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A B S T R A C T

Coronary artery disease (CAD) continues to be a leading global cause of cardiovascular related mortality. The 
scoring of coronary artery calcium (CAC) using computer tomography (CT) images is a diagnostic instrument for 
evaluating the risk of asymptomatic individuals prone to atherosclerotic cardiovascular disease. State-of-the-art 
automated CAC scoring methods rely on large annotated datasets to train convolutional neural network (CNN) 
models. However, these methods do not integrate features across different levels and layers of the CNN, 
particularly in the lower layers where important information regarding small calcium regions are present. In this 
study, we propose a new CNN model specifically designed to effectively capture features associated with small 
regions and their surrounding areas in low-contrast CT images. Our model integrates a specifically designed low- 
contrast detection module and two fusion modules focusing on the lower layers of the network to connect more 
deeper and wider neurons (or nodes) across multiple adjacent levels. Our first module, called ThrConvs, includes 
three convolution blocks tailored to detecting objects in images characterized by low contrast. Following this, 
two fusion modules are introduced: (i) Queen-fusion (Qf), which introduces a cross-scale feature method to fuse 
features from multiple adjacent levels and layers and, (ii) lower-layer Gather-and-Distribute (GD) module, which 
focuses on learning comprehensive features associated with small-sized calcium deposits and their surroundings. 
We demonstrate superior performance of our model using the public OrCaScore dataset, encompassing 269 
calcium deposits, surpassing the capabilities of previous state-of-the-art works. We demonstrate the enhanced 
performance of our approach, achieving a notable 2.3–3.6 % improvement in mean Pixel Accuracy (mPA) on 
both the private Concord dataset and the public OrCaScore dataset, surpassing the capabilities of established 
detection methods.

1. Introduction

Cardiovascular disease (CVD) stands as one of the main global causes 

of mortality, claiming around 17.9 million lives yearly, as reported by 
the World Health Organization (WHO) (World Health Organization, 
2021). Among the various CVDs, atherosclerotic CVD (ASCVD) is the 
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most widespread and deadly form. This condition is associated with the 
accumulation of calcium deposits in the coronary arteries. Recent 
guidelines and research by the American Heart Association (AHA) 
indicate that employing coronary artery calcium (CAC) scoring can 
proficiently stratify patient groups who are at risk and assist in making 
appropriate treatment decisions, particularly for those falling into the 
Intermediate Risk category with a 5–10 % risk of ASCVD over a 10-year 
period (Naghavi et al., 2019; Gulati et al., 2021). As part of the CAC 
scoring process, quantification of calcium deposit accumulations 
observable on Computer Tomography (CT) images, is required. The 
calcium deposits are generally quantified via detection and/or seg-
mentation methods. Within these images, electrocardiogram (ECG)--
gating involves acquiring images synchronously with ECG signal to 
correct for the effects of cardiac motion by timing image acquisition to 
specific phases of the cardiac cycle. Non-gated CT are also routinely 
acquired, but comparative to ECG-gating, there are more noise and ar-
tefacts from cardiac motion, resulting in blurry and lower-quality im-
ages. Non-gated CT scans are more easily obtained than gated ones for 
several reasons. First, they are quicker to conduct, making them more 
appropriate for emergency situations or patients who may struggle with 
holding their breath which is necessary for gated CT. Additionally, they 
are more cost-effective due to requiring less expertise and specialized 
equipment. Moreover, non-gated scans alleviate patient discomfort by 
not requiring synchronization with the heartbeat, thus decreasing the 
probability of motion artifacts.

The quantification of calcium deposits for CAC scoring is generally 
done by clinicians which is an expensive, complex, labour-intensive 
process, and is also susceptible to human subjectivity and errors. 
Hence, automatic quantification of CAC is an important task to aid in 
treatment decisions. The calcium deposits, typically comprising of few 
pixels per image slice as depicted in Fig. 1, present three unique chal-
lenges: 1) Calcium deposits often have similar intensity values to its 
surrounding structures, such as with pericardium or epicardial fat; 2) 
Calcium deposits, especially those acquired without ECG gating, are 
susceptible to interference from noise, motion artifacts, or other dis-
turbances in the image, such as metallic artifacts, beam hardening and 
scatter radiation and, 3) Calcium deposits may be too small to have 
sufficient spatial resolution to capture relevant information, especially 
in the early stages of calcium formation. These challenges may lead to a 
lack of detail or ambiguity in quantifying the deposits.

There has been sustained efforts in trying to automatically quantify 
CAC scores. Early studies used multi-atlas-based methods (Isgum et al., 
2009, 2012; Takx et al., 2014). For example, an "atlas" or pre-labelled 
reference image, was used to serve as a model to automatically 
segment regions of interest (ROIs) in the images. Then, various metrics 
such as volume, intensity, or density can be calculated within the ROIs to 
quantify the calcium deposits. In addition to multi-atlas registration, 
Ding et al. (2015) also incorporated knowledge-based vessel region 
separation algorithms for both global and local CAC scoring. Following 
the segmentation of essential heart structures, including the heart re-
gion, ascending aorta, left and right ventricles, and aortic root, the al-
gorithm further delineates the coronary artery territories, such as the 
right coronary artery (RCA), left circumflex artery (LCA), and left 
anterior descending artery (LAD). It then applies region growing tech-
niques to identify calcifications within these targeted areas.

However, a major drawback with the use of multiple atlases is the 
reliance on accurately registering the CT images to the atlas. Alterna-
tively, Isgum et al. (2007) characterized the position of calcification 
lesions in relation to the heart and the aorta using a set of approximated 
Gaussian derivatives, followed by three classification strategies, 
including two sequential k-nearest neighbor (kNN) classifiers, to iden-
tify the lesions. Kurkure et al. (2010) implemented a hierarchical 
approach to firstly detect the peripheral structure of the heart, then 
determining it through a combination of prior anatomical knowledge 
and dynamic programming. Within the acquired heart regions, they 
introduced a hierarchical classifier to differentiate arterial calcifications 
(both coronary and aortic) from other candidate regions, and then to 
further distinguish between coronary and aortic calcifications.

