
ResearchOnline@JCU

This file is part of the following work:

Belson, Bruce (2024) Asynchronous programming using C++ coroutines in

embedded and edge computing. PhD Thesis, James Cook University.

Access to this file is available from:

https://doi.org/10.25903/sgqr%2D1f83

Copyright © 2024 Bruce Belson

The author has certified to JCU that they have made a reasonable effort to gain

permission and acknowledge the owners of any third party copyright material

included in this document. If you believe that this is not the case, please email

researchonline@jcu.edu.au

mailto:researchonline@jcu.edu.au?subject=ResearchOnline%20Thesis%20Incident%20

Asynchronous Programming Using C++
Coroutines in Embedded and Edge

Computing

College of Science and Engineering

Thesis submitted by

Bruce Belson, BA (Hons) MA

in July 2024

for the degree of

Doctor of Philosophy

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ii Chapter 0

Acknowledgements

I am grateful to the following for their help and support through the long and winding

road that led to the completion of this thesis.

To my primary advisor, Associate Professor Bronson Philippa, thank you for your

extraordinary patience and wisdom, offered over a long span of years, which guided

me along this fascinating and enjoyable journey.

To the members of my advisory committee, Dr Jason Holdsworth and Professor

Wei Xiang, I offer my thanks for your support and guidance during the development

of the ideas and conclusions of the research chapters, and for your invaluable help in

improving their final products.

To my colleagues in the JCU Cairns Engineering department, thank you for your

continued moral support and good cheer and for your patience when explaining what

must have so often been – for you – the transparently obvious.

To my three most important supporters, who patiently listened to increasingly ab-

struse problems and explanations, and did not flinch from providing criticism when it

was needed: thank you, Anabel, Grace and Rose.

To my late parents, Dr William Belson and Dr Margaret Harris Belson, who alongside

all their other gifts, patiently and steadfastly attempted to encourage rationalism and a

sense of fairness in their children, I dedicate this work.

iii

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

iv Chapter 0

Statement of the Contribution of

Others

I gratefully acknowledge the following contributions towards this work.

Financial support

Financial support was provided by The Australian Government Research Training Pro-

gram (RTP) Scholarship. James Cook University and the JCU College of Science and

Engineering provided additional support through annual funding and through supple-

mentary grants for equipment.

Editorial support

Editorial support for the entire thesis was provided by my primary supervisor, Associate

Professor Bronson Philippa of James Cook University.

Advisory Committee

Associate Professor Bronson Philippa, James Cook University

Dr Jason Holdsworth, James Cook University

Professor Wei Xiang, James Cook University & La Trobe University

Technical support

Technical support was provided by Ben Lyons, Engineering, James Cook University.

v

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Contributions to co-authored publications

Contributions to co-authored publications that form chapters 2-5 of this thesis were

made as below, categorised as Contributor Roles Taxonomy (CRediT) Roles. I am the

lead author for each of the co-authored publications.

Chapter Co-author C
on

ce
pt

ua
liz

at
io

n

M
et

ho
do

lo
gy

So
ft

w
ar

e

V
al

id
at

io
n

In
ve

st
ig

at
io

n

D
at

a
C

ur
at

io
n

W
ri

ti
ng

-
O

ri
gi

na
lD

ra
ft

W
ri

ti
ng

-
R

ev
ie

w
&

Ed
it

in
g

V
is

ua
liz

at
io

n

Su
pe

rv
is

io
n

2 Bruce Belson ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jason Holdsworth ✓ ✓

Wei Xiang ✓

Bronson Philippa ✓ ✓ ✓ ✓ ✓ ✓

3 Bruce Belson ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jason Holdsworth ✓

Wei Xiang ✓

Bronson Philippa ✓ ✓ ✓ ✓ ✓

4 Bruce Belson ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bronson Philippa ✓ ✓ ✓ ✓ ✓

5 Bruce Belson ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jason Holdsworth ✓ ✓

Bronson Philippa ✓ ✓ ✓ ✓ ✓

vi Chapter 0

Statement of Access

I, the undersigned, author of this work, understand that James Cook University will

make this thesis available for use within the University Library and, via the Australian

Digital Thesis network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the

Copyright Act and;

I do not wish to place any further restrictions on access to this work. However, any use

of its content should be acknowledged and may be restricted by future patents.

Name: Signature: Date:

vii

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

viii Chapter 0

Abstract

As the Internet of Things (IoT) continues to expand in both size and economic importance, the

development tools used for embedded and edge computing must evolve to address the increasing

demands of these resource-constrained platforms. One critical challenge in this domain is the ef-

fective management of asynchronous and concurrent execution, which remains a time-consuming

and error-prone aspect of development. Addressing this challenge is crucial, as it directly impacts

the reliability, maintainability, and performance of embedded systems.

This thesis investigates the potential of coroutines, a feature introduced in the 2020 C++

standard, to improve the ease of use, safety, and efficiency of asynchronous and concurrent

programming for embedded systems. Coroutines are of particular interest because they offer a

structured and lightweight approach to managing concurrency compared to traditional methods.

Furthermore, as a language-native feature, they provide a mainstream solution which will benefit

from continued compiler optimisations and increasing community support. While the corou-

tine specification contained in the C++ 20 standard has been increasingly well supported for

general-purpose systems, its applicability to resource-constrained embedded platforms has been

underexplored. This work aims to fill that gap through a systematic survey, technical analysis,

experimental library development, benchmarking, and a real-world case study.

Significant research gaps were identified in the study of tools for concurrent and asynchronous

programming on the resource-constrained platforms that predominate in embedded and edge

computing. The implementation of coroutines required by the C++ 2020 standard was examined

in detail. An implementation of the standard was built specifically for resource-constrained

devices without operating systems and without relying on the C++ Standard Template Library

(STL). Performance benchmarks demonstrated that coroutines provide notable advantages over

industry-standard real-time operating systems, achieving up to 12x faster execution speeds and

a code size reduction of up to 6x.

Next, coroutines were applied to machine learning inference algorithms executed on edge de-

ix

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

vices. By enhancing memory access patterns and reducing CPU cache misses through coroutine-

based task suspension and resumption, speed improvements of 8–60% were achieved without

modifying the underlying algorithms. These transformations required minimal code changes,

underscoring the practicality and efficiency of coroutine integration.

A case study further validated the performance and usability of coroutines in real-world ap-

plications. Deeply iterative and resource-intensive tasks were reorganized into coroutine-based

sub-tasks whose suspension and resumption were managed by a custom scheduler. Substantial

gains in both performance and energy efficiency were observed, including execution time re-

ductions of up to 20.5% and energy consumption reductions of up to 20%. Peak power usage

reductions of up to 4.5% were observed, while peak current was reduced by up to 25 mA. These

peak power reductions indicate a potential for extending battery life in rechargeable devices—a

critical consideration for many IoT applications. While the transformations applied to the source

code were simple and generic, the performance improvements in speed, energy consumption and

peak power levels were significant.

The findings of this thesis demonstrate that C++ coroutines offer significant advantages for

embedded and edge systems, both in terms of performance and energy efficiency. Although in-

troducing coroutine-based solutions requires some development effort, the benefits in memory

efficiency, execution speed, and energy consumption make them a compelling choice, and the de-

velopment costs are predictable and manageable. These results also provide a strong rationale for

adopting C++ in domains where C currently dominates, given the advantages of language-native

coroutine support.

x Chapter 0

List of Publications

The following publications were produced during the candidature, and are included as

thesis chapters as described below.

Chapter Details of publication Status

2 B. Belson, J. Holdsworth, W. Xiang and B. Philippa, ”A Survey of Asyn-

chronous Programming Using Coroutines in the Internet of Things

and Embedded Systems” in ACM Transactions on Embedded Computing

Systems, Volume 18, Issue 3, May 2019, Article No.: 21, pp 1–21, doi:

10.1145/3319618.

Published

3 B. Belson, W. Xiang, J. Holdsworth and B. Philippa, ”C++20 Corou-

tines on Microcontrollers—What We Learned,” in IEEE Embedded

Systems Letters, vol. 13, no. 1, pp. 9-12, March 2021, doi:

10.1109/LES.2020.2973397.

Published

4 B. Belson and B. Philippa, ”Speeding up Machine Learning In-

ference on Edge Devices by Improving Memory Access Patterns

using Coroutines”, in Proceedings of the 2022 IEEE 25th Interna-

tional Conference on Computational Science and Engineering (CSE), doi:

10.1109/CSE57773.2022.00011.

Published

5 B. Belson, J. Holdsworth and B. Philippa, ”Reducing Energy Consump-

tion for Machine Learning Inference on Edge Devices using C++20

Coroutines”, submitted to Elsevier Internet of Things, 28-Apr-2024

Submitted

xi

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

xii Chapter 0

Table of Contents

Front Matter i

Acknowledgements . iii

Statement of the Contribution of Others . v

Statement of Access . vii

Abstract . ix

List of Publications . xi

Table of Contents . xviii

List of Tables . xx

List of Figures . xxiii

List of Abbreviations . xxv

1 Introduction 1

1.1 Background . 1

1.1.1 Embedded systems and the Internet of Things 1

1.1.2 Asynchronous programming . 1

1.1.3 Coroutines . 2

1.1.4 The C programming language . 3

1.1.5 The C++ programming language . 4

1.2 Summary of research . 6

1.2.1 Motivation and research gaps . 6

1.2.2 Research questions . 7

1.2.3 Research objectives . 7

1.3 Research chapters . 8

1.3.1 Chapter 2 - Systematic mapping study 8

1.3.2 Chapter 3 - Experimental implementation 10

xiii

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1.3.3 Chapter 4 - Microbenchmarks on Edge Devices 12

1.3.4 Chapter 5 - Application on WSN . 14

1.4 Notes . 15

2 A Survey of Asynchronous Programming Using Coroutines in the Internet of

Things and Embedded Systems 17

2.1 Introduction . 18

2.2 Background . 20

2.2.1 Async/Await pattern . 20

2.2.2 Coroutines . 21

2.2.3 Previous coroutine implementations for constrained platforms . . 22

2.2.4 Programming Languages: C and C++ 24

2.3 Systematic mapping study . 26

2.3.1 Overview . 26

2.3.2 Search procedure . 27

2.3.3 Other systematic reviews and mapping studies 27

2.3.4 Research questions . 28

2.3.5 Threats to validity . 28

2.3.6 Data set . 29

2.4 Results . 30

2.4.1 Overview . 30

2.4.2 Programming language . 30

2.4.3 Coroutine implementation . 30

2.4.4 Operating system . 31

2.4.5 Memory . 31

2.4.6 Processors . 32

2.4.7 Use cases . 32

2.4.8 Intended benefits . 33

2.4.9 Application programming interface 34

2.5 Analysis and discussion . 34

2.5.1 Analysis of API design . 34

2.5.2 Research gaps . 37

xiv Chapter 0

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.5.3 Repeatability of search results . 37

2.5.4 Discussion . 38

2.6 Conclusion and further work . 41

2.6.1 Conclusion . 41

2.6.2 Further work . 41

2.7 Appendices . 41

2.7.1 Inclusion and exclusion criteria . 41

2.7.2 Hardware classes . 42

2.7.3 List of papers reviewed . 43

2.7.4 Questionnaire content . 45

3 C++20 Coroutines on Microcontrollers 53

3.1 Introduction . 54

3.2 Analysis of the appropriateness of the coroutine standard for microcon-

trollers . 55

3.2.1 New Language Features . 55

3.2.2 Coroutine Stack Frame . 57

3.2.3 Standard Library . 57

3.3 Experimental results . 58

3.3.1 Context Switching Microbenchmark 59

3.3.2 Memory Costs . 60

3.3.3 Ergonomically Efficient Code . 60

3.3.4 Zero- and Negative-cost Abstractions 61

3.4 Discussion . 62

3.4.1 End-user experience . 62

3.4.2 Performance cost . 62

3.4.3 Library support . 62

3.4.4 Memory allocation . 62

3.4.5 Platform considerations . 63

3.5 Conclusion . 64

3.6 Appendix I: Source code . 65

3.7 Appendix II: Development problems and process 65

Chapter 0 xv

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.7.1 Overview . 65

3.7.2 Objectives . 65

3.7.3 First iteration . 65

3.7.4 Second iteration . 68

3.7.5 Third iteration . 69

3.7.6 Fourth iteration . 72

3.8 Appendix III: Equipment . 76

3.9 Appendix IV: Data . 77

4 Speeding up Machine Learning Inference on Edge Devices by Improving

Memory Access Patterns using Coroutines 79

4.1 Introduction . 80

4.2 Related work . 83

4.3 Methodology . 84

4.3.1 Implementation . 84

4.3.2 Benchmarks . 85

4.3.3 Performance measurement . 85

4.3.4 Platforms and Toolchains . 87

4.4 Experimental results . 88

4.4.1 Impact of active set size . 88

4.4.2 Sensitivity to active set size . 89

4.4.3 Impact of coroutine count . 91

4.4.4 Impact of numeric types . 93

4.4.5 Variations between algorithms . 93

4.4.6 Platforms . 96

4.4.7 Impact of explicit prefetch instructions 96

4.4.8 Toolchain . 97

4.4.9 Coroutine machinery cost . 100

4.4.10 Platform evolution . 101

4.5 Discussion . 101

4.5.1 Performance costs & benefits . 101

4.5.2 End-user experience . 102

xvi Chapter 0

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

4.5.3 Test code . 103

4.5.4 Application scenarios . 103

4.6 Conclusion . 104

5 Reducing Energy Consumption for Machine Learning Inference on Edge De-

vices using C++20 Coroutines 105

5.1 Introduction . 106

5.2 Related work . 108

5.3 Methodology . 108

5.3.1 Application . 108

5.3.2 Platform . 111

5.3.3 Coroutine implementation . 111

5.3.4 Execution template . 112

5.3.5 Test application . 113

5.3.6 Performance measurement . 114

5.3.7 Statistics . 120

5.4 Results . 121

5.4.1 Introduction . 121

5.4.2 Time . 123

5.4.3 Overall power and median overall energy 124

5.4.4 SVM task energy . 126

5.4.5 Peak power . 126

5.4.6 Comparison with Raspberry Pi 3 . 127

5.4.7 Consistency of results . 130

5.5 Discussion . 131

5.5.1 Overall performance savings . 131

5.5.2 Comparison of platforms . 132

5.5.3 Performance trade-offs . 133

5.5.4 Dimensionality . 134

5.5.5 Value of mini-scheduler . 134

5.6 Conclusions . 134

5.7 Appendices . 136

Chapter 0 xvii

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.7.1 Detailed results . 136

5.7.2 Platform hardware characteristics 140

5.7.3 Algorithms . 141

5.7.4 Source code . 141

6 Conclusion 147

6.1 Overview . 147

6.2 Summary of findings . 149

6.2.1 Chapter 2 . 149

6.2.2 Chapter 3 . 150

6.2.3 Chapter 4 . 152

6.2.4 Chapter 5 . 153

6.2.5 Research question conclusions . 153

6.3 Contributions . 154

6.4 Further work . 155

References 159

xviii Chapter 0

List of Tables

2.1 Search strings used for online databases . 26

2.2 Research questions . 29

2.3 Summary of research gaps . 38

2.4 Inclusion criteria . 42

2.5 Exclusion criteria . 42

2.6 Hardware classes . 42

2.7 Full list of reviewed papers . 43

2.8 Questionnaire results - RQ1 Software Platform & RQ2 Hardware Platform 46

2.9 Questionnaire results - RQ3 & 4 Use case & Intended Benefits 48

2.10 Questionnaire results - RQ5 What is the API of the coroutine? 51

3.1 Source lines of code for asynchronous tasks 61

3.2 Impact of platform considerations . 63

3.3 File list for first iteration . 66

3.4 First iteration hardware abstraction layer 66

3.5 First iteration application classes . 66

3.6 Remaining uses of STL types and methods 74

4.1 Benchmarks used for performance measurement 85

4.2 Numeric types . 86

4.3 Active set variables . 86

4.4 Platforms & memory caches tested . 88

4.5 Benchmarks - Best results for each algorithm 88

4.6 Compiler flags . 99

5.1 Software characteristics . 112

xix

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.2 Execution parameters . 114

5.3 Outliers and survivors . 123

5.4 Summary of performance savings . 132

5.5 Raspberry Pi 4 B: Summary of results for each sensor/measurement count 136

5.6 Raspberry Pi 3 B+: Summary of results for each sensor/measurement

count . 138

5.7 Test platform characteristics . 140

xx Chapter 0

List of Figures

1.1 Use of C and C++ as language of current embedded development project 4

1.2 C++: Planned use vs Actual . 5

1.3 Chapter roadmap . 8

1.4 Chapter 2 - Summary of the search and selection process 9

1.5 Chapter 3 - Summary of performance outcomes 10

1.6 Best performance improvements . 12

1.7 Graphical summary for Chapter 5 . 14

2.1 Summary of the search and selection process 26

2.2 Language outcomes . 31

2.3 RQ1c - Operating systems used in selected studies using C-like languages 32

2.4 Hardware outcomes . 32

2.5 Usage outcomes . 33

2.6 API outcomes . 34

2.7 RQ5b/c/d - API characteristics by language 35

2.8 RQ5e - How is the coroutine state allocated? 36

3.1 Memory layout for a resumable function. 58

3.2 Coroutine stack frame workflow. 58

3.3 Time cost of context switching microbenchmark 60

3.4 Memory cost of context switching microbenchmark. 60

3.5 Rohde & Schwarz HMO2024 oscilloscope 76

3.6 FRDM-K22F development board . 77

3.7 Experimental circuit diagram . 77

3.8 Typical oscilloscope screen captures . 78

xxi

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

4.1 Best performance improvements . 81

4.2 Execution models compared: sequential execution vs coroutines 82

4.3 Support vector machine inference code in C++ 84

4.4 Performance ratios for varying active set sizes 89

4.5 Sensitivity estimation for varying active set sizes 90

4.6 B+ Tree: Sensitivity of performance gain to data size 91

4.7 SVM: Sensitivity of performance gain to data size 92

4.8 Normalisation: Sensitivity of performance gain to data size 92

4.9 CNN: Sensitivity of performance gain to data size 93

4.10 Performance boost: B+ Tree algorithm . 94

4.11 Performance boost: SVM . 94

4.12 Performance boost: colour normalisation algorithm 95

4.13 Performance boost achieved for CNN . 96

4.14 Contribution of prefetch to performance boost 97

4.15 Comparison of throughput for each compiler 98

4.16 Comparison of performance ratios between toolchains 99

4.17 Performance characteristics of coroutined execution models vs Protothreads 100

4.18 Comparison of performance boost between two Intel CPU generations . . 101

5.1 Graphical summary for chapter . 106

5.2 Networked application used for case study 109

5.3 Coroutine execution model compared with unmodified sequential model 111

5.4 Wiring layout for experimental procedure. 115

5.5 Example readout from Joulescope, showing power usage 116

5.6 The pattern of power use for the SVM calculations 118

5.7 Impact of outlier exclusion on sample distributions 121

5.8 Summary of performance gains from using coroutines on Raspberry Pi 4 122

5.9 The effect of SVM feature count on time savings for various sensor counts

(S) and measurement counts (M) . 124

5.10 The effect of SVM feature count on energy & power savings measures, for

various sensor and sample counts . 125

xxii Chapter 0

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.11 Comparison of peak power savings with savings in time and average

power for the Raspberry Pi 4 B . 126

5.12 Comparison of peak power savings with time and total power savings for

the Raspberry Pi 3 B+. 127

5.13 The effect of SVM feature count on base performance on each platform in

terms of speed, overall energy and task energy 128

5.14 Summary of best performance savings on each tested platform 130

5.15 Summary of best performance savings in time and energy on each platform 131

5.16 Modifications to the SVM application code: two insertion models 133

6.1 Chapter roadmap . 148

Chapter 0 xxiii

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

xxiv Chapter 0

List of Abbreviations

ACM Association for Computing Machinery

ADC Analog-to-Digital Converter

API Application Programming Interface

BPFI Ball Passing Frequency Inner race

BPFO Ball Passing Frequency Outer race

CNN Convolutional Neural Network

CPS Continuation-passing Style

CPU Central Processing Unit

CSF Coroutine Stack Frame

DOI Digital Object Identifier

DSRM Design Science Research Methodology

FFT Fast Fourier Transform

FSM Finite State Machine

GPIO General-Purpose Input/Output

I2C Inter-Integrated Circuit (serial communication bus)

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial measurement unit

IoT Internet of Things

ISBN International Standard Book Number

ISO International Organization for Standardization

ISR Interrupt Service Routine

LU Lower-Upper

ML Machine Learning

N4680 ISO/IEC Proposed Draft Technical Specification - C++ Extensions for Coroutines

xxv

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

PHM Prognostic Health Management

RAM Random-Access Memory

ROM Read-Only Memory

RTOS Real-Time Operating System

SLOC Source Lines Of Code

STL Standard Template Library (C++)

SVM Support Vector Machine

UDP User Datagram Protocol

WCET Worst-case execution time

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

xxvi Chapter 0

Chapter 1

Introduction

1.1 Background

1.1.1 Embedded systems and the Internet of Things

Embedded systems [106, 194] and the Internet of Things (IoT) [2, 11, 70] often require

computing systems whose run-time life-cycle exists, in the main, without direct human

oversight or interference. The impact of the IoT continues to grow, in both economic

[118, 147] and social [164] terms, as does the number of developed applications [117,

122] and the volume of data [14, 192] gathered.

This growth in both the importance and the size of the IoT requires that closer atten-

tion be paid to the software engineering of the resource-constrained embedded systems

that are frequently deployed as part of the IoT, particularly as it impacts on their secu-

rity [148, 166], reliability [70] and privacy [193]. These resource-constrained platforms –

often referred to as ‘edge devices’ – may possess significantly less processing power, stor-

age and power supply than mainstream computing devices, and consequently present

very different software challenges.

1.1.2 Asynchronous programming

The architecture of many embedded systems is event-driven: the system holds multiple

tasks in a waiting state, until an external event occurs. This architecture requires asyn-

chronous code, which is often challenging to write because the code is split into phases,

for event initiation and for the ‘event handler’ that manages the response to the event

[62, 107, 121]. The addition of further asynchronous sub-tasks into the system as part

1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

of the response to events adds to code complexity and the split-phase design causes a

gap to grow between the intent of the system and its implementation as source code,

reducing the readability and maintainability of the system [24, 52, 116, 88].

Furthermore, the requirement that the various tasks within a system be managed

concurrently can introduced dangerous instability. Unexpected behaviour can be caused

by race conditions [129] and locks: it is thus all the more critical that source code be

simple and intelligible.

A common model for the management of split-phase programming is the finite state

machine (FSM) [105], which brings its own problems of transparency and complex-

ity, particularly with regard to composition [35]. Another approach to simplifying the

problems posed by split-phase programming is the use of continuation passing style,

whereby one function is called and is passed the code entry point to invoke after its

completion. While this allows connected actions to be presented in the same code loca-

tion, the use of this style in Javascript has famously led to the ”pyramid of doom” or

”callback hell” phenomenon [24, 52, 116, 88] when multiple sequential operations are

composed.

The ‘async/await’ pattern [20, 136, 182] is a more elegant solution to the problem

of split-phase coding. The pattern allows a function to pause its execution until a par-

ticular asynchronous operation completes. Importantly, it allows the use of a direct

programming style, in which the various phases can be written in a natural order, with

the use of conditions, loops and other standard control flows. The pattern has been used

successfully in several languages, including C# [20, 136], JavaScript [51], Python [157,

185], Swift [149, 90], Rust [120, 197] and C++ [80].

1.1.3 Coroutines

The execution of a conventional subroutine begins at a single entry point, and exit occurs

only once, after which the subroutine is considered complete. The subroutine does not

maintain execution state between invocations, so when a subroutine that has been exited

is invoked again, it starts from the beginning. This is not a suitable limitation for a native

implementation of the ‘async/await’ pattern.

Coroutines differ from subroutines in that they allow multiple entry points for sus-

pending and resuming execution at certain locations [36, 96, 119]. Unlike traditional

2 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

subroutines, coroutines enable cooperative multitasking by pausing and resuming func-

tions at designated points. This capability makes them particularly suitable for imple-

menting the ‘async/await’ pattern (as well as other control problems such as generators

or producer/consumer patterns). The ‘await’ keyword instructs the compiler to jump

out of the currently executing coroutine immediately after the statement marked with

‘await’, thereby suspending its execution. When the coroutine is resumed it restarts

from the statement immediately following the ‘await’ statement. The ‘async’ keyword

can be used to indicate that a function contains one or more ‘await’ statements and

should therefore be executed as a coroutine.

Since the first appearance of coroutines in Simula in the 1960s [38], coroutines have

been implemented – in various forms – across different programming languages, in-

cluding C# [20, 136], Python [157, 185], JavaScript [51], and Kotlin [54].

A native implementation of coroutines requires that the state of local variables within

the coroutine and of the progress of execution be maintained between invocations: im-

proved programming ergonomics depends on the presence of these characteristics. The

location in memory of the state information – as well as the degree of control that the

developer maintains over that location – is a critical issue for embedded programmers

[171].

1.1.4 The C programming language

The C language was first developed by Ritchie and others at Bell Labs between 1969 and

1973, publicly defined by Kernighan and Ritchie in 1978 and standardised by the ANSI

X3J11 committee from 1983 [153]. It has long been associated with embedded software

including operating system kernels – its original use was as a system implementation

language for the Unix kernel for the PDP-11 [153]. It continues to be the dominant lan-

guage in embedded systems development; while the percentage of developers reporting

that they used C as the main language for embedded projects has fallen gradually since

2015 (see Fig. 1.1), C was still the dominant language reported in the 2023 AspenCore

Embedded Markets Study, with 52% of respondents using C in their current project [190,

189, 9, 10, 37].

Because the C language can create very compact code, with minimal runtime over-

head, and because the language is capable of directly addressing hardware registers

Chapter 1 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0%

10%

20%

30%

40%

50%

60%

70%

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

%
AG

E
O

F
RE

SP
O

N
D

EN
TS

YEAR OF SURVEY

Language of Current Embedded Project

C C++

Figure 1.1: Use of C and C++ as language of current embedded development project,
according to a survey completed by a readership of embedded developers, in answer
to the question ‘My current embedded project is programmed mostly in:’. Data drawn
from [190, 189, 9, 10, 37].

using pointers [153], C is well suited to the task of running embedded software. How-

ever, the management of memory in C – and the use of pointers in particular – has led

to a history of security vulnerabilities, including buffer overflows and underflows [167].

These and other vulnerabilities have been addressed by the introduction of coding stan-

dards such as MISRA [13], which restrict the programmer to a subset of the C language,

and by the use of static analysis tools [174], which endeavour to find errors in source

code.

1.1.5 The C++ programming language

The C++ language was designed by Bjarne Stroustrup as ‘C with classes’ and first used

in 1980, before being made commercially available in 1985, and standardised between

1990 and 1998 [176, 177]. The language aimed to be a ‘better C’ that would ‘make

programming more enjoyable’, as well as supporting data abstraction, object-oriented

programming and generic programming [177].

Fig. 1.2 illustrates the gap between the intention to use C++ for embedded projects

and the actual use. Based on data collected for the Embedded Markets Study between

2005 and 2023 [190, 189, 9, 10, 37], the figure compares the proportion of developers

using C++ for their current development project with the proportion who said they

4 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

planned to use C++ for their next development project in the previous survey. In most

iterations, between 4% and 45% of developers who planned to use C++ did not.

0%

5%

10%

15%

20%

25%

30%

35%

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

%
AG

E
O

F
RE

SP
O

N
D

EN
TS

YEAR OF SURVEY/YEAR OF SURVEY FOLLOWING PLAN

Planned Use of C++ vs Actual Use in Current Embedded Project

Current Project Previous plans for current project

Figure 1.2: C++: Planned use vs Actual. The use of C++ as the language of the current
embedded development project compared to plans – expressed in a previous survey
– for its use in the next project. In general, actual use falls well below planned use,
implying the presence of factors preventing its use. Data drawn from [190, 189, 9,
10, 37]. Responses were in answer to the questions ‘My current embedded project is
programmed mostly in:’ and ‘My next embedded project will likely be programmed
mostly in:’.

Many reasons can been cited for this failure, including: perceptions of poor perfor-

mance such as slow speed of compilation and execution, code bloat and lack of pre-

dictable performance and memory use [68, 66]. Additionally, developers are often not

able to make a free choice between C and C++ because of constraints resulting from

platforms and tool-chains, including availability and completeness of C++ compilers for

the platform and C++ language support in project development tools and in libraries.

Since the introduction of the Arduino platform [159], there has been an increase in

the use of C++ features for embedded platforms, including some extremely resource-

constrained devices, using the Arduino programming environment and library ecosys-

tem. However, the environment requires little C++ programming knowledge and Ar-

duino source code uses a limited set of C++ features: the application environment can

be viewed as a hybrid of C and C++.

”Coroutines were an essential part of early C++” [178], where they were used as

Chapter 1 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

the basis for the task library in which ”[t]he underlying facility is a simple and effi-

cient tasking system with non-preemptive scheduling” implemented via a task class

that maintains state and a system scheduler class [175]. However, coroutines were not

introduced into the initial C++98 standard.

Gustafsson’s proposal for resumable functions in 2012 [72] led to a lengthy debate

[97, 99, 69, 98, 152, 131, 154, 155, 172] regarding the design of coroutines. As Strous-

trup [178] wrote: ”The design space for coroutines is huge, so consensus was hard to

achieve.” In particular, the questions of whether stackful or stackless designs – or both

– should be supported and the use of dynamic memory allocation [171] were debated

for many years. Finally, Nishanov’s stackless design was accepted into the 2020 version

of the standard [80], supported by its implementation’s ”superior performance” [178]

in key use cases [85, 145], despite the fact that the design relied on dynamic memory

allocation for a subset of use cases [133].

1.2 Summary of research

1.2.1 Motivation and research gaps

In the light of the inclusion of coroutines in the C++ 2020 standard, and of the fact

that discussion of the coroutine implementation had been mostly focused on desktop,

server and high-performance computing use cases, it was timely to consider the im-

pact of coroutines on embedded system development. In particular, a research gap had

appeared regarding the potential for coroutines to provide performant and ergonomic

native solutions to the split-phase programming problem, as well as other asynchronous

programming challenges that impacted embedded system development. This research

was motivated towards reaching an understanding of the suitability and attraction of

the proposed C++ coroutine implementation for embedded and Internet of Things de-

velopers.

The research would begin by identifying the research gaps (as detailed in the litera-

ture review contained within Chapter 2.1), and then continue by addressing the research

questions below.

6 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1.2.2 Research questions

The following research questions were identified initially and confirmed by the findings

of the literature review:

RQ1: Can mainstream coroutine solutions apply to resource-constrained platforms?

RQ2: Are the costs deterministic?

RQ3: Can the benefits be clearly demonstrated?

These research questions would guide the investigation into the likely impact of the

new coroutine implementation on the embedded and Internet of Things development

area, paying attention to the issues that were found to be important to stakeholders.

Research question 1 was selected because, although there was found to be a demand

for a language-native coroutine facility on resource-constrained devices, the public state-

ments emerging from the C++ standards process had not included discussion or con-

siderations specific to these platforms. The selection of research question 2 reflected the

relative importance of deterministic memory and performance costs affecting embedded

platforms and, in particular, resource-constrained devices and real-time systems. The

third research question arose from the culture of the embedded development sector: if

the benefits of C++ coroutines could not be very clearly demonstrated then there would

be little likelihood of widespread uptake within the sector, given the substantial costs

and perceived risks associated with such a change.

1.2.3 Research objectives

The objectives of this thesis are to:

• Provide the embedded system development sector with sufficient information to

consider utilising C++ coroutines and, if necessary, to motivate migration from C

to C++.

• Provide development tools, techniques or libraries to help industry write improved

embedded software.

• Identify, within the C++20 standard and implementations, weaknesses or opportu-

nities for improvement that specifically impact the embedded development sector.

Chapter 1 7

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1.3 Research chapters

A Survey of Asynchronous Programming Using Coroutines
in the Internet of Things and Embedded Systems

C++20 Coroutines on Microcontrollers

Speeding up Machine Learning Inference on Edge Devices
by Improving Memory Access Patterns using Coroutines

Reducing Energy Consumption for Machine Learning
Inference on Edge Devices using C++20 Coroutines

Introduction

Conclusion

1

2

3

4

5

6

Systematic mapping study

Technical exploration of resource-
constrained coroutine implementation

Micro-benchmarks of coroutine
performance on edge devices

Implementation of coroutines in real-
world application

Chapter Title Content

Figure 1.3: Chapter roadmap

Fig. 1.3 summarises how the four research chapters of this thesis move the viewpoint

forward. The first research chapter is an investigation into the need for a mechanism

such as coroutines for development of embedded systems on resource-constrained de-

vices. This is followed by an analysis of the proposed C++20 coroutine implementation

and its applicability to low-powered computing platforms. Next, the performance of

C++ coroutines on various edge devices is studied using micro-benchmarks. The final

research chapter is a case study that contains analysis and detailed measurement of

coroutines within an edge device application.

1.3.1 Chapter 2 - A Survey of Asynchronous Programming Using Coroutines

in the Internet of Things and Embedded Systems

Chapter 2 contains a traditional literature review and also a systematic mapping study

[94], a form of systematic review that structures a research area as opposed to syn-

thesising evidence. The study systematically analyses all the relevant academic litera-

ture, as summarised in Fig. 1.4. A search procedure was defined that queried the six

main academic databases for the articles that referred both to the programming device

(”coroutine” or ”light-weight thread”) and the platform (”internet of things”, ”embed-

8 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Apply inclusion

criterion IC1 to full

text

Apply

exclusion

criteria

ACM
IEEE Xplore

ScienceDirect

Scopus
SpringerLink

Web Of Science

Total items in

Databases

Remove

duplicates

Apply inclusion

criterion to

abstract

566

14

270

102

15

161

4

553

276

125

35

Study

abstract

Study full

paper

Answer

RQs

Report

Figure 1.4: Chapter 2 - Summary of the search and selection process

ded systems”, etc). After further inclusion and exclusion criteria were applied, the initial

set of 566 papers was reduced to 35 papers, which were examined closely.

The study extracted key data from each paper, and built taxonomies of studies,

addressing five core areas, as follows: (i) the software platform, including the program-

ming language, the operating system and the method used to implement coroutines,

(ii) the characteristics of the hardware platform, (iii) the use cases for coroutines and

(iv) the intended benefits of coroutine use. (v) The details of the coroutine implemen-

tation were also collated, including important decisions such as whether control flow

was managed on behalf of the programmer, whether the state of local variables was

automatically managed, whether the coroutine was stackless or stackful [69, 152], and

how the memory for the coroutine state was allocated.

These results were used to measure the demand for language-native C++ coroutines

among developers on resource-constrained platforms, and to gauge which implemen-

tation features would be important to the developers. The study concluded from these

outcomes that widespread demand existed for a language-native, well-supported C++

coroutine implementation on resource-constrained platforms, and that these devices

would benefit from the implementation in a manner specific to their class.

Chapter 1 9

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1.3.2 Chapter 3 - C++20 Coroutines on Microcontrollers

0.017 μs

0.209 μs

2.504 μs

2.589 μs

0.046 μs Function call

MQX Lite

FreeRTOS

Coroutines

Protothreads

0 1 2 3
Time (microseconds)

Time for context switch (μsecs)

5672 bytes

6340 bytes

11264 bytes

13128 bytesMQX Lite

FreeRTOS

Coroutines

Protothreads

0 5000 10000 15000
Code size of microbenchmark (bytes)

Code size (bytes)

140 bytes

148 bytes

144 bytes

156 bytes

0 50 100 150 200
Data size of microbenchmark (bytes)

Data size (bytes)

Figure 1.5: Chapter 3 - Summary of performance outcomes

The systematic mapping study of Chapter 2 found evidence of a demand for C++

coroutines on resource-constrained platforms. Chapter 3 moved forward to evaluate the

C++20 coroutine specification [82] from the perspective of embedded systems develop-

ers.

The work offered three main contributions, as follows. First, we analysed the ap-

propriateness of the C++ coroutines Technical Specification for embedded systems, an

area which had not been discussed in the public debate. Second, as summarised in

Fig. 1.5, we measured the performance of C++20 coroutines compared to commonly

used alternative concurrency solutions: a hand-written state machine, the Protothreads

library [49] and two leading real-time operating systems, FreeRTOS [15] and MQX Lite

[135]. The measurements considered source lines of code, size of executable, run-time

memory requirements and speed of performance. Finally, we investigated how easy it

would be – from an application programmer’s point of view – to use C++ coroutines on

a constrained-resource platform (in this case, an ARM Cortex-M4 microcontroller devel-

opment board). We analysed the complexity and the length of source code by building

the firmware for a simple IoT device, both with and without coroutines.

A C++ implementation of the coroutine run-time library was iteratively designed,

built and tested, satisfying the following criteria:

10 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

• Conform to the C++20 coroutine specification.

• Avoid using C++ exceptions, because they may significantly increase run-time

memory usage and because they may introduce non-deterministic timing and

memory behaviour [68].

• Do not use dynamic memory allocation, because the timing of such allocation is

often non-deterministic [68] and because embedded systems are often resource-

constrained with regard to memory.

• Avoid dependencies on the Standard Template Libraries (STL), because STL makes

extensive use of both C++ exceptions and dynamic memory allocation.

• Fit within the very constrained code and data memory limits of the target platform.

The implementation of the library was a non-trivial task. While the STL contains

classes that would provide useful infrastructure for coroutine calls, such as std::future

and std::promise, these carry dependencies on C++ exceptions and dynamic memory

allocation, and therefore had to be reengineered for a ‘bare-metal’ environment.

