSL strategy that generates 
surrogate pseudo-multi-labels for seven skin lesion attributes through clustering analysis. A label-relation-aware 
module is proposed to refine each pseudo-label embedding, capturing the interrelationships between pseudo-
multi-labels. We further illustrate the interrelationships of skin lesion attributes and their relationships with 
clinical diagnoses using an attention visualization technique.
Results: The proposed algorithm was validated using the well-benchmarked seven-point skin lesion dataset. 
Our results demonstrate that our method outperforms the state-of-the-art SSL counterparts. Improvements in 
the area under receiver operating characteristic curve, precision, sensitivity, and specificity were observed 
across various lesion attributes and melanoma diagnoses.
Conclusions: Our self-supervised learning algorithm offers a robust and efficient solution for multi-modality 
multi-label skin lesion classification, reducing the reliance on large-scale labeled data. By effectively capturing 
and leveraging the complementary information between the dermoscopic and clinical images and interrela-
tionships between lesion attributes, our approach holds the potential for improving clinical diagnosis accuracy 
in dermatology.
1. Introduction

Melanoma is one of the deadliest forms of skin cancer in the world, 
and the number of incidences has been increasing steadily in recent 
years [1]. Early diagnosis is particularly important as melanoma can 
be cured with simple excision [2]. In clinical practice, the suspected 
skin lesions are assessed by examining clinical images and dermoscopy 
images [3]. Clinical images are acquired by a digital camera, showing 
geometry and color of the skin lesion. On the other hand, dermoscopy 
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images are acquired with a dermatoscope, providing better view of the 
skin lesion subsurface structures. These combined imaging modalities 
provide complementary information to assist dermatologists in the di-
agnosis. Seven-point checklist [4] is the most commonly used algorithm 
for diagnosis, where each attribute in the checklist, as denoted in Fig.  1, 
is assigned with 1 point to rate the likelihood of having a melanoma. 
The examined lesion is diagnosed as melanoma when the sum of the 
score surpasses a given threshold, e.g., greater than three [5]. Fig.  1 
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Fig. 1. Examples of multi-modal skin lesion images comprising of clinical images and dermoscopy images. Each pair of images is labeled with seven-point checklist and its diagnosis 
(Melanoma, Nevus or Seborrhic Keratosis).
gives three example studies showing clinical and dermoscopic images 
and their corresponding seven attributes. However, such manual ex-
amination is time consuming and difficult, particularly for untrained 
or less experienced dermatologists [6]. Moreover, dermatologists are 
consistently in short supply in rural areas, and consultation costs are 
rising [7]. Motivated by these difficulties, computer-aided diagnosis 
(CAD) systems have been developed to automate such manual process 
and provide second opinions to clinicians. In recent years, many CAD 
systems based on Convolutional Neural Networks (CNNs) have been 
successful in skin lesion image segmentation and classification related 
tasks [8,9]. For example, Yu et al. [8] proposed to use a deep CNN 
with over 50 layers to acquire richer and more discriminative skin 
features. However, these methods are limited to using dermoscopy 
images (a single modality), and therefore discarding useful information 
contained in the clinical images. More recently, researchers [1,10] have 
attempted to develop multi-modality fusion networks to simultaneously 
learn image features from dermoscopic and clinical images. A common 
approach in these networks is to use CNNs for each imaging modality 
separately, with the subsequent step of concatenating the feature out-
puts from each CNN. Although these studies exploited complementary 
information from modalities, they directly predicted the diagnosis of 
melanoma from images without inferring the seven-point checklist, 
having the likelihood of making a misdiagnosis [1].

Multi-label classification (MLC), where an image can be assigned 
to multiple labels simultaneously, is a pertinent approach to solve the 
issue. In MLC setting, the seven attributes are considered as seven labels 
with the diagnosis as the eighth label for each image. It then learns 
the interrelationships among the seven attributes and the 8th diagnosis 
label. For instance, Fu et al. [11] proposed a graph-based model to 
leverage the interrelationships in the seven-point checklist to improve 
skin lesion classification. However, the performance of these methods is 
highly dependent on the availability of large-scale labeled training data. 
Unfortunately, there is a scarcity of large annotated multi-modal skin 
lesion datasets due to the expensive data acquisition and annotation 
process. Earlier studies [12,13] have mitigated this issue by adopting 
transfer learning such that models, pre-trained with ImageNet [14], 
can be fine-tuned on the target medical imaging dataset. Despite the 
2 
effectiveness of transfer learning, there still exists large domain shifts 
between sources, e.g., ImageNet and skin lesion images [15].

An alternative approach is to use a self-supervised learning (SSL) 
approach to learn meaningful features using only unlabeled data. Many 
recent SSL approaches [16–21] have been successfully introduced for 
various tasks in both natural and medical image analysis. For example, 
Chen et al. [16] designed an SSL approach that maximizes similari-
ties between augmented views of the same image and minimizes the 
similarities with other images. Doing so provided a more robust trans-
fer ability than approaches that used ImageNet-pre-trained weights. 
Existing SSL-based approaches, however, are not optimized for multi-
modality and multi-label skin lesion images, as they do not consider 
(1) how image features from different modalities could be fused to 
complement each other; (2) and how to enable the model to learn 
interrelationships between skin lesion attributes.

In an attempt to address the issues discussed above, we propose 
a Self-supervised learning framework for Multi-Modality Multi-label 
skin lesion classification (SM3). Our contributions are summarized as 
follows:

• We introduce a new SSL pre-training algorithm in which the im-
age features of different modalities are contrasted. Our innovation 
is to exploit the inherent complementary information within the 
dermoscopic and clinical images of the same patient which is 
expected to possess the highest mutual information compared to 
random pairing between different patients. This is in contrast to 
existing SSL pre-training methods which are exclusively designed 
to work with a single imaging modality. Our pre-training task 
facilitates the fusion of multi-modal image features, thereby fos-
tering improved discrimination and differentiation among various 
skin lesion classes.

• We further innovate in SSL pre-training algorithm designed for 
multi-label learning. Our approach enables the learning of corre-
lations among the seven attributes and the final diagnosis without 
using labeled data. To achieve this, we propose a pseudo-multi-
labeling scheme (we refer to the seven attributes as seven ad-
ditional labels from now on) that is constructed by multiple 
cluster analysis for each label, with the centroid of each resulting 
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cluster representing a class label. These pseudo-multi-labels are 
used to facilitate multi-label self-supervised learning during the 
pre-training.

• We improve the learning of correlations by introducing a label-
relation-aware module. It uses the distribution of features within 
pseudo-multi-labels to better capture interrelationships between 
them. We also visualize the learned relationships.

2. Related works

2.1. Deep learning based skin lesion classification

Skin lesion classification has seen significant advancements with the 
introduction of CNNs [22] which has become the preferred technology 
for developing CAD systems [23–25]. In skin lesion classification, CNNs 
have shown superior performance compared to traditional methods 
based on handcrafted features [12,26]. Researchers have extended this 
approach by using more advanced techniques, such as deep CNNs with 
more layers [8], attention learning mechanism [9], and regularization 
strategies for small and unbalanced datasets [27]. Furthermore, re-
searchers investigated multi-class skin lesion classification, which has 
fine-grained sub-classes for malignant and benign lesions. For example, 
Qian et al. [28] proposed to use a grouping of multi-scale attention 
blocks and class-specific loss weighting to solve the category imbalance 
issue. Hsu et al. [29] used hierarchy-aware contrastive learning to 
improve model performance by reducing penalties for outputs that cor-
rectly predict major class (e.g., malignant) but misclassify sub-classes 
(e.g., basal cell carcinoma, melanoma, and squamous cell carcinoma).