Recently, with the emergence of artificial intelligence (AI), in 
particular, deep learning (DL) techniques, they have been broadly 
applied to assist in automatic CAC scoring (Li et al., 2020; You et al., 
2018; Ronneberger et al., 2015; Kang et al., 2019). Lessmann et al 
(Lessmann et al., 2018). employed two consecutive Convolutional 
Neural Networks (CNNs) to detect coronary artery / cardiac valve cal-
cifications and thoracic aorta. They initially utilized a dilated CNN with 
a large receptive field to anatomically locate potential calcifications. The 
subsequent CNN (Lessmann et al., 2016) was then developed to enhance 
the results of the first CNN by differentiating true calcifications from 
false positives using local information that shares similar appearance 
and location characteristics. van Velzen et al. (2020) further extended 

Fig. 1. Example images of calcium deposit in both gated and non-gated CT images. The top row (a) is from our Concord dataset (non-gated) and the bottom row (b) is 
the public OrCaScore dataset (gated). The calcium regions are indicated by yellow arrows. Different imaging resolutions can be seen between our Concord dataset (a) 
and the public dataset (b). The public dataset had a more focused field of view (focused on the heart), and better contrast for calcium differentiation.
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the research of Lessmann et al. (2018) by evaluating the efficacy of 
automated coronary artery calcium (CAC) scoring across a variety of 
cardiac-related CT examinations. These included CAC screening CT, 
diagnostic chest CT, radiation therapy planning CT, coronary artery 
calcium (CAC) scoring CT, PET attenuation correction CT, and low-dose 
chest CT. In this context, ’diverse’ refers to the different types of CT 
scans used to assess the AI model’s adaptability and performance across 
various medical imaging scenarios. van den Oever et al. (2020) con-
ducted research on the effect of dilated convolutional layers within the 
CNN architectures on CAC and concluded that these layers resulted in 
improvements in sensitivity, specificity, precision, and negative pre-
dictive values. In addition, some research has focused on segmenting 
calcium deposits using specific CNN networks, such as ResNet 
(Chamberlin et al., 2021; Eng et al., 2021; Peng et al., 2023) and VGG 
(Klug et al., 2022). Datong et al. (2019) employed ResNet-50 as the 
benchmark network for the Single Shot MultiBox Detector (SSD) with an 
aggregate channel feature model to identify suspected calcium areas, 
thereby significantly reducing the time required for single-frame image 
detection. Moreover, some studies initially cropped the heart region 
using the cardiac atlas (Santini et al., 2017) or with an anatomical model 
(Rasul et al., 2023), and subsequently segmented the calcium deposits 
within the cropped region. In another study, Lee et al. (2021) initially 
cropped the heart section from the CT images and divided it into nine 
sub-images, enlarging them to serve as input for comparing the perfor-
mance of three CNNs: Inception (Szegedy et al., 2015), ResNet and VGG 
and found that the ResNet50 model produced the best results. In the 
study by Zhang et al. (2018), they employed joint learning of 2D 
(DenseNet and U-Net) modules to extract intra-slice calcification fea-
tures and 3D (3D U-Net) modules to extract inter-slice calcification 
features. This approach extracted rich semantic features for 
artery-specific calcification identification, establishing it as a reliable 
clinical diagnostic method for detecting coronary calcifications based on 
quantitative results.

Despite the advances in calcium segmentation / detection for CAC 
scoring, existing methods continue to struggle with the difficulty from 
small calcium regions. This challenge is not exclusive to CAC scoring and 
there have been several studies aimed at better detecting small regions, 
such as with lesions among various medical image modalities. As an 
example, CNNs were enhanced with the integration of channel-wise 
parallel attention block and bi-directional spatial attention block 
(Bhati et al., 2024) to extract features for the detection of small diabetic 
retinopathy lesions in retinal fundus images. In another study, Ahmad 
et al. (2023) enhanced the identification of small gastric lesions in 
endoscopic images by incorporating a Squeeze-and-Excitation attention 
block into YOLOv7. Compared to YOLOv5, YOLOv7 adopts a deeper 
network architecture with additional convolutional layers and residual 
blocks, while reducing the number of fully connected layers and hence 
decreasing the parameters by 40 % and computational load by 50 %. 
Jiang et al. (2023) integrated a multi-head self-attention module and a 
Shuffle Attention module into YOLOv5s to enhance the identification of 
lymphocytic infiltrative lesions in pathological images.

These studies all relied on the use of an attention block which has 
been demonstrated for its ability to aid in small region detection. 
Another common technique is to fuse features from different CNN levels 
and layers to better capture characteristics of small lesions (Jia et al., 
2018; Le et al., 2020; Elhanashi et al., 2023). In another approach, Li 
et al. (2021) improved the contrast between normal brain tissue and 
hemorrhagic areas by combining the original CT slice with its flipped 
counterpart, thereby introducing symmetry constraints for brain images 
in the proposed model. These small region techniques, to our knowl-
edge, has not been exploited and optimized for CAC scoring.

In this study, we propose a novel method termed TQGDNet 
(ThrConvs-Queen fusion-Gather-and-Distribute fusion) for automated 
detection of CAC in CT images. Detection is a critical initial step toward 
CAC scoring. Our method integrates three distinct modules, as shown in 
Fig. 3: 1) three-convolutional module, ThrConvs, designed to identify 

objects in low-contrast CT images. Inspired by the back-projection 
concept (Irani and Peleg, 1991), as implemented by Haris et al. (2018)
in their work on learning across different resolutions, low-resolution 
data and residual connections were adopted to design the ThrConvs 
modules, specifically tailored for detecting small targets in medical 
images. Back-projection (Irani and Peleg, 1991) is a widely recognized 
iterative process for reducing reconstruction errors efficiently. Its 
effectiveness has been demonstrated in numerous studies (Zhao et al., 
2017; Haris et al., 2017; Dong et al., 2009; Timofte et al., 2016). While 
originally developed for scenarios with multiple low-resolution (LR) 
inputs, back-projection can also be applied with a single LR image by 
iteratively upsampling the input using various upsampling operators 
and calculating the reconstruction error (Dai et al., 2007). Timofte et al. 
(2016) highlighted its ability to enhance the quality of super-resolution 
(SR) images, and Zhao et al. (2017) introduced a method leveraging 
iterative projection to refine high-frequency texture details. To enhance 
this algorithm, the ThrConvs module is designed to guide low-resolution 
(LR) tasks by employing interconnected two- and three-layer convolu-
tional operations integrated with residual connections. Specifically, the 
relationship between LR images is constructed through iterative residual 
connections linking the second and third convolutional layers. This 
design allows the network to effectively retain essential LR components 
by utilizing learned convolutional and residual operators. As a result, the 
module generates deeper feature representations, supporting the con-
struction of diverse and detailed LR features. ThrConvs compares 
derived features from the three convolutional viewpoints—specifically, 
the features obtained after the first, second, and third convolutional 
calculations—to capture detailed information about the calcium region 
and their surroundings; 2) A cross-scale fusion module, termed the 
Queen fusion (Qf), integrates features from adjacent layers and levels of 
the ThrConvs and, 3) Gather-and-Distribute (GD) fusion module which 
captures the features collected from the lower layers of the network to 
improve the characterization of small calcium regions. We evaluated our 
method using both Concord and public calcium datasets, encompassing 
gated and non-gated data. This diversity allows us to demonstrate how 
our method can effectively handle different types of cardiac imaging 
modalities. Subsequently, we benchmarked its performance against 
state-of-the-art calcium detection and segmentation methods.