We concluded that it was not possible – within the constraints of the Technical Spec-

ification – to provide a software platform that would allow application programmers

to deliver simple readable code that was certain to avoid dynamic memory allocation.

Furthermore, when the memory was allocated globally or in the stack it proved impos-

sible to determine memory requirements in advance, and a convoluted build cycle was

required, since memory requirements only became fully determined at link time.

Our investigation into performance and development characteristics had more pos-

itive results. As can be seen in Fig. 1.5, the benchmark using coroutines ran 12 times

faster than the benchmarks that used RTOS’s, and the compiled executable code was half

the size of the RTOS benchmark executables. The coroutine benchmark and the RTOS

benchmarks used the same amount of data memory. The ergonomic benefits were mea-

sured by comparing the number of source lines of code (SLOC) contained in a sample

application, excluding the generic source code of the coroutine implementation library.

Compared to the equivalent standard FSM solution, this application code contained one

sixth the number of SLOC.

Chapter 1 11

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

We concluded that ”the proposed language enhancements potentially bring signif-

icant benefits to programming in C++ for embedded computers, but that the imple-

mentation imposes constraints that may prevent its widespread acceptance among the

embedded development community”.

1.3.3 Chapter 4 - Speeding up Machine Learning Inference on Edge Devices

by Improving Memory Access Patterns using Coroutines

B+ Tree
SVM

Normalisation
CNN

ARMv8

Intel 6th gen

Intel 10th gen

Pe
rfo

rm
an

ce
 b

oo
st

0%

10%

20%

30%

40%

50%

60%

Benchmarks - Best performance improvements
ARMv8
Intel 6th gen
Intel 10th gen

Figure 1.6: Best performance improvements achieved through coroutining and prefetch-
ing, across various algorithms and platforms

Chapter 3 concluded with a finding that the use of C++20 coroutines on embedded

systems, while promising, remained constrained by its implementation with regard to

memory allocation. Chapter 4 moved on from microcontrollers running on ‘bare metal’

with kilobytes of RAM to examine edge devices equipped with gigabytes of RAM and

running Unix. The performance of coroutines on such edge devices was measured in

12 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

detail, using micro-benchmarks.

The benchmarks addressed tasks that are commonly deployed to edge devices, par-

ticularly within machine learning inference implementations, and included a local data

search using a B+ tree, the inference stage of a support vector machine (SVM), the nor-

malisation of a set of images to the ImageNet standard [43] and a convolutional neural

network (CNN) inference using a 3x3 kernel.

The work compared the speed of performance of two execution patterns, applied to

the iterative processing of a large set of data containing many smaller items. In the first

case, the standard sequential model, the processing moves in a linear fashion from the

start to the end of the data set. In the second case, the data is divided up into a number of

subsets, and each subset is processed by a separate lightweight thread. Execution jumps

from thread to thread, controlled by a round-robin scheduler. For these benchmarks,

the lightweight thread mechanism was implemented using C++20 coroutines.

Additionally, a ‘prefetch’ technique may be used: a CPU cache load of the next

‘chunk’ of data is initiated just before control leaves the thread. By the time control

returns to the thread, the prefetch has been completed and the data has been loaded

into CPU cache: processing may continue without waiting for the data to be loaded.

With or without the prefetch operation it is possible for code execution to benefit from

this multi-threaded approach, because of improvements to the memory access pattern.

However, there exists a performance trade-off in this change to the execution pat-

tern: against any benefit achieved through prefetching and improvements to memory

access patterns, there is a cost to initiating a coroutine and in jumping between corou-

tines. The primary question addressed by these benchmarks was whether the coroutine

infrastructure in the C++ language would be fast enough to provide a net benefit.

A second trade-off is that between any performance improvements achieved and the

cost of the additional code complexity involved in splitting up a data set into sub-tasks

and scheduling the sub-tasks into threads. The study also examined the complexity of

the code required for this transformation.

The study explored a large parameter space: four benchmarked algorithms, three

hardware platforms, two toolchains, four different numeric formats and a wide range

of data set sizes, for a total of 23558 different tests. Each test was run with and without

prefetching, and each was run 10 times, with outlers being removed.

Chapter 1 13

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

As can be seen in Fig. 1.6, impressive speed improvements were recorded: up to

65% for the B+ tree benchmark and as much as 34% for the SVM. Improvements in the

CNN and normalisation benchmarks were less marked but still substantial at 15.5% and

12% respectively.

1.3.4 Chapter 5 - Reducing Energy Consumption for Machine Learning In-

ference on Edge Devices using C++20 Coroutines

Figure 1.7: Graphical summary for Chapter 5

Following the substantial speed improvements documented in Chapter 4, the thesis

concluded with a study of the use of coroutines in a real-world C++ application in

Chapter 5.

The case study consisted of a Prognostic Health Maintenance (PHM) running on

a Raspberry Pi which receives streams of vibration data as envelope spectra from the

nodes of a wireless sensor network (WSN) and processes them locally through a collec-

tion of Support Vector Machines (SVMs).

We applied a simple transformation to the application code, using C++20 coroutines

to reorganise the execution order of the SVMs. We continued to see the speed improve-

ments that were predicted by the micro-benchmarks of Chapter 4, with execution time

for the SVM reduced by as much as 20.5%. Furthermore, we also recorded reduced en-

ergy consumption: the energy used by the SVM task could be reduced by up to 18% and

the peak power level was reduced by up to 4%. (The transformation and its outcomes

are summarised in Fig. 1.7.)

The speed improvements can translate into a reduction of the number of edge de-

14 Chapter 1

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

vices required by the network, with consequent savings in the cost of equipment and

deployment. The net savings in energy could translate into longer battery life, offering

savings in deployment and maintenance, or – for a mobile platform – a reduction of

device weight.

1.4 Notes

The four research chapters in this thesis were prepared for three different publishers,

using four different styles. The presentation in this thesis has been standardised: all

chapters use a single-column format, and all text fonts are shared between chapters.

However, no attempt has been made to standardise the colours, styles or themes used

for the graphical components, and these remain in their original form.

Citations and references are now held in common between chapters, share a com-

mon format (IEEE), and are presented in a single bibliography at the end of the entire

document. The bibliography is ordered by first author surname, with a limit of three

author names.

The source code for all the chapters has been made available on-line in public repos-

itories, along with experimental results. The URL for each repository can be found in

the respective chapter.

The thesis (and all four original papers) were prepared using TeXstudio, pd f latex

and biblatex.

Chapter 1 15

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

16 Chapter 1

Chapter 2

A Survey of Asynchronous

Programming Using Coroutines in

the Internet of Things and

Embedded Systems

This chapter is a reformatted version of the following paper in the ACM journal ACM

Transactions on Embedded Computing Systems (TECS).

B. Belson, J. Holdsworth, W. Xiang and B. Philippa, ”A Survey of Asyn-

chronous Programming Using Coroutines in the Internet of Things and Em-

bedded Systems” in ACM Transactions on Embedded Computing Systems, Vol-

ume 18, Issue 3, May 2019, Article No.: 21, pp 1–21, doi: 10.1145/3319618.

The paper was published in May 2019, before the inclusion and specification of

coroutines in C++20.

17

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Chapter Abstract

Many Internet of Things and embedded projects are event-driven, and therefore re-

quire asynchronous and concurrent programming. Current proposals for C++20

suggest that coroutines will have native language support. It is timely to survey the

current use of coroutines in embedded systems development. This chapter investi-

gates existing research which uses or describes coroutines on resource-constrained

platforms. The existing research is analysed with regard to: software platform,

hardware platform and capacity; use cases and intended benefits; and the appli-

cation programming interface design used for coroutines. A systematic mapping

study was performed, to select studies published between 2007 and 2018 which con-

tained original research into the application of coroutines on resource-constrained

platforms. An initial set of 566 candidate papers, collated from on-line databases,

were reduced to only 35 after filters were applied, revealing the following taxon-

omy. The C & C++ programming languages were used by 22 studies out of 35.

As regards hardware, 16 studies used 8- or 16-bit processors while 13 used 32-bit

processors. The four most common use cases were concurrency (17 papers), network

communication (15), sensor readings (9) and data flow (7). The leading intended

benefits were code style and simplicity (12 papers), scheduling (9) and efficiency

(8). A wide variety of techniques have been used to implement coroutines, including

native macros, additional tool chain steps, new language features and non-portable

assembly language. We conclude that there is widespread demand for coroutines on

resource-constrained devices. Our findings suggest that there is significant demand

for a formalised, stable, well-supported implementation of coroutines in C++, de-

signed with consideration of the special needs of resource-constrained devices, and

further that such an implementation would bring benefits specific to such devices.

2.1 Introduction

The Internet of Things (IoT) [2, 11, 70] continues to grow both in the scale and variety of

attached devices and in the number of developed applications [117, 122]. This growth

draws attention to the software engineering of the resource-constrained embedded sys-

tems that are a frequent component of heterogeneous IoT applications. Such attention is

18 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

all the more urgently required because of new challenges with regard to security [166],

reliability [70] and privacy [193].

Many IoT and embedded systems have an event-driven architecture; their software

is consequently implemented in an asynchronous programming style, whereby multi-

ple tasks wait on external events. Asynchronous code is challenging to write because

application logic becomes split between the function initiating the request and the event

handler that is invoked when the response is ready [62, 107, 121]. This ”split-phase”

architecture becomes increasingly complex when the developer introduces more event

sources (such as timeouts) with their own event handlers. There may be interaction be-

tween various split-phase events, which can add degrees of freedom to the various state

models: consequently there is an increasing likelihood that the source code addressing

a single event is split between separate locations, forcing the reader to jump between

them. Application logic is obscured by the split-phase fragmentation, leading to a gap

between the design of the system and its source code representation, making the code

harder to understand and more difficult to maintain [24, 52, 116, 88].

A solution to the split-phase problem for desktop software has been language sup-

port for coroutines [36, 96, 119] and promises [24, 111, 116]. For example, in C#,

JavaScript, and Python, developers can use an ”await” keyword to wait on an external

event. This means that asynchronous code can be written just as clearly as the equiva-

lent code in a synchronous style that uses blocking code. However, resource-constrained

embedded systems are overwhelmingly programmed in C or C++ [9, 168], which lack

support for the ”await” pattern.

The C++ standardisation committee is currently debating the inclusion of coroutines,

and at least two competing designs have been proposed [81, 154]. The addition of corou-

tines to C++ would create an opportunity to simplify embedded systems code. Existing

research on coroutines in C++ may not have considered the needs of embedded systems

and other extremely resource-constrained devices, because the initial implementations

used compilers that do not target such platforms [124]. Here, we specifically focus on

small embedded systems that have insufficient memory to run Linux or another gen-

eral purpose OS. If the C++ language adds the async/await and coroutine patterns, we

believe it is important that the needs of resource-constrained platforms are also consid-

ered.

Chapter 2 19

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

This chapter contains a systematic mapping of the use of coroutines in embedded

systems, conducted by searching academic databases and manually inspecting every

matching paper. It thus provides a complete perspective on academic research address-

ing the use of coroutines in embedded systems to inform the C++ standardization pro-

cess by identifying how and why coroutines are used. The study uses the mapping to

build a taxonomy of existing research with regard to platform, use cases and implemen-

tation.

The design of the study, details of the methodology used for each stage and the re-

sults of each stage are available in spreadsheet format. The remainder of this chapter

is organised as follows. Section 2.2 contains the background, beginning with an intro-

duction to the development environment for C/C++ programs on resource-constrained

devices, to some of the problems commonly encountered by developers and to the types

of solution currently applied to these problems. It continues with a discussion of the

use of coroutines in C and C++. Section 2.3 details the methodology of the mapping

process used in this study, some of the logic underpinning the methodological choices,

and a review of related work. Section 2.4 explores the results and presents insights.

Section 2.5 contains a discussion of results and an analysis of research gaps. Section 2.6

discusses further research possibilities and concludes the chapter.

2.2 Background

2.2.1 Async/Await pattern

Much of the program flow in IoT and embedded device programs is asynchronous, for

example, requiring the software to wait on responses from a remote device or sensor. A

naı̈ve approach to implementing this flow results in complex arrangements, such as a

finite state machine (FSM) and multiple fragments of code. This produces source code

that is complex, fragile and inflexible.

Alternatively, there are two common patterns for a simpler and more robust design.

The first, continuation-passing style (CPS), which is seen commonly in JavaScript, can

lead to the ”pyramid of doom” or ”callback hell” phenomenon [24, 52, 116, 88] when

multiple sequential operations are composed.

A more elegant approach is the async/await pattern [20, 136, 182], which is a pop-

20 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ular device for transforming continuation-passing style code into direct programming

style, with all the asynchronous steps of a sequence written in a single ordered se-

quence within a single block of code. The pattern has been used successfully in several

languages, notably C# [20, 136] and JavaScript, as part of the ECMAScript 2018 pro-

posal [51]; in C++, proposals are currently being considered for inclusion in the C++

2020 standard, using new keywords ’co await’, ’co yield’ and ’co return’ or alternative

syntax [81, 154]. The async/await pattern allows the programmer to write a single con-

tinuous set of statements in a direct programming style, which will be performed in

the correct order, even when they are run asynchronously as a set of separate events.

Furthermore, the pattern avoids the explicit use of global variables.

2.2.2 Coroutines

Coroutines extend the concept of a function by adding suspend and resume operations

[36, 96, 119]. Coroutines can be used for a variety of purposes including (i) event han-

dlers [49]; (ii) data-flow [100]; (iii) cooperative multitasking [180] as well as (iv) the

async/await pattern [81].

During suspension, the implementation stores the execution point of the coroutine,

and usually (but not always) the state of local variables. For example, Protothreads

[49] is a coroutine implementation for embedded systems where local variables are not

preserved: instead all variables within the coroutine must be statically allocated. This

strategy reduces the overhead of context switching and provides predictable memory

usage but produces coroutines that are non-reentrant. Furthermore, code defects are

more likely when the programmer is responsible for explicitly managing coroutine state.

This study will examine both types of coroutine in the context of embedded systems.

Coroutine implementations may be further categorised into stackful or stackless

types. A stackful coroutine has its own stack which is not shared with the caller, and

hence local variables can be stored there during suspension. Conversely, a stackless

coroutine pops its state off the stack during suspension (like a normal function return).

For stackless coroutines, other mechanisms must be introduced in order to preserve

state, such as storing local variables in global storage.

Furthermore, a stackless coroutine often can only be suspended from within the

coroutine itself and not from a subroutine (i.e. a function called from the coroutine).

Chapter 2 21

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

For example, C++ proposal N4680 is a stackless model that requires all yield or return

statements to be contained within the body of the coroutine.

Neither model is considered universally appropriate for the various C++ use cases

[69, 152]. Alternative techniques, such as stack slicing, have been used to preserve state

in a stackless implementation and provide single threaded cooperative multitasking

[187, 186].

2.2.3 Previous coroutine implementations for constrained platforms

Early implementations used macros in C to add coroutine-like features. For example,

Duff’s device takes advantage of the fall-through behaviour of C’s case statement in the

absence of a break statement [46]. It is unusual in that a block such as do . . . while, can

be interleaved within the case statements of a switch statement. Tatham [184] described

a coroutine solution in C, which makes use of Duff’s device to efficiently implement

coroutines through macros, without the need to explicitly code a state machine. How-

ever, Tatham noted that ”this trick violates every coding standard in the book” and Duff

called the method a ”revolting way to use switches to implement interrupt driven state

machines”. This technique was extended by Dunkels et al. for Protothreads [49], which

provided conditional blocking operations on memory-constrained systems, without the

need for multiple stacks, and formed the core of the widely used real-time operating

system Contiki [47].

Protothreads (and any other solution based on Duff’s device) can be considered to

suffer from two serious defects. First, their use adds a serious constraint to C programs:

switch statements cannot be used safely in programs that use Protothreads; they may

cause errors that are not detected by the compiler but cause unpredictable behaviour at

run-time. Second, they do not manage local variable state on behalf of the programmer:

any variable within the coroutine whose state should be maintained between calls must

be declared as static (global) [48]. This has consequences for reentrancy, and for code

quality. On the other hand, they are an extremely cheap solution in terms of coding

effort, memory use and speed, and they are portable, because they use pure C. The

original library is written in C; it has been ported to C++ [138].

Listing 2.1 contains a fragment of code that used Protothreads to implement part

of an asynchronous producer/consumer pattern. Listing 2.2 shows a similar code frag-

22 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Listing 2.1: Fragment of Protothreads code for asynchronous producer/consumer
threads

s t a t i c s t r u c t pt sem f u l l , empty ;

s t a t i c
PT THREAD(consumer (s t r u c t pt * pt))
{

s t a t i c i n t consumed ;
PT BEGIN (pt) ;
for (consumed = 0 ; consumed < NUM ITEMS;
++consumed) {

PT SEM WAIT(pt , &empty) ;
consume item (g e t f r o m b u f f e r ()) ;
PT SEM SIGNAL (pt , &f u l l) ;

}
PT END(pt) ;

}

Listing 2.2: C++ code fragment using co await for asynchronous producer/consumer
threads

task<> consumer (semaphore& sem) {
auto producer = async producer (sem , NUM ITEMS) ;
for co await (auto consumed : producer) {

consume item (g e t f r o m b u f f e r ()) ;
}

}

ment, this time using C++ language features, including the co await keyword of the

current C++ standardisation proposal N4680. We observe several differences between

the two. Listing 2.2 contains fewer lines of code than Listing 2.1; Listing 2.2 does not

contain macros; Listing 2.1 requires that local variables be declared as ’static’, but List-

ing 2.2 does not. While both code fragments present conceptual changes from the syn-

chronous equivalent, we believe that the change in Listing 2.2 is more transparent and

more clearly presented.

In 1992, Gupta et al. examined a coroutine-based concurrency model for resource-

constrained platforms as part of a comparison between alternative models [71]. In 2000,

Engelschall summarised the various techniques based on setjmp & longjmp [57]. FreeR-

TOS [15] is an open source real-time operating system developed ”around 2003” that

contains a coroutine scheduler: local variable state is not maintained. In 2006, Rossetto

and Rodriguez described a new concurrency model [156] implemented as an extension

to TinyOS [108], using coroutines as the basis of the integration; the implementation is

stackful and local variables’ states are maintained.

Chapter 2 23

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Schimpf (2012) [162] provides a modified version of Protothreads which supports

a priority-based scheduler. Cohen et al. (2007) [34] provide a coroutine-based sched-

uler for TinyOS [108] which is used to implement ”RPC-like interfaces”; these support

a direct programming style for communications code written in nesC [62]. Riedel et al.

(2010) [151] generate C code for multiple platforms, including a version that uses corou-

tines to provide concurrency. Susilo et al. (2009) [180] use a coroutine-based scheduler

to achieve ”[r]eal time multitasking [. . .] without interrupts”. Finally, Andersen et al.

(2017) [6] reject the use of C++ futures because the implementation model needs to han-

dle a stream of events, rather than a single event, and is therefore non-deterministic

in its use of memory, which is undesirable on a constrained platform: ”One is forced

therefore to trade off the reliability of promises [. . .] in order for them to work in the

embedded space.” Instead, the authors use callbacks for C++ event handling.

The scripting language Lua possesses a coroutine implementation [41] and has been

successfully used on microcontrollers [76]. MicroPython [63] is a Python 3 version which

supports microcontrollers [64] and includes support for generators and coroutines [157,

185].

2.2.4 Programming Languages: C and C++

The majority (78%) of embedded systems are programmed in C or C++ according to the

2017 Embedded Markets Study [9]. The C language is the most popular, but its usage

is slowly declining over time in favour of C++ and other languages. Between 2015 and

2017 the proportion of embedded projects using C++ rose from 19% to 22%, while C

use fell from 66% to 56%. Coroutines are proposed for the C++ language, not C, so

embedded programmers would need to use C++ to access these features. We believe

that C++ usage will continue to increase, and therefore the design of C++ coroutines

should consider the constraints of embedded software.

The switch from C to C++ need not be dramatic. C++ is close to being a superset of

C [176]. With the right compiler support, it is possible to migrate an embedded code-

base from C to C++ merely by changing a compiler flag. There are potential problems

with the migration from C to C++, including the possibilities that the code produced

may be larger, slower and less likely to contain blocks that are appropriate for place-

ment in ROM than the C code [68, 77]. A more subtle problem is that the code may

24 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

be less amenable to worst-case execution time (WCET) analyses. Goldthwaite [68] ex-

amined these problems, and identified three areas where difficulties might exist despite

defensive programming, all of them with regard to timing analysis: (i) dynamic casts,

(ii) dynamic memory allocation and (iii) exceptions.

A number of further problems related to tool-chains and platforms may inhibit mi-

gration to C++. Many hardware platforms are closely related to specific tool-chain

implementations. Sometimes the only compiler available is a manufacturer’s propri-

etary version, for which C++ support may be unavailable (such as MPLAB XC8 for the

PIC 8-bit devices1), or may not include support for recent C++ standards and features

(such as the commonly used Keil ARM compiler2, which does not support C++20 as

of January 2025). The libraries that provide a specific hardware access layer may not

include support for C++ ’out of the box’. The project management systems that gener-

ate and manage application files may not support C++. When the Standard Template

Library cannot be used because of its dependencies on exceptions and dynamic memory

allocation, there may not be an appropriate library to use as a substitute.

The features that might persuade a development team to make the move to C++

have always included well-known front-end features such as namespaces, encapsula-

tion, and inline functions, all of which offer benefits regarding code clarity but have

no implementation cost in terms of code size or speed. Replacing split-phase functions

with a direct programming style by using new, widely supported, language standards

would appear to be a strong enticement for developers to migrate. It remains to be seen

whether the feature can be provided for embedded systems without including two of

the three behaviours which Goldthwaite [68] identified as being problematical: dynamic

memory allocation and exceptions.

1https://ww1.microchip.com/downloads/aemDocuments/documents/DEV/ProductDocuments/

UserGuides/MPLAB-XC8-C-Compiler-Users-Guide-for-PIC-DS50002737.pdf
2https://developer.arm.com/documentation/101458/2404/Standards-support/

Supported-C-C---standards-in-Arm-C-C---Compiler

Chapter 2 25

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.3 Systematic mapping study

Apply inclusion

criterion IC1 to full

text

Apply

exclusion

criteria

ACM
IEEE Xplore

ScienceDirect

Scopus
SpringerLink

Web Of Science

Total items in

Databases

Remove

duplicates

Apply inclusion

criterion to

abstract

566

14

270

102

15

161

4

553

276

125

35

Study

abstract

Study full

paper

Answer

RQs

Report

Figure 2.1: Summary of the search and selection process

2.3.1 Overview

This systematic mapping study is informed by the guidelines of Kitchenham [93], Kitchen-

ham and Charters [94] and Petersen et al. [143]. The process is illustrated in Figure 2.1.

The process searched six online databases, selected for relevance [23] and availability, for

papers containing a term from each of the lists in Table 2.1. We ensured completeness by

iterative testing using snowballing [95, 142] and by careful handling of database-specific

behaviours regarding plurals, spellings and abbreviations.

Table 2.1: Search strings used for online databases

Part 1: Pattern Part 2: Platform
coroutine OR ”lightweight
thread”

AND IoT OR ”Internet of Things” OR ”Cyber
Physical Systems” OR RTOS OR ”Real-
time Operating Systems” OR ”Embed-
ded Systems” OR WSN OR ”Wireless
sensor networks” OR WSAN

26 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.3.2 Search procedure

The search procedure first applies each inclusion criterion (IC), referred to as ICs where

s is an alphanumeric suffix. The data base search facilities are used to collate all papers

which satisfy all ICs. Next each exclusion criterion (EC), referred to as ECn where n is

numeric, is applied: any item which fails any EC is removed from the set. The full list

of criteria can be found in Tables 2.4 and 2.5 in the appendix.

The main inclusion criterion (IC1) was that the paper should contain original re-

search into the application of coroutines on resource-constrained platforms. This cri-

terion excluded a large body of papers which applied coroutines only within the sim-

ulation of resource-constrained platforms, not on the platform itself. For clarity, the

exclusion of papers using coroutines only in the sumulation was stated explicitly in a

secondary inclusion criterion (IC1a).

The exclusion criteria were informed by previous studies [94, 143]. Papers were

excluded if they lacked a scholarly identifier such as DOI or ISBN (EC1) or an abstract

(EC2), were published before 2007 (EC3), were not written in English (EC4), were not

available to the reviewers (EC5), were earlier versions of another paper (EC6), were not

primary studies (EC7) or were not in any of the selected publication classes (journal

articles, conference papers or book chapters) (EC8).

Two searches were conducted in October 2017 and in September 2018 across all

databases. These searches resulted in 187 journal articles, 224 conference papers and

155 book chapters. This informed our decision to include all three publication classes

within the search domain. The decision was made to include only studies published

since 2007; this criterion excluded approximately 43% of the original search results.

Details of the search strings, inclusion and exclusion criteria, procedures and down-

load scripts can be found in the supplementary materials.

2.3.3 Other systematic reviews and mapping studies

An initial tertiary study was executed, being a review of existing reviews and mapping

studies in the area of interest, as suggested by Kitchenham and Charters’ guidelines

[94]. The work concluded that, at the time of writing, this study appears to be the first

to systematically map the use of coroutines in resource-constrained systems, whether

Chapter 2 27

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

embedded systems or IoT component systems.

2.3.4 Research questions

A major motivation for the study was to prepare the ground for an acceptable imple-

mentation of the await/async and generator patterns on resource-constrained platforms,

using coroutines. The research questions therefore address what is known about hard-

ware and software platforms, developer preferences, use cases, intended benefits, and

application programming interfaces (APIs).

Research question 1 (RQ1) investigated the software platform, including the pro-

gramming language, the operating system and the implementation used for the relevant

language feature. Research question 2 (RQ2) looked at the hardware platform, including

memory size and processor family. Research questions 3 and 4 (RQ3 and RQ4) assessed

the use cases and intended benefits respectively of the coroutine usage. Research ques-

tion 5 (RQ5) assessed the programming interface.

The research questions are listed in full in Table 2.2. By examining the hardware and

software characteristics of previous implementations we aimed to identify the salient

characteristics of the environment within which a coroutine implementation must func-

tion. By investigating use cases and desired outcomes, we would identify some of the

necessary characteristics of a successful implementation. Finally, by examining the pro-

gramming interface we hoped to observe how researchers addressed some of the design

trade-offs of the implementation.

2.3.5 Threats to validity

Data extraction followed the principles laid down in Petersen et al. [142] for repeatabil-

ity.

The validity of the results of this study are exposed to multiple sources of threat,

particularly with regard to (i) study selection, (ii) data extraction and (iii) classification.

During study selection, the search process was recorded in detail and the search

strings were tested for repeatability and for consistency across databases. Snowballing

describes the process of expanding the search results by recursively selecting papers

that are cited by a selected paper or those that cite a selected paper [95, 142]. While the

study did not utilise snowballing during the final search process, it did use it during

28 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 2.2: Research questions

Code Research question
RQ1 What was the software platform?

RQ1a What was the programming language used?
RQ1b What method was used to implement coroutines?
RQ1c What was the operating system used (if any)?

RQ2 What was the hardware platform?
RQ2a What was the class of hardware platform?
RQ2b How much read-only or flash memory (ROM) was available?
RQ2c How much random-access memory (RAM) was available?
RQ2d What was the processor family?
RQ2e Was the processor 8-bit, 16-bit or 32-bit?
RQ2f What was the processor’s instruction set?

RQ3 What were the use cases?
RQ4 What were the intended benefits of using coroutines in this context?
RQ5 What is the API of the coroutine?

RQ5a Does the paper discuss an implementation of coroutines?
RQ5b Is the control flow managed on behalf of the developer?
RQ5c Is the state of local variables automatically managed?
RQ5d Is the coroutine implementation stackless or stackful?
RQ5e How is the coroutine state allocated?

the earlier stages of establishing search strings, and some searches were consequently

amended. During the application of selection criteria, the reviewers (B. Philippa and B.

Belson) conferred whenever differences arose, and periodically discussed and reviewed

the processes being used, using both contentious cases and randomly selected test pa-

pers to compare individual processes.

The guidelines of Petersen et al. [143, 142] were followed with regard to the data

extraction process: a data collection form was constructed in Excel, and was used con-

sistently to record the process, in order to improve repeatability and accuracy, and to

reduce subjectivity.

To improve the consistency of classification a subset of papers was inspected by both

reviewers, and the classifications were compared and discussed. This comparison was

iterated until the rationale for classifications was fully established and any contentious

cases had been resolved.

2.3.6 Data set

The initial search found 566 results; removal of duplicates left 553 documents. More

than half of these failed the exclusion criteria, leaving 276 whose abstracts were studied.

Chapter 2 29

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Approximately 55% of the surviving studies immediately failed the inclusion crite-

ria, leaving 125 to be studied in full. After applying the inclusion criteria on the basis of

the entire text, about 72% failed, and 35 studies were retained [4, 5, 7, 6, 19, 21, 33, 34,

50, 55, 58, 60, 67, 79, 83, 84, 87, 89, 91, 100, 101, 113, 115, 126, 130, 134, 137, 140, 151, 162,

173, 179, 180, 73, 196]. Of these, 21 studies included a discussion of the implementation

of coroutines. The lower half of Figure 2.1 illustrates the process.

The selected papers addressed the issue of coroutines despite the lack of mainstream

language support. These researchers identified a need that was not addressed by com-

mon languages and showed the potential benefits of these features. Now that native

asynchronous programming support is being added to the C++ language, it is likely

that demand from embedded software developers will only increase.

Table 2.7 in the appendix section provides the complete list of selected studies.

2.4 Results

2.4.1 Overview

The research identified 35 papers of relevance, of which 21 described coroutine imple-

mentations, developed in 7 different programming languages. The results are briefly

presented below. The detailed lists of results can be found in the supplementary mate-

rials.

2.4.2 Programming language

C was the predominant programming language, as shown in Figure 2.2a. A total of 20

papers (57%) used C, and a further 5 papers (14%) used related languages (C++ and

NesC). Lua was the next most common language used, with 4 papers.

2.4.3 Coroutine implementation

To implement coroutines, 27 papers (77%) used a native method, i.e. avoiding tech-

niques that required a new or changed tool chain. In native implementations, 13 papers

employed macros (of which 7 were based on Duff’s device) and 4 used libraries; in 3

papers ([196, 34, 87]) the C setjmp/longjmp language device was used.

30 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

20

4 3 2 2
4

0

5

10

15

20

25

C Lua NesC Scheme C++ Other

N
u

m
b

er
 o

f
p

ap
er

s

RQ1a: Language

(a) RQ1a - Programming languages used

27

13

4 3 2 2 2

0
5

10
15
20
25
30

N
u

m
b

er
 o

f
p

ap
er

s

RQ1b: Implementation method

(b) RQ1b - Coroutine implementation

Figure 2.2: Language outcomes

Several studies extended the tool chain or created a new tool. Two papers con-

tributed new languages [84, 58], and one paper [130] provided a set of language exten-

sions. Two papers employed a transpiler that translates from one language to another -

one from Lustre to OCaml [84] and one from a synchronous extension of C to standard

C [89]. One paper [60] used a precompiler, and one paper [83] provided a new compiler

optimisation phase.

Two studies called out to another language to implement the coroutines: one [140],

written in the Lua language [41], directly manipulated the hosting environment through

the C API; another [91] used non-portable assembly language. The results are sum-

marised in Figure 2.2b.

2.4.4 Operating system

Of the 26 application instances studied (taken from 25 papers) that were written in C,

C++ or NesC, 13 (50%) used (or extended) a widely-known embedded operating system

(Contiki [47], TinyOS [108] or FreeRTOS [15]) and 9 (35%) used a unique operating

system, or one that was generated for each application, as shown in Figure 2.3. There

was not enough information in the papers themselves to judge how many of these 9

papers could be considered ’bare-metal’.

2.4.5 Memory

Figure 2.4a shows the ROM and RAM sizes of the selected platforms, using logarithmic

scales. As observed in RQ2a, there were many systems with low RAM sizes: the median

value was 10 kb. There was a positive correlation (r=0.64) between ROM size and RAM

size.

Chapter 2 31

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

8
7

3
2 2 2 2

0
2
4
6
8

10

N
u

m
b

er
 o

f
p

ap
er

s

RQ1c: Operating system

Figure 2.3: RQ1c - Operating systems used in selected studies using C-like languages

1

2

1

2 1

1

5

1

1

2
1
3

1

1

10

100

1000

10 100 1000

R
A

M
 (

kb
)

Non-volatile memory/ROM (kb)

RQ2b/c: Memory

indicates # of devices
Median RAM = 10 kb
Median ROM = 132kb

(a) RQ2b/c - Memory

AVR
MSP430

ARM

8051

Others

Others

0

5

10

15

8-Bit 16-Bit 32-Bit
N

u
m

b
er

 o
f

p
ap

er
s

RQ2d: Processor family

Primary Others

(b) RQ2d - Processor families by bit width

Figure 2.4: Hardware outcomes

2.4.6 Processors

Only 45% (13 out of 29) of the CPUs that were identified were 32-bit processors: 9 were

8-bit and 7 were 16-bit. The fact that 55% (16 out of 29 studies) used 8- and 16-bit devices

indicates that coroutines are applicable to very constrained platforms.

It is also notable that within the 8-bit segment, all but one were of the megaAVR

family; among 16-bit processors 5 out of 7 used the TI MSP430 architecture. Within the

32-bit segment the picture was less clear-cut: just over half used the ARM architecture.

These types of microcontrollers are widespread in IoT and embedded systems [9]. These

results are summarised in Figure 2.4b. Full details are in the supplementary materials.

2.4.7 Use cases

The four most common use cases were concurrency (49% of papers), network commu-

nication (43%), sensor readings (26%) and data flow (20%), as illustrated in Figure 2.5a.

It is notable that all four of these use cases are often considered to present difficulty or

complexity for programmers. (See the supplementary materials for details of use cases

and their classifications.)

32 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

6

7

9

15

17

Others

Data flow

Sensor readings

Network communication

Concurrency

RQ3: Use cases

(a) RQ3 - Use cases

2

5

8

9

12

Portability

Other

Efficiency

Scheduling

Code style and simplicity

RQ4: Intended benefits

(b) RQ4 - Intended benefits

Figure 2.5: Usage outcomes

These use cases are common across many platforms, and not just resource-constrained

devices. Syntax designed for desktop systems is likely to handle these cases relatively

well. Contrasting these use cases with those found in desktop development, we observe

that user interfaces (a strong driver of coroutines in desktop and portable system de-

velopment) are absent and that sensor readings (a rare requirement in desktop systems)

are prominent.

2.4.8 Intended benefits

Of the intended benefits the most common classifications were (i) code style and sim-

plicity (34%), (ii) scheduling (26%) and (iii) efficiency (23%), as summarized in Figure

2.5b. (The supplementary materials contain details of the classifications of benefits.)

We have observed that split-phase programming leads to error-prone, hard-to-maintain

code; it is therefore unsurprising that code style and simplicity leads the list.

However, the popularity of scheduling as a benefit of a coroutine implementation

is not mirrored in mainstream desktop programming, and it may therefore not figure

high in the priorities of the C++ language specification process. Coroutines provide a

tool with which to build schedulers, and many embedded software applications must

provide their own scheduler, either because of the special requirements of the device

[79, 140, 180] or to minimize code size by providing only the minimum requirements.

The high incidence of efficiency as an intended benefit also reflects the latency con-

straints of embedded systems.

Chapter 2 33

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.4.9 Application programming interface

Of the 35 studies analysed, 21 discussed an implementation of coroutines: the question-

naire results for RQ5 are listed in the supplementary materials.

The API questions (RQ5b-e) could not in all cases be answered directly from inspec-

tion of the papers. In these cases, unless the answer could be found in the supplemen-

tary materials, linked source code, or was well-known to the researchers, the question

was answered ’Unknown’. In some cases the source code referenced by the paper was

no longer available.

90%

62%
52%

0%

20%

40%

60%

80%

100%

Control flow
managed

Local variables'
state

Stackless

P
er

ce
n

ta
ge

 o
f

p
ap

er
s

RQ5: API characteristics

(a) RQ5 - API characteristics

8

4

8

0

2

4

6

8

10

Heap Stack Static

N
u

m
b

er
 o

f
p

ap
er

s

RQ5e: Allocation of coroutine state

(b) RQ5e - Allocation of coroutine state

Figure 2.6: API outcomes

Figure 2.6a summarises the basic API characteristics for those studies which ex-

amined an implementation of coroutines. The overwhelming majority (89%) of imple-

mentations managed control flow on behalf of the programmer; more than two-thirds

managed the state of local variables. The outcome with regard to stackless and stackful

implementations was more balanced: 11 stackless versus 8 stackful.

We have observed that managed, deterministic use of memory is a common require-

ment for embedded systems: in Figure 2.6b we see that over a third of papers (8 of 21)

supported the allocation of coroutine state on the heap, which is not appropriate for

embedded systems, and 4 used the stack, which may not be appropriate if the state size

is large or of a size unknown at compile time.

2.5 Analysis and discussion

2.5.1 Analysis of API design

Figure 2.7 examines the API characteristics of the various implementations, grouped into

(i) native C/C++, (ii) non-native C and (iii) languages other than C, where non-native C

34 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Managed

control flow

Managed

variable state

Stackless

Native C/C++ Non-native C Other

RQ5b/c/d: API characteristics by language

0%

100
%

Stackful Stackless

33%

67%

Stackful Stackless

82%

18%

Stackful Stackless

0%

100
%

Automatic Manual

100
%

0%

Automatic Manual

91%

9%

Automatic Manual

86%

14%

Automatic Manual

100
%

Automatic Manual

91%

9%

Automatic Manual

Figure 2.7: RQ5b/c/d - API characteristics by language

refers to language extensions, transpilers, or tools that otherwise extend the C compiler

tool chain. The results for languages other than C and for non-native C implementations

are interesting because they may reveal what the language designers and implementers

considered to be desirable characteristics. (In each case the percentage shown is a frac-

tion of the unique implementations inspected; it is not necessarily representative of the

population at large.)