However, these methods often overlooked clinical images, which 
are crucial for precise decision making. To address this limitation, Ge 
et al. [10] proposed a multi-modality learning method that utilized 
both dermoscopy and clinical images by applying separate CNNs for 
each modality. Subsequent research has built on this approach by 
incorporating multi-scale feature fusion modules [3,30] and adversarial 
learning with attention mechanisms [31] to capture both correlated 
and complementary information from two image modalities. In addi-
tion, researchers have explored the detection of dermoscopic attributes 
(multi-label classification) from the seven-point checklist to improve 
the classification performance [1]. For example, Fu et al. [11] proposed 
a graph-based model to capture the interrelationships between differ-
ent labels. Similarly, Tang et al. [32] developed a two-stage learning 
scheme, where dermoscopy and clinical image features were integrated 
in the first stage, which were then integrated with patient metadata in 
the second stage to capture correlations between labels. However, to 
ensure the performance, these supervised methods required large-scale 
labeled data.

2.2. SSL in medical imaging

SSL has emerged as a promising alternative to alleviate the problem 
of expensive and time-consuming annotation processes [33]. This is 
particularly relevant in the context of medical imaging, where anno-
tated data are scarce due to the complicated data acquisition pro-
cedures [34]. One of common SSL approaches is to use Contrastive 
Learning [35] which uses a pretext task that maximizes similarities 
between similar data instances while minimizing them with dissimilar 
instances. For example, it maximizes the similarities between aug-
mented views (e.g., rotated, masked views) of the same image and 
minimize similarities with augmented views of different images [16–
19]. For example, Azizi et al. [34] trained a model on an unlabeled 
dataset and used a pretext task based on multiple images of the same 
clinical case to improve skin lesion classification. Öztürk et al. [36] 
proposed a deep clustering approach for melanoma detection that 
overcomes class imbalance issues, and this was achieved by maximizing 
cluster separation in the embedding space, where existing methods 
3 
focus on minimizing classification errors. Recently, there was a sys-
tematic review that evaluated the use of various SSL algorithms for 
skin lesion classification [37]. Other studies focus on using SSL to 
address common skin lesion classification challenges, e.g., long-tail out-
of-distribution problem [38] and light weight models [39]. However, 
all these SSL-based methods focused on using a single medical imaging 
modality and cannot be directly applied to multi-modality learning. 
While multi-modality learning can be implemented through the simple 
concatenation of multi-modality image features, this is not optimal to 
derive complementary information in an SSL setting. As also pointed 
by Li et al. [40], naïve concatenation is not an efficient way and could 
heavily decrease the model performance due to the domain differ-
ences between different imaging modalities. To address this issue, Atli 
et al. [41] proposed channel-mixed Mamba blocks with a spiral-scan 
trajectory for modality synthesis, aiming to bridge the domain shifts 
between multi-contrast MRI and MRI-CT. Zhang et al. [42] proposed 
to align multi-modal feature maps by designing a new contrastive loss 
to enforce the network to focus on the similarities of segmentation 
masks from paired modalities as well as dissimilarities of unpaired 
multi-modal data. Huang et al. [43] proposed an SSL algorithm for 
four-modality ultrasound learning, where Mean Absolute Error across 
different modalities was minimized to ensure that high-level image 
features extracted from different modalities can be similar. However, 
these methods were designed for specific medical areas and cannot be 
applied to solve the multi-modality and multi-label problem in skin 
lesion classification.

2.3. MLC in medical imaging

MLC considers a scenario where a set of class labels is assigned to a 
single data instance. In this context, prior research has primarily con-
centrated on devising models for understanding relationships between 
labels [44], including approaches such as one-vs-all classifiers [45], tree 
structures [46], and graph structures [47]. Medical imaging field also 
has adopted MLC, as exemplified by Guan et al.’s use of a residual atten-
tion learning framework for chest X-ray image classification. It assigned 
different weights to different spatial regions based on multi-labels [48]. 
HydraViT [49] integrated a transformer backbone with a multi-branch 
output module to separately model disease-specific features and their 
co-occurrence for multi-label chest X-ray classification. Liu et al. [50] 
enhanced model robustness by maintaining the consistency of relation-
ships among different samples under perturbations. Zhang et al. [51] 
employed a triplet attention network with a Transformer to make use 
of multi-labels together with spatial and category attention features. 
However, none of these works attempted to solve the MLC task with SSL 
which requires to design a pretext task to learn label interrelationships.

3. Materials and method

3.1. Materials

We used the Derm7pt [1] dataset for our experiments. It is currently 
the only publicly available dataset that provides aligned multi-modality 
and multi-label skin lesion images. It contains a total of 1,011 studies. 
The dataset is divided into 413 studies for training, 203 studies for 
validation, and 395 studies for testing, according to [1]. Each study 
contains a pair of dermoscopy and clinical images, a diagnosis (DIAG) 
label, and seven-point checklist labels. The DIAG label consists of 5 
types of skin lesions including Basal Cell Carcinoma (BCC), Nevus 
(NEV), Melanoma (MEL), Miscellaneous (MISC), and Seborrheic Ker-
atosis (SK). The seven-point checklist labels contain Pigment Network 
(PN), Blue Whitish Veil (BWV), Vascular Structures (VS), Pigmentation 
(PIG), Streaks (STR), Dots and Globules (DaG), and Regression Struc-
tures (RS). Each seven-point checklist label has different number of 
classes including Absent (ABS), Typical (TYP), Atypical (ATP), Present 
(PRS), Regular (REG), and Irregular (IR). The size of dermoscopy 
images varies from 474 × 512 to 532 × 768 pixels and the clinical 
images vary from 480 × 512 to 532 × 768 pixels.
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Fig. 2. Pipeline of SimCLR applied to skin lesion classification.
Fig. 3. A schematic of SM3. The multi-modality SSL component utilizes two separate branches to extract modality-specific features using SimCLR. A multi-modal fusion is then 
enabled by contrasting paired dermoscopic and clinical images. In the multi-label SSL component, the concatenated image features are projected into label-specific features, and a 
label-relation-aware module is applied to learn label correlations in a self-supervised manner. Each label-specific feature is then grouped into similar features and used to generate 
pseudo-multi-labels. These are used to update the classification heads.
3.2. Preliminaries: SSL pre-training strategy