Fig. 2. The figure illustrates the distribution of calcium deposit sizes across the 
Concord and OrCaScore datasets. The x-axis (Size Ranges) categorizes the cal-
cium deposits into four groups: 0–10 pixels, 10–100 pixels, 100–200 pixels, and 
> 200 pixels. The y-axis (Number of Deposits) indicates the number of calcium 
deposits (counts).
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2. Methods

2.1. Materials

2.1.1. Concord Concord Dataset (Non-Gated)
Our Concord dataset (Yu et al., 2021), obtained from the Department 

of Cardiology at Concord Repatriation General Hospital, includes 32 
patients (51 % male, mean age: 69 years). The dataset was acquired 
using non-gated, non-contrast-enhanced CT chest imaging. Further de-
tails regarding the dataset are available in (Yu et al., 2021). The 
requirement for informed consent was waived by the local Ethics 
Committee. CT scans were acquired using a Definition DS 64-slice or 
Definition AS+ 128-slice scanner (Siemens, Germany). All CT scans 
were performed for non-cardiac reasons. Calcified lesions were identi-
fied based on a minimum threshold of 130 Hounsfield units. CT scans 
were evaluated by a single observer who was blinded to the clinical 
outcomes. The CT images were labelled by a clinician to indicate the 
calcium regions by placing bounding boxes around them using the 
LabelImg (Tzutalin, 2015) software. For each patient, there were 1–20 
image slices with identified calcium deposits, totalling 257 images. The 
dataset was split into 4:1 ratio, allocating 205–206 images for training 
(from 26 patients) and reserving 51–53 images for testing (from 6 
patients).

2.1.2. Public OrcaScore Dataset (Gated)
The OrCaScore challenge dataset (Purpose, 2016) was obtained from 

four academic hospitals: Antwerp University Hospital (Antwerp, 
Belgium), Radboud University Nijmegen Medical Centre (Nijmegen, The 
Netherlands), University Medical Center Groningen (Groningen, The 
Netherlands), and University Medical Center Utrecht (Utrecht, The 
Netherlands). Imaging was conducted using four different CT scanners, 
with acquisitions synchronized to the diastolic rest period through 

ECG-triggering at 70 % (GE, Siemens), 75 % (Toshiba), or 78 % (Phi-
lips). The dataset includes 32 patients (50 % male). Further details 
regarding the dataset can be found in Purpose (2016). A 130 Hounsfield 
Units (HU) threshold was applied to identify potential coronary artery 
calcium (CAC) lesions. Annotations were performed using custom soft-
ware (iX Viewer, Utrecht, The Netherlands) by a research physician with 
5 years of experience and a radiologist with 12 years of expertise. Each 
training exam comprised between 1 and 20 calcium-containing images, 
resulting in a total of 163 images. The dataset was split into training and 
testing sets using a 4:1 ratio, with 131–132 calcium-containing images 
from 24 patients assigned to the training set, and 32–33 images from 8 
patients allocated to the testing set. To ensure consistency in ground 
truth labels between the OrCaScore dataset and the Concord dataset, 
pixel-level annotations from the OrCaScore dataset were transformed 
into detection-level annotations by assigning bounding boxes to the 
lesions.

2.1.3. Key differences between the datasets
In our Concord dataset, due to non-gated imaging, there was nar-

rower contrast between calcium deposits and the background compared 
to the public dataset. Detecting calcium on a less pronounced contrast 
background makes it more challenging. Fig. 1 illustrates some examples 
from both the public dataset and our Concord dataset. In regard to the 
distribution of calcium deposit sizes, the two datasets vary greatly with 
sizes for Concord and public data as depicted in Fig. 2. The Concord 
dataset poses a greater challenge in calcium detection due to its lower 
contrast and resolution with smaller calcium deposits sizes compared to 
the public dataset. Furthermore, the inclusion of both gated and non- 
gated images diversifies the training data, making the model more 
robust and adaptable to various clinical scenarios. We suggest that the 
variability in patient demographics and imaging conditions mitigates 
the risk of overfitting to a specific dataset type, thereby enhancing the 

Fig. 3. The proposed TQGDNet method comprising of three modules (left of the figure): ThrConvs (yellow), Queen fusion (purple) and GD fusion (green). The 
detailed architectures of each module are presented (on the right side). ThrConvs*B, shown inside the yellow dotted line, is the backbone of the TQGDNet that 
integrates our ThrConvs.
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model’s ability to generalize to unseen data. In overall, As shown in 
Fig. 2, majority of calcium deposits in the public dataset fall within the 
10–100 size range, providing sufficient feature information for effective 
detection. However, the Concord dataset poses greater challenges, with 
a higher proportion of 0–10 size calcium deposits. These deposits are 
particularly underrepresented and difficult to identify due to the low- 
contrast imaging conditions.

2.1.4. Data pre-processing
For the pre-processing of OrCaScore scans, the raw data was read 

from files in mhd and zraw formats. The Hounsfield Unit (HU) values 
were clipped to a range of − 1200 − 1200 to 18001800 to focus on 
relevant anatomical structures while minimizing the influence of out-
liers. Subsequently, an automated cropping step was applied to isolate 
the heart region using a pre-trained model. This model was trained on a 
dataset of 300 images annotated with bounding boxes specifically 
marking the heart. For bounding box labels, to meet the diverse input 
requirements of state-of-the-art methods, the masks were converted into 
YOLO format, which specifies normalized bounding box coordinates, 
and XML format (vol format) for compatibility with alternative frame-
works. For the Concord scans, images were loaded from a dataset in PNG 
format. Similar to the OrCaScore scans, an automated heart cropping 
step was performed using the same pre-trained model, ensuring 
consistent localization of the heart across different data modalities. 
Additionally, the masks were transformed into YOLO format and XML 
format to accommodate various model architectures and analysis 
workflows. This standardized preprocessing pipeline ensures compati-
bility and optimizes data preparation for subsequent analytical tasks.

2.2. TQGDNet

2.2.1. The ThrConvs module
The "ThrConvs" module enhances feature learning by performing 

addition and subtraction operations after one to three convolutional 
neural networks. Inspired by the work of Haris et al. (2018), who uti-
lized deconvolution and convolution operations to learn features across 
resolution. However, this process could sacrifice detailed information 
about small targets within the receptive field, which expands during the 
transition from low-resolution to high-resolution. Therefore, we 
replaced the deconvolution layers used by Haris et al. (2018) with 
convolution layers, as depicted in Fig. 4. From the perspective of the 
three convolutions, performing subtraction computations between the 
original input and the output after two convolutions could enhance the 
learning of subtle information in objects. Subsequently, applying one 
additional convolution operation and then combining its output with 
that of the previous one-operation convolution helps retain key infor-
mation. The formula can be defined as follows: 

X1 = Conv(X) (1) 

X2 = Conv(X1) (2) 

R = X − X2 (3) 

X3 = Conv(R)+X1 (4) 

where X is the input, X1represents the outcome after the first convolu-
tion operation, while X2represents the result after two consecutive 
convolution operations with filter sizes of 8 × 8 and 12 × 12. R repre-
sents the residual between X and X2. X3 is the sum of the convolution 
operation of R and X1. The subtraction in the ThrConvs module enables 
the removal of unusual features while preserving the common features 
present in most slices. We integrated the ThrConvs module at the 
beginning of the YOLO backbone (Jocher, 2020), as depicted inside the 
yellow dashed box in Fig. 3 and named it as "ThrConvs*B" with “B” 
shortening of backbone. In other words, ThrConvs*B serves as the 
backbone of TQGDNet.The C3 module employs three convolutional 
layers integrated with residual connections to improve the feature 
extraction. The initial two convolutional layers utilize asymmetric ker-
nels to reduce channel dimensions and compress information, and in the 
process, enabling the network to capture a broader global context while 
minimizing computational demands. Subsequently, the final convolu-
tional layer restores the channel dimensions to their original size, pro-
ducing an output that retains the same spatial dimensions but with 
potentially altered channel characteristics. The term ∁3 × 3 refers to the 
application of the C3 module three consecutive times.