This chapter has suggested that the management of control flow on behalf of the

programmer (RQ5b) is a desirable feature of programming languages on resource-

constrained platforms. The results in Figure 2.7 appear to support this claim. All non-

native C and almost all non-C implementations provide support for managing control

flow. (The only exception is found in the work of Motika and von Hanxleden (2015)

[126], a pattern whose code is primarily designed as a target for code generators.) Ad-

ditionally, 86% of the native C cases were able to provide this feature, primarily through

macros.

The management of the state of a coroutine’s local variables (RQ5c) has also been

proposed as a desirable characteristic. Once again, all non-native C and almost all non-C

implementations provide support for this feature. None of the native C implementations

Chapter 2 35

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Static/Global

Stack

RQ5e: How is the coroutine state allocated?

Motika 2015,

St-Amour 2010,

Park 2015,

Cohen 2007,

Kalebe 2017

Andersen 2017,

Andersen 2016
Schimpf 2012

Strube 2010

Karpinski 2007, Fritzsche 2010,

Inam 2011, Khezri 2008,

 Boers 2010, Bergel 2011,

Glistvain 2010

Susilo 2009,

Jahier 2016,

Niebert 2014,

Evers 2007

Heap

Unknown

Figure 2.8: RQ5e - How is the coroutine state allocated?

were able to provide it, as a consequence of the language’s limitations.

None of the native C implementations and only one of the non-native C implemen-

tations were stackful. By contrast, 82% of the non-C implementations were stackful. It

could be argued that this split indicates that, while stackfulness is a desirable feature

for language designers in general, it is less desirable for C developers. Our interpre-

tation is that, because of the perceived costs of stackfulness in terms of memory and

speed, there remains strong support in the C/C++ developer community for stackless

coroutines [49].

The allocation of coroutine state is an important feature of the design with regard to

its effect on resource-constrained platforms, since it must be controlled carefully if the

design is to offer predictable and safe behaviour. Of the 16 implementations where we

were able to determine the allocation method, nearly a third used an object or structure

to store the state. 44% (7 instances) required that the state be allocated in static (global)

memory; 1 used only the stack, and 3 offered flexibility as regards the location.

Five studies ([126, 173, 140, 34, 87]) required that the state be stored on the heap (i.e.

in dynamically allocated memory space). Of these, 3 were in languages that required

such a strategy (Java, Scheme and Lua) and only two ([34, 87]) used a C-based language

(NesC or C++). In the case of [34], each coroutine stack of 256 bytes was allocated

on the heap. However, the total number of coroutine stacks required was known in

advance, and a safe allocation strategy was therefore feasible. Figure 2.8 summarises

these memory strategies.

36 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Given that mainstream C++ programming supports environments where heap mem-

ory is generally plentiful, any standard implementation of coroutines in C++ must sup-

port dynamic memory allocation for coroutine state storage. However, the special case

of resource-constrained platforms, including embedded systems, requires that the de-

veloper have the option to use stack memory or global static memory, and that they have

full control over which is used on each instantiation. An implementation that supports

all three strategies, and allows control over which is used, is therefore desirable.

2.5.2 Research gaps

Focussing specifically on the studies that describe an implementation, we have analysed

the issues that were addressed by the research in order to identify gaps, as shown in

Table 2.3. Most studies considered the memory and computational cost of the coroutine

system, whereas fewer authors addressed interoperability with legacy code. The issue

of predictable memory usage by coroutines is particularly important for embedded sys-

tems; although 10 of the 21 papers offered a solution, none of these solutions will apply

to a C++ native solution which also handles local variable state.

We conclude that a research gap remains with regard to the study of standard C++

as an appropriate language for the development of asynchronous programs on resource-

constrained devices.

2.5.3 Repeatability of search results

We found that when the IEEE Xplore database search was repeated 11 months after the

original search, the new results were not, as they were expected to be, a superset of

the original results. Of the original 144 papers found in October 2017, only 87 (60%)

appeared in the search results in September 2018. Further, of the 32 new results, only

16 were papers published since 2015: the other half were published before 2015. We

conclude that the search methodology of the IEEE database has changed in the interim,

and this raises a question over the use of this database for systematic surveys. This

problem was not found for the other on-line databases used.

Chapter 2 37

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 2.3: Summary of research gaps

Paper

La
ng

ua
ge

w
as

C
/C

++

Pr
ed

ic
ta

bl
e

m
em

or
y

us
ag

e

In
te

gr
at

es
w

it
h

ot
he

r
la

ng
ua

ge
fe

at
ur

es

M
ai

nt
ai

na
bi

lit
y

&
re

ad
ab

ili
ty

La
bo

ur
co

st
of

im
pl

em
en

ti
ng

th
e

in
fr

as
tr

uc
tu

re

M
em

or
y

an
d

pr
oc

es
si

ng
co

st
of

in
fr

as
tr

uc
tu

re

C
on

ti
nu

ed
us

e
of

le
ga

cy
co

de

Cohen et al. 2007 ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Evers et al. 2007 ✓ ✓✓
Karpinski et al.
2007

✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

Kumar et al. 2007 ✓✓ ✓ ✓✓ ✓✓
Khezri et al. 2008 ✓✓ ✓ ✓✓
Susilo et al. 2009 ✓✓ ✓✓
Boers et al. 2010 ✓✓ ✓ ✓✓
Fritzsche et al.
2010

✓✓ ✓✓

Glistvain et al.
2010

✓✓ ✓✓ ✓✓ ✓✓

St-Amour et al.
2010

✓✓ ✓✓ ✓✓ ✓✓

Strube et al. 2010 ✓✓ ✓✓ ✓
Bergel et al. 2011 ✓✓ ✓✓ ✓✓
Inam et al. 2011 ✓✓ ✓ ✓✓ ✓
Schimpf 2012 ✓✓ ✓ ✓ ✓✓ ✓✓ ✓
Niebert et al.
2014

✓✓ ✓✓ ✓✓

Motika et al. 2015 ✓✓ ✓ ✓✓
Park et al. 2015 ✓✓ ✓✓ ✓✓ ✓✓ ✓
Andersen et al.
2016

✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

Jahier 2016 ✓✓ ✓✓ ✓✓ ✓✓
Andersen et al.
2017

✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

Kalebe et al. 2017 ✓✓ ✓✓ ✓✓ ✓✓
Ideal outcome ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

Key: ✓✓- The issue is considered and resolved. ✓- The issue is addressed but not resolved.
Blank – The issue is not present.

2.5.4 Discussion

The majority of selected papers used the C programming language; while the coroutines

proposal [81] is for C++, the use of C++ for these projects would not necessarily require

38 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

significant programming changes.

Over a quarter of the papers used the Contiki [47] operating system, which provides

coroutine support through Protothreads [49], which rely on Duff’s device. Given the

problems, discussed in Section 2.2.3, that are associated with using this device, this

common use of Protothreads indicates a widespread need for the facilities provided by

a coroutine-like solution.

More than half (55%) of the studies used 16-bit or 8-bit processors. Support for these

platforms on leading C++ compilers is currently limited; this will need to be addressed

before C++ coroutines can be applied to the smallest platforms.

As expected [9, 168], code style or simplicity was the leading desired benefit of

the language feature implementation. The second most common benefit was a basis

for a scheduler: this is not commonly a perceived benefit of coroutines on mainstream

platforms, and this difference warrants further study.

The coding of three common use cases - communications, data-flow and sensor

readings - present particular difficulties on constrained-resource devices, because these

problems require the use of split-phase programming. Each of these problems could be

addressed using programming patterns enabled by coroutines: async/await and gener-

ator. These patterns would enable a direct programming style that is likely to reduce

development effort and the incidence of errors. The high incidence of these use cases in

our survey indicate that they represent an important and worthwhile target for further

study.

Our survey indicates that multiple studies exist that require a coroutine-based fa-

cility for concurrent programming on resource-constrained devices, establishing that a

demand exists at this end of the spectrum, not merely on high performance platforms.

We noted in Section 2.5.1 that, where the language allowed fine-tuned management

of memory allocation, dynamic allocation of memory was avoided for coroutine state

and stack. We can conclude that avoiding heap memory is a requirement for the small

devices that formed the bulk of the target platforms.

While 82% of non-C implementations are stackful, only one of the C implementa-

tions is stackful. We observe that when a language is designed from the ground up

to support coroutines, then a stackful implementation is common. On the other hand,

such a feature is difficult in C, while preserving both backward compatibility and ac-

Chapter 2 39

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ceptable memory usage. We conclude that a stackless implementation is important to C

programmers, and this reflects the scarcity of memory resources on the platforms under

consideration.

None of the works studied utilize a coroutine implementation for C or C++ that

provides managed variable state and that is designed specifically for an event-driven

environment on a resource-constrained platform. We therefore conclude that this repre-

sents a significant research gap, and that further work towards such an implementation

is warranted.

Although this survey found 20 papers that used C and only 2 that used C++, there

is evidence that a migration from C to C++ on resource-constrained devices is occurring

[9]. Developers may also be motivated to make the switch from C to C++ to gain ac-

cess to a clean implementation of coroutines to support the async/await and generator

patterns and lightweight scheduling, as provided by the proposed C++20 standard [81].

However, this will require language and library support appropriate for resourced con-

strained devices. Implementers should consider ways to avoid two of the C++ features

considered dangerous by Goldthwaite [68]: dynamic memory allocation and exceptions.

It would be particularly useful to establish whether the proposed C++ coroutine imple-

mentations can offer deterministic memory utilisation, known at compile time: this

would make it possible to avoid dynamic memory allocation.

We have seen that various specialized solutions have been applied to the problem

of providing direct programming style for split-phase code on embedded systems, in-

cluding Protothreads, precompilers, language extensions, post-compilation optimization

phases and non-portable code libraries. It is clear that, on the one hand, coroutines of-

fer many benefits for software development on these devices but, on the other hand,

the implementation is challenging. By contrast, implementing coroutines in C++ on

mainstream enterprise systems is relatively straightforward, because there are resources

to spare, including memory, operating system facilities and standard libraries. While

adapting coroutines for resource constrained devices may be more difficult, it offers

greater benefits, because the use cases are such a good fit for embedded systems, in-

cluding the low-cost, low-power scheduling, communications and sensor management

that are often needed by Internet of Things applications.

40 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.6 Conclusion and further work

2.6.1 Conclusion

This study has analysed the current academic body of work regarding the use of asyn-

chronous programming techniques in embedded systems. We conclude that there exists

significant demand for these facilities. We argue that embedded systems must be con-

sidered as part of the debate around the standardisation of coroutines in C++. The

C++ proposals provide an opportunity to improve the software engineering of embed-

ded systems but only if the language facilities are useful in an extremely resource-

constrained environment.

2.6.2 Further work

At the conclusion of this study it was determined that future work should include the

following:

• Investigate whether the N4680 proposal can provide deterministic memory use,

with full control over the detail of allocation and, if not, what changes would need

to be made to the specification. Similarly, test whether the current implementations

(Microsoft C++ 14.1 [123] and LLVM 7.0.1 [114]) provide this determinism and

control.

• Investigate whether the N4680 proposal and its implementations can work effec-

tively in an event-driven environment on a resource-constrained platform, with

and without a real-time operating system.

• Study the memory and performance costs of the current N4680 implementations

on resource-constrained platforms with minimal or no operating system support.

Consequently, all these issues were addressed in later chapters of the thesis.

2.7 Appendices

2.7.1 Inclusion and exclusion criteria

The inclusion criteria applied to the articles found by the search are listed in Table 2.4.
The corresponding exclusion criteria are listed in Table 2.5.

Chapter 2 41

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 2.4: Inclusion criteria

Code Criterion
IC1 The paper contains original research into the application of coroutines

on constrained-resource platforms.
IC1a The application of coroutines must extend to the code on the platform

itself, not merely to the simulator of the platform.

Table 2.5: Exclusion criteria

Code Criterion
EC0 The paper is a duplicate.
EC1 The paper has no digital object identifier (DOI) or International Standard

Book Number (ISBN).
EC2 The paper has no abstract.
EC3 The paper was published before 2007.
EC4 The paper is not written in English.
EC5 The complete paper was not available to the reviewers in any form

equivalent to the final version.
EC6 The paper is an earlier version of another candidate paper.
EC7 The paper is not a primary study.
EC8 The paper does not fall into any of the selected publication classes.

2.7.2 Hardware classes

The hardware platform classes used for RQ2a are listed in Table 2.6.

Table 2.6: Hardware classes

Class Data Code

C0 << 10KiB << 100KiB
C1 ≈ 10KiB ≈ 100KiB
C2 ≈ 50KiB ≈ 250KiB
< 1MB < 1000KiB N/A
? Unknown Unknown

42 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2.7.3 List of papers reviewed

The full list of papers reviewed for the questionnaire is in Table 2.7. The questionnaire
results can be found in full in Section 2.7.4.

Table 2.7: Full list of reviewed papers

Code Author(s) Year Title

MOTIKA Motika & von
Hanxleden

2015 Light-weight Synchronous Java (SJL):
An approach for programming deter-
ministic reactive systems with Java

SUSILO Susilo et al. 2009 A miniaturized wireless control plat-
form for robotic capsular endoscopy
using advanced pseudokernel ap-
proach

ANDERSEN17 Andersen et al. 2017 Enabling synergy in IoT: Platform to
service and beyond

YU Yu et al. 2008 A Survey of Studying on Task
Scheduling Mechanism for TinyOS

CLARK Clark 2009 Powering intelligent instruments with
Lua scripting

ELSTS Elsts et al. 2017 Internet of Things for smart homes:
Lessons learned from the SPHERE
case study

LOHMANN Lohmann et al. 2012 The Aspect-Aware Design and Im-
plementation of the CiAO Operating-
System Family

JAHIER Jahier 2016 RDBG: A Reactive Programs Extensi-
ble Debugger

ST-AMOUR St-Amour & Fee-
ley

2010 PICOBIT: A Compact Scheme System
for Microcontrollers

NOMAN Noman et al. 2017 From threads to events: Adapting a
lightweight middleware for Contiki
OS

PARK Park et al. 2015 Lua-Based Virtual Machine Platform
for Spacecraft On-Board Control Soft-
ware

ANDERSEN16 Andersen et al. 2016 System Design for a Synergistic, Low
Power Mote/BLE Embedded Plat-
form

KARPINSKI Karpinski &
Cahill

2007 High-Level Application Development
is Realistic for Wireless Sensor Net-
works

Chapter 2 43

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

SCHIMPF Schimpf 2012 Modified Protothreads for Embedded
Systems

FRITZSCHE Fritzsche &
Siemers

2010 Scheduling of time enhanced c (TEC)

ANDALAM Andalam et al. 2014 A Predictable Framework for Safety-
Critical Embedded Systems

HANXLEDEN von Hanxleden 2009 SyncCharts in C: A Proposal for Light-
weight, Deterministic Concurrency

LIU Liu et al. 2011 Coroutine-Based Synthesis of Efficient
Embedded Software From SystemC
Models

KUMAR Kumar et al. 2007 Efficient Software Implementation of
Embedded Communication Protocol
Controllers Using Asynchronous Soft-
ware Thread Integration with Time-
and Space-efficient Procedure Calls

INAM Inam et al. 2011 Support for hierarchical scheduling in
FreeRTOS

COHEN Cohen et al. 2007 Using Coroutines for RPC in Sensor
Networks

KHEZRI Khezri et al. 2008 Simplifying Concurrent Programming
of Networked Embedded Systems

BOERS Boers et al. 2010 Developing wireless sensor network
applications in a virtual environment

NIEBERT Niebert & Caralp 2014 Cellular Programming
STRUBE Strube et al. 2010 Dynamic operator replacement in sen-

sor networks
OLDEWURTEL Oldewurtel et al. 2009 The RUNES Architecture for Recon-

figurable Embedded and Sensor Net-
works

OLDEWURTEL Oldewurtel et al. 2009 The RUNES Architecture for Recon-
figurable Embedded and Sensor Net-
works

KUGLER Kugler et al. 2013 Shimmer, Cooja and Contiki: A new
toolset for the simulation of on-node
signal processing algorithms

RIEDEL Riedel et al. 2010 Using web service gateways and code
generation for sustainable IoT system
development

BERGEL Bergel et al. 2011 FlowTalk: Language Support for
Long-Latency Operations in Embed-
ded Devices

44 Chapter 2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ALVIRA Alvira & Barton 2013 Small and Inexpensive Single-Board
Computer for Autonomous Sailboat
Control

DURMAZ Durmaz et al. 2017 Modelling contiki-based IoT systems
EVERS Evers et al. 2007 SensorScheme: Supply chain manage-

ment automation using Wireless Sen-
sor Networks

JAASKELAINEN Jääskeläinen et
al.

2008 Reducing Context Switch Overhead
with Compiler-Assisted Threading

2.7.4 Questionnaire content

The full results of the questionnaire are listed below in Table 2.8 (RQ1 & RQ2), Table 2.9
(RQ3 & RQ4) and Table 2.10 (RQ5).

Chapter 2 45

A
synchronous

Program
m

ing
U

sing
C

++
C

oroutines
in

Em
bedded

&
Edge

C
om

puting

Table 2.8: Questionnaire results - RQ1 Software Platform & RQ2 Hardware Platform

Code RQ1a RQ1b Coroutine
implementation

RQ1c RQ2a RQ2b RQ2c RQ2d RQ2e RQ2f

Pr
og

ra
m

m
in

g
La

ng
ua

ge

N
at

iv
e

M
ac

ro
s

Li
br

ar
y

O
th

er

O
pe

ra
ti

ng
sy

st
em

H
ar

dw
ar

e
cl

as
s

N
on

-v
ol

at
ile

m
em

or
y

(k
b)

R
A

M
(k

b)

Pr
oc

es
so

r
fa

m
ily

C
PU

bi
ts

In
st

ru
ct

io
n

se
t

MOTIKA Java ✓ 13 JVM C2 256 64 ARM7 32 ARMv4T
SUSILO C ✓ Unique C1 128 8 8051 8 8051
ANDERSEN17 Lua ✓ ✓ 1 TinyOS C2 512 64 ARM M4 32 Armv7E-M
YU nesC ✓ 12 TinyOS C0 132 4 megaAVR 8 AtAVR
CLARK Lua ✓ Not specified < 1MB 512 256 Moto 68332 32 Moto 68020
ELSTS C ✓ Contiki C1 128 20 ARM M3 32 ARMv7-M
LOHMANN AC++ Generated N/A N/A N/A TriCore 32 TriCore
JAHIER Oca 9,14 Generated N/A N/A N/A N/A 0 N/A
ST-AMOUR Sch ✓ PICOBIT C0 32.25 1.5 PIC18 16 PIC17
NOMAN C ✓ ✓ Contiki C1 256 16 MSP430 16 MSP430
PARK Lua ✓ 7 RTEMS 4.10 < 1MB Unknown 512 SPARC V8 32 SPARC V8e
ANDERSEN16 Lua ✓ ✓ TinyOS C2 512 64 ARM M4 32 Armv7E-M
KARPINSKI SOL 14 TinyOS C0 132 4 megaAVR 8 AtAVR
SCHIMPF C ✓ Unique C0 33 2 megaAVR 8 AtAVR
FRITZSCHE C 11 Unique N/A N/A N/A N/A 0 N/A
ANDALAM C ✓ ✓ ✓ Unique N/A N/A N/A Microblaze 32 Microblaze
HANXLEDEN C ✓ ✓ ✓ Unique N/A N/A N/A N/A 0 N/A

46
C

hapter
2

A
synchronous

Program
m

ing
U

sing
C

++
C

oroutines
in

Em
bedded

&
Edge

C
om

puting

LIU C ✓ ✓ Portable N/A N/A N/A N/A 0 N/A
KUMAR C 2 Generated C0 132 4 megaAVR 8 AtAVR
INAM C ✓ ✓ FreeRTOS C2 512 64 AVR32 32 AtAVR32
COHEN nesC ✓ 12 TinyOS C0 132 4 megaAVR 8 AtAVR
KHEZRI nesC ✓ 10 TinyOS C0 N/A N/A megaAVR 8 AtAVR
BOERS C ✓ ✓ PicOS C0 64 4 eCog1 16 eCog16
NIEBERT C 4 Not specified C0 ? 4 N/A 0 N/A
STRUBE C ✓ ✓ Contiki C0 64 10 MSP430 16 MSP430
OLDEWURTEL C ✓ ✓ FreeRTOS C2 512 32 ARM7 32 ARMv4T
OLDEWURTEL C Contiki C1 64 10 MSP430 16 MSP430
KUGLER C ✓ ✓ Contiki C1 48 10 MSP430 16 MSP430
RIEDEL C ✓ ✓ Contiki C2 192 96 JN5139 32 JN5139
BERGEL FT ✓ 3 TinyOS C0 132 4 megaAVR 8 AtAVR
ALVIRA C ✓ ✓ Contiki C2 208 96 ARM7 32 ARMv4T
DURMAZ C ✓ ✓ Contiki C0 N/A N/A N/A 0 N/A
EVERS Sch 9 TinyOS;Contiki C1 48 10 MSP430 16 MSP430
JAASKELAINEN C 2 Unique ? N/A N/A N/A 0 N/A

Abbreviations:
RQ1a (Language): AC++:AspectC++/C++, FT:FlowTalk, Oca:Ocaml, Sch:Scheme
RQ1b (Other): 1:Closures, 2:Compiler phase, 3:Continuations, 4:Language extensions, 7:Manipulation of hosting API (in C),

9:New language, 10:Non-portable assembly language, 11:Precompiler, 12:setjmp/longjmp, 13:State machine
driven by switch statement, 14:Transpiler

RQ2a (Hardware class): See Table 2.6 for definitions.
RQ2d (Processor family): ARM M3:ARM Cortex-M3, ARM M4:ARM Cortex-M4, Moto 68332:Motorola 68332
RQ2f (Instruction set): AtAVR:Atmel AVR, AtAVR32:Atmel AVR32, eCog16:eCog 16-bit, Moto 68020:Motorola 68020

C
hapter

2
47

A
synchronous

Program
m

ing
U

sing
C

++
C

oroutines
in

Em
bedded

&
Edge

C
om

puting

Table 2.9: Questionnaire results - RQ3 & 4 Use case & Intended Benefits

Code RQ3: Use cases RQ4: Intended benefits

MOTIKA Producer-Consumer; Deterministic cooperative concurrency;Efficient concur-
rency in Java

SUSILO Cooperative multitasking;Producer-consumer Low CPU and memory overhead for hard RT system
ANDERSEN17 Asynchronous communications; Programming ergonomics
YU Sensor readings Sequential coding style
CLARK Multitasking Run multiple scripts
ELSTS Asynchronous communications; Simplicity of coding
LOHMANN Continuations;Interrupt handlers Not specified
JAHIER To execute debugger and debuggee code side by side as

coroutines
An efficient way to implement debugger coroutining by
using continuations

ST-AMOUR Multithreading Implement continuations
NOMAN Communications Event based interoperability middleware
PARK Cooperative multitasking with preemptive override Mapping of On-Board Control Procedures (OBCP) to Lua

coroutines
ANDERSEN16 i2c request ”Reduce application complexity by allowing for pseudo-

synchronous programming with coroutines”
KARPINSKI Sensor readings; Asynchronous communications; ”Hides the split-phase program execution scheme and pro-

vides programmers with a fine-grained concurrency model
to structure event handling”

SCHIMPF Concurrent programming Prioritised scheduling with protothreads
FRITZSCHE Emulating preemption using deconstruction of tasks into

coroutines
Scheduling in a real-time system

48
C

hapter
2

A
synchronous

Program
m

ing
U

sing
C

++
C

oroutines
in

Em
bedded

&
Edge

C
om

puting

ANDALAM Producer-Consumer;Synchronous communications;motor
control;multithreading

Performant deterministic concurrency in C;Simplify
WCET analysis

HANXLEDEN Producer-Consumer-Observer;Asynchronous communica-
tions

Embed deterministic reactive flow into C

LIU Asynchronous communications Operating system portability (via pure C pro-
tothreads);Lower memory consumption;Faster execution

KUMAR Asynchronous communications;Implementing network
protocol controllers in software

Lower memory consumption;Faster execution;Efficient use
of idle time

INAM Not specified Not specified
COHEN RPC;Communications on WSN Sequential coding style
KHEZRI Lengthy tasks e.g. calculation Resumable tasks in TinyOS, replacing fragmented tasks
BOERS Communications State machine implementation with strong similarities be-

tween deliverable and simulated
NIEBERT Multitasking Simple concurrent programming
STRUBE Sensor readings Serialisable coroutine state
OLDEWURTEL Routing;data aggregation;DSP Implementation of portable middleware
OLDEWURTEL Sensor readings Implementation of portable middleware
KUGLER Streaming;data preprocessing;producer-consumer Easy simulation of of wearable nodes
RIEDEL Concurrent programming Execute automata for web services at the same time as

communications channels
BERGEL Sensor readings;actuator setting Sequential coding style
ALVIRA Concurrent I/O Concurrent control of multiple actuators and of communi-

cations
DURMAZ Concurrent cooperative tasks:sensor reading, aggregation,

communications
Simplification of event-driven programming by reducing
explicit state machines

C
hapter

2
49

A
synchronous

Program
m

ing
U

sing
C

++
C

oroutines
in

Em
bedded

&
Edge

C
om

puting

EVERS Blocking I/O on event-driven platform To implement multiple threads of control; to enable block-
ing I/O calls

JAASKELAINEN Concurrent programming Optimised task-switching

50
C

hapter
2

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 2.10: Questionnaire results - RQ5 What is the API of the coroutine?

Code R
Q

5a
:I

s
th

er
e

an
im

pl
em

en
ta

ti
on

of
co

ro
ut

in
es

?

R
Q

5b
:I

s
th

e
co

nt
ro

lfl
ow

m
an

ag
ed

on
be

ha
lf

of
th

e
de

ve
lo

pe
r?

R
Q

5c
:I

s
th

e
st

at
e

of
lo

ca
lv

ar
ia

bl
es

au
to

m
at

ic
al

ly
m

an
ag

ed
?

R
Q

5d
:I

s
th

e
co

ro
ut

in
e

im
pl

em
en

ta
ti

on
st

ac
kl

es
s

or
st

ac
kf

ul
l?

R
Q

5e
:H

ow
is

th
e

co
ro

ut
in

e
st

at
e

al
lo

ca
te

d?

MOTIKA ✓ Stackless Data member;Heap
SUSILO ✓ Stackless Unknown

ANDERSEN17 ✓ ✓ ✓ Stackful Data member;Heap or stack
JAHIER ✓ ✓ ✓ Unknown Unknown

ST-AMOUR ✓ ✓ ✓ Stackful Heap
PARK ✓ ✓ ✓ Stackful Data member;Heap

ANDERSEN16 ✓ ✓ ✓ Stackful Data member;Heap or stack
KARPINSKI ✓ ✓ ✓ Stackless Data member;Static

SCHIMPF ✓ ✓ Stackless Stack
FRITZSCHE ✓ ✓ ✓ Stackless Static

KUMAR ✓ ✓ ✓ Stackless N/A
INAM ✓ ✓ Stackless Static

COHEN ✓ ✓ ✓ Stackful Heap
KHEZRI ✓ ✓ ✓ Stackful Static
BOERS ✓ ✓ Stackless Static

NIEBERT ✓ ✓ ✓ Unknown Unknown
STRUBE ✓ ✓ Stackless Heap, stack or static
BERGEL ✓ ✓ ✓ Stackful Static
EVERS ✓ ✓ ✓ Stackful Unknown

Chapter 2 51

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

52 Chapter 2

Chapter 3

C++20 Coroutines on

Microcontrollers

This chapter is an expanded and reformatted version of the following paper in the IEEE

Journal IEEE Embedded Systems Letters.

B. Belson, W. Xiang, J. Holdsworth and B. Philippa, ”C++20 Coroutines on

Microcontrollers—What We Learned,” in IEEE Embedded Systems Letters, vol.

13, no. 1, pp. 9-12, March 2021, doi: 10.1109/LES.2020.2973397.

The paper was published in February 2020, after the March 2019 final agreement

regarding the inclusion of coroutines in C++201, but before the May 2020 release of

coroutine support in GCC2. The research underlying the paper was carried out between

July 2018 and May 2019 and the paper was written between April 2019 and September

2019. The paper therefore offered an opportunity to comment on issues that might affect

the implementations of coroutines in C++ tool-chains, but not to influence the standard

itself.

Appendices have been added that provide more detail with regard to (i) source

code; (ii) the methodology applied to the support library development; (iii) experimental

equipment; and (iv) data pipeline.

1https://github.com/cplusplus/draft/blob/main/papers/n4811.md
2https://gcc.gnu.org/gcc-10/changes.html

53

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Chapter Abstract

Coroutines were added to C++ as part of the C++20 standard. Coroutines provide

native language support for asynchronous operations. This study evaluates the C++

coroutine specification from the perspective of embedded systems developers. We find

that the proposed language features are generally beneficial but that memory man-

agement of the coroutine state needs to be improved. Our experiments on an ARM

Cortex-M4 microcontroller evaluate the time and memory costs of coroutines in

comparison with alternatives, and we show that context switching with coroutines

is significantly faster than with thread-based real time operating systems. Further-

more, we analysed the impact of these language features on prototypical IoT sensor

software. We find that the proposed language enhancements potentially bring signif-

icant benefits to programming in C++ for embedded computers, but that the imple-

mentation imposes constraints that may prevent its widespread acceptance among

the embedded development community.

3.1 Introduction

Coroutines are a programming language mechanism to enable a function to be sus-

pended and resumed. They assist with asynchronous programming, for example, where

the program is waiting on an external event. The programmer can simplify their code

by combining a request and response into the same coroutine. Coroutines were orig-

inally proposed in 1963 [36] but did not see widespread adoption in the decades that

followed. However, recent times have brought about a revival in interest [40, 125, 42,

144]. Coroutine features are now present in many mainstream programming languages

including C# [136], Lua [41, 7], JavaScript and Python.

C and C++, the dominant languages for embedded systems programming, have until

recently lacked native support for cooperative multitasking. Many attempts have been

made to use coroutines in C and C++ for cooperative multitasking or as a lightweight

thread replacement [17]. However, the majority of these have been based on pre-

processor macros and Duff’s device3, including Protothreads [49] and FreeRTOS [15].

These implementations do not manage the state of local variables during coroutine sus-

3https://www.lysator.liu.se/c/duffs-device.html

54 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

pension, and Duff’s device is arguably inappropriate for production-quality code. Nev-

ertheless, the fact that these methods have been used so often is an indicator of how

useful coroutines could be if they had first-class language support.

Coroutines were added to C++ in the C++20 standard [82]. Thus far, most analysis

of C++ coroutines has focussed on high performance computing [85]. Relatively little

attention has been paid to embedded systems [17], despite coroutine features from other

languages being used in this space [45, 156].

We argue that embedded software is becoming more important with the emergence

of the Internet of Things (IoT). Embedded devices that are connected to the internet must

face a wider range of security threats, and methods to reduce the occurance of bugs are

important if IoT software is to be widely accepted. IoT programmers are accustomed

to using asynchronous language features on server platforms; they may expect these

features to be present also on the sensor platforms that communicate with these servers.

The new C++ language features provide such an opportunity.

Our three main contributions are as follows. Firstly, we analyzed the appropriateness

of the C++ coroutines Technical Specification for embedded systems, which is an appli-

cation space that does not seem to have previously been considered, and we experimen-

tally assessed the viability of the proposal by implementing it on an ARM Cortex-M4

microcontroller with 128 kb of memory. Secondly, we conducted benchmarks to assess

the time and memory costs of coroutine features in comparison to other approaches.

Finally, we analyzed the effect of coroutines on the complexity and length of realistic

programs by building a prototypical IoT device, both with and without coroutines. We

find that coroutines are viable on memory-constrained embedded platforms, although

there are some issues with the design of the Technical Specification that might affect

their acceptance within the community.

3.2 Analysis of the appropriateness of the coroutine standard

for microcontrollers

3.2.1 New Language Features

A coroutine can be created in C++20 code by invoking a new keyword co await, as

demonstrated in Listing 3.1. A function someTask() calls result = co await adc read();.

Chapter 3 55

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1 resumable someTask () {
2 co await a d c c a l i b r a t e () ;

3 u i n t 8 t r e s u l t = co await adc read () ;

4 process data (r e s u l t) ;

5 }

Listing 3.1: Using co await to read a sensor in C++

adc read() immediately returns an awaitable object, such as a future<>, whose payload

will be the output data. This triggers someTask() to suspend itself. Another execution

context, such as a thread or an interrupt service routine (ISR), uses the awaitable object

to signal the scheduler that it is complete; the scheduler resumes someTask() at the point

where it was suspended, with its state, including parameters and local variables, fully

restored.

Because someTask() used the co await facility, the standard recognises it as a corou-

tine: the compiler generates the code for a coroutine object, exposed to the application

opaquely as a typeless handle. The code includes a finite state machine (FSM) which

implements the split-phase code. someTask() is replaced by a number of small functions,

one for each state: their invocation, their shared data and the machine state is managed

by the coroutine, in cooperation with the scheduler.

These features have been implemented in three C++ compilers: Microsoft C++ (since

2016), LLVM/clang (2017) and EDG (2015); a partial implementation is available as part

of GCC (as of February 2019) [172]. The Microsoft implementation has been used by

“thousands of software developers in various companies” and “software built using

coroutines has been deployed on more than 400 million devices.” [132]

There has been considerable discussion of the proposed standard: it has not been

universally accepted in the C++ language developer community [154, 172], and an in-

cremental approach that incorporates other proposals is now likely [131].

We note that coroutines, as a mechanism to control the flow of execution, are often

described as a way to achieve concurrent programming; however, they are better con-

sidered as “a first step towards concurrency” [25]. In this chapter we follow the usage

of the C++20 standard; more precise terminology can be found in [25].

56 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.2.2 Coroutine Stack Frame

While a coroutine is suspended, its execution state, local variables and parameters are

all stored in a data frame assigned by the compiler, the coroutine stack frame (CSF). The

proposed standard specifies that the CSF is, by default, allocated dynamically on the

heap.

The standard provides for an alternative allocation policy, which requires modifica-

tion of the library classes, and is not appropriate for end-users - application developers

- since it adds significant complexity to the use of coroutines, and repeatedly exposes

implementation details.

Furthermore, the size of the memory required for the CSF is not known at compile

time, since it may be amended by later optimiser passes. The compiler does not provide

a mechanism to access the CSF size to use for static memory allocation, as illustrated in

Figs. 3.1 and 3.2.

3.2.3 Standard Library

We chose the clang compiler for this study due to its ARM backend and the relative

maturity of its coroutine implementation. However, the existing header files were not

suitable for memory-constrained microcontrollers. Specifically, the C++20 coroutines

technical specification [82] requires a set of template classes, std::coroutine *. Widely

used implementations of these classes depend upon C++ features that are often avoided

in embedded programming, such as exceptions and dynamic memory allocation [68].

Consequently, the existing libraries do not demonstrate idiomatic embedded code and

were deemed unsuitable for our experiments.

Our analysis therefore required that we create a new C++ coroutine standard library

targeted at resource-constrained embedded platforms. It implements all the required

std::coroutine * templates, a specialised version of future<> without dependencies, and

also some features specifically created for microcontrollers. For example, a specialised

class split phase event t provides the infrastructure for the split-phase operations such as

triggering a peripheral and responding to its interrupt. Helper classes were also created

to ease and standardise the programming of GPIO ports, the I2C bus, serial ports and

timers. Our C++ library is published online under the MIT license4.

4https://github.com/bbelson2/coro-mc-wwl-code

Chapter 3 57

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Coroutine source code

Size known at compile time Size known at link time

future<int>

int

coroutine_handle<>

Coroutine
Stack
Frame

future<int> getAsync(byte a)

{

 int i = 0, j = 1;

 co_yield a ? i : j;

 ...

}

Figure 3.1: Memory layout for a resumable function.

No native way to know the size

of the CSF.

Compile Optimise Link Runtime

Size of CSF is

known

Can declare

future<int> &

decide memory layout

CSF is allocated

unless (i) an

alternative strategy

is specified & (ii) no

elision is applied

Figure 3.2: Coroutine stack frame workflow.

3.3 Experimental results

To examine the implementation, we built two sets of test applications for a microcon-

troller:

1. a microbenchmark to measure the time and memory costs of context switching;

and

2. a simple application to read multiple sensors and process the data.

Each application ran on the Freescale FRDM-K22F development board, with an ARM

Cortex-M4 32bit 120 MHz microcontroller. We used the Eclipse-hosted Kinetis Design

Studio, with the LLVM/clang tool chain (version 8.0.0). Code and memory sizes were

measured with arm-none-eabi-size.

58 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.3.1 Context Switching Microbenchmark

The time cost of switching among tasks was measured with a microbenchmark that

switched the voltage of a GPIO pin using two tasks: one task to set the pin high, and

the second to set it low. The tasks were run in a tight loop and the scheduler switched

tasks as quickly as possible. The GPIO voltage was measured using a Rohde & Schwarz

HMO2024 oscilloscope, capturing 4 GSa/s. We took advantage of the oscilloscope’s

built-in capability for measuring the frequency of square waves. The test was repeated

using two different development boards and we found no observable change in the

results.