In this work, we used a SSL method SimCLR [16] as the base pre-
training strategy. The workflow of SimCLR is shown in Fig.  2. Firstly, 
two separate data augmentation sets { ,  ′} from the same family of 
augmentations (including random resized cropping, color jitter, random 
horizontal flip, and random Gaussian blur) randomly transform any 
given image sample 𝑥 into two augmented views 𝑥1 and 𝑥2, which 
are considered as a positive pair. Then, an encoder network 𝑓 (⋅) ex-
tracts image features ℎ1, ℎ2 from augmented views, respectively. The 
choice of encoder network is flexible and can be any CNN architecture. 
Afterward, a projection head 𝑔(⋅) maps learned image representations 
into a latent space 𝑧. We used the Multi-Layer Perceptron (MLP) as 
our projection head. Lastly, the contrastive loss is applied to the latent 
space 𝑧, aiming to maximize the similarities between positive pairs. The 
loss function for image 𝑥𝑖 is defined as: 
𝑁𝑇−𝑋𝑒𝑛𝑡,𝑖 =

− log
𝑒
(

𝜎
(

𝑧1𝑖 , 𝑧
2
𝑖
)

∕𝜏
)

∑𝑁
𝑗=1 𝑒

(

𝜎
(

𝑧1𝑖 , 𝑧
2
𝑗

)

∕𝜏
)

+ 1[𝑖≠𝑗]𝑒
(

𝜎
(

𝑧1𝑖 , 𝑧
1
𝑗

)

∕𝜏
)

(1)

where 𝑁 denotes the batch size, 𝜏 is a temperature hyperparameter. 
1[𝑖≠𝑗] ∈ {0, 1} is an indicator function, which was set to 1 if and only 
if 𝑖 ≠ 𝑗. 𝑒 (⋅) is the exponentiation operation, and 𝜎 (𝑢, 𝑣) = 𝑢⊤𝑣∕‖𝑢‖ ‖𝑣‖
denotes the cosine similarity function.
4 
3.3. Overview

The overview of our method is shown in Fig.  3. Initially, modality-
specific features from dermoscopic and clinical images were extracted 
using SimCLR. Subsequently, we pre-trained the multi-modality models 
by maximizing similarities between paired multi-modality images of 
the same patient. Following this, the extracted image features were 
projected into distinct label-specific embedding spaces. A label-relation-
aware module was then used to learn correlation between labels. Lastly, 
we channeled the outputs into clusters, generating pseudo-multi-labels 
for SSL multi-label pre-training. Our pre-training process consists of 
two stages: first, we performed multi-modality SSL to obtain a trained 
multi-modality image feature extractor; after that, we conducted the 
multi-label SSL with the frozen feature extractor.

3.4. Self-supervised multi-modality learning

Given pairs of dermoscopy and clinical images, we utilized separate 
CNNs, named dermoscopy branch and clinical branch, to extract corre-
sponding image modality features. These two branches have identical 
architecture but independent weight updates, which helps to optimize 
each branch for different image modalities. To enable efficient multi-
modality representation learning, three pretext tasks are defined. The 
first and second pretext task are to apply SimCLR in each model branch 
to extract specific features from corresponding modalities. We defined 
the loss functions using Eq.  (1) as follows:
 =  (2)
𝑑𝑒𝑟𝑚 𝑁𝑇−𝑋𝑒𝑛𝑡
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𝑐𝑙𝑖𝑛𝑖𝑐 = 𝑁𝑇−𝑋𝑒𝑛𝑡 (3)

where 𝑧 in 𝑑𝑒𝑟𝑚 comes from dermoscopy images, whereas 𝑧 in 𝑐𝑙𝑖𝑛𝑖𝑐 is 
derived from clinical images. We used these loss functions to solve the 
first and second pretext tasks. In addition, we propose a third task that 
jointly utilizes both dermoscopy and clinical images, allowing comple-
mentary representation learning of the two modalities for multi-modal 
fusion. The intuition behind our design is that pairs of multi-modality 
images have more similarities than others, i.e., dermoscopy and clinical 
images of the same case have maximum mutual information under 
different augmented views. We implemented this idea by (1) intro-
ducing two extra projection heads to map extracted dermoscopy and 
clinical features into a shared embedding space and (2) maximizing 
the agreement between randomly augmented views of the same case 
but different modality data sample by the modified contrastive loss: 
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(4)

where 𝑧 is computed from dermoscopy images while 𝑧′ is calculated 
from clinical images. We applied these three tasks to train the model 
by adopting multi-task learning and defined the final loss function as: 
𝑠𝑠𝑙 = 𝑑𝑒𝑟𝑚 + 𝑐𝑙𝑖𝑛𝑖𝑐 + 𝑚𝑚 (5)

3.5. Self-supervised multi-label learning

Naïve solution. Since multiple label predictions are derived from 
the single image representation and the number of classes is different 
for each label, we adopted separate classifiers for every label pre-
diction. The classifier ℎ (⋅) was built by a label projection head 𝑝 (⋅)
and a classification head 𝑞 (⋅) such that ℎ (⋅) = 𝑞 (𝑝 (⋅)). Here, 𝑝 (⋅)
consists of an MLP aiming to filter label-specific features and 𝑞 (⋅)
is a single fully-connected (FC) layer to make final predictions. To 
enable self-supervised learning of the multi-label classifier, we used 
the clustering algorithm to generate pseudo-label. We independently 
iterated the clustering process for 𝐾 times to generate 𝐾 labels, with 
𝐾 equals to the number of labels in the dataset. We then utilized 
these generated pseudo-multi-labels to update the parameters of the 
classifier by optimizing the cross-entropy loss function which is defined 
as follows: 

𝑐𝑒
(

𝑥𝑖, 𝑦𝑖
)

=
𝐾
∑

𝑘=1
𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦

(

ℎ𝑘
(

𝑥𝑖
)

, 𝑦𝑖,𝑘
)

(6)

where 𝑥𝑖 is the 𝑖𝑡ℎ image and 𝑦𝑖 is the corresponding pseudo-multi-labels 
containing {𝑦𝑖,1,… , 𝑦𝑖,𝐾}. ℎ𝑘 (⋅) denotes the 𝑘𝑡ℎ classifier.

Label-relation-aware solution. The above naïve solution, how-
ever, yielded degraded results in our preliminary experiments, which 
overlooked the relationships between labels. We therefore further re-
fined each label embedding by understanding the relationships between 
other embeddings using an attention mechanism [52]. Self-attention 
was applied to access all label embeddings before the clustering anal-
ysis, ensuring each label embedding was refined by the weighted 
influence of other embeddings based on their importance. Formally, we 
inserted self-attention method 𝑊 (⋅) before 𝑞 (⋅) and fed outputs of all 
𝑝 (⋅) into it. Then, we rewrote the classifier function as: 
ℎ (⋅) = 𝑞

(

𝑊
(

𝑝1 (⋅) ,… , 𝑝𝐾 (⋅)
))

(7)

where {𝑝1,… , 𝑝𝐾} are label projection heads from 𝐾 classifiers. Here, 
the features specific to each label only contain information about that 
label. However, our label-relation-aware module come into play to 
connect all labels information and learn the relationships between 
them. As a result, the prediction of a single label involves contributions 
from other label information. In this work, we used 𝑊 (⋅) as the encoder 
layer of Transformer [52].
5 
3.6. Inference pipeline

We adopted a vanilla implementation of multi-modality and multi-
label classification scheme (as shown in Fig.  4) to emphasize the 
effectiveness of our proposed SSL pre-training method. Following the 
design of multi-modality model fusion in preliminary work Embed-
dingNet [53], we applied two separate branches to extract dermoscopic 
and clinical features. These two modality features were then concate-
nated and fed into a subsequent classifier to make the final predictions. 
This model was referred as the Baseline in Section 4. Experiments, 
and we initialized both the branches and the classifier using our SM3 
pre-trained weights.