2.2.2. Fusion modules
We implemented two kinds of fusion algorithms for two different 

purposes. Qf is designed to collect more extensive features across 
different levels and layers, while GD is designed for concentrating on 
searching for small calcium deposits. Firstly, to facilitate learning across 
different levels and layers, certain fusion features were introduced. The 
state-of-the-art fusion methods, as illustrated in Fig. 5, Feature Pyramid 
Network (FPN) (Lin et al., 2017) implements a one-way, top-down in-
formation flow within the same layers. However, to extract information 
from distant layers, it must undergo a ’recursive’ procedure involving 
the collection of features from the previous two layers first and then the 
preceding layer. The transmission of features through this ’recursive’ 
process in traditional FPN structures results in information loss. Due to 
the inherent limitation of this one-way flow of information, PANet (Jia 
et al., 2018), as employed by YOLOv5, incorporates an additional 
bottom-up path aggregation network into the FPN. Previous studies on 
combining features between neighboring layers only considered features 
at the same level (Jia et al., 2018) or the previous level (Le et al., 2020), 
which did not adequately account for capturing multi-scale features. 
However, to comprehensively integrate features from multiple levels 
and layers more effectively, we introduced a new cross-scale fusion 
mechanism, Qf. Secondly, CNNs have been successful in detecting 
smaller objects using lower-level features within the networks (Vapnik, 
1998). CNNs operate on the principle that neurons in deeper layers boast 
larger receptive fields, facilitating the capture of extensive contextual 
information. This intrinsic trait makes these features highly proficient in 
detecting larger objects or overall structures within an image. On the 
contrary, neurons in the shallower layers of CNNs feature smaller 
receptive fields, allowing them to capture finer details in localized areas 
of the image. This characteristic enhances the suitability of these fea-
tures for detecting smaller objects or local structures. In summary, 
higher-level features are employed to detect larger calcium deposits, 
whereas lower-level features are utilized for detecting smaller calcium 
deposits.

2.2.3. Queen-fusion (Qf)
The calcium dataset exhibited large-scale variance issues, with the 

ratio between the smallest objects and images (10/40000) and the 
largest objects and images (200/40000) being 1/20. Alleviating the is-
sues caused by large-scale variations was challenging. Jiang et al. (2022)
proposed a new cross-scale fusion technique called "Queen-fusion" to 
concatenate multi-scale features from more neighboring nodes in the 
previous and current layers. Queen-fusion, which takes into account 
features from both the same level and neighboring levels, similar to how 

Fig. 4. The ThrConvs module employs addition and subtraction within three 
convolutions to concentrate on learning features of subtle calcium from low- 
contrast background images.
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a queen piece moves in chess. This encouraged the exchange of feature 
information among different spatial scales in adjacent layers. 
Queen-fusion was originally designed to tackle the large-scale variation 
issues present in the COCO public dataset. According to Singh and Davis 
(2018) the scale of the smallest and largest 10 % of object instances in 
the COCO public dataset is approximately 0.024 and 0.472, respectively. 
This represents an almost 20-fold difference in scale. In addition, in the 
COCO dataset, many object instances occupy less than 1 % of the image 
area, making it challenging to detect them.

To address the large-scale variation, it is necessary to consider more 
comprehensive information from various adjacent levels and layers. 
Therefore, we substituted the initial two layers with Queen-fusion in the 
YOLO backbone to tackle the challenges arising from the significant 
variation in object sizes relative to the images. This can be defined as 
follows: 

nlc
5 = nlc− 1

6 + nlc− 1
5 + nlc− 1

4 + nlc
4 (5) 

As shown in Fig. 6, node n5 in layer lc concatenates four inputs: three 
from the previous layer, lc − 1, and one from the current layer, lc. In lc −

1, it includes up-sampling of node n6, note n5, and down-sampling of 
node n4. At the same level, lc, there was only node n4. The up-sampling 
used bilinear interpolation, while the down-sampling utilized max- 
pooling.

2.2.4. Portion of gather-and-distribute module (GD)
To improve the model’s capability in detecting objects of different 

sizes, Wang et al. (2024) developed two branches of GD: a low-stage GD 
primarily focusing on small and medium-sized objects, and a high-stage 
GD primarily targeted detecting large-sized objects. On both calcium CT 
datasets, our targets, calcium, occupy only a 1/1000 ratio of input im-
ages and object area, indicating that they belong to the category of small 
objects. Therefore, we placed greater emphasis on detecting small tar-
gets by implementing a lower-stage GD. More specifically, feature rep-
resentations were gathered (G) and aligned from multiple levels by a 
unified module, and then these multiple aligned features were combined 
to produce a global feature, as shown in Fig. 7(a). This is followed by 
distributing (D) the acquired global feature across each level, as depic-
ted in Fig. 7(b). It is noteworthy that, for the purpose of enhancing in-
formation flow, the features are combined from neighboring levels on a 
local scale. This approach not only prevents the loss of information 
found in the FPN structure but also improves the neck’s ability to 
partially fuse information without introducing significant latency. The 
GD formula is as follows: 

FQ = AvgPool/Bilinear([Q2,Q3,Q4,Q5] ) (6) 

IR = RepConvBlocks(FQ) (7) 

Iglobal− 1=resize(Sigmoid(Conv(IR) ) ) (8) 

Iglobal− 2=resize(Conv(IR) ) (9) 

Ifuse = Conv(Qi) × Iglobal− 1+Iglobal− 2
(10) 

where the output feature maps, Q2, Q3, Q4 and Q5 from the Qf, were used 
for fusion to capture high-resolution features that preserve information 
about small targets. FQ was derived by resizing the feature maps using 
average pooling and bilinear interpolation technologies to match the 
smallest feature size among those four feature maps. When using FQ as 
the input for the multi-layer reparametrized convolutional blocks 
(RepConvBlock) to produce IR, two different Convs are then employed 
with IR to generate two sets of global information, represented as Iglobal− 1 

and Iglobal− 2 . Qi represents the local information from the current level, 
and Conv(Qi)was denoted as llocal in Fig. 7(b). At the end of the injection 
model, a RepConvBlock was incorporated to enable additional infor-
mation extraction and fusion.