To adapt the C++20 coroutine into a cooperative multitasking scheduler comparable

to that of an embedded real-time operating system, a scheduler class and a task class

were created. The scheduler class was responsible for selecting the next task, guided by

task priority and task readiness, and then instructing the task instance to resume. The

task class was a simple wrapper around a coroutine instance, and directly invoked the

coroutine’s coroutine handle<>::resume() method. As appropriate for a cooperative

system, each coroutine was responsible for pausing, by invoking co await.

The coroutine used in this microbenchmark was very simple, with the following

steps:

1. co await suspend always{}; // Immediately yield

2. while (true) { // Loop forever

3. // This is where the coroutine will be resumed...

4. toggle gpio pin();

5. co await suspend always{}; // Yield

6. }

It was observed that the coroutine approach took about 0.209 µs for each context

switch, which is more than an order of magnitude faster than the 2.504 µs cost using the

real-time operating system, FreeRTOS [15], and 2.589 µs under MQX Lite [135], as shown

in Figure 3.3. While the coroutine context switch is slower than that of Protothreads [49],

we consider it to be preferable: it preserves local variables, it is more readable and it

does not damage the language by restricting break statements.

The code and data sizes of the various minimal applications are compared in Fig-

ure 3.4. There is a small (8 byte) overhead for coroutine data compared to the minimal

Chapter 3 59

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.017 μs

0.209 μs

2.504 μs

2.589 μs

0.046 μs Function call

MQX Lite

FreeRTOS

Coroutines

Protothreads

0 1 2 3
Time (microseconds)

Time for context switch (μsecs)

Figure 3.3: Time cost of context switching microbenchmark. We emphasize that Pro-
tothreads does not provide a genuine context switch since it does not restore local vari-
ables. Observe that coroutines are significantly faster than the thread-based mechanisms
of FreeRTOS and MQX Lite. The time cost of a simple function call (which adds two
integers) is added for comparison.

5672 bytes

6340 bytes

11264 bytes

13128 bytesMQX Lite

FreeRTOS

Coroutines

Protothreads

0 5000 10000 15000
Code size of microbenchmark (bytes)

Code size (bytes)

140 bytes

148 bytes

144 bytes

156 bytes

0 50 100 150 200
Data size of microbenchmark (bytes)

Data size (bytes)

Figure 3.4: Memory cost of context switching microbenchmark.

Protothread implementation. The coroutine application is about 12% larger than the

Protothread version, and is 44% and 52% smaller than the RTOS versions.

3.3.2 Memory Costs

The cost of using coroutines, in terms of code size, depends on many variable factors

which impact on the optimisation phases. Our simple tests showed that there was a

fixed cost of 704 bytes caused by the inclusion of any coroutine – the infrastructure cost

– and costs associated with the creation of each resumable coroutine (4 bytes) and each

invocation (56 bytes).

3.3.3 Ergonomically Efficient Code

We analyzed the ergonomic benefits of a coroutine style by building a sample applica-

tion. We used the same scheduler and task classes as the context switching benchmark

in Section 3.3.1. For the application programmer, it became very quick and simple

to program asynchronous operations; the code could be written in a continuous, self-

contained style. The impact of coroutines on code size is shown in Table 3.1 in terms of

source lines of code (SLOC). For our sample application (which used the analog-digital

converter and the I2C bus), the coroutine source code was shorter than the code for the

60 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 3.1: Source lines of code for asynchronous tasks

Platform Library Application Total

Finite state machine - 363 363

Coroutines 196 60 256

finite state machine (256 SLOC vs 363). Excluding the generic library code from the

count, the difference was more pronounced: the coroutine version was 75% shorter.

A typical usage was shown in Listing 3.1. The three asynchronous operations are

listed sequentially in a single unit of code; the co await keyword – in cooperation with the

scheduler – provides all the asynchronous behaviour, and the developer is not required

to create a finite state machine, or to use the continuation-passing style common in

Javascript.

In our opinion, the coroutine version was simpler to read and therefore easier to

maintain, compared to the traditional finite state machine pattern or a continuation-

passing style.

3.3.4 Zero- and Negative-cost Abstractions

A common coding practise with simple low-latency asynchronous operations is to run

code in a tight wait loop: a “busy wait”. For example, when writing a byte via a serial

connection, it is simpler to wait (very briefly) for the local serial port to acknowledge

the latest byte, rather than add the complexity of a split-phase operation. Any higher

level of efficiency that might be provided by a split-phase operation without coroutines

would require extra developer effort in communicating with an ISR, coding a finite state

machine, maintaining the FSM’s state and values and coordinating the main routine’s

suspension and resumption with the scheduler.

Using a blocking method and a coroutine, this higher efficiency can be achieved

without any added code complexity for the application programmer, assuming the use

of appropriate library code that blocks only when necessary, and does so transparently.

This is a win-win outcome: it avoids the trade-off between ease-of-programming and

efficiency and results in simple source code with efficient performance.

Chapter 3 61

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.4 Discussion

3.4.1 End-user experience

Our experience was that typical asynchronous code patterns for microcontrollers can be

written easily and intelligibly in C++ using the new language features. We consider that

the experience for the application developer is positive: complex code patterns can be

expressed simply, concisely and clearly.

3.4.2 Performance cost

The performance cost is extremely low, on the order of 0.21 µs on a 120MHz device,

which is 12 times as fast as a context switch using a RTOS. In some cases the over-

all impact on performance may be positive, because the compiler is able to optimise

code patterns that are not detected when they are presented as a traditional finite state

machine.

There is a single code size cost of ≈700 bytes for the use of any coroutines, but the

incremental cost of creating and calling each coroutine is small: 4 bytes and 56 bytes,

respectively.

3.4.3 Library support

The unique execution context of microcontrollers, particularly the demands of ISRs, re-

quires specialised classes for low-level asynchronous support. Further, it is frequently

not acceptable to use many standard C++ library features, including dynamic (heap)

memory allocation, exceptions, strings and standard containers. This means that a sup-

port library for use on an embedded platform must be based on a specialised version of

the standard library.

3.4.4 Memory allocation

The ISO proposal does not facilitate fine-grained control of the memory used for the

coroutine stack frame: until such control is provided, takeup of these features among the

embedded programming community is likely to be low. Some suggestions for address-

ing this problem have already been made in the ISO forum, but none have yet addressed

the context of embedded platforms specifically. There are significant language and tool

62 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 3.2: Impact of platform considerations

Platform CPU Bit RAM Flash Compiler

width (kB) (kB) support

FRDM-K22F ARM Cortex-M4 32 128 512 GCC, LLVM

Arduino Uno ATMega328P 8 2 32 GCC‡

PIC18F24Q24 PIC18 8 4 32 –

ESP8266 Tensilica L106 32 160 4096 –

ESP32 Xtensa LX6 x2 32 520 4096 GCC†

Raspberry Pi Pico ARM Cortex-M0+ x2 32 264 2048 GCC, LLVM†
†: Experimental support only.

‡: No coroutine elision support means that all stack frame allocation is on the heap.

chain problems that prevent a simple and elegant solution to this problem under the

current proposal.

Our current workaround was a “two stage” compilation. The first compilation finds

the size of all coroutine stack frames, which are manually copied into a header file for

use in the second compilation. The second compilation was able to statically allocate

the required memory. We anticipate that such a mechanism could be built into future

compilers to provide a standard process for static allocation of coroutine state.

3.4.5 Platform considerations

The platform selected for this study - the Freescale FRDM-K22F development board -

provides a relatively powerful resource-constrained device, with an ARM Cortex-M4

32bit microcontroller (which supports the ARMv7-M Thumb instruction set) along with

128 kB of RAM and 512 kB of flash memory. Table 3.2 shows the platform characteristics

in the context of other microcontroller platforms used in edge and embedded systems.

When we consider that – in our tests – the cost of using coroutines in terms of added

code size is 704 bytes plus 56 bytes per invocation of a coroutine, it is clear that popular

8-bit platforms such as the Arduino Uno or the PIC18 family are not always appropriate

targets, with a limit of only 32 kB of code. The advantage of simpler source code may

be outweighed by the absorption of at least 2% of the available code size. Furthermore,

the amount of run-time memory used by each running (or suspended) coroutine – 148

bytes in our tests – is very significant in the context of the 2048 or 4096 byte total limit for

the Arduino Uno and the PIC18 respectively. Finally, the availability of stable compiler

Chapter 3 63

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

support for C++20 features is an absolute constraint that would – at this time – prevent

the use of coroutines on the Arduino Uno, the ESP8266 and the PIC18 family.

3.5 Conclusion

In conclusion, we find that the new C++20 coroutine features assist the development

of asynchronous code for embedded platforms: the resulting code has low overhead

and encourages more elegant and transparent design. However, for these constrained-

resource devices, the memory allocation methods do not yet offer sufficient control to

satisfy the needs of the embedded programming community.

64 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.6 Appendix I: Source code

The public Github repo containing the source code used in this study can be found at

https://github.com/bbelson2/coro-mc-wwl-code.

3.7 Appendix II: Development problems and process

3.7.1 Overview

This section describes the coroutine support runtime library created for the projects

in this study. It contains a summary of the library development phases and detailed

discussions of problems encountered with memory allocation.

3.7.2 Objectives

The following characteristics were chosen as development goals for the library.

• Minimal dependencies on Standard Template Library (STL).

• Ideally, no dependencies on STL.

• No use of heap memory.

• No use of exceptions.

• Transparency of coding techniques, particularly from the point-of-view of C pro-

grammers (as opposed to experienced C++ programmers).

3.7.3 First iteration

The code for the first iteration can be found in the subfolder archive/iteration1 of the

on-line repository.

3.7.3.1 Contents

The first version of the library included the files and classes listed in Table 3.3. The

application project k22fawait1 makes use of these classes to build hardware abstraction

layers (HALs) as described in Table 3.4. For the application project, application-level test

classes based on the HAL code were created, as listed in Table 3.5:

Chapter 3 65

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 3.3: File list for first iteration

File Classes Description

experimental/resumable coroutine traits<> Coroutine contract from N4680 & N4736

coroutine handle<>

suspend never

suspend always

core crit sec.h mutex t Critical section adapter class

core resumable.h resumable<> Base resumable type, used for tasks

core future.h future t<> Futures with:

promise t<> (i) embedded awaitable contract &

awaitable state<> (ii) shared state on heap

core scheduler.h task t Simple scheduler

scheduler t

Table 3.4: First iteration hardware abstraction layer

File Content

api adc.h/.cpp Asynchronously read an analog to digital converter channel

api i2c.h/.cpp Asynchronously read and write to a I2C bus (for use with the
development board’s accelerometer)

api timer.h/.cpp Asynchronous timer event stream

Table 3.5: First iteration application classes

File Content

task adc.cpp Asynchronously read a pair of analog to digital converter
channels (x and y coordinates from a joystick)

task i2c.cpp Asynchronously read and write to a I2C bus, thereby reading
the development board’s accelerometer

task timer.cpp Asynchronous timer event stream

3.7.3.2 Benefits

The library delivered significant benefits both to the application programmer and the

HAL library writer.

For example, the ADC task could include efficient and transparent asynchronous

code such as that shown in Listing 3.2. The code is ordered and is not fragmented: the

intent of the code is very clear compared to alternative methods such as a finite state

machine (FSM).

66 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1 co await s t a r t a d c (ADC CHANNEL X) ;

2 co await s t a r t a d c (ADC CHANNEL Y) ;

3

4 f o r (; ;) {
5 auto x = co await read adc (ADC CHANNEL X) ;

6 auto y = co await read adc (ADC CHANNEL Y) ;

7

8 // Use x , y

9

10 co await w a i t o n t i c k s (1 0) ;

11 }

Listing 3.2: Using co await to write C++ code in a direct style without fragmentation

3.7.3.3 Problems

There are a number of problems with the first iteration.

• The split phase event class split phase event t makes use of lambda expressions.

The use of lambdas may be considered to fail the transparency objective with

regards to C programmers.

• The split phase event class split phase event t makes use of classes in STL’s

<functional>, to store lambda expressions for deferred operations. (These lamb-

das cannot be stored as function pointers because they use captures.) In a future

iteration, therefore, we will avoid lambdas and instead use void function pointers;

in place of captures, we will use global static data.

• future t and its related classes use dynamic memory allocation. Because future t

and promise t maintain a shared awaitable state t via a usage count, the mem-

ory is dynamically allocated (through a smart pointer). We will avoid this in the

second iteration by by using global static data storage for promise and state.

• The scheduler uses the STL stack<> container to hold the current set of blocked

coroutines for a task.

• The I2C api is too complex (see archive/iteration1/Sources/api i2c.cpp); it

contains too much secondary level code, which should be split out into an im-

plementation layer. Low-level calls which read and write byte arrays should be

Chapter 3 67

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1 f u t u r e t<byte> r e a d i 2 c (u i n t 8 t s lave address ,

2 u i n t 8 t reg , u i n t 8 t * data , word len) {
3 byte rc = I 2 C S e l e c t S l a v e (s lave address) ;

4 i f (r c == 0) {
5 rc = co await I2C SendChar async (reg) ;

6 }
7 i f (r c == 0) {
8 word recv ;

9 rc = co await I2C RecvBlock async (data , len , &recv) ;

10 }
11 I2C SendStop () ;

12 c o r e t u r n rc ;

13 }

Listing 3.3: C++ code demonstrating composition of coroutines

implemented as asynchronous primitives delivered as coroutines - each matching

a synchronous primitive. The current read and write calls should be coroutines

composed of these primitives.

3.7.4 Second iteration

The code for the second iteration can be found in the subfolder archive/iteration2 of

the on-line repository.

3.7.4.1 Problem

Composition of coroutines (such as the code in Listing 3.3) fails with the initial

future t<> implementation. The classes future t<> and promise t<> contain both the

core code of the classes – including the constructors – and the methods of the awaitable

contract.

Thus the coroutine in Listing 3.3 (which creates a future t<> via

future t<>::promise type) attempts to call a constructor for future t<> with all four

of the arguments.

3.7.4.2 Objective

• Make composition of coroutines work correctly by separating the awaitable classes’

core implementation and their awaitable contracts. In particular, the types

68 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1 namespace std { namespace experimental {
2 template<c l a s s T ,

3 c l a s s . . . Args>

4 s t r u c t c o r o u t i n e t r a i t s <f u t u r e t<T> , Args . . . >

5 {
6 s t r u c t promise type {
7 promise t<T> promise ;

8 . . .

9 } ;

10 } ;

Listing 3.4: Redesign of future t class

future t::promise type and promise t<> must be separated.

3.7.4.3 Description

The future t<> awaitable contract was moved to the std::experimental::

coroutine traits<> extension class, as summarised in Listing 3.4.

3.7.4.4 Benefits

• Composition of coroutines is now functional.

3.7.4.5 Observation

The version 1 code appeared correct according to the standard; however, it failed to

compile as desired. This solution used an opaque and unobvious work-around. It is

arguable that the standard – in this case – is too complex to implement in a straightfor-

ward fashion.

3.7.5 Third iteration

3.7.5.1 Objectives

• Remove heap dependency of future t<> (the shared state).

• Remove remaining STL class std::stack<>, used for the list of blocked coroutines.

Chapter 3 69

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.7.5.2 Discussion

A linked list for coroutines

In order to remove stack<coroutine handle<>> (or another dynamic container), we

can change the architecture, by adding an active coroutine stack to task t, implemented

as a linked list. All awaitables must now inherit from a class which links to the next

awaitable.

But which object can become a member of the linked list? The future t<> is not

eligible, because it is constrained to have move semantics but no copy semantics. Nor is

promise t<>, because it is not always created explicitly: the future t<>::promise type

creates the promise t<>. It appears that the best – perhaps the only – candidate is the

shared state class.

A heap-free shared state

The shared state is currently created within a counted shared smart pointer,

counted ptr<state t>. The state t is a template parameter of future t<> (and, in

parallel, of promise t<T, state t>).

We can make this arrangement less inflexible by promoting the shared state holder

(e.g. counted ptr<>) to become a template argument. This will allow us to use a weak

pointer instead of a shared pointer if we wish. Such an arrangement would allow the

state to be embedded within the promise t<>, when the promise is static in scope and

lifetime.

3.7.5.3 Two creation patterns for future t<>

1. Explicitly created in a split-phase coroutine, using promise t::get future().

2. Implicitly created during a co return from a coroutine, via

future t<>::promise type::get return object().

First we investigate these in detail, then examine their suitability under the new state

architecture.

Pattern 1: Explicit construction during split-phase

1. During coroutine, promise t<> is created as a local variable, with default value.

70 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2. promise t<>’s state is passed to the deferred lambda as a capture.

3. After immediate action, promise t<>::get future() is called explicitly by corou-

tine just before exit. (Deferred action may or may not have taken place by now.)

Pattern 2: Created during co return

1. During coroutine ramp, promise type is instantiated. Nested structure promise t<>

is constructed within promise type. There are no constructor parameters for

promise t<>. As a result, the awaitable state’s data is initialised to the default

value: T().

2. During co return, promise type::return value(rc) is called, which sets the

value of the promise t<>’s state, via promise.set value(rc).

3. Next, promise type::get return object() calls promise.get future() which

creates the future t<> using the (now resolved) state as the constructor’s param-

eter.

3.7.5.4 New contract for shared state pointer

We introduce a new contract for the shared state, shared state ptr t:

1 s t a t i c s h a r e d s t a t e p t r t s h a r e d s t a t e p t r t : : make ptr (. . .) ;
2 typedef [the contained s t a t e type] s t a t e t y p e ;
3 s h a r e d s t a t e p t r t& operator =(const s h a r e d s t a t e p t r t& cp) ;
4 s h a r e d s t a t e p t r t& operator =(s h a r e d s t a t e p t r t&& cp) ;

These allow the future t and the promise t to (i) create a new instance of the shared

state pointer, passing the constructor parameters via perfect forwarding, (ii) access the

shared data and (iii/iv) copy the pointer into a member variable.

1 template <typename T ,
2 typename s h a r e d s t a t e p t r t = counted ptr<a w a i t a b l e s t a t e<T>>>
3 s t r u c t f u t u r e t { . . . } ;

The intent of this approach was to retain a single future t<> class which could be

used with both static and dynamic allocation. The dynamic case would continue to be

implemented using the counted ptr<> thus:

1 f u t u r e t<word , counted ptr<a w a i t a b l e s t a t e<word>>> f1 ;
2 f u t u r e t<word> f1 ; // or using the d e f a u l t

Chapter 3 71

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

The static case would look like this:

1 f u t u r e t<word , s t a t i c p t r <a w a i t a b l e s t a t e<word>>> f2 ;

3.7.5.5 Outcome

There are two distinct problems with this approach.

Unfortunately, although this model did not break the existing implementation that

uses counted ptr<>, it did not work for the new static ptr<> type. The future t<>::

promise type, which is created by compiler-generated code in the coroutine ramp, con-

tains an embedded promise t<>. Clearly, this type should not be created on-the-fly for

the static case, since the new instance will not point to the correct shared state. (For

the dynamic case, it is fine, since both the created promise t<> and the original instance

both use the same shared memory, which is reference counted.) As a result the program

can crash when the wrong shared state is updated by the ISR. The static future must

not create a promise during its promise type construction.

This behaviour can be enabled by using #define USE STATIC PTR FOR READ I2C in

iteration3.

Secondly, the two forms of the future, future t<T, counted ptr<awaitable state<

T>>> f1 and future t<T, static ptr<awaitable state<T>>> f2, do not easily sup-

port combinatorial expressions, such as f1 && f2 or f1 || f2, which may be required

for parallel or serial invocation by composition helper classes. Indeed, any form of

composition becomes significantly more complex.

3.7.5.6 Summary

This implementation of the static model works for explicitly created promise t<>s but

not for those created implicitly during co return.

3.7.6 Fourth iteration

3.7.6.1 Objectives

• Remove remaining STL stack<>, used for the list of blocked coroutines.

• Remove remaining heap usage.

72 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

• Override memory allocation for promise type and (via promise type) for corou-

tine stack frame.

3.7.6.2 Remaining issues

• Remove remaining heap usage.

• Remove remaining STL dependencies.

• Override memory allocation for promise type and (via promise type) for corou-

tine stack frame.

3.7.6.3 Discussion

The fourth iteration did not succeed in all its objectives.

STL types and methods

STL types and methods remained in use as listed in Table 3.6.

Harmless. Some of these remainders are harmless:

• std::forward(), std::swap() and std::move() are all primitives without dan-

gerous side-effects here. If STL were to be replaced in this library by an embedded-

safe STL (similar to ETL5) then these methods could remain in use without changes.

Harmless in test. Some remainders would be harmful in a production build but are

harmless in this test environment, and do not have a significant effect on test outcomes:

• std::terminate() is called in response to a caught exception, and it should be

replaced by a log and reboot policy.

• std::vector<> is used as a container for a collection which does not change size

during testing. It should be replaced by a memory-safe implementation or (if of

fixed size at run-time) by a safe version of std::array<>.

• std::function<> is used as a container for a lambda function; it should be re-

placed by a safe version such as the ETL equivalent, etl::function<>.

Harmful. Some remainders are harmful and constitute a fatal design error in the library.

They can only be fixed by a change to the standard:

5https://www.etlcpp.com/

Chapter 3 73

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 3.6: Remaining uses of STL types and methods

Type/method Location(s)

std::exception Inherited by future exception

future exception Thrown by awaitable state<>::get value()

Thrown by promise type<>::get future()

Thrown by spromise type<>::get future()

std::forward() Called by counted awaitable state<> assignment constructor

Called by counted ptr<>::make ptr()

Called by counted ptr<>::make counted()

Called by promise t<> assignment constructor

Called by static promise t<> assignment constructor

Called by coroutine traits<>::promise t<>

::return value()

std::swap() Called by counted ptr<> assignment constructor

Called by counted ptr<>::operator=()

std::move() Called by coroutine traits<>::promise type

::set exception()

std::terminate() Called by promise t<>::unhandled exception()

Called by spromise t<>::unhandled exception()

Called by coroutine traits<>::promise type

::unhandled exception()

std::vector<> Contained by class timer item list

Contained by class event queue t

std::function<> Contained by class split phase event t

• std::exception and classes descended from it should not be used.

• Exceptions such as future exception should not be thrown.

Dynamic memory allocation

Other remaining problems concern dynamic memory allocation. Allocations are

made by STL classes std::stack<> and std::vector<>. As discussed above, this use

is minimal and does not significantly impact test outcomes.

Allocation by promise type

The allocations made directly by promise type are also small and harmless in a test

environment; however, their replacement by code that avoids heap memory is a non-

trivial programming task.

Finally, the potential allocation of the coroutine stack frame in heap memory is a

74 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

significant problem. Since it cannot be guaranteed to be avoided by HALO elision, there

need to be changes to the standard and/or the tool-chain including:

1. a compiler flag to cause an error or warning when elision does not take place; and

2. a simple and efficient mechanism to force allocation into global (static) memory.

Chapter 3 75

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

3.8 Appendix III: Equipment

Fig. 3.5 shows the front panel of the Rohde & Schwarz HMO2024 oscilloscope used in

the study. As can be observed in Fig. 3.8, this device provided a simple, reliable and

non-intrusive mechanism for measuring the performance of micro-benchmarks, without

requiring the inclusion and additinal complexity of software timing code.

Fig. 3.6 shows a Freescale FRDM-K22F development board, as used in the study.

This board, first produced in 2014, was used as the main board for teaching the JCU

undergraduate courses in Embedded Systems until 2020: its hardware and development

tools were therefore familiar to the authors.

Fig. 3.7 contains a diagram of the simple circuitry used to connect the oscilloscope

to the development board.

Figure 3.5: The front-panel display of the Rohde & Schwarz HMO2024 oscilloscope.

76 Chapter 3

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Figure 3.6: A Freescale FRDM-K22F development board, as used in the study.

Figure 3.7: A diagram of the simple breadboarded circuit used to connect the oscillo-
scope to the development board.

3.9 Appendix IV: Data

Typical screen captures recorded by the Rohde & Schwarz HMO2024 oscilloscope are

shown in Fig. 3.8.

Chapter 3 77

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Figure 3.8: Typical screen captures recorded by the Rohde & Schwarz HMO2024 oscillo-
scope. Each graph shows the voltage detected between the active and ground GPIO pins
of the FRDM-K22F development board. The screen captures illustrate the oscilloscope’s
built-in capability for measuring the frequency of square waves.

78 Chapter 3

Chapter 4

Speeding up Machine Learning

Inference on Edge Devices by

Improving Memory Access Patterns

using Coroutines

This chapter is an expanded and reformatted version of the following paper for the IEEE

Conference 25th IEEE International Conference on Computational Science and Engineering

(CSE 2022).

B. Belson and B. Philippa, ”Speeding up Machine Learning Inference on Edge

Devices by Improving Memory Access Patterns using Coroutines”, in Pro-

ceedings of the 2022 IEEE 25th International Conference on Computational Science

and Engineering (CSE), doi: 10.1109/CSE57773.2022.00011.

The paper was published in November 2022, in a conference format limited to eight

pages. This chapter therefore contains significant amounts of extra material which were

excluded from the conference paper, including figures presented at the conference, more

detailed results and some discussions of implementation issues.

79

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Chapter Abstract

We demonstrate a novel method of speeding up large iterative tasks such as ma-

chine learning inference. Our approach is to improve the memory access pattern,

taking advantage of coroutines as a programming language feature to minimise the

developer effort and reduce code complexity. We evaluate our approach using a com-

prehensive set of benchmarks run on three hardware platforms (one ARM and two

Intel CPUs). The best observed performance boosts were 65% for scanning the nodes

in a B+ tree, 34% for support vector machine inference, 12% for image pixel nor-

malisation, and 15.5% for two dimensional convolution. Performance varied with

data size, numeric type, and other factors, but overall the method is practical and

can lead to significant improvements for edge computing.

4.1 Introduction

The emergence of the Internet of Things and the associated increase in the volume of

data available to devices at the edge of the Internet have created a demand for machine

learning (ML) inference on relatively low-powered, resource-constrained devices [160,

200]. ML inference on local edge devices has received increasing attention due to the

benefits of reducing network transmission delays, reducing the required network band-

width, potentially increasing privacy, and improving resilience against network outages

[29]. However, running ML inference on the edge can be more challenging than in the

cloud due to the more limited computational resources that are likely to be available.

Therefore, considerable research attention has been devoted towards machine learning

on the edge [128].

Various strategies exist to improve the performance of ML inference, including the

development of specialised accelerator hardware [86, 199, 32, 31, 61], tool-chain enhance-

ments [28, 199, 191, 109], architectural improvements [26] and hybrid approaches [22,

199]. The performance of ML algorithms can also be improved by re-ordering the code

in such a way as to benefit from CPU cache locality and memory prefetching [44, 12].

We refer to this as the memory access pattern of a program.

Improvements to the memory access pattern can lead to large performance increases,

and is widely used in specialised code that is hand-written for performance [30, 75, 146].

80 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

B+ Tree
SVM

Normalisation
CNN

ARMv8

Intel 6th gen

Intel 10th gen

Pe
rfo

rm
an

ce
 b

oo
st

0%

10%

20%

30%

40%

50%

60%

Benchmarks - Best performance improvements
ARMv8
Intel 6th gen
Intel 10th gen

Figure 4.1: Best performance improvements achieved through coroutining and prefetch-
ing, across various algorithms and platforms

However, such an approach can be difficult to retro-fit into existing code without a major

rewrite.

In this work, we show how to improve the memory access pattern of software with-

out dramatic changes to its source code by leveraging programming language features

for asynchronous programming. Specifically, we utilise coroutines as a way to more

easily re-order an existing algorithm to improve its caching and memory prefetching

performance.

A coroutine is a subroutine that can be suspended (by saving its execution state) and

resumed at a later time [17]. Coroutines are present in C++, C#, Go, Python, Rust, and

many other languages. In this work, we demonstrate how straightforward implemen-

tations of common algorithms can be optimised, without compromising the clarity of

the code, by leveraging the compiler’s coroutine support to reorder the flow of execu-

Chapter 4 81

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Sequential

calculate
Multi-threaded prefetch

Co
ro

ut
in

es

prefetch calculate Payoff

time

for each block:

calculate

for each block:

prefetch

coroutine suspend

calculate

Figure 4.2: Execution models compared. In the standard sequential execution model,
cache misses freeze the thread until the target memory region is loaded into cache.
Using multi-threaded prefetch, the target memory region is requested and the thread
is then suspended; when it resumes the memory is available in cache. If the benefit of
avoiding cache misses is greater than the cost of the coroutine infrastructure, then the
transformation has a positive payoff.

tion. An overview of our approach is shown in Fig. 4.2. A sequential algorithm can be

transformed into one with an interleaved memory pattern by using the coroutine task

switching functionality in modern programming languages. The result is a small change

to the code structure, since the complexity in handling the interleaved state is managed

by the compiler.

The contributions of our work are as follows:

1. We demonstrate a novel approach to optimising algorithms that are common in

edge computing, achieving in the best case up to 65% speed up. These results are

summarised in Fig. 4.1

2. We conduct a comprehensive set of benchmarks to assess the performance of

this approach, on four algorithms, three hardware platforms, two compilers, and

four different numeric data types. Our benchmarks also assess the costs of dif-

ferent compiler implementations of C++20 coroutines compared to alternative

lightweight thread approaches.

3. We examine the development effort and challenges involved in applying the trans-

formation to an existing code base.

The remainder of this chapter is organised as follows. Section 4.2 contains the back-

82 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ground and related work. Section 4.3 details the experimental methodology. Section 4.4

explores the results and section 4.5 discusses and classifies the outcomes. Section 4.6

concludes the chapter.

4.2 Related work

As memory models have become increasingly complicated and more dynamic, it has be-

come harder for applications programmers to take maximum advantage of the benefits

that locality might bring [12, 22]. The performance of a data-intensive algorithm can be

extremely sensitive to data cache misses. For example, a counterintuitive rearrangement

of the loops in a standard naive algorithm for matrix multiplication [169] can reduce

data cache misses significantly, and improve performance by 10-20%.

As CPU caches have become more central to performance, model-dependent soft-

ware prefetching techniques have been established and refined in specific application

areas such as matrix LU decomposition [127], pointer chasing [30] and across general

application fields [188]. However, such software is generally designed from the ground

up to consider the memory access pattern, and execute prefetch instructions at the right

time. The programmer is typically responsible for this book-keeping, which increases

the effort required in implementation and testing.

The key advantage of using coroutines is that the compiler helps reorder the flow

of execution. Previous work has demonstrated the use of coroutines to schedule mem-

ory prefetching on large server platforms in the cloud, for example, with in-memory

database engines [145, 85, 75]. Coroutine based prefetching has also been used to speed

up software-defined networking [8]. Language support has been recognised as impor-

tant, for example, Kiriansky et al introduced a domain-specific language to more easily

express the required source code transformations [92]. It is notable that all of these ap-

plications targeted heavily multi-core server platforms. The benefits for lower-powered

platforms have not yet been widely studied, despite the fact that coroutines are very

lightweight and are suitable even for embedded microcontrollers [18]. To the best of our

knowledge, this work is the first to demonstrate that coroutine based prefetching can be

applied to resource-constrained edge devices.

Chapter 4 83

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1 // Original algorithm
2 for (i = 0; i < rows; i++, pi += i*width) {
3 total = 0;
4 for (j = 0; j < width; j++) {
5 total += pi[j] * weight[j];
6 }
7 output[i] = (total - bias >= 0);
8 }

9 // With prefetch inserted
10 for (i = 0; i < rows; i++, pi += i*width) {

11 prefetch(pi);
12 co_await std::suspend_always {};

13 total = 0;
14 for (j = 0; j < width; j++) {
15 total += pi[j] * weight[j];
16 }
17 output[i] = (total - bias >= 0);
18 }

Figure 4.3: Support vector machine inference code in C++, showing code versions before
and after the prefetch code is added.

4.3 Methodology

4.3.1 Implementation

An overview of our implementation is shown in Fig. 4.3. The figure shows C++ code

for a support vector machine (SVM). The original algorithm is a simple loop over a

table of observations, where each observation needs to be processed through the SVM.

The modified code shows how straightforward it is to add coroutine-based prefetching.

In the modification, line 11 initiates a prefetch for the next chunk of data and line 12

suspends execution. In this way, the coroutine cooperatively yields to allow another

data buffer to be processed. By the time the task is resumed (line 13), the next data

required for this iteration will be in the CPU memory cache.

This approach was designed to be as simple as possible to retrofit to existing code

or, alternatively, as simple as possible for the programmer to use in new code. The algo-

rithm can be written directly, and all the book-keeping to handle the data interleaving

is generated automatically at compile time. Therefore, this approach is facilitated by

coroutines as a first-class language feature. If such support is present in the language,

84 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 4.1: Benchmarks used for performance measurement

Name Description Output

B+Tree Visit the leaves of a B+ tree Reduce1

SVM Support vector machine inference Reduce1

Norm Normalise image to ImageNet mean Map2

CNN Two-dimensional convolution Map2

1 Output dimensionality is reduced from input
2 Output dimensionality is the same as input

then this type of prefetching is highly practical for developers to use.

4.3.2 Benchmarks

We measured the performance of our approach by applying it to four distinct mi-

crobenchmarks, as listed in Table 4.1. These benchmarks are as follows.

B+ Tree visits each leaf node, scans through the data stored in that node, then follows

a pointer to the next node, and repeats. The nodes are laid out pseudo-randomly, as

might be expected if the B+ tree grew organically with data being inserted in an arbitrary

order.

Support Vector Machine (SVM) examines a set of vectors and calculates a weighted

sum for each, then compares it to a bias value.

Normalisation (Norm) rescales an image by subtracting the mean pixel value of Im-

ageNet [43] and dividing by the standard deviation.

Convolutional Neural Network (CNN) applies a 3x3 kernel to the pixels of a batch

of monochrome images.

For the benchmarks that used numbers (SVM, Norm and CNN), we tested 16 bit

integers (which we denote i16), 32-bit integers (i32), single precision floats (f32), and

double precision floats (f64). For the integers, we used fixed point format with scaling

factors of 213 and 226 for i16 and i32, respectively. The numeric types are summarised in

Table 4.2.

4.3.3 Performance measurement

For each test, we measured a standard (sequential) implementation and a modified

version of the same code that uses coroutines to reorganise the memory access. We

Chapter 4 85

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 4.2: Numeric types

Name Type Bytes Format C type

i16 Fixed-point 2 Scaling factor 213 short int

i32 Fixed-point 4 Scaling factor 226 int

f32 Floating-point 4 IEEE 754 float

f64 Floating-point 8 IEEE 754 double

Table 4.3: Active set variables

Benchmark Factors varied

B+Tree Tree size, branching factor

SVM Columns per data table, number of data tables

Norm Rows per image, columns per image, number of images

CNN Rows per image, columns per image, number of images

define the performance ratio as

Performance ratio =
Zsequential

Zmodi f ied

where Z is the number of CPU cycles used by the process. A ratio > 100% corresponds

to an improvement in performance.

For an implementation with M coroutines, each using N bytes of input and output

data, we define the active set size to be M × N. We will show below that the active

set size needs to be similar to the cache size in order to maximise the benefit of our

approach.

For each algorithm, on each hardware platform, we explored a large factor space. We

varied the number of concurrent tasks; we used several execution models, including the

standard sequential model, a coroutine model, a coroutine model with prefetch and a

Protothreads[49] model, with and without prefetch; and we varied the size of the active

set by controlling the size of each level of iteration for each task. Protothreads provides

lightweight cooperative multitasking in C; it is stackless, does not maintain the state

of local variables, and uses non-standard C. It was included here in order to test the

benefits of light-weight task-switching without the same machinery cost as language-

native coroutines. This offered a direct comparison to estimate the cost of the coroutine

machinery as distinct from the task switching. We also tested the impact of including

explicit prefetch instructions, or simply interleaving the data processing without issuing

86 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

prefetch commands.

The size of the active set was controlled for each algorithm as follows. For the

B+ tree, we varied both the tree size and the branching factor. For the normalisation

and CNN tests, we controlled the number of rows and columns in each image and the

number of concurrently processed images. For SVM, we varied the number of columns

in the data table, and the number of data tables. The variables are listed in 4.3.

We repeated all measurements 10 times. A proportion (≈ 18%) of measurements

appeared to be outliers. We assume they are caused by competition for cache resources

from background tasks running on the same computer. Therefore, we removed any

measurement whose variation from the median was > 3.5σ, where σ was the mean

variation from the median.

4.3.3.1 Telemetry

The Linux perf event open() API was used as the basis for telemetry. We measured

the hardware counters cpu-cycles, instructions, cache-misses and cache-references. This ap-

proach isolated the performance of the process under test, where a simple timer would

always be impacted by the various other tasks and daemons of the operating system.

We avoided using platform-specific counters in order to provide consistency across the

different hardware platforms under test.

4.3.4 Platforms and Toolchains

Our experiments tested three platforms that are representative of the edge computing

devices where significant ML inference would be expected to take place. These plat-

forms were the Raspberry Pi 4 (containing an ARM Cortex A72 microprocessor and

released in 2020), as well as commodity PC hardware containing a 6th generation Intel

i7-6700k (2015) and a 10th generation Intel i5-10500T (2020). The cache sizes for each

platform are shown in Table 4.4.

We used Ubuntu 18.04 & 20.04 respectively on the Intel 6th & 10th generation ma-

chines, and Raspbian GNU/Linux 10 (buster) on the ARM CPU. We tested two compil-

ers: GCC 10.2 and LLVM 11.0.