4. Experiments

4.1. Experiment configurations

We used a deep learning library PyTorch [54] to implement our 
algorithm. All the experiments were conducted on two NVIDIA RTX 
3080Ti 12 GB GPUs. For fair comparisons, we used ResNet-50 [25] 
as the CNN backbone since ResNet-50 has been commonly applied 
for various skin lesion classification and segmentation tasks includ-
ing [3,11,31,32]. The output dimension of the projectors in contrastive 
learning was set to 128. For multi-label SSL, we applied k-means [55] 
as the clustering algorithm, and ran it for 𝐾 = 8 times, with the number 
of clusters in each iteration determined by the number of classes of the 
corresponding label. The label projection head was a single-layer MLP 
with a dimension of 512. We used a single Transformer encoder layer 
with a head of 1, a feed forward dimension of 128 and a dropout rate 
of 0.1 for our label-relation-aware module. All these hyperparameters 
were chosen based on our empirical studies. We resized all of images 
into 224 × 224. We followed the existing literature [3,11,31,32] and 
evaluated the proposed method with the official data split [1]. Code is 
available at https://github.com/Dylan-H-Wang/skin-sm3.

4.1.1. Pre-training
For multi-modality SSL, we set the batch size to 96, learning rate to 

1e−6, the number of epochs to 400, and temperature 𝜏 to 0.1. For multi-
label SSL, we used batch size of 256, learning rate of 1e−4 and the 
number of epochs as 150. AdamW [56] was used as the optimizer with 
default parameters (𝛽1 = 0.9, 𝛽2 = 0.999, and weight decay = 0.01). We 
followed the commonly used SimCLR data augmentation design during 
the pre-training.

4.1.2. Linear probing and fine-tuning
We adopted linear probing protocol where CNNs were frozen and 

only the classifier was fine-tuned [17]. We set learning rate as 1e−3, 
batch size as 128 and the number of epochs as 50. The optimizer was 
AdamW with default parameters as in the pre-training. We used data 
augmentations including random resized crop and random horizontal 
flip. We also evaluated the non-linear quality of learned representa-
tions [57] such that CNNs were initialized with pre-trained weights and 
fine-tuned with all layers. We set learning rate as 1e−4, batch size as 
64 and the number of epochs as 50. The settings of optimizer and data 
augmentation were the same as linear probing experiments.

4.2. Evaluation setups

4.2.1. Performance metrics
The model performances were evaluated using metrics including 

area under receiver operating characteristic curve (AUC), sensitivity 
(Sens), specificity (Spec), and precision (Prec). We computed the eval-
uation metrics for multi-class labels using a one-vs-rest approach. For 
each class, we treated it as the positive class and combined all other 
classes as the negative class, then calculated the AUC, sensitivity, 
specificity, and precision accordingly. For clarity, we present only the 
melanoma class results of the DIAG label and the class results for the 
seven attributes that increase the chance of melanoma.

https://github.com/Dylan-H-Wang/skin-sm3


H. Wang et al. Computer Methods and Programs in Biomedicine 265 (2025) 108729 
Fig. 4. Pipeline of the inference module. Initially, it employs two distinct branches to extract features from dermoscopic and clinical images separately. These extracted features 
are subsequently fused by concatenation. The combined feature set is then passed to a subsequent classifier for generating the final prediction.
4.2.2. Comparison to the state-of-the-arts
The Baseline model is a vanilla implementation of multi-modality 

and multi-label classification as shown in Fig.  4. We setup the upper 
bound of linear probing experiments by initializing the Baseline with 
ImageNet-pre-trained weights (Baseline-50-ImageNet). We also initial-
ized the Baseline using our proposed SM3 pre-trained weights and 
conducted linear probing (SM3-linear) and fine-tuning (SM3-fine-tune) 
experiments. We benchmarked state-of-the-art (SOTA) SSL methods, 
including general SSL method SimCLR [16] and recent SSL method 
optimized for dermoscopic image analysis named SSD-KD [39], along 
with supervised SOTAs including commonly used baseline Inception-
combined [1] and HcCNN [3], and recent graph-based GIIN [11], 
adversarial-based AMFAM [31] and patient-meta-based FM4-FS [32]. 
In addition, we initialized FM4-FS with our SM3 (FM4-FS + SM3) and 
fine-tuned with all layers.

4.2.3. Ablation studies
For each of the ablation studies, hyperparameters were grid-

searched and the metrics were based on the AUC scores. We conducted 
ablation studies on the Multi-Modality SSL (MMSSL) and the Multi-
Label SSL (MLSSL) components by incorporating them into the Baseline 
separately. For MMSSL, we evaluated three different fusion strategies 
including: (i) concat : concatenating dermoscopic and clinical features 
and maximizing the similarities between different views of the con-
catenation; (ii) sep_shared: maximizing the similarities between views of 
paired dermoscopy and clinical images using a shared projection head 
𝑔 (⋅); (iii) sep_sep: same as sep_shared but applying separate projection 
heads for each modality. We also used weights pre-trained on ImageNet 
(ImageNet) and weights pre-trained by SOTA SSL algorithms, including 
SwAV [58], BYOL [59], and SimCLR, for comparisons. The weights 
pre-trained on ImageNet were downloaded from Torchvision1 and ini-
tialized to each branch. The SSL pre-trained weights were obtained by 
using the respective SSL algorithms to pre-train each branch separately 
on the corresponding image modalities. We also adopted the fusion 
module from F4M-FS to be part of the multi-modality SSL baseline. 
Additionally, to validate the effectiveness of multi-modality inputs, we 
pre-trained SimCLR using only dermoscopic images (SimCLR-derm).

For MLSSL, we evaluated five different strategies: (i) no_proj: there 
was no label projection head; (ii) proj : naively applying a label pro-
jection head for each label; (iii) msa: applying the multi-head self-
attention; (iv) tel: applying a Transformer encoder layer; (v) te: applying 
a Transformer based encoder.

In addition, we conducted pair match experiments that query clin-
ical images using dermoscopic images as the keys. It aims to find 

1 https://github.com/pytorch/vision.
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matching corresponding clinical images. It helps to explore how dif-
ferent MMSSL fusion strategies utilize the mutual information between 
two modalities. Based on the assumption that paired dermoscopic and 
clinical image features contain the highest similarity, we generated 
a cosine similarity score matrix for ranking. We assessed the top-
1 accuracy (Acc@1) that determines whether paired image features 
have the highest similarity score, and the top-5 accuracy (Acc@5) that 
considers the top five highest scores. Moreover, the average rank was 
computed by averaging the ranks of each paired image’s similarity 
score relative to others. By calculating these metrics, we quantify the 
extent to which complementary information between two modalities 
were effectively leveraged by different strategies, and thus guiding the 
selection of an optimized method for efficient multi-modality fusion. 
We conducted pair matching experiments using the training set of 
Derm7pt, which contains 413 samples.