2.3. Three state-of-the-art methods

We compared our TQGDNet with three state-of-the-art optimized 
methods for calcium detection/segmentation methods. To maintain 

Fig. 5. Illustration of two state-of-the-art fusion methods and QF. (a) FPN (Lin et al., 2017) presents a top-down pathway for fusing multi-scale features; (b) PANet 
(Jia et al., 2018) incorporates an additional bottom-up pathway onto FPN and, (c) Queen-fusion aggregates features from more adjacent levels and layers.

Fig. 6. Queen-fusion was employed to collect more feature information from 
distinct layers, encompassing lc and lc-1, as well as from various levels, such as 
n4, n5, and n6.
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consistency in the ground truth labels between our Concord dataset and 
the OrCaScore dataset, we converted the pixel-level labels in the 
OrCaScore dataset into detection-level labels by enclosing the lesions 
within bounding boxes. All competing methods used the ECG-gated 
dataset and the OrCaScore dataset as part of their experiment. Firstly, 
Zhao et al. (2020) used Faster R-CNN to detect coronary artery calcified 
plaque solely on the OrCaScore dataset, integrating medical prior 
knowledge through a proposed data augmentation technique into the 
training dataset. In addition, to decrease the creation of redundant an-
chor boxes, the region proposal networks (RPN) used in the original 
Faster R-CNN were replaced by guided anchoring (Wang et al., 2019). 
Secondly, Follmer et al. (2022) proposed an uncertainty-weighted 
multitask learning (MTL) model for coronary calcium scoring on three 
datasets, including DISCHARGE (Follmer et al., 2022), CADMAN 
(Dewey et al., n.d), and OrCaScore. More specifically, they jointly 
learned the multiclass coronary artery regions segmentation task and the 
binary lesion segmentation task to share complementary information. 
They also employed a multi-loss uncertainty-weighted (Kendall et al., 
2017) approach to optimize the model parameters jointly. Thirdly, Zair 
et al. (2023) compared three different CNN-based networks, including 
U-Net, VGG16, and SegNet-VGG16 with transfer learning, for the seg-
mentation of coronary artery calcification. They also compared images 
from the OrCaScore dataset with the heart area removed and retained.

3. Experiments and results

3.1. Implementation details

As a preprocessing step, we automatically cropped the images to the 
heart section using the YOLOv5 (Jocher, 2020) detection model. The 
detection model was trained using 300 images of our Concord dataset, 
which are distinct from the 257 images for calcium detection. Each of 
the images were accompanied by heart-bounding boxes labelled by a 
clinician. The trained model was then applied to both the Concord and 
public datasets.

The TQGDNet was trained from scratch for 200 epochs with a batch 
size of 4. We utilized the Stochastic Gradient Descent (SGD) optimizer to 
minimize the overall loss. We combined three loss functions (Redmon 
et al., 2016), including Objectness Loss, Localization Loss and, Classifi-
cation Loss. The Objectness Loss, employing BCE (Binary Cross-Entropy) 
loss, assesses the disparity between the expected probability of calcium 
being enclosed within a bounding box and the actual probability of its 

presence therein. The Classification Loss, also using BCE loss, evaluates 
the discrepancy between the predicted class probability and the true 
class probability regarding its containment within the bounding box. 
The Localization Loss, employing GIOU (Generalized Intersection over 
Union Loss), assesses the disparity in coordinates between the predicted 
bounding box and the ground truth bounding box. The training 
commenced with a learning rate of 0.01 and concluded with a learning 
rate of 0.0001, coupled with a weight decay constant of 0.0005. We 
initiated a warm-up momentum that began at 0.8 for the first three 
epochs, and subsequently maintained the momentum at 0.937. We 
applied image data augmentation, incorporating operations like 
left-right flips, HSV augmentation (Hue: 0.015, Saturation: 0, Value: 
0.4), image translation with a fraction of 0.1, and image mosaics. Both 
training and testing were conducted using a 12 GB NVIDIA GeForce RTX 
2080 Ti. More specifically, dynamic learning strategies starting with a 
learning rate of 0.01 facilitate efficient exploration of the parameter 
space, enabling the model to identify potentially optimal regions during 
the initial training stages. Gradually reducing the learning rate to 0.0001 
allows for fine-tuning and stabilization in later stages, preventing 
overshooting and enhancing convergence. This approach is particularly 
critical for small object detection, which requires precise localization 
and accurate feature representation. Additionally, the progressive 
decrease in the learning rate supports the refinement of the model’s 
ability to extract subtle and intricate characteristics of small objects. 
This refinement enhances the delineation of fine-grained features, ulti-
mately improving the accuracy of bounding box predictions and 
detection outcomes. Moreover, data Augmentation: To further enhance 
model performance, we employed data augmentation techniques 
commonly applied to medical images. These included left-right flips, 
HSV augmentation, image translation by a fractional amount, and image 
mosaics. These augmentations not only improve the model’s general-
ization capabilities but also simulate variability in the data, contributing 
to better detection robustness.

3.2. Evaluation setup

Our evaluation employed multiple performance metrics, including 
precision, recall, mean Average Precision (mAP), and F1-score (F1). To 
ensure robust and reliable results, a 5-fold cross-validation was con-
ducted on both the public OrCaScore dataset and the private Concord 
dataset (for additional experimental details, see Affiliate).

Fig. 7. The lower-layer Gather-and-Distribute (GD) branch comprising of two stages. The top row (a) depicts the gathering process, where feature maps from 
different levels (Q2, Q3, Q4, Q5) are assembled and aligned to a unified size. Subsequent to this, those aligned feature maps are fused using reparametrized con-
volutional blocks and convolutional blocks to produce global information. The bottom row (b) shows the aggregated global information received from the gathering 
process being distributed across each level to enhance detection capability.
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3.3. Comparison to the State-of-the-Art

Our proposed TQGDNet demonstrated superior performance 
compared to existing methods, achieving significant improvements on 
both the Concord and OrCaScore datasets. On the Concord dataset, 
TQGDNet outperformed the second-best method, Zhao et al. (2020)
using Faster R-CNN, with a notable increase of 3.6 % in mAP. Similarly, 
on the public OrCaScore dataset, TQGDNet surpassed the second-best 
method, Zair et al. (2023) using SegNet-VGG16, achieving an 
improvement of 2.3 % in mAP. It is important to note that 
detection-based models such as YOLO and Faster R-CNN consistently 
exhibited higher precision than recall on both datasets. This is evident in 
the performance of Zhao et al. (2020) (Faster R-CNN-based) and 
TQGDNet (YOLO-based), which achieved the highest precision on the 
Concord and OrCaScore datasets, respectively. In contrast, Follmer et al. 
(2022) using MTL achieved the highest recall across both datasets. It is 
worth noting that the results on the public OrCaScore dataset were su-
perior to those on the Concord dataset. This discrepancy can be attrib-
uted to differences in image complexity, including the higher prevalence 
of smaller calcium deposits (as illustrated in Fig. 2) and variations in 
image quality. Overall, TQGDNet exhibited strong performance on the 
F1-score, which considers both recall and precision, as shown in Table 1.