Chapter 4 87

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 4.4: Platforms & memory caches tested

CPU L1 L2 L3 Total

ARM Cortex-A72 32 KiB 1 MiB - 1056 KiB

Intel i7-6700k 128 KiB 1 MiB 8 MiB 9344 KiB

Intel i5-10500T 192 KiB 1.5 MiB 12 MiB 14016 KiB

Table 4.5: Benchmarks - Best results for each algorithm

B+ Tree SVM Norm CNN

ARMv8 ✓31.1% ✓8.3% ✓0.7% -1.9%

Intel 6th-gen ✓35.5% ✓34.2% ✓9.6% ✓13.7%

Intel 10th-gen ✓64.8% ✓28.8% ✓12.4% ✓15.5%

Factors Prefetch Prefetch Numeric Numeric
Randomness Numeric type type

Branching type Image
factor width

The number of bytes processed per CPU cycle was compared be-
tween the standard and coroutined execution models. The dif-
ference in performance is shown as a percentage, with a positive
result indicating a boost in performance using a coroutined exe-
cution model.

4.4 Experimental results

Table 4.5 shows the highest performance ratios observed for each of the benchmarks

tested, across all numeric types, number of concurrent coroutines, active set sizes and

with or without explicit prefetch instructions. It can be seen that in almost all cases,

there exists a point in the parameter space where the coroutine-based implementation

was faster than the control case (the unmodified sequential algorithm). These results are

also summarised in Fig. 4.1.

4.4.1 Impact of active set size

The parameter that has the largest impact is the size of the active set. Recall that the

active set is the total amount of memory being used across all coroutine tasks, and can

be tuned by changing the number of coroutines and the amount of memory processed

by each coroutine during a single iteration of the resume-calculate-suspend loop.

Fig. 4.4 shows the typical response to variations in the active set size. All platforms

display similar behaviour: for small active set sizes the technique imposes a high cost;

88 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0 10 20 30 40 50 60 70
Active set size (MB)

60%

80%

100%

120%

140%

160%
Pe

rfo
rm

an
ce

 ra
tio

Cortex A72 cache: 1MB

i7-6700k cache: 9MB

i5-10500T cache: 14MB

Performance improvement vs Active set size
B+tree visit

Cortex A72
i7-6700k
i5-10500T
Breakeven

(a) Raw data for each platform

0 1 2 3 4 5 6
Active set size / cache size

20%
40%
60%
80%

100%
120%
140%
160%

Pe
rfo

rm
an

ce
 ra

tio

1.89 1.90 1.91 1.92 1.93 1.94 1.95
140%

150%

160%
Mean and SD
of i5 data

(b) Normalised by total cache size

Figure 4.4: Performance ratios for varying active set sizes. (a) Raw data for each plat-
form. (b) The same data but with the horizontal axis normalised by total cache size. The
inset shows a zoomed in region near the peak of the curve with error bars representing
the standard deviation of repeated measurements.

as set size approaches total cache size, we begin to see improved performance, rising to

a maximum at 2x to 3x cache size; performance gains then fall as set size rises further,

reflecting a flooded cache.

There is thus a ‘sweet spot’ for this algorithm between 1x and 3x-6x the cache size

(depending on platform) where very large performance gains are achievable. For a

developer this behaviour offers a simple and powerful optimisation technique: once the

coding changes have been implemented, the size of the mini-batch can be manipulated

so that the algorithm operates within the ‘sweet spot’. Potentially, such optimisation

could be performed automatically for a given machine learning inference algorithm.

4.4.2 Sensitivity to active set size

Fig. 4.4 contains a rather ‘spiky’ data series. These spikes are not due to experimental

error: the variation between repetitions is smaller than the size of the ‘spikes’ (as per

Chapter 4 89

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0 10 20 30 40 50 60 70
Active set size (MB)

0%

20%

40%

60%

80%

100%

120%

140%
Pe

rfo
rm

an
ce

 ra
tio

Best

Lower limit
Best * 80%

Upper limit
Best * 120%

Sensitivity analysis of improved performance
B+tree visit/LLVMIntel i7-6700k 4 tasks

Performance ratio
Breakeven
Improved
Sample

Figure 4.5: Sensitivity estimation: each test point is run 10 times, and outliers > 3.5σ
(as per the Methodology section) are removed; the data size for the best performance is
identified; the region which uses ±20% of this size is extracted and analysed.

the inset of Fig. 4.4b). While the programmer has some control of the size of the active

set, some factors such as the width of an image may not be adjustable. Therefore, the

precisely optimal active set size may not always be achievable.

We examined the sensitivity to the data size by investigating how much performance

varied as the active set size was varied from the optimal value by ±20%. This window is

shown visually in Fig. 4.5. The sample of performance ratios observed within this ±20%

window represent the range of variation that might occur if the optimal active set size

is not achieved exactly, and hence shows the robustness of the optimisation technique.

The impact of variations in the active set size is shown in Fig. 4.6, Fig. 4.7, Fig. 4.8

and Fig. 4.9. The figures show all four algorithms, all four numeric data types (except

for B+ Tree), and all three hardware platforms. In the plot, positions further to the right

indicate a performance boost. Furthermore, the larger the range shown, the greater is

the likelihood that the performance gains will be unpredictable (if the active set size is

not precisely known).

The box-and-whisker plots show statistics about the region highlighted in Fig 4.5. A

long bar indicates a highly variable performance gain: if the bar crosses the 100% mark,

then a developer cannot be confident of a benefit from using these techniques unless

90 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

100% 110% 120% 130% 140% 150% 160%
Performance ratio vs sequential

Sensitivity to data size: B+ Tree
ARM Cortex-A72
Intel i7-6700k
Intel i5-10500T

Figure 4.6: B+ Tree: Sensitivity of performance gain to data size. Substantial perfor-
mance gains are visible on each platform, and also a high degree of confidence that the
gain will be within a well-defined band.

the size of the active set can be precisely controlled. Notice the varying horizontal axis

scales.

For the B+ Tree, Fig. 4.6 shows a substantial performance gain on each platform,

but also implies a high degree of confidence that the gain will be within a well-defined

band.

For SVM, Fig. 4.7 indicates a performance gain that is strongly influenced by numeric

type. A 16-bit fixed-point numeric type provides a solid performance gain for all three

platforms. For the 32-bit fixed-point numeric type, performance gains appear across

most quartiles, but not all. Floating point numeric types consistently display losses in

performance.

For Normalisation, Fig. 4.8 shows performance gains only for Intel platforms and

only for floating point numeric types.

Finally, for the CNN algorithm, Fig. 4.9 shows performance gains only for the Intel

platforms and only for 16-bit fixed-point numeric types.

4.4.3 Impact of coroutine count

The number of parallel coroutines was varied between 2 and 8. The impact of the

coroutine count was minimal; in most cases, if an algorithm was boosted by coroutine

use, the highest boost was achieved with 2 coroutines.

Chapter 4 91

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

80% 90% 100% 110% 120% 130%
Performance ratio vs sequential

i16

i32

f32

f64

Sensitivity to data size: SVM
ARM Cortex-A72
Intel i7-6700k
Intel i5-10500T

Figure 4.7: The SVM algorithm’s sensitivity of performance gain to data size is strongly
influenced by numeric type. A 16-bit fixed-point numeric type provides a solid perfor-
mance gain for all three platforms. For the 32-bit fixed-point numeric type, performance
gains appear across most quartiles, but not all. Floating point numeric types consistently
display losses in performance.

95% 100% 105% 110%
Performance ratio vs sequential

i16

i32

f32

f64

Sensitivity to data size: Normalisation
ARM Cortex-A72
Intel i7-6700k
Intel i5-10500T

Figure 4.8: Normalisation: Sensitivity of performance gain to data size. Performance
gains are seen only for Intel platforms and only for floating point numeric types.

92 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

90% 95% 100% 105% 110% 115%
Performance ratio vs sequential

i16

i32

f32

f64

Sensitivity to data size: CNN
ARM Cortex-A72
Intel i7-6700k
Intel i5-10500T

Figure 4.9: CNN: Sensitivity of performance gain to data size. Performance gains are
found only for the Intel platforms and only for 16-bit fixed-point numeric types.

4.4.4 Impact of numeric types

The impact of numeric types varied across algorithms: this is illustrated by Figs. 4.7,

4.8 and 4.9, where better performance gains are displayed as bars further to the right.

In each chart the outcomes for a specific numeric type across the three platforms are

grouped together. In all cases where a measurable boost occurred, fixed-point arithmetic

using 16-bit values offered the same or better performance boosts than 32-bit. The

techniques did not offer a benefit for the floating-point versions of SVM or CNN, but

did provide a benefit for floating-point normalisation.

4.4.5 Variations between algorithms

4.4.5.1 B+ Tree

The B+ tree algorithm was notable both for the simplicity of the code transformation

required to introduce asynchronous prefetching and for the clear performance benefits

achieved, as shown in Fig. 4.10.

Note that the performance benefits disappear if the B+ tree was carefully constructed

in such a way that the nodes are laid on (on the heap) in a sequential order, such that

the end of one leaf is near to the beginning of the next. In this situation, the control

case (the sequential algorithm) runs much faster, and there is no opportunity to further

Chapter 4 93

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Active set size / cache size

Cortex A72

i7-6700k

i5-10500T
60%

80%

100%

120%

140%

Re
la

tiv
e

pe
rfo

rm
an

ce

Overall performance improvement: B+ Tree

Figure 4.10: Performance boost achieved for B+ Tree algorithm. Compared to the stan-
dard sequential execution model, a model using coroutine with prefetch performed up
to 50% faster.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cortex A72
i7-6700k

i5-10500T

i1
6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Cortex A72
i7-6700k

i5-10500T

i3
2

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Cortex A72
i7-6700k

i5-10500T

f3
2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
Active set size / cache size

Cortex A72
i7-6700k

i5-10500T

f6
4

80.0%

85.0%

90.0%

95.0%

100.0%

105.0%

110.0%

115.0%

120.0%

Re
la

tiv
e

pe
rfo

rm
an

ce

Overall performance improvement: SVM

Figure 4.11: Performance boost achieved for SVM. All platforms show gains with fixed-
point numbers, while floating-point numbers offer benefits on none.

optimise the memory access pattern. We attribute this to the CPU cache being optimised

for sequential reads of large blocks of memory [170].

Our approach adds benefit when the heap layout of the B+ tree is non-sequential.

These findings reflect the work of Chai et al. [28] whose proposed cost model calculates

prefetch revenue according to the distance of memory jumps.

4.4.5.2 Support Vector Machine

The SVM algorithm displayed useful performance boosts for all platforms when using

integer (fixed-point) arithmetic, as shown in Fig. 4.11. The addition of prefetch added

an additional 8-18% boost, making this an exemplary use case for both modifications, as

discussed in Section 4.4.7. When floating-point arithmetic was applied to the model the

94 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Cortex A72
i7-6700k

i5-10500T

i1
6

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Cortex A72
i7-6700k

i5-10500T

i3
2

0.5 1.0 1.5 2.0 2.5

Cortex A72
i7-6700k

i5-10500T

f3
2

0.5 1.0 1.5
Active set size / cache size

Cortex A72
i7-6700k

i5-10500T

f6
4

80.0%

85.0%

90.0%

95.0%

100.0%

105.0%

110.0%

115.0%

120.0%

Re
la

tiv
e

pe
rfo

rm
an

ce

Overall performance improvement: Normalisation

Figure 4.12: Performance boost achieved for colour normalisation algorithm. Benefits
varied widely across platform and numeric type. The 10th generation Intel CPU boosts
significantly better than the 6th generation CPU.

benefit from improved memory access patterns was slightly reduced, and the benefit

from prefetching was zero or negative.

4.4.5.3 Normalisation

The normalisation algorithm is capable of providing performance improvements on both

Intel platforms across a varying range of data sizes, as shown in Fig. 4.12.

The benefit of prefetching was near zero for this algorithm when fixed-point num-

bers were used: any performance boosts were a result of improved memory access

patterns. However, there was evidence of an appreciable performance boost (9% - 12%)

contributed by prefetching for the floating-point versions on the Intel architectures.

4.4.5.4 Convolutional Neural Network

The CNN algorithm showed significant performance benefits of between 12% and 13.5%

on the Intel platforms when used with 16-bit fixed-point numbers and the LLVM com-

piler, as shown in Fig. 4.13. No other combination showed any benefits.

The benefit of explicit prefetching was near zero for this algorithm: the performance

boost was a result of changing memory access patterns through coroutining.

Chapter 4 95

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.5 1.0 1.5

Cortex A72
i7-6700k

i5-10500T

i1
6

0.5 1.0 1.5

Cortex A72
i7-6700k

i5-10500T

i3
2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Cortex A72
i7-6700k

i5-10500T

f3
2

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Active set size / cache size

Cortex A72
i7-6700k

i5-10500T

f6
4

90.0%

92.5%

95.0%

97.5%

100.0%

102.5%

105.0%

107.5%

110.0%

Re
la

tiv
e

pe
rfo

rm
an

ce

Overall performance improvement: CNN

Figure 4.13: Performance boost achieved for convolutional neural network. The boost
was seen only on Intel platforms and only with 16-bit fixed-point number types.

4.4.6 Platforms

4.4.6.1 Intel platforms

Both Intel platforms showed performance boosts across all four algorithms; on the

newer 10th generation CPU these boosts were particularly significant: between 12.4%

and 64.8%.

4.4.6.2 ARM platform

The ARM platform showed very significant boosts (up to 31%) for the pointer-chasing

algorithm, B+ Tree. The numeric reducing algorithm SVM showed an appreciable im-

provement (8%) using coroutining with prefetching.

The numeric mapping process Norm also showed some benefits (up to 0.7%); prefetch-

ing was not required - the boost was achieved entirely through improved memory access

patterns. The numerically intensive convolutional neural network benchmark (CNN)

was not significantly improved by any combination of execution model or numeric type.

4.4.7 Impact of explicit prefetch instructions

Prefetching offered significant improvements when applied to the algorithms which

reduced the data dimensionality - B+-Tree and SVM. Prefetch provided all of the perfor-

mance benefits observed in B+-Tree and boosted SVM performance by a further 8-18%.

96 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

80% 90% 100% 110% 120% 130% 140% 150% 160%
Performance ratio

B+tree

SVM-16

Norm-16

CNN-16

Impact of prefetch on performance ratio

Break-even
Cortex A72 with prefetch
i7-6700k with prefetch
i5-10500T with prefetch
Cortex A72 without prefetch
i7-6700k without prefetch
i5-10500T without prefetch

Figure 4.14: Performance boost achieved for each algorithm using 16-bit fixed-point
arithmetic. Performance gains varied substantially according to algorithm and platform.
For the Reduce operations (where output dimensionality is lower than input), prefetch
improved performance.

However, prefetching generally offered little benefit for mapping operations (Norm and

CNN), where the output’s dimensionality was the same as the input’s: any performance

boost was a result of improved memory access patterns. (An exception was observed for

floating-point operations with Norm, where prefetching offered performance benefits of

≈ 5%.)

Fig. 4.14 shows more details of the performance boost offered by the two techniques.

It illustrates the difference between performance benefits resulting purely from splitting

a process into multiple parallel units of execution, and those achieved through prefetch-

ing.

4.4.8 Toolchain

The LLVM toolchain consistently showed similar or better performance boosts than the

GCC toolchain. Fig. 4.16 compares the peak performance boosts for each algorithm on

each platform.

It is illuminating to compare the actual performance of the compilers with regard to

raw data throughput, rather than the performance improvement achieved by applying

the coroutine algorithms. Fig. 4.15 shows the data throughput of all execution models

under each compiler, applied to the B+ Tree test. (Note that these throughputs are

expressed in bytes per CPU cycle, rather than bytes per second. This approach removes

the impact of any other tasks that may be running on these multi-tasking platforms and

Chapter 4 97

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0 2 4 6 8 10 12 14
Batch size as multiple of cache size

0.05

0.10

0.15

0.20

By
te

s p
er

 C
PU

 c
yc

le
LLVM on ARM Cortex-A72

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (1.03125 MB)

0 2 4 6 8 10 12 14
Batch size as multiple of cache size

GCC on ARM Cortex-A72

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (1.03125 MB)

Throughput - Visit randomly ordered B+tree leaf nodes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Batch size as multiple of cache size

0.1

0.2

0.3

0.4

By
te

s p
er

 C
PU

 c
yc

le

LLVM on Intel i7-6700k

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (9.125 MB)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Batch size as multiple of cache size

GCC on Intel i7-6700k

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (9.125 MB)

Throughput - Visit randomly ordered B+tree leaf nodes

0 2 4 6 8 10
Batch size as multiple of cache size

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

By
te

s p
er

 C
PU

 c
yc

le

LLVM on Intel i5-10500T

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (13.6875 MB)

0 2 4 6 8 10
Batch size as multiple of cache size

GCC on Intel i5-10500T

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (13.6875 MB)

Throughput - Visit randomly ordered B+tree leaf nodes

Figure 4.15: Comparison of data throughput for each compiler. Each figure shows the
throughput (expressed as bytes per CPU cycle) vs the batch size (expressed as the a
multiple of cache size on the platform) for a specific platform.

98 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

ARM v8 Intel
6th
gen

Intel
10th
gen

ARM v8 Intel
6th
gen

Intel
10th
gen

ARM v8 Intel
6th
gen

Intel
10th
gen

ARM v8 Intel
6th
gen

Intel
10th
gen

90%

100%

110%

120%

130%

140%

150%

160%
Pe

rfo
rm

an
ce

 ra
tio

B+ Tree SVM Normalisation CNN

B+ Tree on ARM:
the only case where

GCC outperforms LLVM

Performance improvement vs Tool chain
GCC
LLVM

Figure 4.16: Performance boost achieved for each algorithm using each toolchain. Ob-
serve that the GCC toolchain offered superior performance gain over LLVM in only one
case - B+ Tree on the ARM processor.

normalises the performance across the three different platforms.)

We observe that on the ARM Cortex-A72 both compilers display very similar per-

formance. However, on the both Intel platforms, the LLVM compiler consistently out-

performs the GCC compiler under all three execution models. However, while the data

throughput of the LLVM compiler is higher on the Intel platforms, the impact of batch

size on the throughputs is consistent across compilers, with the profile varying in a

manner more characteristic of the platform than of the compiler.

Table 4.6: Compiler flags

Flag GCC LLVM

Intel ARM Intel ARM

-Wall ✓ ✓ ✓ ✓

-pedantic ✓ ✓ ✓ ✓

-fcoroutines-ts ✓ ✓

-fcoroutines ✓ ✓

-std=c++2a -stdlib=libc++ ✓ ✓

-std=c++20 ✓ ✓

-O3 ✓ ✓ ✓ ✓

Chapter 4 99

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Active set size / cache size

40%

60%

80%

100%

120%
Pe

rfo
rm

an
ce

 ra
tio

Cost of coroutine machineryIntel i7-6700k/LLVM 4 tasks

Protothreads without prefetch
Protothreads with prefetch
Coroutines without prefetch
Coroutines with prefetch
Breakeven

Figure 4.17: The performance characteristics of the coroutined execution models vs the
Protothreads execution models. A Savitzky-Golay filter is applied to smooth the output
curve. (Model: SVM; compiler: LLVM, platform: Intel 6th gen; threads: 4.)

Table 4.6 shows the flags used for each compiler on each platform. Full aggressive

optimisation (-O3) was used for all cases. Standards were enforced: both -pedantic

and -Wall were used, while -Ofast was avoided so as to prevent any numeric optimi-

sations that might conflict with IEEE or ANSI standards. There are compiler-dependent

variations affecting the description of C++ version, C++ library inclusion and the new

instruction to include coroutine support, but the impacts of these flags are identical for

all platforms and compilers.

Since -O3 can include inlining, vectorisation, and loop unrolling for each of these

compilers, the object code was inspected: no use of these features was found in the

relevant sections of the test applications.

4.4.9 Coroutine machinery cost

The cost of the coroutine machinery was investigated by comparing the performance

of a protothread implementation of the modified execution model with the coroutined

version. The two implementations should be very similar in behaviour: the key differ-

ence is that the code for maintaining the values of local variables is hand-written in the

Protothreads version. As can be seen in Fig. 4.17, the performance of the two imple-

mentations is very close across all data sizes, indicating a small and reasonably constant

coroutine machinery cost. Similar results were found across all algorithms, platforms

and compilers tested.

100 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Batch size as multiple of cache size

0.0325
0.0350
0.0375
0.0400
0.0425
0.0450
0.0475

By
te

s p
er

 C
PU

 c
yc

le
Intel i7-6700k (6th generation)

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (9.125 MB)

0.0 0.5 1.0 1.5 2.0
Batch size as multiple of cache size

Intel i5-10500T (10th generation)

Sequential
Coroutine prefetch
Coroutine no prefetch
Cache size (13.6875 MB)

Throughput - Color normalisation (16-bit fixed-point)

Figure 4.18: Throughput vs batch size for 16-bit fixed-point normalisation algorithms
on two generations of Intel platforms.

4.4.10 Platform evolution

In general, we see an improvement in both absolute and relative performance as the

Intel CPU models advance from 6th to 10th generation. However, some results stand out.

Fig 4.18 compares the performance on the Norm algorithm of two tested generations

of Intel CPUs, in terms of bytes of data processed per CPU cycle. The throughput for

the coroutined versions is slightly better for the 6th generation CPU, and the similarity

of the curves for prefetch and no prefetch indicates that the performance benefit is due

to memory access patterns, rather than to explicit memory prefetching.

However, on the 10th generation CPU, while the performance of the unmodified

sequential execution model is substantially unchanged, the coroutined versions (with

and without prefetching) display a significant improvement, resulting in a net boost of

≈ 5.5%. This is a windfall benefit, resulting perhaps from an architectural change in the

Intel CPU cache design or memory mapping design.

4.5 Discussion

4.5.1 Performance costs & benefits

We have shown that there are some situations in which a developer can use coroutines to

improve the memory access pattern, leading to significant performance improvements

as shown in Fig. 4.1. Summarising the results from our work, performance boosts

are likely to occur when either or both of the following factors are met: (1) there is

indirection through pointers, as in the B+ tree; and/or (2) the calculation is fast so that

memory latency is more limiting, as in the examples that use integer arithmetic rather

Chapter 4 101

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

than floating point arithmetic. It will also be necessary that (3) the size of the active set

can be controlled to lie within the optimal region; and (4) the CPU architecture has a

sufficiently sophisticated cache hierarchy, as in the examples where the 10th generation

Intel CPU performed better than the 6th generation.

The algorithm should also be structured in such a way that there is an obvious place

to put a prefetch instruction and coroutine suspend. Our experiments found that there

was too much overhead if the programmer needed to use an extra ‘if’ statement to make

the decision at runtime. Therefore, there should be some part of the algorithm loop

where it makes sense to include an unconditional coroutine suspend.

4.5.1.1 Alternative approaches

Other than this coroutine transformation, there are alternative approaches to achieving

increased concurrency.

Techniques with low programming costs include SIMD vectorisation (enabled through

the -O3 compiler optimisation flag) and parallelism through OpenMP pragmas (e.g.

#pragma omp parallel for) or compiler flags (-fopenmp). All of these offer perfor-

mance improvements for the innermost loop, within the scope of a single vector opera-

tion. This is a separate strategy from the coroutine transformation, and can easily coexist

with it, since the coroutine transformation is concerned with reordering the outer loops,

which are not likely to be affected by the compilers’ parallelisation optimisations.

Another approach is to use explicit multi-threading. As well as adding significant

memory costs compared to coroutines (for the per-thread stack), multi-threading intro-

duces potential problems with memory conflicts such as race conditions and the coding

effort and complexity associated with defending against these. Finally, the use of mas-

sively parallel processor arrays such as those in graphics processor units offers far more

powerful performance improvements, but at the cost of using a different language or

language subset, and significantly increased hardware and power costs.

4.5.2 End-user experience

C++20 coroutines have reduced the cost of applying this method. All the hard work of

transforming subroutines into coroutines, particularly maintaining local variable state

efficiently and reliably, is handled by the compiler; additionally, the existence of corou-

102 Chapter 4

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

tines as first-class features in C++20 mean that changes to the scheduling code are sim-

pler, more robust and more likely to be reusable.

As shown in Fig. 4.3, the changes can be very simple. The possible locations for code

injection are limited to the various levels of iteration: the developer selects the level that

allows a prefetch of a segment of memory that is a small multiple of the cache line size

(typically 64 bytes).

Our experience was that typical asynchronous code patterns for coroutining - with

or without data prefetch - can be written easily and intelligibly in C++ using the new

language features, adding little to the maintenance burden of the codebase. Further, we

found that it was straightforward to apply the changes in a way that could be switched

on or off at compile-time, providing an efficient and easily updated cost-benefit analysis

of the transformations.

4.5.3 Test code

Making it possible to switch the modifications on or off at run-time, however, was harder

work. A standard pattern for this behaviour in C++ would be to use virtual methods

that differ between various sibling classes created by class factories. This approach

adds significant performance cost if the virtual functions are executed (and the vtable

must be inspected) in tight inner loops; therefore - for our testing purposes - it was not

acceptable.

Instead, we used template classes to instantiate behaviours, so that the cost of de-

ciding which version of a method to execute was incurred at compile-time instead of

run-time. This approach has two significant disadvantages: (i) the source code can be

more complex and less readable and (ii) the size of the binary executable can become

significantly higher.

For these reasons we would not advise other developers to expend resources devel-

oping a run-time switching capability: a capability to switch these transformations on or

off at compile-time should usually be sufficient for performance testing purposes.

4.5.4 Application scenarios

The target application of our research includes the deployment of machine-learning

inference engines to low-power sensors and edge devices to support remote applications

Chapter 4 103

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

including machinery health management and remaining useful life prediction. In this

scenario, the two most successful of the algorithms tested - B+-Tree and SVM - are both

applicable, and offer significant performance and battery life advantages in exchange for

a very low cost in programming effort. Our model employs periodic visits to a B+ tree

representation within a sensor-specific embedding and uses support vector machines to

detect damaged components.

Both of these CPU-consumptive (and therefore battery-consumptive) processes can

show significantly lower costs for relatively little programming effort if the coroutining

and memory prefetching techniques are applied to their C++ source code.

In our tests, the lowest-powered edge device - the ARM Cortex-A72 - did not show

any benefits from using these techniques for convolutional neural networks. Given how

common these layers are becoming in edge devices for recognition purposes, this is a

disappointing outcome. However, we note from our discussion of platform evolution

that the rate of change in processor design, particularly with regard to CPU cache ca-

pabilities and heuristics, will make it worth revisiting this test in the near future as new

general purpose platforms become available.

4.6 Conclusion

In conclusion, language-native coroutines make it easier for programmers to implement

memory prefetching and a more efficient memory access pattern. Significant perfor-

mance benefits are possible under the right conditions. We explored a comprehensive

parameter space to determine the conditions under which this optimisation is beneficial.

Our work will benefit software engineers who are implementing machine learning

inference on edge devices. The result will be improved performance at a minimal cost

to development effort and code clarity.

104 Chapter 4

Chapter 5

Reducing Energy Consumption for

Machine Learning Inference on Edge

Devices using C++20 Coroutines

This chapter is an expanded and reformatted version of the following paper for the

Elsevier journal Internet of Things.

B. Belson, J. Holdsworth and B. Philippa, ”Reducing Energy Consumption

for Machine Learning Inference on Edge Devices using C++20 Coroutines”,

in Internet of Things, doi: TBA.

The paper was submitted to the journal in April 2024, as a 25-page long-format jour-

nal article. This chapter contains extra material which was excluded from the journal

version, including source code, more detailed results and some discussions of imple-

mentation issues.

105

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Figure 5.1: Graphical summary for chapter.

Chapter Abstract

Increasingly, machine learning inference is implemented on relatively low-powered

edge devices, where battery life is a key performance criterion. In this work, the

potential of C++20 coroutines to optimize the execution order of iterative inference

tasks on edge devices is demonstrated. This approach is applied to a Prognostic

and Health Management (PHM) application, which processes streams of vibration

data as envelope spectra from a wireless sensor network using an array of Support

Vector Machines. Experimental results on ARM Cortex A72 and A53 64-bit SoCs

show that this method can reduce energy consumption for the task by up to 18%,

reduce overall energy use by up to 20%, and cut execution time by up to 20.5%.

Furthermore, peak power levels are reduced by up to 4.5%, and peak current is

reduced by up to 25 mA, extending the battery life of rechargeable devices. The

necessary changes to the C++ code are shown to be simple, repeatable, and broadly

applicable to iterative inference tasks.

5.1 Introduction

As the volume of data produced by Internet of Things (IoT) devices grows [14, 192],

an ever-increasing amount of data is processed locally, on edge devices [161, 165, 139],

rather than being transmitted in full to the cloud for remote processing [139, 3]. Since

many of these edge devices are battery-powered, it is important to minimise the energy

consumption of machine learning (ML) inference models [160] located at the edge.

106 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

The bulk of ML inference is executed by code libraries written in C and C++. Al-

though other languages, particularly Python, are used to control ML processing, the

underlying libraries, such as those of NumPy [74], PyTorch [141] and TensorFlow [1] are

primarily written in C and C++. Furthermore, inference engines designed for microcon-

trollers and other edge devices, such as TensorFlow Lite for Microcontrollers [39], and

uTensor [163] are implemented purely in C++. Therefore, performance and efficiency

improvements of C++ implementations are critical for the practical deployment of ML

inference on the edge.

In 2020, the C++20 standard introduced coroutines as a native language feature [17].

Coroutines are subroutines that can be suspended and resumed without loss of local

data and state [36, 119]. The C++ implementations of coroutines in LLVM and GCC

execute efficiently and can therefore be used as extremely lightweight threads [85, 146,

16]. Coroutines can be used to create a “mini-scheduler” which divides large monolithic

iterative tasks into smaller sub-tasks. Each of these sub-tasks can benefit from prefetch-

ing [85, 146] and improved memory access patterns [16], resulting in appreciably faster

data throughput compared to the standard sequential execution pattern.

Our earlier work [16] used micro-benchmarks to investigate the impact of these tech-

niques on the speed of execution of various algorithms employed in inference engines.

However, that work was limited to micro-benchmarks and did not consider the applica-

bility of the technique to real-world use cases, whereas this research studies the effects

of a coroutine-based execution pattern on a real application and compares not only data

throughput but also the energy consumption characteristics of sequential and coroutine-

based execution patterns. The transformation applied to the execution pattern and its

outcomes are summarised in Fig. 5.1.

The rest of the chapter is organised as follows: Section 5.2 focuses on the most recent

and relevant work in the field of performance enhancement using coroutines. Section

5.3 describes the methodology of the techniques used to improve performance and the

experimental methods we used to study their impact. Section 5.4 presents the results of

our experiments, Section 5.5 discusses the results and Section 5.6 contains our conclu-

sions and suggestions for possible future work. 5.7.1 lists the detailed results of the tests

on each platform, and 5.7.4 contains the relevant portions of the experimental source

Chapter 5 107

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

code. The code for the experiments can be downloaded from an online repository1.

5.2 Related work

The move towards edge processing of IoT data is driven by several different factors,

including on the one hand data-related concerns such as privacy and security [198] and

data provenance [78], and on the other hand network-related issues such as latency [53,

150, 29, 3], reliability [53, 29, 112] and bandwidth [112].

The problems and mitigations of memory access patterns have been examined in the

context of ML on edge devices [12, 22]. Numerous approaches have been explored, in-

cluding hardware [56, 31, 183, 86], software [191, 195] and hybrid [183, 22] perspectives.

Processing-in-memory (PIM) has been proposed as a means of improving speed and

reducing unnecessary data movement during local processing of edge data [59, 65], and

supporting architectures are now commercially available [102, 104].

Now that they are part of a language standard, C++ coroutines can delegate the

work of implementation to the compiler: thus the trade-off between code complexity

and performance has changed – to the advantage of the developer. Techniques based

on coroutines have been used to improve the performance of database engines on large

server platforms [75, 146, 85] and to implement software-defined networking [8].

On a Raspberry Pi 4 B – a small platform widely used for edge processing – corou-

tines were used to implement a “mini-scheduler” that provided up to 65% speed im-

provements for a range of ML algorithms and transformations, including 8.3% speed

improvement for a Support Vector Machine (SVM) [16].

5.3 Methodology

5.3.1 Application

Following on from the successful application of coroutines to repeated SVM execution

on edge devices [16], a real-world application was selected that seemed likely to benefit

from the same treatment: the application runs on an edge device and performs multiple

SVM calculations across multi-layered data sets.

1https://github.com/bbelson2/coro_edge_energy.git/

108 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Gateway

S x M

calculations

FFTFFTFFTIMU UDPFFTIMU UDP

S
sensors

F
features

Sensor acceleration amplitude data is
transformed to frequency domain.

Each set of features is packaged as a
UDP packet. (Simulated in tests)

Sensor acceleration amplitude data is
transformed to frequency domain.

Each set of features is packaged as a
UDP packet. (Simulated in tests)

Samples from all
sensors are transmitted

to gateway.
(Simulated in tests)

Samples from all
sensors are transmitted

to gateway.
(Simulated in tests)

Sensor-specific weights
are retrieved and used

with a SVM for each
packet.

Sensor-specific weights
are retrieved and used

with a SVM for each
packet.

F
features

M
measurements

Data cube
S x M x F

S
sensors

Gateway

S
outputs

Status
indicators

M
measurements

SVM

Inputs Process Outputs

Figure 5.2: Networked application. (i) Sensor acceleration data is recorded by inertial
measurement unit (IMU) and transformed to frequency domain; (ii) sample vector is
sent to gateway as a UDP packet; (iii) gateway retrieves sensor-specific weights and
applies SVM to each sample vector.
S sensors each produce M measurements, each containing F features; thus input data is
very large (SxMxF), but the final output – just one status value for each sensor – is small
(S). This architecture is characteristic of edge systems in remote deployments without
easy access to the cloud: it avoids cloud dependency, reduces cost and assists privacy.
The architecture requires that inference be implemented locally; inference involves many
layers of iteration of simple calculations.

The studied architecture is shown in Fig. 5.2. We consider the case of machine learn-

ing inference running on a gateway attached to a wireless sensor network (WSN). Each

WSN node reports on the health of a machine. The sensor node uses an accelerometer

to record the vibrations of the machinery for a sample period, then converts the data to

the frequency domain using a locally executed Fast Fourier Transform (FFT). The FFT

spectrum is then transmitted to the gateway where the Prognostic and Health Manage-

ment (PHM) method is applied as follows: the latest spectrum is compared against a set

of expected frequencies for the specific machine using a SVM.

The gateway application receives data transmitted by the S sensors in the WSN.

Each measurement contains a vector of F FFT bins, representing a set of F features: it is

packed into a single UDP datagram and transmitted to the gateway. M measurements

Chapter 5 109

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

are collected for each sensor. When all data has been received, the gateway processes all

measurements for all sensors. Finally, a single status value for each sensor is transmitted

to the cloud.

This architecture – with large amounts of input data and small quantities of output –

is typical of many applications: local processing avoids cloud dependency, reduces com-

munications costs and assists privacy. In cases such as this one, where the application is

deployed remotely, cloud solutions are not feasible.

Each vector of features within the complete collection of measurements is passed

through a Support Vector Machine (SVM) using per-sensor weights. This calculation is

a multi-level iteration process as described in Algorithm 1.

Algorithm 1 Levels of iteration within the application

1: procedure SVMs(sensor data) ▷ Apply SVM to each feature vector in sensor data

2: for all s in sensor data do ▷ Iterate across sensors - S items

3: measurements← measurements[s] ▷ Retrieve all measurements for this sensor

4: weights← weights[s] ▷ Look up weights for this sensor

5: for all m in measurements do ▷ Iterate across measurements - S x M items

6: f eatures← m ▷ m contains a vector of features

7: ▷ Injected code: Initiate a prefetch for [features] ◁

8: ▷ Injected code: Suspend execution until [features] is loaded into cache ◁

9: total ← 0

10: for all f in features do ▷ Iterate across features - S x M x F items

11: total ← total + f .w[i] ▷ Calculate step of dot product

12: results[m]← (total > bias[s]) ▷ Calculate class of this measurement

13: outcomes[s]← any(results) ▷ Calculate outcome for this sensor

14: return outcomes ▷ Return outcomes for all sensors

The SVM calculations for a complete data set provide a test for the coroutine-based

execution pattern which this work examines. This multi-layered set of iterations offers

an opportunity for a simple transformation to parallelised, multi-threaded execution,

using coroutines as extremely light-weight threads, under the model shown in Fig. 5.3,

as demonstrated in earlier work [16].

110 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

calculate

Sequential

calculate

Multi-threaded prefetch

Coroutine 1

Coroutine 2

Payoff

time

Calculate

Prefetch

Coroutine

prefetch

Figure 5.3: Coroutine execution model compared with unmodified sequential execution
model. (Based on [16] with permission.)

5.3.2 Platform

The gateway computer program was authored in C++20, the first version of C++ to

support coroutines [80]. The Clang 12.0 compiler was used, based on its efficient imple-

mentation of coroutines [16]. The program was executed on a Raspberry Pi 4 computer

[181] with 2GB RAM and a quad core ARM Cortex A72 64-bit SoC with a two layer CPU

cache. The L1 cache size of this machine is 32 KiB and the L2 cache is 1024 KiB. 16-bit

fixed point numbers (with 3.13 bits) are used for all real numeric values. A secondary

platform - the older Raspberry Pi 3 B+ - was also tested for comparison. (We restricted

our focus to the Raspberry Pi ecosystem (i) for simplicity and (ii) as a good fit for avail-

able test equipment.) The platforms are summarised in Table 5.1 and in Table 5.7 in the

appendix section.

5.3.3 Coroutine implementation

The coroutine transformation summarised in Fig. 5.3 and in Algorithm 1 improves the

speed of iterative tasks that access arbitrarily located blocks of memory: in the case

of the SVM operations in the test application, an earlier isolated micro-benchmark [16]

demonstrated performance improvements of up to 8.3% on this platform.