5. Results

5.1. Comparisons to the state-of-the-arts

The primary results of the experiment are presented in
Tables  1–4. We first evaluated the effectiveness of the proposed SM3 
representations via linear probing (SSL + Linear Probing). When com-
pared to SimCLR, our SM3 showed consistent improvements including a 
2.2% increase in mean AUC, 3.8% increase in mean Sens, 2.1% increase 
in mean Spec, and 3.6% in mean Prec, although SimCLR performed 
better in some categories, e.g., RS category. SSD-KD, based on SSL and 
knowledge distillation, achieved a second-best performance with an 
AUC of 79.6, mean Sens of 9.8, mean Spec of 96.7, and mean Prec of 
31.7. In comparison, our SM3 had much higher mean Sens (+25.1%), 
mean Prec (+29.8%) and relatively higher mean AUC (+0.8%) but 
lower mean Sens (−3.1%). To understand the upper bound of our SSL 
linear probing, we compared the SM3-initialized Baseline model with 
the supervised ImageNet-initialized Baseline model, with SM3 resulting 
in a higher mean Specificity (+2.7%), a small gap in terms of mean AUC 
(−0.9%), mean Sensitivity (−7.6%), and mean Precision (−5.2%).

We conducted experiments to assess the effectiveness of SM3 in 
improving various backbones (SSL + Fine-tuning). After fine-tuning the 
SM3-initialized Baseline model, the mean AUC improved from 81.3 to 
82.9, surpassing both Inception-Combined (mean AUC of 81.5) and Hc-
CNN (mean AUC of 82.5). This improvement was consistent regarding 
mean Spec and mean Prec. We also experimented with another existing 
method, F4M-FS by replacing the ImageNet-pre-train weights with our 
SM3-pre-trained weights while keeping other components unchanged. 
We found that the SM3-initialized FM4-FS achieved 1% increase in 
mean AUC, 4.2% in mean Spec and 12.6% in mean Prec. Compared to 

https://github.com/pytorch/vision
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Table 1
Classification performance evaluated by AUC on the Derm7pt dataset. Three settings are presented: Supervised, SSL + Linear 
Probing, and SSL + Fine-tuning. The best result are in bold.
 Strategy Method BWV DaG PIG PN RS STR VS DIAG AVG ± STD 
 PRS IR IR ATP PRS IR IR MEL  
 

Supervised

Inception-Combined 89.2 79.9 79.0 79.9 82.9 78.9 76.1 86.3 81.5 ± 4.3  
 HcCNN 89.8 82.6 81.3 78.3 81.9 77.6 82.7 85.6 82.5 ± 3.9  
 GIIN 90.8 83.1 83.6 87.5 79.0 81.2 75.4 87.6 83.5 ± 5.0  
 AMFAM 91.1 81.9 83.4 82.0 86.7 80.7 80.9 89.1 84.5 ± 4.0  
 F4M-FS 90.6 80.1 83.5 83.9 81.7 81.4 78.9 89.0 83.6 ± 4.2  
 Baseline-50-ImageNet 87.4 78.0 82.0 79.4 80.6 76.1 80.5 86.7 81.3 ± 4.0  
 
SSL + Linear Probing

SimCLR 85.6 76.1 77.0 75.4 78.7 72.8 76.2 83.6 78.2 ± 4.3  
 SSD-KD 86.7 76.8 81.5 79.1 77.1 79.2 69.7 86.6 79.6 ± 5.5  
 SM3-50-linear 90.4 76.5 80.4 78.2 77.4 75.4 79.4 85.0 80.4 ± 5.0  
 SSL + Fine-tuning SM3-50-finetune 91.1 81.9 82.8 78.0 82.5 79.8 81.2 86.1 82.9 ± 4.1  
 FM4-FS + SM3 92.9 80.3 84.5 82.3 84.2 84.5 77.8 90.1 84.6 ± 4.9  
Table 2
Classification performance evaluated by Sensitivity on the Derm7pt dataset. Three settings are presented: Supervised, SSL + 
Linear Probing, and SSL + Fine-tuning. The best result are in bold.
 Strategy Method BWV DaG PIG PN RS STR VS DIAG AVG ± STD  
 PRS IR IR ATP PRS IR IR MEL  
 

Supervised

Inception-Combined 77.3 62.1 59.7 48.4 66.0 51.1 13.3 61.4 54.9 ± 19.0  
 HcCNN 92.2 80.2 55.7 40.9 95.2 35.1 20.0 68.8 61.0 ± 27.7 
 GIIN 69.9 70.1 39.2 77.5 21.9 67.0 3.6 59.0 51.0 ± 26.7  
 AMFAM 75.0 66.7 67.9 58.5 72.1 57.3 0.0 65.8 57.9 ± 24.2  
 F4M-FS 66.7 68.4 58.9 49.5 47.1 47.9 20.0 62.4 52.6 ± 15.6  
 Baseline-50-ImageNet 49.3 66.1 46.8 40.9 34.0 47.9 3.3 51.5 42.5 ± 18.3  
 
SSL + Linear Probing

SimCLR 20.0 70.1 46.0 26.9 12.3 24.5 0.0 49.5 31.1 ± 22.6  
 SSD-KD 0.0 66.7 9.7 0.0 0.0 0.0 0.0 2.0 9.8 ± 23.2  
 SM3-50-linear 50.7 40.1 31.5 39.8 18.9 41.5 0.0 56.4 34.9 ± 18.1  
 SSL + Fine-tuning SM3-50-finetune 34.7 51.4 68.5 32.3 25.5 48.9 20.0 50.5 41.5 ± 16.1  
 FM4-FS + SM3 70.7 52.5 48.4 35.5 45.3 37.2 3.3 31.7 40.6 ± 19.4  
Table 3
Classification performance evaluated by Specificity on the Derm7pt dataset. Three settings are presented: Supervised, SSL + 
Linear Probing, and SSL + Fine-tuning. The best result are in bold.
 Strategy Method BWV DaG PIG PN RS STR VS DIAG AVG ± STD 
 PRS IR IR ATP PRS IR IR MEL  
 

Supervised

Inception-Combined 89.4 78.9 80.1 90.7 81.3 85.7 97.5 88.8 86.6 ± 6.3  
 HcCNN 65.3 71.6 86.3 92.4 41.5 90.0 98.4 85.4 78.9 ± 18.6 
 GIIN 91.0 78.8 95.8 79.0 96.8 80.3 100.0 89.5 88.9 ± 8.6  
 AMFAM 90.3 82.4 83.0 85.6 82.6 85.9 92.4 91.4 86.7 ± 4.1  
 F4M-FS 91.6 72.9 87.1 90.1 96.2 88.4 97.8 88.8 89.1 ± 7.6  
 Baseline-50-ImageNet 98.4 72.0 87.8 86.1 94.5 93.4 99.7 95.6 90.9 ± 9.0  
 