3.4. Ablation results

We conducted an ablation study to examine the individual contri-
butions of each of the modules in the TQGDNet. Table 2 shows that the 
prediction performance was enhanced with the addition of two addi-
tional fusion modules to two backbones: one is YOLOv5*B, the backbone 
of YOLOv5, and the other one is ThrConvs*B, the backbone after adding 
ThrConvs modules to YOLOv5*B. In general, the addition of Qf and GD 
modules separately to ThrConvs*B resulted in greater improvements in 
prediction results on the Concord dataset compared to the public data-
set. In particular, after adding the GD module, assistance to ThrConvs*B 
increased the mAP by 4.1 % in the Concord dataset and 3.4 % in the 
public dataset.

We further investigated the efficiency of adding these two fusion 
modules by incorporating them into YOLOv5*B, as depicted in Table 2. 
We observed that adding the GD module to YOLOv5B significantly 
improved the mAP by more than 3.5 % on both datasets. However, the 
contribution of adding GD to ThrConvsB was slightly greater compared 
to adding GD to YOLOv5*B. Moreover, in each of the two datasets, 
adding Qf to both YOLOv5B and ThrConvsB resulted in a similar per-
formance improvement in mAP: 2.2 %-2.3 % on the Concord dataset 

and 0.8 %-1.6 % on the public dataset, as shown in Table 2.
We also compared YOLOv5 (in Table 1) with ThrConvs*B (in 

Table 2), which represents YOLOv5 with the addition of the ThrConvs 
module, to investigate the efficiency of the ThrConvs module. This 
comparison demonstrated that the ThrConvs module helped YOLOv5 
increase mAP to 3.3 % and 3.5 % in the Concord and public datasets, 
respectively. Fig. 8 provides examples of the disparity between YOLOv5, 
TQGDNet, and three state-of-the-art methods employing Faster R-CNN, 
U-Net, and SegNet-VGG16. The fifth row in Fig. 8 reveals that YOLOv5 
solely detected calcium regions exhibiting higher contrast, which had a 
negative impact on its performance. In contrast, ThrConvs improved its 
performance by effectively detecting smaller, less conspicuous calcium 
deposits, especially those located at the edge or near bright areas.

We further investigated the transmission of features between the 
network levels and layers by comparing the Qf to two other classical 
fusion methods, FPN and PANet. As described in Section 2.2.2 and 
illustrated in Fig. 5, FPN is designed as a one-way, top-down information 
path within the same layers, while PANet was improved by adding a 
bottom-up path into the FPN. Table 3 compares Qf with FPN and PANet 
by adding them separately to YOLOv5*B, demonstrating that Qf ach-
ieves a higher mAP than FPN by 3.4 % and 3.5 % in the Concord and 
public datasets, respectively.

We also assessed the impact of adding ’GD’ to improve the quality of 
detection for small calcium instances. Since YOLOv5 was primarily 
utilized for detecting targets larger than calcium, adding ’GD’ to 
YOLOv5*B resulted in a higher increase in mAP in the public dataset 
compared to adding it to ThrConvs*B. We also analyzed the impact of 
adding the combination of ’Qf’ and ’GD’ to enhance the final results. 
Interestingly, although Qf and GD separately contribute to a higher mAP 
in the Concord dataset based on both ThrConvs*B and YOLOv5*B, their 
combination (Qf+GD) benefits more in the public dataset.

4. Discussion

Our study proposed a new model to detect coronary artery calcium 
deposits on two datasets, including ECG-gated (high contrast) and non- 
gated (low contrast) CTs. Our key findings are: i) We have validated the 
effectiveness of TQGDNet by comparing it with state-of-the-art methods 
demonstrating that TQGDNet provides superior detection of small cal-
cium deposits; ii) The ablation study demonstrated that our ThrConvs, 
Qf, and GD modules each contributed to overall performance improve-
ments and, iii) TQGDNet shows superior performance between two 
distinct datasets, including ECG-gated on the public dataset and non- 

Table 1 
Evaluation of the detection performance of the TQGDNet in comparison to the 
state-of-the-art methods on both Concord and public datasets. The “CNN Model” 
field indicates the main deep learning architecture employed by the method.

Author (year) CNN Model Precision Recall F-1 mAP

Concord dataset
Redmon et al. 

(2016)
YOLOv5 0.836 0.765 0.799 0.832

Zhao et al. (2020) Faster R-CNN 0.896 0.765 0.825 0.882
Follmer et al. 

(2022)
MTL 0.852 0.874 0.863 0.871

Zair et al. (2023) SegNet-VGG16 0.855 0.855 0.855 0.843
TQGDNet (our 

method)
ThrConvs+ QF+GD 0.892 0.846 0.868 0.918

OrCaScore dataset
Redmon et al. 

(2016)
YOLOv5 0.858 0.841 0.849 0.860

Zhao et al. (2020) Faster R-CNN 0.833 0.795 0.813 0.898
Follmer et al. 

(2022)
MTL 0.806 0.917 0.858 0.853

Zair et al. (2023) SegNet-VGG16 0.850 0.850 0.850 0.925
TQGDNet (our 

method)
ThrConvs+ QF+GD 0.890 0.864 0.877 0.948

Table 2 
Ablation of each fusion module (Qf, GD) and their combination (Qf+GD) 
working on two backbones: YOLOv5*B and ThrConvs*B, using both the Concord 
and public datasets. YOLOv5*B: Used the backbone of YOLOv5. ThrConvs*B: 
The backbone of TQGDNet incorporated the designed ThrConvs block into 
YOLOv5*B. Qf: Queen-fusion. GD: Lower layer branch of the gather-and- 
distribute module.

Precision Recall F1 mAP

Concord dataset
ThrConvs*B 0.874 0.767 0.817 0.865
ThrConvs*B+Qf 0.845 0.805 0.825 0.888
ThrConvs*B+GD 0.886 0.809 0.846 0.906
ThrConvs*B+Qf+GD 0.892 0.846 0.868 0.918
YOLOv5*B+Qf 0.849 0.816 0.832 0.854
YOLOv5*B+GD 0.824 0.831 0.827 0.870
YOLOv5*B+Qf+GD 0.858 0.844 0.851 0.899
OrCaScore dataset
ThrConvs*B 0.767 0.972 0.897 0.895
ThrConvs*B+Qf 0.883 0.861 0.872 0.913
ThrConvs*B+GD 0.836 0.932 0.881 0.929
ThrConvs*B+Qf+GD 0.890 0.864 0.877 0.948
YOLOv5*B+Qf 0.880 0.833 0.856 0.876
YOLOv5*B+GD 0.945 0.818 0.877 0.895
YOLOv5*B+Qf+GD 0.902 0.840 0.870 0.922
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gated on the Concord dataset.