Some small modifications to the SVM implementation code are required before it

can make use of the coroutine execution model:

1. The function containing iterations must be transformed to a coroutine. This is

Chapter 5 111

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.1: Software characteristics

Name Value Notes

C++ version C++20 [80] Earliest C++ version to support native corou-
tines; only C++ version fully implemented at
time of testing

Compiler Clang 12.0 Most efficient coroutine implementation for
this platform [16]

Operating system Debian Linux
11 (Bullseye)

Minimal implementation (Raspberry Pi OS
Lite)

Arithmetic 16-bit fixed-
point numbers

3 integer places and 13 fractional places were
sufficient for the range and resolution of the
data set, which is derived from 12-bit ac-
celerometer readings

done by (i) returning an object that implements the promise type interface and

(ii) calling co await, co yield or co return at some point.

2. Within the iterator two operations must be injected before each new data region

is used: (i) initiate a prefetch for the data and (ii) yield to the scheduler by calling

co await. Fig. 5.16a shows the C++ code of the simple modification required for

the application code, which is inserted before each SVM operation.

As a result of these changes, the coroutine executing the SVM pauses while the re-

quired data is loaded into CPU cache. Loading into cache is executed asynchronously

by dedicated machinery independent of the CPU. The mini-scheduler ensures that an-

other task is executed while the cache is loaded. When the scheduler again invokes the

waiting task, the data will be in cache and no stall will occur. Furthermore, speed of

execution also benefits from an advantageous memory access pattern [16].

5.3.4 Execution template

The execution context is controlled by a mini-scheduler, implemented as a C++ tem-

plate. The template is reusable across any multi-level iterative task and is shown in

Listing 5.1. In order to be called by the scheduler, the coroutine that executes a single

step must be reorganised so that it accepts the following parameters: (i) a reference to

an application-dependent context class and (ii) the current index into the collection of

items to be iterated. This allows the scheduler to manage the list of remaining work

efficiently, and without any knowledge of the specific domain or task. An example of

112 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

this reorganisation is shown in Listing 5.2.

An instance of the coroutine runner templated class is instantiated and then in-

voked via its run() method (as shown in Listing 5.3). The template runs as defined in

Algorithm 2, summarised as follows:

1. The run() method creates an collection of coroutines - one for each parallelised

lightweight thread.

2. The method then repeatedly iterates through the collection of coroutines in a

round-robin pattern. If a coroutine’s current work item is in a wait state it is

resumed. If the item is complete then the coroutine is deleted and replaced by a

new one, created for the next item in the queue.

3. The coroutine currently being executed may pause at any time and enter a wait

state by calling co await; control then returns to the scheduler’s run() method,

which selects another waiting coroutine.

4. Once all items have been completed, the run() method exits.

5.3.5 Test application

A new application was derived from an existing application specifically to support the

test. For the purposes of repeatability, the sensor nodes were simulated during this test-

ing (using a pseudo-random series of feature values from a Mersenne twister, MT19937,

with a fixed seed), so as to generate repeatably the UDP traffic representing the sensor

network. This study focused on the gateway part of the WSN and specifically on the

performance characteristics of the numeric processing required for the local machine

learning inference engine.

In addition to the use of simulated data, the code was altered as follows: the two ex-

ecution models (the standard unmodified sequential model and the modified coroutine-

based model) were run alternately for each set of data, in an interleaved pattern; addi-

tionally, large regions of memory were modified between each test, in order to flush the

CPU cache, and to ensure that each test started without any relevant memory already

in cache.

The execution models were run repeatedly as follows:

Chapter 5 113

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

1. Receive and collate multiple UDP datagrams from a number of sensors (simu-

lated), then flood cache.

2. Run test 30 times:

(a) Apply SVM to each data set using standard sequential execution, then flush

cache.

(b) Apply SVM to each data set using coroutine execution, then flush cache.

The execution parameters were varied as shown in Table 5.2, for a total of 1,550 tests,

each test being run 30 times.

Table 5.2: Execution parameters

Parameter Symbol Range Step Description

Sensors S 10 - 50 10 Number of sensors transmitting data
packets

Measurements M 10 - 100 10 Data packets per sensor

Features F 128 - 2048 64 Number of FFT bins (features) per
measurement

Repeats 30 Number of repeats for each test

5.3.6 Performance measurement

The power supplied to the Raspberry Pi was measured using a Joulescope 220 2, as

shown in Fig. 5.4. The Joulescope recorded execution time and power usage with

resolution of 0.5 µs and 875 µW respectively.

The test application set and cleared general-purpose input/output (GPIO) pins on

the Raspberry Pi at the start and end respectively of each processing phase, and this

data was passed to the Joulescope to synchronise with the energy measurements, and

to be collected in the same result set, as shown in Fig. 5.5.

It could be argued that this study might have been more effectively executed by

using a simulation of the platform, rather than through the actual time and power mea-

surements used in this work. However, we decided that building confidence in the

actual outcomes – especially with regard to battery life and speed of performance – was

important enough to justify the additional time and effort.

2https://www.joulescope.com/

114 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

IN0 IN1 Vref GND USB

Joulescope (Rear)

IN0 IN1 Vref GND USB

Joulescope (Rear)Joulescope (Front)

V- V+ I+ I-V- V+ I+ I-

Joulescope (Front)

V- V+ I+ I-

PC

+
-
+
-

Floating
Power Source

+
-

Floating
Power Source

GPIO17 (11)GND (6)

Raspberry
Pi 4 B

5V (4) 3.3V (1)

GPIO27 (13)

USBUSB

Figure 5.4: Wiring layout for experimental procedure. The Joulescope provides power
from the floating source to the Raspberry Pi, and measures voltage & current used. The
Raspberry Pi provides timing information to the Joulescope through interrupts. All data
is merged and passed to a PC via USB.

5.3.6.1 Time Saving

Time (T) measures the time from the start of the SVM calculations to the end, as shown

in Eq. (5.1). T is the simplest result to measure, since it can be read immediately from

the width (along the time-axis) of the rectangular pulse from the appropriate GPIO pin,

as shown in the lower two traces in Fig. 5.5.

T = t1 − t0 (5.1)

where t0 = start time,

t1 = end time.

Tests are examined in pairs: the standard sequential execution and the coroutine

execution pattern that follows it. The Time Savings (ST) for the pair is calculated as

shown in Eq. (5.2). Thus a positive value signifies an improvement in performance (i.e.

less time used for the same task).

Chapter 5 115

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Figure 5.5: Example readout from Joulescope, showing the power usage of the device
under test (in the upper trace) along with the GPIO pins (in the lower two traces),
indicating which execution context is in use.

ST =
T(S)− T(C)

T(S)
(5.2)

where T(S) = duration of sequential pattern,

T(C) = duration of coroutine pattern.

5.3.6.2 Overall power and energy savings

Overall Energy (OE) measures the total energy used by the test device from the start of

the SVM calculations to the end, as shown in Eq. (5.3). OE is simple to measure, being

the area under the power curve (the upper trace in Fig. 5.5) between the start and end

of the duration’s rectangular pulse.

OE =
t1

∑
t0

P.∆t (5.3)

where P = power measured at Joulescope,

∆t = time resolution of Joulescope.

116 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

The energy used by each pair of tests is measured. The Overall Energy Savings

(SOE) for the pair is calculated similarly to duration savings, as the reduction in energy

divided by the energy of the sequential pattern, as shown in Eq. (5.4). A positive value

signifies an improvement - a reduction in energy used.

SOE =
OE(S)−OE(C)

OE(S)
(5.4)

where OE(S) = total energy for sequential pattern,

OE(C) = total energy for coroutine pattern.

Median Overall Power (OP) for each test is calculated as shown in Eq. (5.5):

OP = median([P(t0)..P(t1)]) (5.5)

where P = power measured at Joulescope,

t0 = start time,

t1 = end time.

The Savings in Median Overall Power (SOP) for the pair is calculated as the negative

of the change in power use divided by the power use of the sequential pattern, as shown

in Eq. (5.6). A positive value signifies an improvement - a reduction in median power

used.

SOP =
OP(S)−OP(C)

OP(S)
(5.6)

where OP(S) = median total power for sequential pattern,

OP(C) = median total power for coroutine pattern.

5.3.6.3 SVM task energy

As observed above, Time (T) and Overall Energy (OE) are straightforward to measure;

however, the power used specifically for the SVM task is more difficult to derive.

Chapter 5 117

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0 500 1000 1500 2000 2500 3000 3500 4000
Time (μs)

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1
Po

we
r d

ra
wn

 fr
om

 su
pp

ly
 (W

)

Energy released from
reservoir as

power level rises

Energy returned to
reservoir as

power level falls

SVM task energy2 threads; 50 sensors; 10 snapshots; 1024 FFT bins

Power
Start of processing
End of processing
Base line
SVM task energy
Released reservoir
Restored reservoir

Figure 5.6: The pattern of power use for the SVM calculations. Note the delayed rise
in power level at the start of processing, due to the release of energy from capacitive
reservoirs and the delayed fall after the processing is complete, as the reservoirs are
refilled.

Each period of SVM processing caused an immediate rise to a higher power usage

level, as shown in Fig. 5.6. There was a slight delay in reaching the higher level; the

length of the delay was consistent, and independent of the duration of the SVM calcu-

lations. We attribute this to a discharge of capacitors or other energy storage elements,

where the additional power draw was temporarily taken from the capacitors until the

voltage regulator was able to respond. There was a similar delay in returning to base

power levels at the end of processing, which we attribute to the recharging of the capac-

itors. The process is described in Fig. 5.6.

To account for the capacitive-based rise and fall of the measured power, we define

the SVM’s Task Energy (TE), which is illustrated by the shaded region in Fig. 5.6. The

mathematical definition is as follows.

Starting with a Base Line Power Level (Pbase) calculated as the median power level

in a fixed period before the test begins, as in Eq. (5.7), we calculate the excess of power

use over base line from the start of the calculation and to the point where power use

returned to the base line, as shown in Fig. 5.6 and in Eq. (5.8).

118 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Pbase = median([P(t0 − tδ)..P(t0)]) (5.7)

where P = power measured at Joulescope,

t0 = start time,

tδ = discharge period.

TE =
t1+tδ

∑
t0

(P− Pbase).∆t (5.8)

where t1 = end time.

As with Overall Energy, the SVM’s Task Energy Savings (STE) are calculated as the

ratio of the reduction caused by the use of coroutines and the original SVM Task Energy,

as shown in Eq. (5.9).

STE =
TE(S)− TE(C)

TE(S)
(5.9)

where TE(S) = SVM task energy for sequential pattern,

TE(C) = SVM task energy for coroutine pattern.

5.3.6.4 Peak power

Peak current – and thus also peak power usage (PP) – is known to have an effect on total

battery lifetime [27]. The peak power level during the SVM processing was calculated

as shown in Eq. (5.10).

PP = max
t0→t1

(P) (5.10)

where P = power measured at Joulescope,

t0 = start time,

t1 = end time.

The savings in peak power level (SPP) were calculated by comparing peak power

usage for each test pair as shown in Eq. (5.11).

Chapter 5 119

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

SPP =
PP(S)− PP(C)

PP(S)
(5.11)

where PP(S) = peak power for sequential pattern,

PP(C) = peak power for coroutine pattern.

5.3.7 Statistics

Each test was repeated 30 times in order to provide a large enough test set to detect

outliers (based on a rule-of-thumb emerging from the Central Limit Theorem). Although

the operating system version was “headless” and thus had a minimised number of

competing processes and daemons, Raspberry Pi Linux is nevertheless a multi-tasking

operating system, and performance of any task will inevitably vary, impacted by the

heightened activity of background processes.

Median absolute deviation (MAD) [158] was used to detect outliers. Within each

test, the MAD of the duration was calculated for each execution pattern. Results whose

deviation from the MAD was more than 4 standard deviations (above or below) were

excluded. For any pair of results (i.e. consecutive sequential and coroutined executions),

the exclusion of either result resulted in the exclusion of both.

Surviving pairs of results were retained, and for each pair the changes in perfor-

mance for time, energy used, median power used, adjusted energy used and peak power

level were calculated as described in Eqs. (5.2), (5.4), (5.6), (5.9) and (5.11) respectively.

This process resulted in the removal of 8.74% of the test runs for the Raspberry Pi 4

and 15.93% of the Raspberry Pi 3 test runs.

5.3.7.1 Outlier removal

The value of 4 for the exclusion barrier was based on an exploration of the impact

of interference by other processes on the test process. Fig. 5.7 shows a selection of

experimental data sets. It can be observed that true outliers (shown as red crosses in

the figure) lie well beyond the barrier for 4 standard deviations. However, in sets that

have zero or one true outlier, a number of non-outlier points lie close to or outside of

the barrier for 3 standard deviations and might be excluded if the conventional value of

120 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

0% 10% 20% 30% 40%
Duration reduction

S=50;M=100;F=640
S=50;M=80;F=2048
S=50;M=50;F=1024
S=50;M=30;F=1536
S=40;M=80;F=2048
S=40;M=20;F=1024
S=20;M=80;F=640

S=20;M=50;F=1024
S=20;M=20;F=1024
S=20;M=20;F=640

Ex
pe

rim
en

t p
ar

am
et

er
s

Impact of MAD outlier exclusion

Included data points
Excluded data points
Median
Barrier for 1 sd
Barrier for 2 sd
Barrier for 3 sd
Barrier for 4 sd

Figure 5.7: The distributions of a selection of experimental result sets, and the barrier
levels for MAD exclusion at 1, 2, 3 & 4 standard distributions for each set. The Y axis tick
labels show the experiment parameters (sensor count (S); sample count (M); datagram
size (F)). The vertical lines show the median and the various barrier levels for each
experiment. Included data points are shown as blue dots and excluded data points are
shown as red crosses. Notice that if an experiment has outliers, they lie well beyond
the barrier for 4 standard deviations. However, for some experiments with zero or one
true outliers, a number of non-outlier points lie close to or outside of the barrier for 3
standard deviations.

3 standard deviations were used.

It can be seen from Section 5.4.1.1 that this approach excluded 50% or more of the

samples of an experiment in only 0.6% of cases. All of these low surviving sample sizes

were located at the edge of the explored parameter space, with the lowest values for

SxM (sensors x samples).

5.4 Results

5.4.1 Introduction

A typical output from the experiment resembles Fig. 5.5. The lower two lines on the

chart display the rectangular signals supplied directly to the Joulescope by the test ap-

plication, using the test device’s GPIO pins: high signals on pins 0 and 1 signify the

normal sequential execution pattern and the coroutined execution pattern respectively.

The upper line records the power usage of the test device on the same time axis.

It is immediately apparent – from inspection of test runs such as that in Fig. 5.5 –

that the spike in power use during the coroutined execution is lower than that during

sequential execution. Closer examination of the rectangular pulses reveals that the total

Chapter 5 121

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
9225

6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
9225

6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

SVM feature count

0%

5%

10%

15%

20%
Sa

vi
ng

 (c
or

ou
tin

e
vs

 se
qu

en
tia

l)
Performance comparison: coroutine vs sequential 50 sensors; 100 samples

Time
Overall energy
Task energy

Figure 5.8: Summary of performance gains from using coroutines to reorder execution
of SVM analyses on Raspberry Pi 4. Statistics displayed represent the reduction in cost
divided by the original cost. Time is the elapsed time spent on the SVM task; Overall
energy is the total energy consumed by the edge device during the task; Task energy is
the marginal energy consumption of the task, after subtracting the base energy use.

time for the coroutined operation is also noticeably less than that for the sequential

execution.

A typical response to the application of coroutines to the performance in terms of

time and energy is summarised in Fig. 5.8. In this configuration, the use of corou-

tines resulted in approximately a 5% saving in time and a 19% saving in task energy

consumption.

5.4.1.1 Outliers

Table 5.3 summarises the effect on sample sizes of removing outliers: the bulk of tests

(89.3%) were reduced by 17% or less, i.e. no more than 1 in 6 results were identified

as outliers. A very small number of tests (10 out of 1550, or 0.6%) had sample sizes

reduced by more than 50%.

Sections 5.4.2 to 5.4.7 examine the savings measures individually. Tables 5.5 and 5.6

contain the summary statistics of the results for each sensor count and measurement

count combination.

122 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.3: Outliers and survivors

Survivors Outliers Tests

Count %age Count %age Count %age

28-30 93-100% 0-2 0-7% 956 61.7%

25-27 83-90% 3-5 10-17% 428 27.6%

22-24 73-80% 6-8 20-27% 93 6.0%

19-21 63-70% 9-11 30-37% 45 2.9%

16-18 53-60% 12-14 40-47% 18 1.2%

13-15 43-50% 15-17 50-57% 5 0.3%

10-12 33-40% 18-20 60-67% 5 0.3%

5.4.1.2 Dimensionality

Many of the figures in this chapter, including Figs. 5.8, 5.9, 5.10 and 5.13, focus on

the impact of SVM feature count on performance improvements. SVM feature count in

this set of experiments is important in that it represents a class of parameter that cannot

easily be manipulated as a configuration setting or a calculated run-time setting, because

it is the fixed size of an indivisible unit of work. In this case it represents the length of

a feature vector input to the SVM, whose size is a side-effect of the accelerometer used

in the sensors.

By contrast, the sensor count (S) and the measurement count (M) represent param-

eters that can be controlled – or tuned – by the application developer; this is similar to

a Deep Learning scenario where the developer tunes the batch size in order to optimise

the learning task.

5.4.2 Time

It was expected that SVM feature count (F) would have a major impact on all types of

savings, since the cost of pausing and resuming the iterator with co await is incurred

exactly once for each feature vector, and this cost is non-trivial.

Fig. 5.9 confirms this expectation: it shows the impact of SVM feature count on time

savings (ST) for a range of sensor counts (S) and measurement counts (M). It is notable

that the pattern of the response with regard to feature count (F) is consistent for almost

all sensor counts and measurement counts: a small feature count results in zero time

savings; as the size of the vector of features increases the savings increase dramatically,

Chapter 5 123

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

-4%

-2%

0%

2%

4%

6%
Ti

m
e

sa
vi

ng
s (

S T
)

S = 10

M = 20
M = 40
M = 60
M = 80
M = 100

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 30

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 50
Time saving (ST): impact of SVM feature count (Pi 4)

Figure 5.9: The effect of SVM feature count on time savings for various sensor counts
(S) and measurement counts (M). Each point represents the median value for a single
experiment repeated 30 times, with outliers removed as described in Section 5.3.7. Note
the similarity of the response curves across all sample counts. The notable exception is
for the smallest sensor and measurement counts (10 x 20 and 10 x 40) which - with a
smaller total memory requirement - display less decay for higher feature counts.

reaching a peak of 5.5% at a feature count of around 960-1088; the savings gradually and

steadily fall off thereafter. There is an exception to the pattern for the smallest sensor x

measurement count shown (10 x 20), presumably reflecting a total memory size which

does not fill the CPU cache.

In summary, there exists - for all except the smallest network sizes - a large region

of SVM feature counts where the benefits of the coroutined execution pattern are guar-

anteed and offer between 4% and 5.5% savings in execution time.

These results are consistent with the time savings found for SVM on a Raspberry Pi

4 B in [16].

5.4.3 Overall power and median overall energy

A notable outcome of this research is the clear saving in energy usage as a result of

replacing the sequential execution pattern with a coroutined execution pattern. Fig.

5.10a shows the savings (SOP) in overall power usage (OP) between the two execution

patterns for a number of different data set sizes and SVM feature counts. Under the

modified (coroutined) execution pattern the calculation runs for a shorter time and uses

less power while running; outside the smaller feature count zone, the amount of power

saved rises steadily, to between 4% and 4.5%.

As shown in Fig. 5.10b, the effects of time saving and power saving combine to create

124 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

1.0%

2.0%

3.0%

4.0%

Ov
er

al
l p

ow
er

 sa
vi

ng
s (

S O
P)

S = 10

M = 20
M = 40
M = 60
M = 80
M = 100

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 30

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 50
Overall power saving (SOP): impact of SVM feature count (Pi 4)

(a) The effect of SVM feature count on overall power savings. The chart shows power savings
across all feature counts, rising steadily with feature count, and reaching a plateau at a feature
vector size of about 2000.

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

-4%

-2%

0%

2%

4%

6%

8%

Ov
er

al
l e

ne
rg

y
sa

vi
ng

s (
S O

E)

S = 10

M = 20
M = 40
M = 60
M = 80
M = 100

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 30

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 50
Overall energy saving (SOE): impact of SVM feature count (Pi 4)

(b) The effect of SVM feature count on overall energy savings. The effect is similar across all
measurement counts except for the data sets with the smallest number of steps in each separate
processing task (i.e. 20 measurements).

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

8%

10%

12%

14%

16%

18%

Ta
sk

 e
ne

rg
y

sa
vi

ng
s (

S T
E)

S = 10

M = 20
M = 40
M = 60
M = 80
M = 100

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 30

32
0

57
6

83
2

10
88

13
44

16
00

18
56

SVM feature count

S = 50
Task energy saving (STE): impact of SVM feature count (Pi 4)

(c) The effect of SVM feature count on SVM task energy savings for various sensor counts.

Figure 5.10: The effect of SVM feature count on energy & power savings measures, for
various sensor and sample counts. Each point represents the median value for a single
experiment repeated 30 times, with outliers removed as described in Section 5.3.7.

Chapter 5 125

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

an overall energy saving (SOE) between 6% and 9%: this saving applies to a usefully large

range of feature counts. As would be expected, the impact of feature count on SOE shows

similar characteristics to its impact on ST. The highest energy savings appear for feature

counts between 720 and 1024. Once again, there is a consistent shape of response curve

for all sensor and measurement counts, and once again there is a notable exception for

the smallest sensor and measurement count (10 x 20) which also displays less decay for

higher feature counts.

5.4.4 SVM task energy

This derived measure represents the energy savings specifically for the SVM task (as

described in Section 5.3.6.3 and in Fig. 5.6). Fig. 5.10c shows steady energy savings of

over 16% for a wide range of SVM feature counts. The measure follows a similar pattern

to the overall energy shown in Fig. 5.10b. Tests with a feature count between 720 and

1024 show the highest savings, but with a very gradual falling off above 1024.

Fig. 5.10c shows that the highest range of task energy savings (i.e. >= 16%) co-

incides with positive time savings (0.5% to 6%) and high total energy savings (5% and

above). We observe that there exists a large and reliable range of data sizes where speed,

total energy and task energy can all be reliably improved by use of the techniques out-

lined here.

5.4.5 Peak power

-6% -4% -2% 0% 2% 4% 6%
Time saving (ST)

1%

2%

3%

4%

5%

Pe
ak

 p
ow

er
 sa

vi
ng

 (S
PP

) Savings: Peak power, Time & Average power (Pi 4)

0%

1%

2%

3%

4%

Saving in Average power (S
O
P)

Figure 5.11: Comparison of peak power savings with savings in time and average power
for the Raspberry Pi 4 B. Each point represents the results for a pair of parameter values:
S (sensor count) and M (measurement count). Points to the right of 0% indicate time
savings; points that are lighter in colour indicate savings in average power. Notice that
the parameter values for S and M which result in useful outcomes for time and power
also display useful reductions in peak power – between 2% and 4.5%.

126 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Fig. 5.11 compares the median peak power savings for each test set with savings in

time and average power for the Raspberry Pi 4 platform. The regions of parameter space

which display the best average power and time savings – i.e. the brighter dots (shown in

yellow and pale green) on the right-hand-side of the chart – also exhibit steadily positive

peak power savings of between 2% and 4.5%.

Since peak power levels were between 2.66 W and 3.33 W with a 5V power supply,

this saving typically reduced peak current from e.g. 545 mA to between 531 and 520

mA, a saving of between 14 and 25 mA.

There were no appreciable or consistent peak power savings for the Raspberry Pi

3 B+ platform: the average peak power level was in fact slightly higher on the older

platform, as shown in Fig. 5.12.

10% 12% 14% 16% 18% 20%
Time saving (ST)

-2%

0%

2%

4%

Pe
ak

 p
ow

er
 sa

vi
ng

 (S
PP

) Savings: Peak power, Time & Total power (Pi 3)

-1%

-1%

-1%

-1%

-1%

Overall power saving (S
PT)

Figure 5.12: Comparison of peak power savings with time and total power savings for
the Raspberry Pi 3 B+.

5.4.6 Comparison with Raspberry Pi 3

To compare base performance across platforms, we used the following calculated statis-

tics:

Features per second =
S ∗M ∗ F

T
(5.12)

Features per joule (overall energy) =
S ∗M ∗ F

OE
(5.13)

Features per joule (task energy) =
S ∗M ∗ F

TE
(5.14)

Fig. 5.13 displays these base performance statistics for both execution patterns on

both platforms, across a range of sensor (S) and measurement (M) counts against SVM

Chapter 5 127

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

500 1000 1500 2000
SVM feature count

1

2

3

Fe
at

ur
es

 p
er

 se
co

nd

1e8 S=10, M=20

500 1000 1500 2000
SVM feature count

1e8 S=30, M=30

500 1000 1500 2000
SVM feature count

1e8 S=50, M=40

Pi 4
Pi 4 Coroutine
Pi 3
Pi 3 Coroutine

Features per second

(a) The effect of SVM feature count on speed of processing, measured in features per second.

500 1000 1500 2000
SVM feature count

0.2

0.4

0.6

0.8

1.0

1.2

Fe
at

ur
es

 p
er

 jo
ul

e
(o

ve
ra

ll)

1e8 S=10, M=20

500 1000 1500 2000
SVM feature count

1e8 S=30, M=30

500 1000 1500 2000
SVM feature count

1e8 S=50, M=40

Pi 4
Pi 4 Coroutine
Pi 3
Pi 3 Coroutine

Features per joule (overall energy)

(b) The effect of SVM feature count on overall energy used in processing, measured in features
per joule.

500 1000 1500 2000
SVM feature count

2

3

4

5

Fe
at

ur
es

 p
er

 jo
ul

e
(ta

sk
)

1e8 S=10, M=20

500 1000 1500 2000
SVM feature count

1e8 S=30, M=30

500 1000 1500 2000
SVM feature count

1e8 S=50, M=40

Pi 4
Pi 4 Coroutine
Pi 3
Pi 3 Coroutine

Features per joule (task energy)

(c) The effect of SVM feature count on task energy used in processing, measured in features per
joule.

Figure 5.13: The effect of SVM feature count on base performance on each platform in
terms of speed, overall energy and task energy. Each point represents the median value
for a single experiment repeated 30 times, with outliers removed as described in Section
5.3.7. S: Number of sensors; M: Number of measurements per sensor.

128 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

feature count (F). The consistency of pattern is notable: all performance statistics tend

towards a flat response (with regard to feature count) as the count increases beyond

1000.

5.4.6.1 Time

The two platforms have very different performance capabilities. The speed character-

istics in Fig. 5.13a show that the Raspberry Pi 4 B performs the SVM analysis about 6

times as fast as the Raspberry Pi 3 B+.

5.4.6.2 Overall energy

Fig. 5.13b shows that the overall energy cost for the newer platform is about 5.5 times

lower than that of the older platform. This ratio is consistent across sample and mea-

surement counts.

5.4.6.3 Task energy

We see from Fig. 5.13c that the difference between the two platforms is much less pro-

nounced for the task energy consumption – i.e. after the cost of running the operating

systems and other background processes is removed. Enhancements to the design of

the Raspberry Pi 4 have resulted in general improvements to the energy usage of the

platform, as can be observed in the comparative overall energy costs. The relatively

smaller improvements in task energy usage for this task encourages the conclusion that

these enhancements do not apply equally strongly to the types of work performed by

this task, which is composed primarily of memory- and CPU-intensive operations.

5.4.6.4 Impact of coroutine execution model

Comparing the impact of the coroutine execution model on the two platforms – as

shown in Fig. 5.13 – we see improvements in all three performance metrics: execution

time, overall energy consumption and task energy consumption. In all three cases –

outside of the very low feature counts – there is a clear improvement in performance

on both platforms, and the performance enhancement is visible across a wide range of

sensor counts, measurement counts and feature counts.

Chapter 5 129

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.4.7 Consistency of results

20 40 60 80 100
Measurements (M)

0%

1%

2%

3%

4%

5%

6%
Time (ST)

20 40 60 80 100
Measurements (M)

0%

1%

2%

3%

4%

Overall power (SOP)

20 40 60 80 100
Measurements (M)

0%

5%

10%

15%

Task energy (STE)

10 sensors
20 sensors
30 sensors
40 sensors
50 sensors

Consistency of Performance Savings - Raspberry Pi 4 B

(a) Summary of best performance savings on Raspberry Pi 4 B.

20 40 60 80 100
Measurements (M)

0%

5%

10%

15%

20%

Time (ST)

20 40 60 80 100
Measurements (M)

-0.8%

-0.6%

-0.4%

-0.2%

0.0%
Overall power (SOP)

20 40 60 80 100
Measurements (M)

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

Task energy (STE)

10 sensors
20 sensors
30 sensors
40 sensors
50 sensors

Consistency of Performance Savings - Raspberry Pi 3 B

(b) Summary of best performance savings on Raspberry Pi 3 B.

Figure 5.14: Summary of best performance savings on each tested platform. Each chart
shows the best performance savings for each metric: ST, SOP and STE for the specified
sensor and measurement count. These savings are as defined in Eqs. (5.2), (5.6) and
(5.9).

Fig. 5.14a shows the consistency of the savings achievable in execution time, overall

power consumption and task energy consumption across the various combinations of

sensor counts and measurements per sensor, for the Raspberry Pi 4. For each metric

the savings were reasonably consistent, with the exception of the cases which had the

smallest number of sensors and measurements per sensor. We observe that in general

savings for all three metrics rise as the measurement count per sensor is increased.

Fig. 5.14b, which summarises the same savings on the Raspberry Pi 3 B, paints a

very different picture, but again a consistent one: execution time savings are 4x higher

than on the Raspberry Pi 4 B, overall power consumption savings are small and negative

(between -0.5% and -0.65%) and the task energy consumption savings are large (between

10% and 13%) due to the improved speed.

130 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.5 Discussion

5.5.1 Overall performance savings

Pi 3 Pi 4

0%

5%

10%

15%

20%

Ti
m

e
(S

T)
sa

vi
ng

Time (ST)

Pi 3 Pi 4

0%

5%

10%

15%

20%

Ov
er

al
l p

ow
er

 (S
O
P)

sa
vi

ng

Overall power (SOP)

Pi 3 Pi 4

0%

5%

10%

15%

20%

Ov
er

al
l e

ne
rg

y
(S

O
E)

 sa
vi

ng

Overall energy (SOE)

Pi 3 Pi 4

0%

5%

10%

15%

20%

Ta
sk

 e
ne

rg
y

(S
TE

) s
av

in
g

Task energy (STE)
Summary of Performance Savings

Figure 5.15: Summary of best performance savings in time and energy on each plat-
form. The y values represent the mean performance saving for each criterion (ST, SOP,
SOE and STE) for each specific sensor and measurement count. These savings are as
defined in Eqs. (5.2), (5.6), (5.4), and (5.9). For each combination of sensor count (S)
and measurement count (M), the mean performance gain across SVM feature counts >
1024 is collated. This set is shown in the box plot: the box contains the quartiles and
the whiskers extend to show the rest of the range, with the exception of outliers, which
are shown as dots. (The negative value for SOP on the Pi 3 indicates that the modified
algorithm had a net cost - more power was required by the modified coroutine execution
pattern than by the unmodified sequential execution pattern.)

Performance gains are summarised in Fig. 5.15, which compares the range of savings

achieved for time (ST), overall power (SOP), overall energy (SOE) and task energy (STE)

on the two test platforms. Time savings on both platforms are positive and show little

variation across different sensor and measurement counts. The time savings on the Pi 3

platform are very large, at around 20.5%, and the time savings for the Pi 4 are lower but

still useful at around 3.5%.

The overall power savings on the Pi 4 have a mean of ≈ 3.9% and are asymptotic

to 4%; the bulk of results are over 3.2% and even the outliers remain above 2.2%. The

overall power usage on the Pi 3 platform is made worse through the application of

coroutines: there is a net loss of performance of ≈ 0.5%.

The energy consumed specifically by the SVM calculation task shows important im-

provements on both platforms: on the Pi 4 the energy use is improved by a mean of

19% and is asymptotic to 18%; there are outliers as low as 15%, which still represents a

Chapter 5 131

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

valuable gain. On the Pi 3 the improvement, with a mean and an asymptote of 13%, is

less marked but is still appreciable.

In Fig. 5.13, we can see a consistent pattern for the impact of SVM feature count on

time, overall energy and task energy. In general, savings do not begin until the feature

count reaches about 256: this is the point at which the cost – in time and energy – of

creating, invoking and managing a coroutine is outweighed by the performance savings

attributable to improved memory access patterns. The level of savings develops from

512 to 1024 features and stays fairly static thereafter.

The pattern differs for the smallest data size shown (10 sensors with 20 measure-

ments each): the savings in time and overall energy do not present until the feature

count reaches 512, and savings do not stabilise until around 1800. This indicates that –

for this smaller number of vectors – the CPU memory cache is not filled until the vectors

are proportionately larger.

5.5.2 Comparison of platforms

While the Raspberry Pi 4 B is capable of performance much superior to its Pi 3 prede-

cessor with regard to both speed of execution of the SVM calculations (Fig. 5.13a) and

overall power used (Fig. 5.13b), we can observe in Fig. 5.13c that both platforms use

similar amounts of energy specifically for the SVM process. We can also see in Fig. 5.13c,

by comparing the features per joule for the coroutine execution model and the sequen-

tial model, that the power savings achieved by applying the coroutine execution model

are similar and very clear, tending towards 13% and 18% on the Pi 3 and 4 respectively.

Table 5.4: Summary of performance savings

Platform Time Overall power Overall energy Task energy
(ST) (SOP) (SOE) (STE)

Raspberry Pi 3 B+ 20.5% -0.5% 20.0% 13.0%
Raspberry Pi 4 B 3.5% 4.0% 7.5% 18.0%
1. ST , SOP, SOE & STE are calculated as defined in Eqs. (5.2), (5.6), (5.4) and (5.9) respec-
tively.
2. For each sensor x measurements (S x M) pair, the SVM feature count with the best
median outcome is selected.
3. Values of S x M < 1024 are excluded because the curve only becomes asymptotic above
this value.
4. For each statistic the asymptotic value as S x M increases is shown.

132 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.5.3 Performance trade-offs

The study compares the performance characteristics of two execution models applied

to an iterative calculation task: sequential execution and a switching approach using

coroutines to swap cheaply between sub-regions of the task. We explored a substantial

test space, varying the sizes of the outer iterations and the amount of memory used,

and we observed a variety of performance changes – both positive and negative – across

the space explored; we also determined that a large region within the test space reliably

offered useful performance improvements.

However, it is important to note that all these tests relied on the use of a simple and

unconditional code injection strategy as illustrated in Fig. 5.16a: the frequency of the

task-switching was fixed. However, if a more flexible code injection strategy was used,

such as that shown in Fig. 5.16b – where a test is applied, so that the task switches only

when no more precached memory is available – then the cost of executing the injected

code becomes unacceptably high. Using this strategy, we were unable to achieve any

reliable performance improvements at all, across the same parameter space.

1 // Apply SVM to each row – suspend each vector

2 for (sample = 0; sample < sample_count; sample++,

 x += row_len, result_ptr++)

3 {

4 x = prefetcher.prefetch(x, data_line_count);

5 co_await std::suspend_always{};

6 *result_ptr = svm_infer(w, x, bias, row_len);

7 }

(a) Modification to suspend unconditionally

1 // Apply SVM to each row – suspend on demand

2 for (sample = 0; sample < sample_count; sample++,

 x += row_len, result_ptr++)

3 {

4 if (x + row_len > x_pre + data_loaded) {

5 x_pre = prefetcher.prefetch(x, data_line_count);

6 co_await std::suspend_always{};

7 }

8 *result_ptr = svm_infer(w, x, bias, row_len);

9 }

(b) Modification to suspend on exhausted cache

Figure 5.16: Modifications to the SVM application code. The added code is shown
boxed. In (a) line 4 initiates a memory prefetch for the next input vector; line 5 yields
to the scheduler; when other tasks have yielded, control returns to line 6, by which time
vector x will have been loaded into CPU cache. In (b) the modification uses a different
injection strategy, so that the code only suspends on-demand i.e. when the available
prefetched memory is insufficient for the current operation. This strategy was found,
experimentally, to be too expensive: the cost of the test outweighed any benefit from
memory access pattern improvements.

In summary, there is evidence that performance in speed and energy use can be im-

proved by a low-cost task-switching strategy that spreads memory access more evenly

across the memory address space of the CPUs studied, but the mechanism that imple-

ments the strategy must be carefully managed with regard to its speed and frequency

of invocation.

Chapter 5 133

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.5.4 Dimensionality

As stated in Section 5.4.1.2 above, many of the results examined here, including those in

Figs. 5.8, 5.9, 5.10 and 5.13, measure the impact of SVM feature count. Because feature

count is driven by sensor hardware, it is a parameter that cannot be controlled by the

application developer (or at run-time).

The method studied in this chapter suits problems where at least some of the dimen-

sionality parameters are controllable; if there is no freedom to tune such parameters,

then the technique should not be used.

In other edge computing applications, whether within ML or outside, the efficacy of

the execution strategy described here will depend on other parameters – similar to SVM

feature count – whose value is fixed by the implementation. It is important to test across

the range of likely values for an application instance before investing in the strategy.