SSL + Linear Probing

SimCLR 99.7 69.7 85.2 94.4 97.2 94.0 100.0 91.8 91.5 ± 10.0 
 SSD-KD 100.0 74.3 99.3 99.7 100.0 100.0 100.0 100.0 96.7 ± 9.0  
 SM3-50-linear 95.9 89.9 94.5 89.4 99.3 86.0 100.0 93.9 93.6 ± 4.9  
 SSL + Fine-tuning SM3-50-finetune 99.1 90.4 80.4 94.7 96.9 89.7 96.4 93.5 92.6 ± 5.9  
 FM4-FS + SM3 92.5 85.3 91.9 92.4 94.5 91.9 100.0 98.0 93.3 ± 4.4  
Table 4
Classification performance evaluated by Precision on the Derm7pt dataset. Three settings are presented: Supervised, SSL + 
Linear Probing, and SSL + Fine-tuning. The best result are in bold.
 Strategy Method BWV DaG PIG PN RS STR VS DIAG AVG ± STD  
 PRS IR IR ATP PRS IR IR MEL  
 

Supervised

Inception-Combined 63.0 70.5 57.8 61.6 56.5 52.7 30.8 65.3 57.3 ± 12.0  
 HcCNN 91.9 69.6 65.1 62.3 81.6 52.4 50.0 54.5 65.9 ± 14.7  
 GIIN 67.4 74.9 82.3 48.4 73.5 50.4 100.0 65.6 70.3 ± 16.7  
 AMFAM 56.0 82.5 61.3 51.6 46.2 54.3 0.0 76.2 53.5 ± 24.9  
 F4M-FS 64.9 67.2 67.6 60.5 82.0 56.2 42.9 65.6 63.4 ± 11.1  
 Baseline-50-ImageNet 88.1 65.7 63.7 47.5 69.2 69.2 50.0 80.0 66.7 ± 13.7  
 
SSL + Linear Probing

SimCLR 93.8 65.3 58.8 59.5 61.9 56.1 0.0 67.6 57.9 ± 26.2  
 SSD-KD 0.0 67.8 85.7 0.0 0.0 0.0 0.0 100.0 31.7 ± 44.6  
 SM3-50-linear 74.5 76.3 72.2 53.6 90.9 48.1 0.0 76.0 61.5 ± 28.3  
 SSL + Fine-tuning SM3-50-finetune 89.7 81.3 61.6 65.2 75.0 59.7 31.6 72.9 67.1 ± 17.5  
 FM4-FS + SM3 68.8 74.4 73.2 58.9 75.0 73.2 100.0 84.2 76.0 ± 12.0 
7 
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Table 5
Ablation on multi-modality and multi-label SSL. The metrics are based on mean AUC 
scores and the best results are in bold.
 Strategy AUC

 BWV DaG PIG PN RS STR VS DIAG AVG 
 PRS IR IR ATP PRS IR IR MEL  
 SimCLR-derm 82.6 68.4 75.8 74.0 78.2 73.7 71.3 80.1 74.7 
 ImageNet 83.4 72.0 77.6 78.0 73.0 73.0 79.6 82.7 77.4 
 SwAV 86.1 73.6 78.5 77.4 75.0 73.6 76.5 83.3 76.9 
 BYOL 88.0 75.8 74.2 74.8 74.6 75.9 81.8 81.6 77.3 
 SimCLR 85.6 76.1 77.0 75.4 78.7 72.8 76.2 83.6 78.2 
 F4M-FS 88.4 76.3 79.5 76.6 79.0 76.4 78.7 85.5 79.0 
 MMSSL𝑐𝑜𝑛𝑐𝑎𝑡 86.2 76.0 74.2 74.5 76.5 70.9 74.0 83.6 77.0 
 MMSSL𝑠𝑒𝑝_𝑠ℎ𝑎𝑟𝑒𝑑 88.2 75.3 75.6 75.1 74.7 71.7 75.5 83.9 77.5 
 MMSSL𝑠𝑒𝑝_𝑠𝑒𝑝 87.7 75.2 79.4 77.8 77.8 73.4 79.8 84.6 79.5 
 MLSSL𝑛𝑜_𝑝𝑟𝑜𝑗 89.5 75.3 79.6 77.2 77.8 73.1 75.2 83.5 78.9 
 MLSSL𝑝𝑟𝑜𝑗 86.9 75.7 76.3 76.1 77.6 72.1 77.1 84.1 78.2 
 MLSSL𝑚𝑠𝑎 89.3 75.3 79.7 74.2 78.0 73.8 78.8 85.7 79.3 
 MLSSL𝑡𝑒𝑙 90.4 76.5 80.4 78.2 77.4 75.4 79.4 85.0 80.4 
 MLSSL𝑡𝑒 90.0 75.3 80.2 78.6 78.3 72.5 74.9 84.5 79.3 

the current supervised state-of-the-art AMFAM which obtained a mean 
AUC of 84.5, mean Sens of 57.9, mean Spec of 86.7, and mean Prec of 
53.5, SM3-initialized FM4-FS outperformed it by 0.1% in mean AUC, 
6.6% in mean Spec and 22.5% in mean Prec but with 17.3% lower in 
mean Sens.

5.2. Ablation studies

5.2.1. Efficacy of multi-modality SSL
The ablation results of MMSSL are presented in Table  5. SimCLR

strategy obtained the best mean AUC of 78.2, outperforming SwAV
(mean AUC of 76.9) and BYOL (mean AUC of 77.3). Pre-training 
on multi-modality inputs, SimCLR strategy improved the mean AUC 
by 3.5%, increasing it from 74.7 (SimCLR-derm). Compared to the 
ImageNet-pre-trained weights (mean AUC of 77.4), SimCLR strategy 
achieved a higher score with a mean AUC of 78.2. Compared to the
SimCLR, concat strategy resulted in a decreased mean AUC of 77. 
The strategy sep_shared helped to improve the performance by 0.5% 
compared to naïve concatenation. In contrast, only sep_sep strategy, 
which maximized the mutual information between paired dermoscopic 
and clinical images with separate projection heads, resulted in an 
improved model performance with a mean AUC of 79.5 (increased by 
1.3% compared to SimCLR). The SOTA baseline F4M-FS achieved a 
mean AUC of 79.0, outperforming the SimCLR strategy but falling short 
of our sep_sep strategy.

5.2.2. Efficacy of multi-label SSL
The choice of MLSSL strategies affected performance differently as 

shown in Table  5. Firstly, we assessed when there was no label pro-
jection head (no_proj) applied, i.e., using concatenated multi-modality 
features to generate pseudo-multi-labels. We found that without label 
projection, the pre-trained multi-label classifier was not able to learn 
meaningful representations, which decreased the mean AUC from 79.5 
to 78.9. Moreover, naively applying a label projection head for each 
label (proj), without the proposed label-relation-aware module, resulted 
in worse representations due to the ignorance of structure and rela-
tionships among labels, and resulting in decreased mean AUC by an 
additional 0.7%. The multi-head self-attention (msa) was capable of 
learning and building correlations among labels during SSL pre-training 
such that it can achieve a similar mean AUC of 79.3. We also evaluated 
the inclusion of a Transformer encoder layer (tel) to measure the benefit 
of label associations. This strategy improved the result by 0.9%. The 
use of different Transformer based encoder (te) did not improve the 
performances.
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Table 6
Ablation on pair matching between different image modalities for different SSL multi-
modality strategies. The metrics are based on mean AUC scores and the best results 
are in bold.
 Strategy Avg rank (total 413) Acc@1 Acc@5 
 ImageNet 97.67 0.21 0.37  
 SimCLR 83.16 0.22 0.38  
 MMSSL𝑐𝑜𝑛𝑐𝑎𝑡 90.55 0.20 0.34  
 MMSSL𝑠𝑒𝑝_𝑠ℎ𝑎𝑟𝑒𝑑 13.69 0.32 0.57  
 MMSSL𝑠𝑒𝑝_𝑠𝑒𝑝 7.23 0.42 0.73  