4.1. Comparison to the state-of-the-art

We evaluated three state-of-the-art methods optimized for the public 
OrCaScore dataset, utilizing the cropped heart region as input to ensure 
a fair and consistent basis for comparison. Among these methods, 
Follmer et al. (2022) provided pre-trained weights for prediction, 
whereas the other two were re-implemented following the methodolo-
gies detailed in their respective publications. It is important to highlight 
the distinction in their approaches: YOLO and Faster R-CNN are 
detection-based models, whereas MTL and SegNet-VGG16 are 
segmentation-based models. These methodological differences had a 
slight impact on the outcomes, as detection-based models are designed 
to identify and localize specific regions of interest, whereas 
segmentation-based models focus on providing detailed and compre-
hensive pixel-level classification across the entire region. This difference 

Fig. 8. Qualitative comparisons are presented between the results from YOLOv5, TQGDNet, and three state-of-the-art methods on our Concord dataset. The first row 
displays five input images with blue ground-truth bounding boxes for calcium deposits. The second to fourth rows show the results from state-of-the-art methods 
using Faster R-CNN, U-Net, and SegNet-VGG16, respectively. The sixth row presents the results from our TQGDNet. Red boxes highlight the detected cal-
cium deposits.

Table 3 
Comparison of three fusion techniques, including Qf, along with two other 
classical fusion techniques FPN and PANet. Each of the techniques was sepa-
rately implemented on TQGDNet and tested on both our Concord cardiac CT 
dataset and the public cardiac CT dataset, OrCaScore.

Precision Recall F1 mAP

Concord dataset
FPN 0.858 0.757 0.804 0.820
PANet 0.836 0.765 0.799 0.832
Qf 0.849 0.816 0.832 0.854
OrCaScore dataset
FPN 0.790 0.856 0.821 0.841
PANet 0.858 0.841 0.849 0.860
Qf 0.880 0.833 0.856 0.876
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in focus contributes to variations in performance metrics, reflecting the 
distinct objectives and capabilities of each approach.

Our method outperformed all the comparison methods. We attrib-
uted this to our method being designed to cater for non-ECG-triggered 
images in our Concord dataset, which is significantly different from 
the public OrCaScore dataset that exhibits relatively high contrast. I 
discussed the comparison against the state-of-the-art from three points 
of view: the number of images used, contrast, and small region detec-
tion. Firstly, in terms of the number of images used, Follmer et al. (2022)
and Zair et al., 2023 utilized a larger number of images to train their 
models compared to ours. Follmer et al., 2022 released weights trained 
on three different ECG-gated datasets, involving two Concord datasets 
(DISCHARGE, CADMAN) and one public dataset (OrCaScore), totaling 
more than 8980 images. Even though we compared the predictions 
made with these pre-trained weights on the same test dataset as ours, 
our model, trained on only 168 images, achieved a higher mAP on both 
the Concord and public datasets. Moreover, the other two methods 
focused on operating with a dataset comprising ECG-gated images and 
included more images. Zhao et al. (2020) used 180 images from OrCa-
Score containing calcified plaques for data augmentation, expanding 
their dataset to 468 images. Zair et al. (2023) utilized all 3960 images 
from OrCaScore, including images with and without calcium deposits. 
Our model stands out for its incorporation of three modules designed 
specifically for processing non-gated images, enabling the enhancement 
of calcium deposits without requiring a large number of images. Sec-
ondly, detecting calcium deposits in low-contrast images poses signifi-
cant challenges, particularly when these deposits have intensity values 
similar to surrounding structures like the pericardium or epicardial fat. 
The encoder-decoder structures, such as MTL (Follmer et al., 2022) and 
SegNet-VGG16 (Zair et al., 2023), compress the input image into 
low-resolution feature maps before restoring them to high-resolution. 
Interestingly, SegNet-VGG16 performed better on the Concord dataset 
compared to the public dataset. We attribute this improvement to Seg-
Net’s design, which enhances boundary delineation. This feature is 
particularly advantageous for the low-contrast CT images in the Concord 
dataset. However, this process poses a risk of loss in grabbing features 
between layers. Our model differs from these two methods as the 
ThrConvs module is designed to retain the key features and remove 
uncommon features by calculating between one to three convolutions. 
Thirdly, the detection of small regions presents challenges in extracting 
and retaining detailed features of these regions across different levels 
and layers of the CNN architecture. Follmer et al. (2022) addressed the 
coronary calcium scoring problem by utilizing multiple closely related 
calcium scoring tasks, thereby benefiting from the sharing of comple-
mentary information between these tasks. This approach included two 
simultaneous tasks: segmenting coronary artery regions using weak la-
bels (labeling coronary region However, this method requires additional 
time and expertise to label the regions of the coronary arteries, which 
helps narrow down the area for detecting calcium deposits. s) and seg-
menting coronary artery calcifications using strong labels (labeling 
calcium deposits). In addition, Zhao et al. (2020) utilized optimization 
techniques to train the RPN efficiently, enabling the detection of small 
regions. However, its use of fixed scales and aspect ratios to generate the 
RPN, as well as the pooling operations, hinder its ability to detect small 
regions (Xiao et al., 2020). However, our model integrated the fusion 
method (via the Qf module) to preserve detailed features of small re-
gions from the ThrConvs output by connecting multiple layers and 
levels, particularly in the lower layers (through the GD module) where 
rich small region features were located. This approach avoids the need to 
select sizes and aspect ratios for the RPN and mitigates information loss 
from pooling operations. This is especially crucial for our dataset, which 
primarily consists of small region representing calcium deposits.

4.2. Ablation study

The ablation study demonstrated that the three proposed modules 

contributed to improving the prediction performance. For ThrConvs, its 
design aimed to excel in detecting calcium in low-contrast scenarios, 
especially evident in low-dose lung CT scans without ECG-triggering, 
which often exhibit higher noise levels and more motion artifacts. 
Therefore, the incorporation of the designed ThrConvs module at the 
beginning of the model, aimed at primarily targeting calcium detection 
in low-contrast scenarios, led to improved performance (Table 2). 
Overall, these findings highlight the effectiveness of our proposed 
ThrConvs module in enhancing calcium detection in non-contrast im-
ages compared to the baseline YOLOv5.

The analysis of the Qf module revealed its capability to fuse more 
comprehensive features from multiple levels and layers, as demon-
strated by its performance compared to state-of-the-art fusion technol-
ogies (Table 3). With the integration of the Qf module into the model, 
not only does it avoid the loss of information typical of the traditional 
FPN structure, but it also learns more comprehensive feature informa-
tion (Table 1).

After receiving features from Qf, the GD module subsequently 
gathered and aligned those features to generate global information, 
which was then distributed across each level. More specifically, this 
process of gathering and distributing facilitated the model in learning 
calcium features from a broader perspective, aiding in understanding 
the relationship between calcium and its background and surroundings.