5.5.5 Value of mini-scheduler

We have observed in Section 5.5.3 that the implementation of the injected code that

contains the machinery for task suspension can be the deciding factor in whether the

strategy is successful or not; similarly, the implementation of the mini-scheduler will

have an important impact on the efficacy of the strategy.

The simple round-robin pattern summarised in Algorithm 2 (and listed in full in Sec-

tion 5.7.4) has low overheads but does not have enough per-coroutine state information

to usefully prioritise between coroutines. It is possible that a more complex prioriti-

sation mechanism would offer further performance benefits; alternatively, a trade-off

between complexity and performance might result in the opposite outcome.

5.6 Conclusions

We have investigated the use of an algorithmic transformation of C++ code to improve

runtime performance on an edge device. This transformation uses coroutines and a

“mini-scheduler” class to improve the performance of multi-layered highly iterative

code – the type of code typically found in machine learning inference applications.

We conducted experiments on two edge gateway devices: a Raspberry Pi 4 B and

a Raspberry Pi 3 B+. We measured the impact of the coroutine execution model on

134 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

the performance characteristics of a support vector machine on a gateway, which locally

processed feature vectors passed in by multiple sensors. We varied the number of sensor

nodes connected to the gateway device, the number of measurements made by each

sensor, and the size of the feature vectors. Table 5.4 shows a summary of the results.

We observed clear improvements in speed of performance: 3.5% on the Pi 4 and

20.5% on the Pi 3. Notably, we also observed - on the Pi 4 only - a substantive reduction

in the overall power used by the system while calculating the SVM: 4.0%.

Combining the impact of time savings and overall power savings, we observed an

overall energy saving of 7.5% on the Pi 4 and 20% on the Pi 3. (The energy saving on

the Pi 3 is solely a side-effect of the time saving).

Separating out the power used specifically by the SVM calculation, we saw a reduc-

tion of 18.0% on the Pi 4 and 13% on the Pi 3.

We observed that the technique offers useful benefits on both of the platforms stud-

ied, but in differing ways, as summarised in Table 5.4: the Pi 4 offers savings in the 3.5%

to 4.0% region for both time and overall power, whereas the Pi 3 offered time savings

up to 20.5% and a slight power cost.

This study was restricted to testing on Raspberry Pi devices. Our earlier work [16]

established that Intel platforms could also show speed benefits; it would be useful to

investigate whether Intel platforms – particularly the small devices used for edge pro-

cessing – will also display power usage improvements.

The use of this transformation on existing application code offers considerable cost

savings. The throughput improvements observed would allow a proportional reduction

in the number of gateways in a WSN, with a positive impact on equipment and deploy-

ment costs. The energy improvements – up to ≈ 18% – offer large increases in battery

life, with consequent deployment and maintenance savings.

The benefits discussed here are part of a trade-off that places increased code com-

plexity against reduced execution time, energy use and peak current. We assert that -

with the use of C++20 - the increase in code complexity is known and manageable: the

scheduler code in Listing 5.1 is easily and immediately applicable to other problem do-

mains; the alterations to the existing iteration code in Listing 5.2 are small and simple;

and the invocation of the iterator/scheduler, as shown in Listing 5.3, is transparent and

short.

Chapter 5 135

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.7 Appendices

5.7.1 Detailed results

Tables 5.5 and 5.6 contain a summary of the results for each sensor count/measurement

count combination for the Raspberry Pi 4B and 3B+ platforms respectively. All statistics

are percentages; they represent the change in performance (i.e. the reduction in cost)

achieved through applying the coroutine-based execution pattern described in Section

5.3. The formulae for the measures are presented in Eqs. (5.2), (5.6), (5.9) and (5.11).

Table 5.5: Raspberry Pi 4 B: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

10 10 3.93 2.35 1.26 2.66 2.10 0.45 17.32 14.91 1.51 2.78 2.38 0.25

10 20 4.88 3.99 0.81 2.79 2.53 0.20 16.90 15.63 0.79 2.76 2.42 0.17

10 30 5.09 4.30 0.57 3.23 2.72 0.29 16.74 15.87 0.73 3.21 2.59 0.26

10 40 5.14 4.21 0.75 3.68 2.95 0.41 17.47 16.07 0.87 3.51 2.77 0.43

10 50 4.97 3.95 0.90 4.15 3.17 0.60 17.78 16.45 0.86 4.15 3.05 0.58

10 60 5.29 3.72 1.34 4.10 3.34 0.58 17.71 16.52 0.89 3.77 3.10 0.53

10 70 5.30 3.65 1.49 4.10 3.47 0.54 18.03 16.71 0.99 4.02 3.27 0.45

10 80 5.52 3.64 1.48 4.26 3.59 0.53 18.08 17.06 0.78 4.05 3.36 0.47

10 90 5.42 3.76 1.37 4.34 3.78 0.48 18.86 17.51 1.00 4.75 3.61 0.69

10 100 5.54 3.74 1.56 4.15 3.71 0.41 18.55 17.32 0.82 3.98 3.46 0.44

20 10 4.84 3.69 0.78 2.88 2.49 0.26 17.28 15.04 1.08 2.86 2.42 0.19

20 20 4.80 4.03 0.58 3.85 2.99 0.45 17.54 15.97 0.98 3.43 2.85 0.37

20 30 4.96 3.67 1.20 4.43 3.41 0.69 18.46 16.74 1.18 4.75 3.29 0.67

20 40 5.22 3.67 1.33 4.20 3.62 0.53 18.61 17.12 0.90 4.02 3.30 0.51

20 50 5.65 3.64 1.52 4.26 3.71 0.44 18.65 17.26 0.74 4.16 3.32 0.43

20 60 5.60 3.68 1.47 4.22 3.78 0.37 18.83 17.68 0.72 4.37 3.42 0.59

20 70 5.52 3.54 1.44 4.31 3.84 0.33 18.74 17.60 0.68 4.21 3.20 0.61

20 80 5.09 3.63 1.27 4.33 3.84 0.31 18.64 17.75 0.60 3.95 3.13 0.54

20 90 5.49 3.68 1.36 4.41 3.83 0.28 19.16 17.75 0.63 3.92 3.13 0.42

20 100 5.65 3.61 1.50 4.22 3.84 0.25 18.78 17.72 0.63 4.06 3.05 0.45

136 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.5: Raspberry Pi 4 B: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

30 10 4.80 3.61 0.62 3.46 2.75 0.36 16.54 14.96 1.05 3.29 2.71 0.37

30 20 5.02 3.46 1.21 4.24 3.41 0.59 18.66 16.49 1.12 4.36 3.30 0.53

30 30 5.24 3.59 1.36 4.30 3.68 0.46 18.12 17.14 0.89 4.19 3.46 0.61

30 40 5.22 3.54 1.50 4.32 3.77 0.33 19.10 17.51 1.01 4.26 3.42 0.53

30 50 5.58 3.60 1.46 4.30 3.83 0.30 19.07 17.75 0.72 4.31 3.02 0.63

30 60 5.43 3.71 1.38 4.22 3.87 0.28 18.80 17.94 0.57 3.65 3.08 0.41

30 70 5.76 3.65 1.49 4.34 3.87 0.29 18.94 17.94 0.62 4.00 3.14 0.42

30 80 5.95 3.59 1.39 4.30 3.86 0.25 18.55 17.82 0.77 3.79 3.07 0.37

30 90 5.44 3.69 1.31 4.37 3.95 0.26 19.05 18.02 0.66 3.78 2.98 0.44

30 100 5.47 3.67 1.34 4.36 3.89 0.28 18.96 17.88 0.71 3.66 2.90 0.40

40 10 4.44 3.38 0.76 4.06 3.04 0.52 17.20 15.46 1.09 4.06 2.95 0.53

40 20 4.92 3.16 1.28 4.27 3.64 0.55 18.16 16.75 1.04 4.20 3.44 0.55

40 30 5.21 3.54 1.29 4.23 3.81 0.35 18.54 17.58 0.61 3.86 3.37 0.42

40 40 5.57 3.47 1.44 4.45 3.87 0.36 18.86 17.68 0.81 4.18 3.19 0.54

40 50 5.73 3.62 1.46 4.33 3.86 0.30 18.97 17.76 0.82 4.36 3.18 0.57

40 60 5.56 3.60 1.49 4.27 3.90 0.27 19.27 17.87 0.81 3.89 3.11 0.47

40 70 5.43 3.63 1.34 4.34 3.92 0.29 18.88 18.01 0.61 4.00 3.02 0.50

40 80 5.96 3.64 1.46 4.34 3.89 0.25 18.86 17.90 0.84 3.88 3.00 0.35

40 90 5.33 3.68 1.32 4.29 3.93 0.26 18.91 18.10 0.63 3.61 2.95 0.40

40 100 5.53 3.60 1.44 4.35 3.90 0.25 19.14 17.97 0.87 3.87 2.90 0.47

50 10 4.31 2.94 0.98 4.33 3.34 0.60 17.38 15.90 1.20 4.45 3.25 0.60

50 20 4.68 3.13 1.35 4.33 3.83 0.45 18.61 17.22 0.80 4.62 3.57 0.49

50 30 5.68 3.51 1.31 4.40 3.88 0.31 18.65 17.65 0.56 4.05 3.44 0.41

50 40 5.86 3.63 1.41 4.41 3.93 0.30 18.65 17.95 0.59 4.11 3.18 0.37

50 50 5.61 3.64 1.41 4.46 3.90 0.31 19.05 17.87 0.66 4.05 3.19 0.55

50 60 5.61 3.67 1.44 4.36 3.93 0.29 19.25 18.03 0.72 4.10 2.96 0.43

50 70 5.63 3.59 1.29 4.36 3.93 0.29 18.72 18.03 0.62 3.93 2.95 0.49

50 80 5.63 3.67 1.39 4.39 3.91 0.27 19.07 18.01 0.70 3.99 2.91 0.50

Chapter 5 137

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.5: Raspberry Pi 4 B: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

50 90 5.48 3.69 1.37 4.34 3.92 0.25 18.95 18.04 0.65 5.63 3.08 0.73

50 100 5.22 3.64 1.39 4.37 3.91 0.27 18.99 18.01 0.82 3.94 3.10 0.53

Notes: (i) S=Samples; M=Measurements. (ii) All statistics are percentages. Each represents

the change in a cost (time, energy or power) achieved as a result of switching from a stan-

dard sequential execution pattern to an interleaved coroutine-based execution pattern. Positive

numbers represent improvements. (iii) ST is defined in Eq. (5.2). (iv) SOP is defined in Eq.

(5.6). (v) STE is defined in Eq. (5.9). (vi) SPP is defined in Eq. (5.11).

Table 5.6: Raspberry Pi 3 B+: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

10 10 19.12 18.02 0.79 -0.81 -1.05 0.09 11.35 8.13 1.60 1.19 -0.85 0.56

10 20 20.01 19.07 0.57 -0.69 -0.89 0.13 12.23 9.67 1.78 1.11 -0.56 0.73

10 30 20.13 19.42 0.41 -0.61 -0.80 0.17 12.65 11.17 1.21 1.46 -0.43 0.74

10 40 20.17 19.57 0.32 -0.55 -0.77 0.21 13.49 11.81 1.17 0.32 -0.62 0.47

10 50 20.38 19.80 0.32 -0.55 -0.70 0.14 13.85 12.36 1.16 0.41 -0.46 0.49

10 60 20.22 19.86 0.20 -0.56 -0.71 0.14 13.72 12.66 0.73 0.18 -0.38 0.33

10 70 20.49 20.07 0.26 -0.57 -0.68 0.09 13.67 12.63 0.62 -0.03 -0.52 0.34

10 80 20.44 19.94 0.28 -0.56 -0.66 0.07 13.70 12.73 0.64 1.04 -0.33 0.52

10 90 20.69 20.11 0.34 -0.57 -0.67 0.08 14.37 12.89 0.62 0.57 -0.25 0.49

10 100 20.68 20.09 0.26 -0.58 -0.67 0.12 13.54 12.74 0.42 0.40 -0.50 0.44

20 10 20.08 18.81 0.60 -0.71 -0.90 0.13 12.24 9.37 1.93 2.01 -0.94 1.27

20 20 19.85 19.55 0.21 -0.59 -0.74 0.14 13.02 11.70 1.21 0.61 -0.39 0.46

20 30 20.39 19.85 0.27 -0.54 -0.70 0.10 13.28 12.38 0.78 0.03 -0.60 0.59

20 40 20.50 19.87 0.45 -0.56 -0.68 0.13 13.85 12.66 0.67 0.12 -0.46 0.33

20 50 20.74 20.03 0.38 -0.55 -0.68 0.11 13.90 12.78 0.63 0.27 -0.49 0.35

20 60 20.79 20.25 0.27 -0.55 -0.61 0.05 14.33 13.02 0.70 0.79 -0.43 0.40

138 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.6: Raspberry Pi 3 B+: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

20 70 20.77 20.33 0.23 -0.53 -0.62 0.06 14.21 12.98 0.69 0.61 -0.41 0.48

20 80 21.09 20.35 0.26 -0.54 -0.61 0.05 13.97 13.07 0.73 0.81 -0.48 0.51

20 90 20.78 20.39 0.18 -0.55 -0.62 0.04 14.06 12.95 0.47 0.98 -0.38 0.56

20 100 21.15 20.40 0.25 -0.55 -0.62 0.06 14.26 12.91 0.69 0.39 -0.56 0.44

30 10 19.82 19.35 0.23 -0.62 -0.75 0.13 13.15 11.41 1.39 1.72 -0.09 0.88

30 20 20.33 19.82 0.20 -0.56 -0.66 0.09 13.42 12.29 0.82 1.82 -0.38 0.58

30 30 20.41 20.05 0.21 -0.53 -0.64 0.09 13.60 12.67 0.65 0.77 -0.53 0.49

30 40 20.84 20.19 0.21 -0.52 -0.61 0.07 14.19 13.05 0.80 1.26 -0.36 0.59

30 50 21.00 20.22 0.27 -0.55 -0.60 0.05 13.86 12.99 0.58 1.33 -0.39 0.54

30 60 20.66 20.33 0.16 -0.54 -0.60 0.06 13.95 13.01 0.58 0.59 -0.46 0.55

30 70 21.10 20.42 0.26 -0.55 -0.60 0.05 14.16 13.10 0.42 0.29 -0.53 0.38

30 80 20.90 20.43 0.21 -0.56 -0.61 0.04 13.94 13.03 0.48 0.59 -0.75 0.49

30 90 21.28 20.49 0.27 -0.55 -0.62 0.05 13.95 12.96 0.69 0.52 -0.67 0.33

30 100 20.95 20.47 0.24 -0.56 -0.62 0.05 13.83 12.94 0.50 0.12 -0.69 0.33

40 10 19.94 19.39 0.30 -0.60 -0.72 0.10 12.59 11.55 0.93 0.91 -0.31 0.89

40 20 20.35 19.91 0.23 -0.54 -0.65 0.09 13.95 12.56 0.88 0.96 -0.41 0.51

40 30 20.67 20.22 0.27 -0.54 -0.63 0.05 13.61 12.79 0.49 0.31 -0.60 0.43

40 40 20.73 20.30 0.23 -0.57 -0.62 0.05 13.63 12.97 0.45 0.67 -0.48 0.45

40 50 20.99 20.34 0.22 -0.55 -0.62 0.05 13.88 12.96 0.57 0.73 -0.59 0.55

40 60 20.79 20.37 0.16 -0.53 -0.60 0.05 14.26 13.28 0.67 0.84 -0.59 0.47

40 70 21.00 20.50 0.23 -0.54 -0.62 0.05 14.00 13.19 0.47 0.58 -0.55 0.43

40 80 21.21 20.54 0.25 -0.56 -0.63 0.06 14.14 13.09 0.67 -0.39 -0.77 0.15

40 90 21.08 20.53 0.22 -0.55 -0.63 0.05 13.92 12.97 0.58 -0.32 -0.75 0.23

40 100 21.00 20.48 0.21 -0.57 -0.63 0.05 14.39 13.06 0.62 4.55 -0.56 1.15

50 10 20.15 19.42 0.30 -0.59 -0.69 0.10 12.72 11.86 0.84 1.33 -0.52 0.57

50 20 20.52 20.00 0.21 -0.56 -0.62 0.06 13.71 12.84 0.72 0.62 -0.35 0.53

50 30 20.69 20.27 0.22 -0.54 -0.62 0.05 14.00 12.76 0.59 0.57 -0.51 0.47

50 40 20.84 20.31 0.19 -0.54 -0.61 0.05 14.02 13.08 0.62 0.56 -0.62 0.37

Chapter 5 139

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Table 5.6: Raspberry Pi 3 B+: Summary of results for each sensor/measurement count

S M Time ST Overall power SOP Task energy STE Peak power SPP

Max Mean sd Max Mean sd Max Mean sd Max Mean sd

50 50 20.99 20.39 0.22 -0.54 -0.61 0.06 14.10 12.90 0.73 0.49 -0.65 0.33

50 60 20.85 20.44 0.22 -0.55 -0.61 0.05 13.89 13.05 0.48 0.67 -0.76 0.55

50 70 21.11 20.45 0.24 -0.54 -0.61 0.05 13.86 13.18 0.54 0.16 -0.75 0.38

50 80 21.26 20.53 0.27 -0.55 -0.62 0.06 13.93 12.95 0.62 1.17 -0.69 0.47

50 90 21.29 20.49 0.24 -0.55 -0.61 0.05 13.87 13.10 0.49 0.40 -0.61 0.55

50 100 21.09 20.58 0.24 -0.56 -0.63 0.05 14.06 12.99 0.51 -0.14 -0.75 0.24

Notes: (i) S=Samples; M=Measurements. (ii) All statistics are percentages. Each represents

the change in a cost (time, energy or power) achieved as a result of switching from a stan-

dard sequential execution pattern to an interleaved coroutine-based execution pattern. Positive

numbers represent improvements. (iii) ST is defined in Eq. (5.2). (iv) SOP is defined in Eq.

(5.6). (v) STE is defined in Eq. (5.9). (vi) SPP is defined in Eq. (5.11).

5.7.2 Platform hardware characteristics

Table 5.7: Test platform characteristics

Name Pi 4 Pi 3

Computer Raspberry Pi 4 B Raspberry Pi 3 B+ [181]

Released 2019 2018

CPU ARM Cortex A72 64-bit SOC ARM Cortex A53 64-bit SOC

Memory 2GB RAM 1GB RAM

Cores Quad-core @ 1.5 GHz Quad-core @ 1.4 GHz

CPU cache 32 KiB L1 + 1 MiB L2 Cache 16 KiB L1 + 512 KiB L2 Cache

140 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

5.7.3 Algorithms

Algorithm 2 Operation of mini-scheduler for coroutines

1: procedure Run(cc, n, coro) ▷ Run coroutine ‘coro’ for each of ‘n’ items,

2: ▷ using ‘cc’ coroutines.

3: coros← [1, ..., cc] ▷ Create an array of coroutines

4: done← [1, ..., cc] ▷ Array of completion flags for each coroutine

5: for i = 1, . . . , cc do

6: coros[i]← new coroutine(coro, i) ▷ Create new coroutine to process item i

7: done[i]← f alse ▷ Coroutine’s initial state is ‘incomplete’

8: next← cc + 1 ▷ Index for next item to be processed

9: completed← 0

10: while completed < n do ▷ Continue until all work items are completed

11: for i = 1, . . . , cc do ▷ Inspect each coroutine in turn – round-robin

12: if not done[i] then ▷ If any work remains ...

13: if not coros[i].is complete() then

14: coros[i].resume() ▷ If not complete – continue

15: else

16: if next == n then ▷ Test whether any work items remain

17: done[i]← true ▷ No work remains – mark this slot as complete

18: else

19: coros[i]← new coroutine(coro, next) ▷ Replace coroutine with a

20: ▷ new instance

21: next← next + 1

22: completed← completed + 1

5.7.4 Source code

Listing 5.1 contains the mini-scheduler used in these experiments, a generalised C++

template class. Listing 5.2 shows the SVM iteration algorithm to which the scheduler

was applied, both before and after the changes that were required by the scheduler.

Listing 5.3 demonstrates the invocation of the scheduler for the batch of SVM tasks.

1 // General ised runner f o r p a r a l l e l i s i n g i t e r a t i v e

Chapter 5 141

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2 // t a s k s across mult ip le corout ines .
3 template <typename REFDATA T>
4 c l a s s corout ine runner {
5 publ ic :
6 typedef resumable t (* c o r o f n t) (
7 const p r e f e t c h e r t &pre fe tcher ,
8 REFDATA T &refdata , s i z e t corout ine index) ;
9

10 corout ine runner (const p r e f e t c h e r t &pre fe tcher ,
11 REFDATA T &r e f d a t a)
12 : p r e f e t c h e r (p r e f e t c h e r) , r e f d a t a (r e f d a t a) {}
13

14 void run (s i z e t corout ine count , s i z e t item count ,
15 c o r o f n t coro fn) {
16 // A c o l l e c t i o n of p a r a l l e l i s e d corout ines
17 std : : vector<resumable t> t a s k s ;
18 // S t a t u s of a l l i tems
19 std : : vector<bool> done (corout ine count , f a l s e) ;
20 s i z e t incomplete = item count ;
21

22 // Create corout ines , ready to run . There w i l l always be a t most
23 // corout ine count of them , and each w i l l be dele ted and replaced
24 // by a new one when i t s item i s complete .
25 f o r (s i z e t b = 0 ; b < corout ine count ; b++) {
26 t a s k s . push back (co ro fn (p r e f e t c h e r , r e f d a t a , b)) ;
27 }
28

29 // Work through a l l t a s k s u n t i l a l l are done
30 s i z e t next i tem = corout ine count ;
31 while (incomplete > 0) {
32 f o r (s i z e t c = 0 ; c < t a s k s . s i z e () ; c ++) {
33 i f (done [c]) {
34 continue ;
35 }
36 resumable t &t = t a s k s [c] ;
37 i f (t . i s comple te ()) {
38 i f (next i tem < i tem count) {
39 t a s k s [c] = co ro fn (p r e f e t c h e r , r e f d a t a ,
40 next i tem) ;
41 next i tem ++;
42 } e l s e {
43 done [c] = true ;
44 }
45 incomplete − −;
46 } e l s e {
47 t . resume () ;
48 }
49 }
50 }
51 }

142 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

52

53 protec ted :
54 const p r e f e t c h e r t &p r e f e t c h e r ;
55 REFDATA T &r e f d a t a ;
56 } ;

Listing 5.1: Generalised C++ template to apply the coroutined execution context to any
function after it has been converted to a coroutine with three parameters: (i) prefetcher
class, (ii) an application-dependent context class and (iii) an index into the collection of
sub-tasks (as defined by typedef coro fn t in lines 5-7).

1 // SVM i t e r a t i o n algorithm , before being r e f a c t o r e d as a corout ine
2 void i n f e r s e n s o r s e q u e n t i a l (runtime data &r t d a t a , u i n t 3 2 t

sensor index)
3 {
4 const d a t a i t e m t * x , *w;
5

6 // Resolve weights & b i a s f o r t h i s sensor
7 w = r t d a t a . resolve w (sensor index) ;
8

9 // I n s pe c t w data
10 d a t a i t e m t b i a s = w[0] ;
11 w++;
12

13 // Get sensor data base
14 const d a t a v e c t o r t& x vec = r t d a t a . r e s o l v e x v e c (sensor index) ;
15 x = x vec . data () ;
16 auto row len = r t d a t a . r t . s v l e n ;
17 auto sample count = x vec . s i z e () / row len ;
18

19 // Get r e s u l t base
20 std : : vector<r e s u l t t >& r e s u l t s = r t d a t a . r e s o l v e r e s u l t s v e c (
21 sensor index) ;
22 r e s u l t t * r e s u l t p t r = r e s u l t s . data () ;
23

24 f o r (u i n t 3 2 t sample = 0 ; sample < sample count ; sample ++ , x +=
row len ,

25 r e s u l t p t r ++)
26 {
27 * r e s u l t p t r = svm infer (w, x , bias , row len) ? 1 : 0 ;
28 }
29 }
30

31 // C o n t r o l l e r to run task s e q u e n t i a l l y
32 void r u n i n f e r s e q u e n t i a l (runtime data &r t d a t a)
33 {
34 f o r (u i n t 3 2 t i = 0 ; i < r t d a t a . r t . sensor count ; i ++)
35 {
36 i n f e r s e n s o r s e q u e n t i a l (r t d a t a , i) ;
37 }

Chapter 5 143

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

38 }
39

40 // SVM i t e r a t i o n algorithm , a f t e r r e f a c t o r i n g as a corout ine
41 s t a t i c resumable i n f e r s e n s o r c o r o (const p r e f e t c h e r t &pre fe tcher ,
42 runtime data &r t d a t a , s i z e t corout ine index)
43 {
44 u i n t 3 2 t sensor index = (u i n t 3 2 t) corout ine index ;
45 co await CORO STD : : suspend always {} ;
46

47 const d a t a i t e m t * x , *w;
48

49 // Ca l c u l a te p r e f e t c h s i z e s
50 s i z e t w e i g h t s s i z e = r t d a t a . r t . w len * s i z e o f (d a t a i t e m t) ;
51 s i z e t w e i g h t s l i n e c o u n t = t o p f l i n e c o u n t (w e i g h t s s i z e) ;
52

53 // Resolve weights & b i a s f o r t h i s sensor
54 w = r t d a t a . resolve w (sensor index) ;
55 w next = p r e f e t c h e r . p r e f e t c h (r e i n t e r p r e t c a s t <const char *>(w) ,
56 w e i g h t s l i n e c o u n t) ;
57 co await CORO STD : : suspend always {} ;
58

59 // I n s pe c t w data
60 d a t a i t e m t b i a s = w[0] ;
61 w++;
62

63 // Get sensor data base
64 const d a t a v e c t o r t& x vec = r t d a t a . r e s o l v e x v e c (sensor index) ;
65 x = x vec . data () ;
66 auto row len = r t d a t a . r t . s v l e n ;
67 auto sample count = x vec . s i z e () / row len ;
68

69 // Ca l c u l a te p r e f e t c h s i z e s
70 s i z e t d a t a s i z e = row len * s i z e o f (d a t a i t e m t) ;
71 s i z e t d a t a l i n e c o u n t = t o p f l i n e c o u n t (d a t a s i z e) ;
72 s i z e t r e s u l t s s i z e = sample count * s i z e o f (r e s u l t t) ;
73 s i z e t r e s u l t s l i n e c o u n t = t o p f l i n e c o u n t (r e s u l t s s i z e) ;
74

75 // Get r e s u l t base
76 std : : vector<r e s u l t t >& r e s u l t s = r t d a t a . r e s o l v e r e s u l t s v e c (
77 sensor index) ;
78 r e s u l t t * r e s u l t p t r = r e s u l t s . data () ;
79 r e s u l t n e x t = p r e f e t c h e r . prefetchw (r e i n t e r p r e t c a s t <char *>(r e s u l t p t r

) ,
80 r e s u l t s l i n e c o u n t) ;
81

82 f o r (u i n t 3 2 t sample = 0 ; sample < sample count ; sample ++ , x +=
row len ,

83 r e s u l t p t r ++)
84 {
85 x next = p r e f e t c h e r . p r e f e t c h (r e i n t e r p r e t c a s t <const char *>(x) ,

144 Chapter 5

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

86 d a t a l i n e c o u n t) ;
87 co await CORO STD : : suspend always {} ;
88 * r e s u l t p t r = svm infer (w, x , bias , row len) ? 1 : 0 ;
89 }
90 }

Listing 5.2: Sample task - infer sensor sequential() - to calculate SVM for each of a
set of ns x np vectors. The task is reorganised as a coroutine – infer sensor coro() –
ready to be run by the mini-scheduler, coroutine runner::run().

1 // Declare i n s t a n c e of platform −dependent memory p r e f e t c h e r
2 p r e f e t c h e r t p r e f e t c h e r ;
3

4 // Declare an i n s t a n c e of the execut ion contex t template ,
5 // which r e f e r e n c e s the a p pl i c a t io n −dependent runtime data
6 // r t d a t a .
7 corout ine runner<runtime data> runner wi th pre fe tch (
8 pre fe tcher , r t d a t a) ;
9

10 // Invoke the execut ion contex t i n s t a n c e to run the
11 // coroutined funct ion across a l l i n s t a n c e s of the sensor
12 // data s e t s .
13 runner wi th pre fe tch . run (r t d a t a . task count ,
14 r t d a t a . sensor count , i n f e r s e n s o r c o r o) ;

Listing 5.3: Typical usage of C++ template to run a coroutine across iterative tasks.

Chapter 5 145

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

146 Chapter 5

Chapter 6

Conclusion

Chapter Abstract

This thesis has examined the use of C++20 coroutines in software for embedded

and edge computing platforms. Through the four research chapters, C++ coroutines

on these platforms have been examined from a number of viewpoints. The demand

for language-native coroutines in C-based development for resource-constrained de-

vices has been examined and found to be widespread. An implementation of C++20

coroutines for bare-metal platforms has been developed, tested and critically eval-

uated: C++20 coroutines have been found to be effective and easy to use, but not

quite ready for microcontroller use. C++ coroutines have been tested on edge devices

across a variety of micro-benchmark algorithms: they were found to be an effec-

tive means by which to employ lightweight multi-threading to improve the memory

access patterns of iterative code, and thereby also to improve speed of execution.

Finally, C++ coroutines were used in a real-world application for edge devices and

found to be straightforward to program, as well as improving not only execution

speed but also power usage.

6.1 Overview

In this thesis the application of C++20 coroutines to embedded and edge computing

has been examined from a variety of viewpoints. The study began in 2017, when the

inclusion of coroutines in standard C++ was still being debated, and concluded in 2024,

when the language feature is supported fully in all major compilers and the C++23

147

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

standard has matured the feature with the introduction of the first concrete coroutine

(std::generator).

A Survey of Asynchronous Programming Using Coroutines
in the Internet of Things and Embedded Systems

C++20 Coroutines on Microcontrollers

Speeding up Machine Learning Inference on Edge Devices
by Improving Memory Access Patterns using Coroutines

Reducing Energy Consumption for Machine Learning
Inference on Edge Devices using C++20 Coroutines

Introduction

Conclusion

1

2

3

4

5

6

Systematic mapping study

Technical exploration of resource-
constrained coroutine implementation

Micro-benchmarks of coroutine
performance on edge devices

Implementation of coroutines in real-
world application

Chapter Title Content

Figure 6.1: Chapter roadmap

As shown in Fig. 6.1, the thesis’ research content begins in Chapter 2 with a sys-

tematic survey of all published papers that reported a need for a mechanism such as

coroutines on small constrained-resource platforms. It continues in Chapter 3 with a

reflection on the development of a C++20-compliant coroutine implementation for a

’bare-metal’ microcontroller, and an analysis of its performance. In Chapter 4 the use of

coroutines on edge devices is examined with a set of micro-benchmarks, which investi-

gate the trade-offs in asynchronous C++ programming between the simplicity brought

by coroutines and their performance costs. Finally, Chapter 5 describes and measures

the use of C++ coroutines in the machine learning inference implementation module

of a real-world edge computing application, converting an existing highly iterative ex-

ecution pattern to a coroutine-based execution, examining coding costs and changes to

execution time and energy consumption.

148 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

6.2 Summary of findings

This section summarises the findings of the four research chapters, and places them in

the context of the research questions (RQs), which are repeated below:

RQ1: Can mainstream coroutine solutions apply to resource-constrained platforms?

RQ2: Are the costs deterministic?

RQ3: Can the benefits be clearly demonstrated?

6.2.1 Chapter 2

Chapter 2 (A Survey of Asynchronous Programming Using Coroutines in the Internet of Things

and Embedded Systems) reviewed the literature regarding coroutine-based programming

on resource-constrained platforms. Within the bounds of development for the Internet

of Things (IoT) and for embedded systems, the chapter presented a systematic mapping

study into the demand for a language-native solution to asynchronous code problems.

On the one hand the solution should possess low programming costs and on the other

it should not incur significant performance costs. The study found substantial evidence

that a solution of this type was in demand.

The systematic study examined all published work that developed or used light-

weight threads – whether implemented as coroutines or through other means – on

microcontroller-based platforms, and collated the findings. Out of 566 candidate pa-

pers, 35 met all the selection criteria and were investigated fully. C & C++ were the

programming languages used by 22 out of the 35. 16 studies used 8- and 16-bit pro-

cessors, while 13 used 32-bit. The most common use cases included concurrency (17

papers), network communication (15) and sensor readings (9). The foremost intended

benefit was code style and simplicity (12 papers).

A major thread of the analysis investigated some of the characteristics of the corou-

tine implementation: whether it managed control flow and the state of local variables.

Several results of the analysis stood out. Almost all implementations managed control

flow on behalf of the programmer, and our conclusion that this usability feature was

a vital component of a coroutine implementation was supported by the fact that code

style and simplicity led the list of intended benefits. None of the coroutines written

Chapter 6 149

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

in native C or C++ provided managed local variable state – because the languages do

not support it; but all of the non-native C implementations and almost all of the non-C

papers provided this usability feature.

The study concluded that there existed widespread demand for ”a formalised, sta-

ble, well-supported implementation of coroutines in C++ ... [for] resource-constrained

devices, and further that such an implementation would bring benefits specific to such

devices”.

In the context of the research questions, Chapter 2 did not directly inform any of the

three RQs. The survey found many and varied attempts to implement coroutines – or

software mechanisms displaying the same behaviour as coroutines – on small platforms.

One notable feature of the findings was how widely varieties of Duff’s device [46] were

used: given the inconvenience of using this device, and the constraints its use applies to

C and C++ usage, this adds force to the survey’s conclusion that there is clear evidence of

a demand among C and C++ developers for coroutines on smaller platforms. Combined

with the prominence of code style and simplicity as an intended benefit of the coroutine-

like device, we concluded that all three RQs were worth investigating. If a mainstream

(i.e. language-native) coroutine can be brought to smaller platforms, it will be found

useful, so long as it satisfies the special conditions that apply on resource-constrained

platforms, including deterministic behaviour (in terms both of memory usage and of

performance) and avoidance of dynamic memory allocation, alongside demonstrable

benefits in areas such as ease of coding, source code clarity and run-time stability.

6.2.2 Chapter 3

Chapter 3 (C++20 Coroutines on Microcontrollers) developed and reported on an imple-

mentation of C++20 coroutines [82] on a ‘bare-metal‘ microcontroller (i.e. one with no

operating system).

The chapter noted a number of substantive problems during the implementation,

which impact on all three of our research questions.

1. Exceptions: The C++20 standard for coroutines specifies that the treatment of an

await-expression must catch exceptions and rethrow them. For C++ embedded

developers who are conventionally avoiding the use of exceptions through com-

piler flags, a special build of the <coroutine> header is required.

150 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2. Memory location: Following the C++20 standard, it is very cumbersome to specify

that the memory assigned to a coroutine’s stack frame (CSF) should be stored in

either the stack of the calling function or in global space.

3. Memory usage: Furthermore, it is not possible to tell at compile time how much

memory space will be consumed by CSF instances. This can only be ascertained

at link time.

As regards RQ1 (Can mainstream coroutine solutions apply to resource-constrained plat-

forms?), we can conclude that in its initial state (per the C++20 standard), a mainstream

coroutine solution is not ideal for smaller platforms because if its dependence on C++

exceptions, the possibility that the heap may be used for allocation of CSFs, and its un-

specified run-time memory costs. Further, it was noted that the memory requirements

for the coroutine infrastructure were high enough to make the feature inappropriate for

extremely resource-constrained devices with very little RAM.

While the costs in terms of speed and memory usage were found to be deterministic

– informing RQ2 (Are the costs deterministic?) – it was found that the size of those mem-

ory costs could only be quantified by adding a minor modification to the compilation

tool-chain.

For RQ3 (Can the benefits be clearly demonstrated?), the chapter considered the trade-

off between – on the one hand – the simplicity of the application code and – on the

other – any performance costs in terms of speed, compiled code size and memory use.

It found that the specification encouraged asynchronous application code which was

easy to write and easy to understand. (Note that this conclusion did not apply to

the coroutine library implementation code, which was not found to be straightforward to

code.) Compared to a standard state-machine version, the application code contained

one sixth as many source lines of code, and offered a much more intelligible continuous

and direct style.

Our study found that while speed of performance was only marginally slower than

the extremely efficient – but flawed – Protothreads library [49], the coroutine version was

more than 12 times as fast as the thread implementations of leading real-time operating

systems [15, 135] and used around half as much code memory. The chapter concluded

that these clear outcomes provided a positive outcome for RQ3.

Chapter 6 151

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

6.2.3 Chapter 4

Chapter 4 (Speeding up Machine Learning Inference on Edge Devices by Improving Mem-

ory Access Patterns using Coroutines) examined the trade-offs involved in improving the

performance of a number of micro-benchmarks performing tasks commonly delegated

to edge devices, particularly within machine learning inference implementations. The

benchmarks included B+Tree, which visited all the nodes of a B+ tree, SVM, a support

vector machine, Norm, which normalised the colour values of images to the ImageNet

standard [43], and CNN, which applied a 3x3 kernel to the pixels of a batch of images.

The study examined a large parameter space for each algorithm: three different

hardware platforms were tested, and two compilers; four different numeric types were

used; the number of concurrent coroutines was varied; and finally between 32 and 64

different data set sizes were used for each micro-benchmark. Each test was run 10 times,

to remove outliers.

Very large performance improvements – up to 65% – were recorded for the B+Tree

benchmark, which requires that large continuous ‘chunks’ of memory are retrieved from

effectively random memory locations between each step of the task. This type of ‘pointer

chasing’ task is ideal for a design that injects prefetching code, and speed benefits had

already been observed (albeit on much larger and more powerful platforms) elsewhere

[145, 85, 75].