5.2.3. Pair matching between different modalities
The pair matching results of different fusion strategies are shown in 

Table  6. The sep_sep strategy outperformed others by a large margin, 
with the average rank surpassing that of the ImageNet strategy (97.67) 
by approximately 90 points, achieving top 1% (7.23/413) rank. The 
accuracy metrics followed the same trend with sep_sep strategy obtain-
ing the highest Acc@1 of 0.42 and Acc@5 of 0.73. Strategies without 
multi-modality pre-training generally had worse performance in pair 
matching, for example, ImageNet had average rank of 97.67, Acc@1 of 
0.21, and Acc@5 of 0.37, and SimCLR obtained average rank of 83.16, 
Acc@1 of 0.22 and Acc@5 of 0.38. Additionally, naïve concatenation 
did not aid in mutual information learning with it achieving average 
rank of 90.55, Acc@1 of 0.2 and Acc@ 5 of 0.34. Analogously, di-
rectly contrasting the two modality images boosted the performance 
of average rank by 76.86, Acc@ of 0.22, and Acc@5 of 0.23.

5.3. Empirical evaluation of hyperparameters

We conducted an empirical study to select the hyperparameters for 
multi-modality SSL and multi-label SSL. The results are shown in Fig.  5. 
We experimented with multi-modality SSL learning rate (5e−3, 1e−3, 
5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6) and temperature (10, 0.1, 0.01, 
0.001), and multi-label SSL batch size (64, 128, 256), learning rate 
(1e−3, 1e−4, 1e−5, 1e−6), label projection head dimension (512, 1024, 
2048, 4096), transformer head number (1, 2, 4, 8, 16), and transformer 
feed-forward dimension (128, 256, 512, 1024, 2048). We identified 
the best performing parameters and used them for the pre-training, 
i.e., multi-modality SSL learning rate is 1e−6, temperature is 0.1, multi-
label SSL batch size is 256, learning rate is 1e−4, label projection 
head dimension is 512, transformer head number is 1, and transformer 
feed-forward dimension is 128.

6. Discussion

The main findings are that: (1) Our SM3 had superior performances 
compared with other SOTA SSL methods in a multi-modality and multi-
label setting; (2) SM3 was shown to be effective in improving other 
existing methods, outperforming ImageNet-pre-trained counterparts; 
and (3) the ablation studies showed that both the MMSSL and MLSSL 
components contributed to the overall performance improvements.

6.1. Comparisons to the state-of-the-arts

As shown in Tables  1–4, most methods performed relatively well 
due to the use of complex multi-modality fusion techniques, such 
as class-balanced sampling and multi-task loss in Inception-Combined
[1], concatenation of intermediary image features in HcCNN [3], adver-
sarial fusion with attention mechanism in AMFAM [31], and hierarchy 
fusion at the feature and decision levels in F4M-FS [32]. However, 
most of these methods ignored the MLC setting and did not exploit 
the interrelationships among labels. GIIN [11], on the other hand, 
additionally leveraged a graph module to model the label relationships 
which resulted in improved performance. Compared to Baseline-50-
ImageNet, our SM3-fine-tuned method achieved a 1.6% increase in 
mean AUC, surpassing established multi-modal fusion strategies like 
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Fig. 5. Empirical evaluation for hyperparameter selection.
Inception-Combined and HcCNN. Similarly, our SM3 increased the re-
cently published F4M-FS performance with an improved mean AUC of 
1%. This indicates that SM3-pre-trained weights could be an alternative 
to ImageNet-pre-trained weights for improving the generalizability of 
different methods in skin lesion analysis.

In linear probing experiments, our method demonstrated a mean 
AUC enhancement of 2.2% when compared to the established Sim-
CLR [16]. Furthermore, in comparison to the recent SSL skin lesion 
classification approach of SSD-KD [39], SM3 exhibited a mean AUC 
increase of 0.8%. It is worth noting that the degradation in performance 
with mean Sens metric is expected. This is mainly attributed to the 
fact that a large proportion of contributions are coming from the VS 
category, which tends to have low Sens with a relatively high Spec. 
As indicated by Kawahara et al. [1], the low sensitivity and high 
specificity is likely attributed to the substantial class imbalance issue in 
the dataset, where there only exists 71 IR studies in the VS category out 
of 1011 studies. By pre-training the model on a skewed dataset without 
labels, this discrepancy was accumulated resulting in a lower Sens score 
with a higher Spec score. It is worth noting that SSD-KD was pre-
trained on a different skin lesion dataset, as such the out-of-distribution 
nature further exacerbates class imbalance issues, which results in 
imbalanced performance such as 0 Sens, 100 Spec, and either 0 or 100 
Prec in certain sub-classes. Nevertheless, we identified that SM3 was 
effective in dealing with imbalanced data in the seven-point dataset 
when compared to the other two SSL methods. For instance, IR in the 
VS category has extremely limited number of cases when compared 
to the more prevalent REG, and both compared methods struggled to 
correctly classify IR. In contrast, our method leveraged multi-modality 
and multi-label techniques managing to correctly classify this minor-
ity class. These results underscore the efficacy of our multi-modality 
SSL design, which harnesses the supplementary potential of dermo-
scopic and clinical image features to extract enhanced discriminative 
skin attributes. Moreover, the inclusion of self-supervised multi-label 
pre-training augments the model’s capacity to glean intricate interrela-
tionships among labels, thereby contributing to a more consistent and 
reliable classification performance.