4.3. Limitations and future work

We identified few limitations and opportunity for future works. 
Firstly, the intensity of calcium deposits often closely resembles that of 
surrounding anatomical structures, such as epicardial fat or the peri-
cardium. This similarity complicates the detection process, particularly 
in non-gated CT scans where reduced image contrast and resolution 
exacerbate the risk of misclassifications or missed detections. Secondly, 
while recent advancements in medical image processing have intro-
duced deep learning-based multi-step approaches, these methods typi-
cally begin by segmenting anatomical structures before isolating 
coronary regions for calcium detection. However, such approaches rely 
heavily on labelled datasets and often struggle to accurately differen-
tiate ambiguous calcium deposits from adjacent tissues, especially in 
both gated and non-gated CT images. Thirdly, the detection of calcium 
deposits in their early stages poses a significant challenge due to their 
minute size. These small calcifications are particularly difficult to 
identify in non-gated CT scans, where low visibility and poor contrast 
further impede their accurate detection and quantification. Lastly, the 
reliance on manual annotation presents notable limitations. Annotating 
calcium deposits is time-consuming, labor-intensive, and prone to errors 
or subjectivity, creating inconsistencies in the labelled datasets. Addi-
tionally, supervised learning approaches are constrained by the high 
cost and time required to generate large-scale annotated data, which 
limits their scalability and applicability. Addressing these challenges 
will require the development of more advanced automated solutions 
that reduce dependence on manual annotation and improve the detec-
tion of calcium deposits, particularly in non-gated CT imaging.

As futurework, we plan to explore 3D deep learning algorithms for 
tracking coronary artery flow pathways. This approach can greatly aid 
in predicting the coronary circulation pathway by using sequential sli-
ces, thereby replacing the current two-step (Section 3.1) limitation to 
narrow down the detection area. Further improvement to our model 
could involve designing new fusion strategies to better integrate features 
and widen the field of view around the calcium deposits. The traditional 
approaches to fuse multi-scale features between neighboring layers only 
accounted for features at the same level (Jia et al., 2018) or the previous 
level (Le et al., 2020) of the network. Although our Qf considers both the 
same-level and the previous-level features, it still may result in an 
incomplete retention of calcium features. This is because the fusion 
strategies impact how effectively calcium features are transmitted be-
tween levels and layers of the model, thereby influencing the subsequent 
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detection results.
In our study, calcium localization relied on annotations by radiolo-

gists requiring manual input. In addition, publicly available datasets for 
CAC detection are limited and often contain a higher number of negative 
samples (without calcium) compared to positive samples (with calcium). 
Future work could explore leveraging contrastive self-learning or self- 
supervised learning techniques, which have proven effective with 
imbalanced datasets and large numbers of unlabelled samples.

As future work, we plan to consider extending our model for calcium 
classification or prediction tasks to small regions in other fields of 
medical imaging. This includes tasks such as skin lesion classification on 
dermoscopic images (Bozkurt, 2022), detection of cerebral microbleeds 
on MRI (Luo et al., 2024), and identification of brain metastases on MRI 
(Ozkara et al., 2023).

As future work, we will continue to develop in the following two 
important areas. In clinical settings, non-gated images are often favored 
over gated images due to their cost-effectiveness, simpler technical re-
quirements, and faster acquisition times, despite the presence of motion 
blur caused by the heart’s movement during scanning. Our algorithm 
demonstrated the ability to use gated CT in conjunction with non-gated 
CT, which improved the learning of comprehensive features of CT. In 
future research, we will further improve the accuracy of non-gated im-
ages to match that of gated images, reducing the need for gated images.

Another area of focus is the current reliance on CNN-based ap-
proaches, which predominantly employ supervised deep learning tech-
niques for calcium detection (and other quantification methods). While 
these methods have shown effectiveness, they heavily rely on the 

availability of annotated gated training datasets. We will conduct 
research on self-supervised or unsupervised learning to enable models to 
learn features directly from the data itself.

5. Conclusion

We introduced a new CNN model for detecting calcium deposits in 
both ECG-gated and non-gated CT images. Our proposed method 
introduced a resolution-related module (ThrConvs) designed to focus on 
learning features in low-contrast images. Additionally, we integrated 
two fusion modules to gather comprehensive feature information and 
focus on learning features of small calcium deposits.
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Appendix

Cross validation

Table 4 presents the outcomes of five-fold cross-validation and their corresponding averages for both the Concord and public datasets. We note that 
the precision on the Concord dataset is higher than on the public dataset; however, on the public dataset, most of the recall is higher than precision. 
The difference in mAP between the highest and lowest results is 4.3 % on the Concord dataset and 3.1 % on the public dataset. This gap is likely caused 
by the significant variability in the number of images per patient, ranging from 1 to 20 slices. In practical terms, if 20 images from one patient are 
included in one batch size, they occupy nearly half of the test dataset. Ambiguous and difficult-to-identify images in this set are likely to negatively 
impact the final accuracy. Conversely, clear and easily identifiable images are expected to yield better results. Overall, five-fold groups maintained an 
mAP consistently close to an average of 0.896 on the Concord dataset, and an average of 0.934 on the public dataset.

Table 4 
The cross-validation results for those five groups on both the Concord and public datasets

Precision Recall mAP

Concord dataset
Group1 0.892 0.846 0.918
Group2 0.813 0.841 0.875
Group3 0.860 0.774 0.878
Group4 0.853 0.843 0.905
Group5 0.881 0.793 0.903
Average 0.860 0.819 0.896
OrCaScore dataset
Group1 0.890 0.864 0.948
Group2 0.794 0.953 0.938
Group3 0.865 0.918 0.947
Group4 0.815 0.957 0.917
Group5 0.877 0.810 0.922
Average 0.848 0.900 0.934

We present the results of the three modules used in the TQDNet using GradCAM+ + (Chattopadhyay et al., 2018) localization maps. Examples of 
these maps from both the Concord and public datasets are in Fig. 9, illustrating important regions from the outputs for the following model setups: 
YOLOv5, ThrConv, Qf, GD, and TQGDNet. With the inclusion of the ThrConv, the TQGDNet prioritized calcium deposits present in the majority of 
images. In the case of Qf, the activations tended to concentrate more on the calcium deposit. For GD, it exhibited a higher degree of attention towards 
the area around the calcium deposits. Finally, the impacts of the three modules were culminated in TQGDNet. 
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Fig. 9. Visualization of GradCAM+ + activation maps illustrating important regions of the outputs from the use of the OrCaScore dataset and our Concord dataset, 
for the following model configurations: YOLOv5, ThrConv, Qf, GD, and TQGD (proposed). Red indicates higher importance, while blue indicates lower importance. 
Two patient studies are shown.
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Fig. 9. (continued).
Data availability

This article uses two datasets: one public and one private. The author 
does not have permission to share the private dataset.
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