6.2. Ablation studies

Among the SSL algorithms we evaluated, SimCLR proved to be 
the most effective for skin lesion classification. We attribute this to 
the fact that skin lesions often have overlapping visual features across 
different classes, which can result in less discriminative representations 
for clustering-based methods like SwAV and for negative-sample-free 
approaches such as BYOL. Furthermore, training with multi-modality 
inputs using the SimCLR strategy demonstrated superior performance 
9 
than training with only dermoscopic images (SimCLR-derm), highlight-
ing the advantages of incorporating multiple modalities for skin lesion 
classification. We found that naïve SSL pre-training (i.e., SimCLR strat-
egy) with multi-modal data contributed to improving the baseline per-
formance when compared to the commonly used ImageNet-pre-trained 
weights. This finding is consistent with previous work by Menegola 
et al. [15], where the domain gap between natural images and skin 
lesion images degraded performance. The SimCLR strategy, however, is 
not optimal for multi-modality learning since the mutual information 
between two modalities are not leveraged during the pre-training. In 
contrast, the SOTA baseline F4M-FS achieved better results, and these 
results illustrate the effectiveness of incorporating multi-modal inputs 
during pre-training. Nevertheless, for the multi-modal SSL, inappro-
priate multi-modal fusion (i.e., concat) could hinder the learning of 
meaningful representations. This observation is consistent with findings 
from a previous work [40] that naïve concatenation may result in 
a worse performance due to domain shift among different modali-
ties. For example, the strategy sep_shared was better than concat but 
still inferior to the SimCLR strategy in terms of the mean AUC. In 
contrast, the sep_sep strategy demonstrated higher performance over-
all and we attribute this to the application of separate projection 
heads which can focus on independent image modality features and 
decide how to map them to increase their similarities. Compared to 
summing multi-modal features in F4M-FS, our contrast-based sep_sep
strategy proved more effective in capturing complementary information 
between modalities. Furthermore, we also identified that contrasting 
naïve concatenation (concat) did not contribute to the learning of 
mutual information between the two modalities, and directly contrast-
ing two modality features (sep_shared and sep_sep) was more effective 
giving better pair matching performance. It is noteworthy that although
sep_shared was capable of learning more mutual information than concat
and SimCLR strategies, its classification accuracy was lower than that of
SimCLR. This suggests that an inefficient multi-modality pre-training, 
i.e., sharing the same projection head, learns trivial complementary 
multi-modality information and hinders the extraction of individual 
modality features.

In addition, we observed that directly pre-training a multi-label 
classifier on image features without label projection heads (no_proj) 
was not helpful, and simply projecting image features into label em-
beddings (proj) can disrupt self-supervised multi-label learning. We 
hypothesize that such failure was caused by the independent learning 
of label projection heads. A naïve label correlation learner (msa) had 
trivial contributions for multi-label SSL, whereas complex model (te) 
cannot achieve reasonable results neither attributing to the fact that the 
performance of the Transformer based architecture is heavily reliant 
on the use of large training dataset, which cannot be satisfied with 
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Fig. 6. t-SNE visualization of feature spaces of classification head for each label. The top row consists of feature spaces before MMSSL pre-training. The bottom row is features 
spaces after MMSSL pre-training.
Fig. 7. Attention visualization of the label-relation-aware module. The left column displays an example image pair, while the right column shows the corresponding attention 
visualizations from the proposed label-relation-aware module. In the visualization, each line represents the attention from one label (left) to another (right), with line weight 
indicating the attention value (ranging from 0 to 1). The upper visualization provides an overview of all labels, and the lower visualization focuses on the DIAG label. The bottom 
text indicates the corresponding label, with attributes that increase the chance of melanoma highlighted in bold.
the current experimental dataset. Therefore, it is essential to define 
an optimal learning strategy, i.e., the Transformer encoder layer, for 
learning the correlations among labels.

6.3. Visualization

To demonstrate that our MMSSL enables preferable model initial-
ization, we investigated the distribution of feature spaces in the last 
layer of the classifier and visualized them in Fig.  6. We selected outputs 
from the classification head of each label and applied t-SNE [60] 
for the visualization. We chose t-SNE for its ability to reduce high-
dimensional data to two dimensions while preserving local structure, 
making it ideal for revealing patterns and clusters of the features. 
Before MMSSL pre-training, the feature spaces of classes (indicated by 
different colors) in each label exhibited a scattered distribution and 
largely overlapped with each other, indicating that the model struggled 
to differentiate the data effectively. The color gradients appear less 
distinct, suggesting lower intra-class compactness and higher inter-class 
confusion. After being pre-trained by MMSSL, we observe that the 
feature spaces of classes in each label demonstrate a more organized 
clustering (i.e., points with the same class are grouped together and 
separate with other class data points), indicating an improved ability of 
the model to differentiate between the labels. Also, the color gradients 
within the clusters are more pronounced, reflecting higher intra-class 
compactness and reduced inter-class confusion. The t-SNE visualiza-
tions provide clear evidence that MMSSL pre-training enhances the 
model’s capability to differentiate between different labels in an MLC 
task.

In addition, we applied BertViz [61] to visualize the attention in our 
label-relation-aware module to better understand how it establishes the 
10 
relationship between seven attributes and the skin lesion type, as shown 
in Fig.  7. In this visualization, each line represents the attention from 
one label (left) to another (right), with line transparency indicating the 
attention value (ranging from 0 to 1). Higher attention values indicate 
a stronger relationship between the two labels, represented by more 
prominent lines. From the attention visualization overview, we can find 
that each label feature contains information from itself and others after 
the label-relation-aware module. Specifically, when DIAG is MEL, we 
observe that the main contribution comes from DIAG, STR, DaG, and 
PN. This aligns with the corresponding ground truth that STR, DaG 
and PN are IR/ATP, which increases the chance of melanoma. Based 
on BertViz visualization results, our MLSSL demonstrates promising 
results for establishing the relationship between seven attributes and 
skin lesion type.

6.4. Limitations and future works

In this study, we focused on developing a multi-modality and multi-
label SSL framework for skin lesion classification. Therefore, addressing 
the challenge of an imbalanced dataset was not our primary focus. It is a 
known issue that pre-training on an imbalanced dataset, without labels 
can raise the issue of discrepancies. One potential solution to mitigate 
this challenge is to incorporate ensemble learning, where predictions 
from multiple models trained on different balanced subsets of the 
dataset are combined to improve overall performance. Additionally, 
we aim to introduce adaptive sampling techniques or loss reweighting 
mechanisms that can emphasize minority class samples during both 
pre-training and fine-tuning stages. Another limitation of our work 
is that the proposed SSL framework currently relies on pre-defined 
clustering techniques for generating pseudo-labels. While clustering 
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provides a useful surrogate for label supervision, it is inherently sen-
sitive to hyperparameter selection and may introduce noise into the 
learning process. Future work will explore adaptive clustering strategies 
or hybrid approaches that incorporate weak supervision to improve the 
reliability of pseudo-labels. Leveraging large-scale foundation models 
trained on diverse medical imaging datasets could serve as a com-
plementary approach to enhance pseudo-label quality. Although our 
method was demonstrated for skin lesion dataset, we suggest that it 
is applicable to other multi-modality and multi-label imaging datasets 
where it retains informative mutual features between modalities and re-
lationships between labels. For example, our method can be adapted for 
multi-modality PET-CT and PET-MR datasets, where PET scans provide 
functional metabolic activity while CT and MR scans offer anatomical 
details. By preserving informative mutual features between modalities 
and capturing interrelationships between multiple diagnostic labels, 
our approach has the potential to enhance classification performance 
in these complex imaging scenarios.

7. Conclusion

In this paper, we introduced a new SSL algorithm for multi-modality 
and multi-label skin lesion classification. Specifically, maximum com-
plementary information between dermoscopic and clinical images were 
leveraged during the pre-training when we directly contrasted these 
two modalities with separate projection heads. Experiments showed 
that this multi-modality SSL scheme can improve the accuracy of skin 
lesion classification. Furthermore, we found that generating pseudo-
multi-labels using clustering analysis was a surrogate solution for self-
supervised multi-label training. With our label-relation-aware module, 
SM3 was able to capture the interrelationships between labels. Our SM3 
outperformed other SOTA SSL methods and helped to improve existing 
methods by using SM3-pre-trained weights.
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