The performance benefits to the SVM benchmark and, to a lesser extent, the Norm

and CNN benchmarks demonstrated that improvements could be achieved not only

through CPU cache prefetching but also through improved memory access patterns.

The changes to the benchmark in order to support the coroutine-based execution pat-

tern were small, simple and transparent, and this informs RQ1 (Can mainstream coroutine

solutions apply to resource-constrained platforms?). For these edge devices (smaller than

conventional desktop or cloud machines, but larger than the tiny platforms used in

Chapter 3), the C++20 coroutine standard and its implementation applied effectively.

The tests were applied across a very wide parameter space, and provided positive

performance improvements that were strongly consistent across large areas within the

parameter space. This informed both RQ2 (Are the costs deterministic?) and RQ3 (Can the

benefits be clearly demonstrated?): in each case the outcome was positive.

152 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

6.2.4 Chapter 5

Chapter 5 (Reducing Energy Consumption for Machine Learning Inference on Edge Devices

using C++20 Coroutines) looked deeper into the use of coroutines in a real C++ appli-

cation, and examined the costs and benefits of coroutine use in the iterative code that

typifies machine learning inference when it is located on edge devices. The outcomes

built on those of Chapter 4. They confirmed the findings of Chapter 4 in the context of a

full application: the use of coroutines in iterative code provided improved speed of per-

formance and had very low programming cost. The research also discovered important

improvements in the level of power used, observing savings of 7.3% on a Raspberry Pi

4 edge device. In total, we observed energy savings for the SVM calculation task of 18%

on the Pi 4 and 13% on a Raspberry Pi 3.

In terms of the impact on the research questions, the outcomes of Chapter 5 reflect

those of Chapter 4: the mainstream coroutine solutions can be applied effectively on

these mid-size platforms (RQ1), the costs – and benefits – of using coroutines are found

to be deterministic (RQ2) and the benefits are clearly demonstrated by the test results

(RQ3).

6.2.5 Research question conclusions

RQ1: Can mainstream coroutine solutions apply to resource-constrained platforms?

In summary, this thesis concludes that, while there is a significant demand for main-

stream C++ coroutines on smaller platforms such as microcontrollers and edge devices,

problems contained within the current standard continue to be likely to prevent their

widespread adoption for embedded and IoT programming.

However, the mainstream specifications and their implementations were found to

effective when applied to mid-sized platforms such as those used in Chapters 4 and 5.

RQ2: Are the costs deterministic?

The thesis notes that, while the costs in terms of the C++20 coroutine implementations

are deterministic with regard to both memory and speed of performance, the current

tool-chains are unable to report memory costs in advance, and that minor changes to

the tool-chains would be required in order to address this efficiently.

Chapter 6 153

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

RQ3: Can the benefits be clearly demonstrated?

Finally, we note that despite the non-optimal outcomes with regard to research questions

1 and 2, there are already clearly demonstrable benefits to the use of C++20 standard

coroutines on both microcontrollers and edge devices.

On a microcontroller, we observed substantial improvements in both speed and

memory usage when coroutines were used in place of standard real-time operating

systems’ threads; and when coroutines replaced Duff’s Device techniques such as Pro-

tothreads, we saw an immediate improvement in code clarity, quality and maintainabil-

ity without a significantly increased cost in terms of time or memory use.

Furthermore, when C++ native coroutines were used to manage the memory access

patterns of highly iterative operations on low-powered edge devices, we saw substantial

improvements not only in speed of performance – up to 20% – but also in power use,

offering net energy use benefits of 13% to 18% on the platforms tested.

6.3 Contributions

The contributions of this work can be summarised as follows:

• We exhaustively analysed the academic literature through a systematic review and

demonstrated a demand for mainstream, language-native coroutine implementa-

tions that were suited to resource-constrained platforms.

• We demonstrated that the benefits of mainstream C++20 coroutines are already

demonstrable on smaller platforms, but are not fully available in environments

where either exceptions or dynamic memory allocation are unacceptable.

• For platforms where C++ exceptions are not acceptable, we developed a standard

implementation of the C++20 coroutine definition that avoided the use of excep-

tions.

• For platforms where dynamic memory allocation is to be avoided, we offered a

technique within the current standard for using coroutines without risking heap

allocations, and proposed enhancements to the tool-chain that would greatly sim-

plify the use of such techniques.

154 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

• We tested a C++20 coroutine implementation on a low-end ARM Cortex-M4 micro-

controller and demonstrated that coroutines offered substantially improved mem-

ory use and speed of execution when compared to standard real-time operating

systems’ threads.

• Through exhaustive and repeatable experiments on a variety of edge devices, we

demonstrated that the use of C++20 coroutines for several algorithms typically

performed on edge device tasks could improve execution speed without substan-

tially increasing code complexity, showing speed boosts of up to 12%, 15.5%, 34%

and 65% on the various algorithms. We explored a large parameter space to show

that these savings could be achieved for a wide variety of task types and sizes.

• Furthermore, we demonstrated experimentally that C++20 coroutine use in a prac-

tical application could not only reduce performance duration but also reduce the

power demands of an iterative data processing task on an edge device by up to

13% and 18% (on Raspberry Pi 3 and 4 platforms respectively).

6.4 Further work

To usefully continue the contribution of this thesis, the following further work is sug-

gested:

• Develop and release compiler libraries and/or tool-chain extensions that address

the problems raised with regard to RQ2, by:

– simplifying the management of coroutine stack frames’ (CSF) memory loca-

tion for the programmer (and thereby avoid unintentional heap use);

– reporting the memory use of CSFs in both stack memory and in global mem-

ory;

– avoiding the use of exceptions in standard library code when exception use

is disabled by compiler flags.

• Research the uptake of coroutines in C++, by:

– Examining the code of C++ open source projects and measuring the adoption

of coroutines within projects’ code base, and the timescale over which any

Chapter 6 155

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

adoption has occurred.

– Surveying developers as to their opinion of the use and usefulness of corou-

tines.

• The coroutined execution patterns used in chapters 4 and 5 could usefully be

developed and investigated further, in the following areas:

– Test the ease-of-use and reliability of this approach with a panel of C++ pro-

grammers who work in the embedded and edge computing sectors.

– Investigate further the behaviours underlying the detected performance im-

provements, including an analysis of the impact of the technique on (i) cache

misses and stalls and (ii) memory access patterns.

– Identify other iterative, compute-intensive edge computing tasks that would

benefit from the technique, both within and outside ML.

– Create a standard library in modern C++ that implements the frameworks re-

quired for the coroutined execution patterns; and create a compiler extension

or preprocessor that automatically translates sequential code to coroutines

when requested.

– Tests of the coroutined execution patterns on smaller, more resource-constrained

microcontrollers - such as those used in wireless sensor networks - would

extend the generality and usefulness of these results. Even though some low-

end microcontrollers lack CPU caches, a positive outcome from the memory

access pattern changes alone would be valuable from cost and capacity view-

points.

– The experiments in chapters 4 and 5 could usefully be repeated using the

newer Raspberry Pi model 5, to investigate how the detected benefits are

affected.

– Investigate the use of coroutines with graphics processing units (GPUs). Where

the CPU is responsible for delivering blocks of data to a GPU, there is an

opportunity to use coroutines to simplify the code and to improve overall

throughput. This was explored before the advent of language-native corou-

tines [103] and more recently has been applied to register-transfer level (RTL)

156 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

simulation on large-scale systems [110]. The emergence of low-power edge

devices that include GPUs or tensor processing units offers an opportunity to

explore the efficiency of using coroutines for GPU data streaming on resource-

constrained devices.

• Encourage the use of coroutines in embedded and edge computing by providing

coroutine-based branches of popular machine learning inference libraries for small

machines (TinyML). This may result in significant performance gains in both speed

and power usage.

Chapter 6 157

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

158 Chapter 6

References

[1] Martı́n Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-

tems. 2015. url: https://www.tensorflow.org/https://www.usenix.org/

system/files/conference/osdi16/osdi16-abadi.pdf (visited on 24/04/2024).

[2] Ala Al-Fuqaha et al. “Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications”. In: IEEE Communications Surveys and Tutorials 17.4

(2015), pp. 2347–2376. issn: 1553877X. doi: 10.1109/COMST.2015.2444095. arXiv:

arXiv:1011.1669v3.

[3] Ahmed Ali-Eldin, Bin Wang and Prashant Shenoy. “The Hidden cost of the Edge:

A Performance Comparison of Edge and Cloud Latencies”. In: Proc. Int. Conf.

High Perform. Comput. Netw. Storage Anal. SC ’21. New York, NY, USA: Association

for Computing Machinery, April 2021, pp. 1–12. isbn: 9781450384421. doi: 10.

1145/3458817.3476142.

[4] Mariano Alvira and Taylor Barton. “Small and Inexpensive Single-Board Com-

puter for Autonomous Sailboat Control”. In: Robotic Sailing 2012. Ed. by Colin

Sauzé and James Finnis. Berlin, Heidelberg: Springer, Berlin, Heidelberg, 2013,

pp. 105–116. isbn: 978-3-642-33084-1. doi: 10.1007/978-3-642-33084-1_10.

[5] Sidharta Andalam et al. “A Predictable Framework for Safety-Critical Embedded

Systems”. In: IEEE Transactions on Computers 63.7 (2014), pp. 1600–1612. doi: 10.

1109/TC.2013.28.

[6] Michael P. Andersen, Gabe Fierro and David E. Culler. “Enabling synergy in IoT:

Platform to service and beyond”. In: Journal of Network and Computer Applications

81 (2017), pp. 96–110. issn: 1084-8045. doi: 10.1016/j.jnca.2016.10.017.

[7] Michael P. Andersen, Gabe Fierro and David E. Culler. “System Design for a

Synergistic, Low Power Mote/BLE Embedded Platform”. In: Proceedings of the

159

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

2016 15th ACM/IEEE International Conference on Information Processing in Sensor

Networks (IPSN). Vienna, Austria, April 2016, pp. 1–12. isbn: 978-1-5090-0802-5.

doi: 10.1109/IPSN.2016.7460722.

[8] Hirochika Asai. “Deep Pipelining: Efficient Pipelining of Network Function Chains

with Coroutines”. In: 2019 IEEE Conf. on Network Softwarization (NetSoft). June

2019, pp. 324–332. doi: 10.1109/NETSOFT.2019.8806673.

[9] AspenCore. 2017 Embedded Markets Study. 2017. url: https://www.eetimes.

com/wp-content/uploads/2017-embedded-market-study1-1.pdf (visited on

22/07/2024).

[10] AspenCore. 2019 Embedded Markets Study. 2019. url: https://www.embedded.

com / wp - content / uploads / 2019 / 11 / EETimes _ Embedded _ 2019 _ Embedded _

Markets_Study.pdf (visited on 22/07/2024).

[11] Luigi Atzori, Antonio Iera and Giacomo Morabito. “The Internet of Things: A

survey”. In: Computer Networks 54.15 (2010), pp. 2787–2805. issn: 13891286. doi:

10.1016/j.comnet.2010.05.010.

[12] Grant Ayers et al. “Classifying Memory Access Patterns for Prefetching”. In:

Proc. 25th Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS). New

York, NY, USA: Association for Computing Machinery, 2020, pp. 513–526. isbn:

9781450371025. doi: 10.1145/3373376.3378498.

[13] Roberto Bagnara, Abramo Bagnara and Patricia M. Hill. “The MISRA C Coding

Standard and its Role in the Development and Analysis of Safety- and Security-

Critical Embedded Software”. In: International Static Analysis Symposium. Vol. 11002

LNCS. Springer. 2018, pp. 5–23. isbn: 9783319997247. doi: 10.1007/978-3-319-

99725-4_2. arXiv: 1809.00821.

[14] Thomas Barnett Jr. et al. Cisco Global Cloud Index: Forecast and Methodology, 2015–2020.

2016. url: https://www.cisco.com/c/dam/m/en_us/service- provider/

ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_

AMER_EMEAR_NOV2016.pdf (visited on 24/04/2024).

[15] Richard Barry. The FreeRTOS Kernel. 2018. url: https://www.freertos.org/

RTOS.html (visited on 02/02/2018).

160 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[16] Bruce Belson and Bronson Philippa. “Speeding up Machine Learning Inference

on Edge Devices by Improving Memory Access Patterns using Coroutines”. In:

2022 IEEE 25th International Conference on Computational Science and Engineering

(CSE). IEEE, December 2022, pp. 9–16. isbn: 979-8-3503-9633-1. doi: 10.1109/

CSE57773.2022.00011.

[17] Bruce Belson et al. “A Survey of Asynchronous Programming Using Coroutines

in the Internet of Things and Embedded Systems”. In: ACM Trans. Embed. Comput.

Syst. 18.3 (June 2019), 21:1–21:21. issn: 1539-9087. doi: 10.1145/3319618.

[18] Bruce Belson et al. “C++20 Coroutines on Microcontrollers—What We Learned”.

In: IEEE Embedded Syst. Lett. 13.1 (2021), pp. 9–12. doi: 10.1109/LES.2020.

2973397.

[19] Alexandre Bergel et al. “FlowTalk: Language Support for Long-Latency Opera-

tions in Embedded Devices”. In: IEEE Transactions on Software Engineering 37.4

(2011), pp. 526–543. issn: 00985589. doi: 10.1109/TSE.2010.66.

[20] Gavin Bierman et al. “Pause ’n’ Play: Formalizing Asynchronous C#”. In: ECOOP

2012 – Object-Oriented Programming. Ed. by James Noble. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012, pp. 233–257. isbn: 978-3-642-31057-7. doi: 10.1007/978-

3-642-31057-7_12.

[21] Nicholas M. Boers et al. “Developing wireless sensor network applications in a

virtual environment”. In: Telecommunication Systems 45.2-3 (2010), pp. 165–176.

issn: 10184864. doi: 10.1007/s11235-009-9246-x.

[22] Amirali Boroumand et al. “Google Neural Network Models for Edge Devices:

Analyzing and Mitigating Machine Learning Inference Bottlenecks”. In: Proc.

30th Int. Conf. Parallel Architectures Compilation Techn. (PACT). IEEE, 2021, pp. 159–

172. isbn: 9781665442787. doi: 10.1109/PACT52795.2021.00019. arXiv: 2109.

14320.

[23] Pearl Brereton et al. “Lessons from applying the systematic literature review pro-

cess within the software engineering domain”. In: Journal of Systems and Software

80.4 (2007), pp. 571–583. issn: 01641212. doi: 10.1016/j.jss.2006.07.009.

Chapter 6 161

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[24] Etienne Brodu, Stéphane Frénot and Frédéric Oblé. “Toward Automatic Update

from Callbacks to Promises”. In: Proceedings of the 1st Workshop on All-Web Real-

Time Systems - AWeS ’15. New York, New York, USA: ACM Press, 2015, pp. 1–8.

isbn: 9781450334778. doi: 10.1145/2749215.2749216.

[25] Peter A. Buhr and Ashif S. Harji. “Concurrent urban legends”. In: Concurrency

Computation Practice and Experience 17.9 (2005), pp. 1133–1172. doi: 10.1002/cpe.

885.

[26] Alejandro Cartas et al. “A Reality Check on Inference at Mobile Networks Edge”.

In: Proc. of the 2nd Int. Workshop on Edge Systems, Analytics and Networking. 2019,

pp. 54–59. isbn: 9781450362757. doi: 10.1145/3301418.3313946.

[27] Rebecca Carter, Andrew Cruden and Peter J. Hall. “Optimizing for Efficiency

or Battery Life in a Battery/Supercapacitor Electric Vehicle”. In: IEEE Trans. Veh.

Technol. 61.4 (2012), pp. 1526–1533. doi: 10.1109/TVT.2012.2188551.

[28] Yunda Chai et al. “Implementation and Optimization of Data Prefetching Algo-

rithm Based on LLVM Compilation System”. In: J. Phys.: Conf. Ser. 1827.1 (2021).

doi: 10.1088/1742-6596/1827/1/012136.

[29] Zhuoqing Chang et al. “A Survey of Recent Advances in Edge-Computing-Powered

Artificial Intelligence of Things”. In: IEEE Internet Things J. 8.18 (2021), pp. 13849–

13875. doi: 10.1109/JIOT.2021.3088875.

[30] Shimin Chen et al. “Improving hash join performance through prefetching”.

In: ACM Trans. Database Syst. 32.3 (2007), 17–es. issn: 03625915. doi: 10.1145/

1272743.1272747.

[31] Yu Hsin Chen et al. “Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural

Networks on Mobile Devices”. In: IEEE J. Emerg. Sel. Top. Circuits Syst. 9.2 (2019),

pp. 292–308. issn: 21563365. doi: 10.1109/JETCAS.2019.2910232. arXiv: 1807.

07928.

[32] Eric Chung et al. “Serving DNNs in Real Time at Datacenter Scale with Project

Brainwave”. In: IEEE Micro 38.2 (2018), pp. 8–20. issn: 02721732. doi: 10.1109/

MM.2018.022071131.

162 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[33] David L. Clark. “Powering intelligent instruments with Lua scripting”. In: 2009

IEEE AUTOTESTCON. IEEE, September 2009, pp. 101–106. isbn: 978-1-4244-4980-

4. doi: 10.1109/AUTEST.2009.5314042.

[34] Marcelo Cohen et al. “Using Coroutines for RPC in Sensor Networks”. In: 2007

IEEE International Parallel and Distributed Processing Symposium. 2007, pp. 1–8.

isbn: 1424409101. doi: 10.1109/IPDPS.2007.370458.

[35] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An in-

troduction. CRC Press, 2018. doi: 10.1201/9780429489105. arXiv: 1709.00084.

[36] Melvin E Conway. “Design of a separable transition-diagram compiler”. In: Com-

mun. ACM 6.7 (July 1963), pp. 396–408. issn: 00010782. doi: 10.1145/366663.

366704.

[37] Nitin Dahad. The Current State of Embedded Development. 2023. url: https://www.

embedded.com/embedded-survey-2023-more-ip-reuse-as-workloads-surge/

(visited on 14/04/2022).

[38] Ole Johan Dahl and Kristen Nygaard. “SIMULA: An ALGOL-based simulation

language”. In: Communications of the ACM 9.9 (1966), pp. 671–678. issn: 15577317.

doi: 10.1145/365813.365819.

[39] Robert David et al. “Tensorflow lite micro: Embedded machine learning for TinyML

systems”. In: Proc. Mach. Learn. Syst. 3 (2021), pp. 800–811.

[40] Ana Lúcia De Moura and Roberto Ierusalimschy. “Revisiting coroutines”. In:

ACM Transactions on Programming Languages and Systems (TOPLAS) 31.2 (Febru-

ary 2009), pp. 1–31. issn: 01640925. doi: 10.1145/1462166.1462167.

[41] Ana Lúcia De Moura, Noemi Rodriguez and Roberto Ierusalimschy. “Coroutines

in Lua”. In: Journal of Universal Computer Science 10.7 (July 2004), pp. 910–925.

issn: 0958695X. doi: 10.3217/jucs-010-07-0910.

[42] Thierry Delisle. “Concurrency in C∀”. PhD thesis. University of Waterloo, Water-

loo, ON Canada, 2018.

[43] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009

IEEE Conference on Computer Vision and Pattern Recognition. IEEE. IEEE, June 2009,

pp. 248–255. isbn: 978-1-4244-3992-8. doi: 10.1109/CVPR.2009.5206848.

Chapter 6 163

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[44] Peter J Denning. “The Locality Principle”. In: Commun. ACM 48.7 (July 2005),

pp. 19–24. issn: 0001-0782. doi: 10.1145/1070838.1070856.

[45] John Donnal. “Joule: A Real Time Framework for Decentralized Sensor Net-

works”. In: IEEE Internet Things J. 5.5 (October 2018), pp. 3615–3623. issn: 23274662.

doi: 10.1109/JIOT.2018.2815432.

[46] Tom Duff. Duff’s Device. 1988. url: https://www.lysator.liu.se/c/duffs-

device.html (visited on 19/06/2017).

[47] A. Dunkels, B. Gronvall and T. Voigt. “Contiki - a lightweight and flexible op-

erating system for tiny networked sensors”. In: 29th Annual IEEE International

Conference on Local Computer Networks. IEEE (Comput. Soc.), 2004, pp. 455–462.

isbn: 0-7695-2260-2. doi: 10.1109/LCN.2004.38.

[48] Adam Dunkels. About protothreads. 2005. url: http://dunkels.com/adam/pt/

about.html (visited on 31/01/2018).

[49] Adam Dunkels et al. “Protothreads”. In: Proceedings of the 4th international confer-

ence on Embedded networked sensor systems - SenSys ’06. Ed. by ‘. New York, New

York, USA: ACM Press, 2006, p. 29. isbn: 1595933433. doi: 10.1145/1182807.

1182811.

[50] Caglar Durmaz et al. “Modelling Contiki-Based IoT Systems”. In: 6th Symposium

on Languages, Applications and Technologies (SLATE 2017). Ed. by Ricardo Queirós

et al. Vol. 56. OpenAccess Series in Informatics (OASIcs) 5. Dagstuhl, Germany:

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, 5:1–5:13. isbn: 978-3-

95977-056-9. doi: 10.4230/OASIcs.SLATE.2017.5.

[51] ECMA. ECMAScript Latest Draft (ECMA-262) Async Function Definitions. 2017.

url: https://tc39.github.io/ecma262/#sec-async-function-definitions

(visited on 23/07/2024).

[52] Jonathan Edwards. “Coherent reaction”. In: Proceeding of the 24th ACM SIGPLAN

conference companion on Object oriented programming systems languages and applica-

tions - OOPSLA ’09. New York, New York, USA: ACM Press, 2009, pp. 925–932.

isbn: 9781605587684. doi: 10.1145/1639950.1640058.

164 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[53] Mohammed S. Elbamby et al. “Wireless Edge Computing With Latency and Re-

liability Guarantees”. In: Proc. IEEE 107.8 (2019), pp. 1717–1737. issn: 15582256.

doi: 10.1109/JPROC.2019.2917084. arXiv: 1905.05316.

[54] Roman Elizarov et al. “Kotlin coroutines: Design and implementation”. In: On-

ward! 2021 - Proceedings of the 2021 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software, co-located with

SPLASH 2021 (2021), pp. 68–84. doi: 10.1145/3486607.3486751.

[55] Atis Elsts et al. “Internet of Things for smart homes: Lessons learned from the

SPHERE case study”. In: 2017 Global Internet of Things Summit (GIoTS). 2017,

pp. 1–6. isbn: 9781509058730. doi: 10.1109/GIOTS.2017.8016226.

[56] Murali Emani et al. “A Comprehensive Evaluation of Novel AI Accelerators for

Deep Learning Workloads”. In: 2022 IEEE/ACM International Workshop on Perfor-

mance Modeling, Benchmarking and Simulation of High Performance Computer Systems

(PMBS). IEEE, 2022, pp. 13–25. isbn: 9781665451857. doi: 10.1109/PMBS56514.

2022.00007.

[57] Ralf S Engelschall. “Portable Multithreading-The Signal Stack Trick for User-

Space Thread Creation”. In: USENIX Annual Technical Conference, General Track.

2000.

[58] L Evers et al. “SensorScheme: Supply chain management automation using Wire-

less Sensor Networks”. In: 2007 IEEE Conference on Emerging Technologies and Fac-

tory Automation (EFTA 2007). September 2007, pp. 448–455. doi: 10.1109/EFTA.

2007.4416802.

[59] Gabriel Falcao and João Dinis Ferreira. “To PiM or Not to PiM”. In: Commun.

ACM 66.6 (2023), pp. 48–55. issn: 15577317. doi: 10.1145/3589995.

[60] Rene Fritzsche and Christian Siemers. “Scheduling of Time Enhanced C (Tec)”.

In: 2010 World Automation Congress. 2010, pp. 1–6. isbn: 9781424496730.

[61] Mingyu Gao et al. “TETRIS: Scalable and Efficient Neural Network Acceleration

with 3D Memory”. In: Proc. 22nd Int. Conf. Archit. Support Program. Lang. Oper.

Syst. (ASPLOS) 52.4 (2017), pp. 751–764. doi: 10.1145/3037697.3037702.

Chapter 6 165

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[62] David Gay et al. “The nesC Language: A Holistic Approach to Networked Em-

bedded Systems”. In: Proceedings of the ACM SIGPLAN 2003 conference on Program-

ming language design and implementation - PLDI ’03. New York, New York, USA:

ACM Press, 2003, pp. 1–11. isbn: 1581136625. doi: 10.1145/781131.781133.

[63] Damien George. MicroPython - Python for microcontrollers. 2014. url: http://

micropython.org/ (visited on 31/07/2017).

[64] Damien P. George and Paul Sokolovsky. General information about the ESP8266

port — MicroPython 1.9.4 documentation. 2014. url: http://docs.micropython.

org/en/latest/esp8266/esp8266/general.html (visited on 04/09/2018).

[65] Christina Giannoula et al. “Towards Efficient Sparse Matrix Vector Multiplication

on Real Processing-In-Memory Architectures”. In: SIGMETRICS Perform. Eval.

Rev. 50.1 (2022), pp. 33–34. issn: 0163-5999. doi: 10.1145/3547353.3522661.

[66] Michael Gibbs and Bjarne Stroustrup. “Fast dynamic casting”. In: Software - Prac-

tice and Experience 36.2 (2006), pp. 139–156. doi: 10.1002/spe.686.

[67] R. Glistvain and M. Aboelaze. “Romantiki OS - A single stack multitasking oper-

ating system for resource limited embedded devices”. In: Informatics and Systems

(INFOS), 2010 The 7th International Conference on. 2010, pp. 1–8. isbn: 978-1-4244-

5828-8.

[68] Lois Goldthwaite. “Technical report on C++ performance”. In: ISO/IEC PDTR

18015 (2006).

[69] Nat Goodspeed. “Stackful Coroutines and Stackless Resumable Functions. ISO/IEC

JTC1/SC22/WG21: C++ Standards Committee paper N4232”. 2014. url: http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4232.pdf.

[70] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural ele-

ments, and future directions”. In: Future Generation Computer Systems 29.7 (2013),

pp. 1645–1660. issn: 0167739X. doi: 10.1016/j.future.2013.01.010. arXiv:

1207.0203.

[71] Rajesh K Gupta, Claudionor Nunes Coelho Jr. and Giovanni De Micheli. “Syn-

thesis and Simulation of Digital Systems Containing Interacting Hardware and

Software Components”. In: Proceedings of the 29th ACM/IEEE Design Automation

166 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

Conference. DAC ’92. DAC ’92. Los Alamitos, CA, USA: IEEE Computer Society

Press, 1992, pp. 225–230.

[72] Niklas Gustafsson. “Resumable Functions. ISO/IEC JTC1/SC22/WG21: C++ Stan-

dards Committee paper N3328.” 2012. url: http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2012/n3328.pdf.

[73] Reinhard von Hanxleden. “SyncCharts in C: A Proposal for Light-weight, Deter-

ministic Concurrency”. In: Proceedings of the Seventh ACM International Conference

on Embedded Software. New York, NY, USA: ACM, 2009, pp. 225–234. isbn: 978-1-

60558-627-4. doi: 10.1145/1629335.1629366.

[74] Charles R Harris et al. “Array programming with NumPy”. In: Nature 585.7825

(September 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[75] Yongjun He, Jiacheng Lu and Tianzheng Wang. “Corobase: Coroutine-oriented

main-memory database engine”. In: Proc. VLDB Endow. 14.3 (2020), pp. 431–444.

issn: 21508097. doi: 10.14778/3430915.3430932. arXiv: arXiv:2010.15981v1.

[76] Ralph Hempel. “Porting Lua to a microcontroller”. In: Lua Programming Gems.

Lua.org, 2008. Chap. 26, pp. 313–324. isbn: 8590379841.

[77] Dominic Herity. Modern C++ in embedded systems – Part 1: Myth and Reality —

Embedded. 2015. url: https://www.embedded.com/modern-c-in-embedded-

systems-part-1-myth-and-reality/ (visited on 24/07/2024).

[78] Rui Hu et al. “A survey on data provenance in IoT”. In: World Wide Web 23.2

(2020), pp. 1441–1463. doi: 10.1007/s11280-019-00746-1.

[79] R Inam et al. “Support for hierarchical scheduling in FreeRTOS”. In: ETFA2011.

September 2011, pp. 1–10. doi: 10.1109/ETFA.2011.6059016.

[80] ISO/IEC. “C++ Draft International Standard - N4860”. 2020. url: https : / /

isocpp.org/files/papers/N4860.pdf.

[81] ISO/IEC. “N4680 Programming Languages - C++ Extensions for Coroutines”.

2017. url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/

n4680.pdf.

[82] ISO/IEC. “N4775: Working Draft, C++ Extensions for Coroutines”. 2018. url:

https://isocpp.org/files/papers/n4775.pdf.

Chapter 6 167

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[83] Pekka Jääskeläinen et al. “Reducing Context Switch Overhead with Compiler-

Assisted Threading”. In: 2008 IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing. Vol. 2. 2008, pp. 461–466. isbn: 9780769534923. doi: 10.

1109/EUC.2008.181.

[84] Erwan Jahier. “RDBG: A Reactive Programs Extensible Debugger”. In: Proceedings

of the 19th International Workshop on Software and Compilers for Embedded Systems.

Ed. by Sander Stuijk. SCOPES ’16. New York, NY, USA: ACM, 2016, pp. 116–125.

isbn: 978-1-4503-4320-6. doi: 10.1145/2906363.2906372.

[85] Christopher Jonathan et al. “Exploiting coroutines to attack the ”killer nanosec-

onds””. In: Proc. VLDB Endow. 11.11 (2018), pp. 1702–1714. issn: 21508097. doi:

10.14778/3236187.3236216.

[86] Norman P Jouppi et al. “In-Datacenter Performance Analysis of a Tensor Process-

ing Unit”. In: Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Archit. (ISCA). ISCA

’17. New York, NY, USA: Association for Computing Machinery, 2017, pp. 1–12.

isbn: 9781450348928. doi: 10.1145/3079856.3080246.

[87] Rubem Kalebe, Gustavo Girao and Itamir Filho. “A library for scheduling lightweight

threads in Internet of Things microcontrollers”. In: 2017 International Conference

on Computing Networking and Informatics (ICCNI). IEEE, October 2017, pp. 1–7.

isbn: 978-1-5090-4642-3. doi: 10.1109/ICCNI.2017.8123793.

[88] Kennedy Kambona, Elisa Gonzalez Boix and Wolfgang De Meuter. “An Evalu-

ation of Reactive Programming and Promises for Structuring Collaborative Web

Applications”. In: Proceedings of the 7th Workshop on Dynamic Languages and Ap-

plications. DYLA ’13. New York, NY, USA: ACM, 2013, 3:1–3:9. isbn: 978-1-4503-

2041-2. doi: 10.1145/2489798.2489802.

[89] Marcin Karpinski and Vinny Cahill. “High-Level Application Development is

Realistic for Wireless Sensor Networks”. In: 2007 4th Annual IEEE Communications

Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. 2007,

pp. 610–619. doi: 10.1109/SAHCN.2007.4292873.

[90] Andreas Kärrby. Evaluating Swift concurrency on the iOS platform: A performance

analysis of the task-based concurrency model in Swift 5.5. 2022. url: https://www.

diva-portal.org/smash/get/diva2:1711132/FULLTEXT02.

168 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[91] Meysam Khezri, Mehdi Agha Sarram and Fazlollah Adibniya. “Simplifying Con-

current Programming of Networked Embedded Systems”. In: 2008 IEEE Inter-

national Symposium on Parallel and Distributed Processing with Applications. 2008,

pp. 993–998. isbn: 978-0-7695-3471-8. doi: 10.1109/ISPA.2008.138.

[92] Vladimir Kiriansky et al. “Cimple: instruction and memory level parallelism:

a DSL for uncovering ILP and MLP”. In: Proc. of the 27th Int. Conf. on Parallel

Architectures and Compilation Techniques. Limassol Cyprus: ACM, November 2018,

pp. 1–16. isbn: 978-1-4503-5986-3. doi: 10.1145/3243176.3243185.

[93] Barbara Kitchenham. “Procedures for performing systematic reviews”. In: Keele,

UK, Keele University. Vol. 33. TR/SE-0401. 2004, pp. 1–26.

[94] Barbara Kitchenham and Stuart Charters. “Guidelines for performing System-

atic Literature reviews in Software Engineering Version 2.3”. In: Technical Report

EBSE-2007-01. Keele University & University of Durham, 2007. isbn: 1595933751.

[95] Barbara A. Kitchenham, David Budgen and O. Pearl Brereton. “Using mapping

studies as the basis for further research - A participant-observer case study”. In:

Information and Software Technology 53.6 (2011), pp. 638–651. issn: 09505849. doi:

10.1016/j.infsof.2010.12.011.

[96] Donald E Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms

(3rd. ed.) Addison Wesley Longman Publishing Co., Inc., 1997. isbn: 0201896834.

[97] Christopher Kohlhoff. “A Universal Model for Asynchronous Operations. ISO/IEC

JTC1/SC22/WG21: C++ Standards Committee paper N3747”. 2013. url: http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3747.pdf.

[98] Oliver Kowalke and Nat Goodspeed. “A low-level API for stackful context switch-

ing. ISO/IEC JTC1/SC22/WG21: C++ Standards Committee paper N4397”. 2015.

url: https://www.open- std.org/Jtc1/sc22/WG21/docs/papers/2015/

p0099r0.pdf.

[99] Oliver Kowalke and Nat Goodspeed. “A proposal to add coroutines to the C++

standard library. ISO/IEC JTC1/SC22/WG21: C++ Standards Committee paper

N3708.” 2013. url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

2013/n3708.pdf.

Chapter 6 169

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[100] Patrick Kugler, Philipp Nordhus and Bjoern Eskofier. “Shimmer, Cooja and Con-

tiki: A new toolset for the simulation of on-node signal processing algorithms”.

In: 2013 IEEE International Conference on Body Sensor Networks. 2013, pp. 1–6. isbn:

9781479903306. doi: 10.1109/BSN.2013.6575497.

[101] Nagendra J. Kumar et al. “Efficient Software Implementation of Embedded Com-

munication Protocol Controllers Using Asynchronous Software Thread Integra-

tion with Time- and Space-efficient Procedure Calls”. In: ACM Transactions on

Embedded Computing Systems 6.1 (February 2007). issn: 1539-9087. doi: 10.1145/

1210268.1210270.

[102] Young Cheon Kwon et al. “25.4 A 20nm 6GB Function-In-Memory DRAM, Based

on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level

Parallelism, for Machine Learning Applications”. In: Proc. IEEE Int. Solid-State

Circuits Conf. Vol. 64. 2021, pp. 350–352. isbn: 9781728195490. doi: 10.1109/

ISSCC42613.2021.9365862.

[103] Pavel A Lebedev. “Integrating GPGPU computations with CPU coroutines in

C++”. In: Journal of Physics: Conference Series 681.1 (2016), pp. 1–8. doi: 10.1088/

1742-6596/681/1/012048.

[104] Daewoong Lee et al. “A 16-Gb T-Coil-Based GDDR6 DRAM with Merged-MUX

TX, Optimized WCK Operation, and Alternative-Data-Bus Achieving 27-Gb/s/Pin

in NRZ”. In: IEEE J. Solid-State Circuits 58.1 (2023), pp. 279–290. issn: 1558173X.

doi: 10.1109/JSSC.2022.3222203.

[105] David Lee and Mihalis Yannakakis. “Principles and methods of testing finite state

machines-a survey”. In: Proceedings of the IEEE 84.8 (1996), pp. 1090–1123. issn:

00189219. doi: 10.1109/5.533956.

[106] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded Sys-

tems, A Cyber-Physical Systems Approach, Second Edition. MIT Press, 2017. isbn:

978-0-262-53381-2.

[107] Philip Levis and David Culler. “Maté : A Tiny Virtual Machine for Sensor Net-

works”. In: ACM SIGPLAN Notices 37.10 (2002), pp. 85–95. issn: 01635964. doi:

10.1145/605397.605407.

170 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[108] Philip Levis et al. “TinyOS: An Operating System for Sensor Networks”. In: Ambi-

ent Intelligence. Ed. by Werner Weber, Jan M Rabaey and Emile Aarts. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2005, pp. 115–148. isbn: 978-3-540-27139-0.

doi: 10.1007/3-540-27139-2_7.

[109] Mingzhen Li et al. “The Deep Learning Compiler: A Comprehensive Survey”. In:

IEEE Transactions on Parallel and Distributed Systems 32.3 (2021), pp. 708–727. issn:

1045-9219. doi: 10.1109/TPDS.2020.3030548. arXiv: 2002.03794.

[110] Dian-Lun Lin et al. “TaroRTL: Accelerating RTL Simulation Using Coroutine-

Based Heterogeneous Task Graph Scheduling”. In: Euro-Par 2024: Parallel Pro-

cessing. Ed. by Jesus Carretero et al. Cham: Springer Nature Switzerland, 2024,

pp. 151–166. isbn: 978-3-031-69583-4.

[111] Barbara H Liskov and Liuba Shrira. “Promises: linguistic support for efficient

asynchronous procedure calls in distributed systems”. In: ACM SIGPLAN Notices

23.7 (1988), pp. 260–267. issn: 03621340. doi: 10.1145/960116.54016.

[112] Jialei Liu et al. “Reliability-Enhanced Task Offloading in Mobile Edge Comput-

ing Environments”. In: IEEE Internet Things J. 9.13 (2022), pp. 10382–10396. issn:

23274662. doi: 10.1109/JIOT.2021.3115807.

[113] Weichen Liu et al. “Coroutine-Based Synthesis of Efficient Embedded Software

From SystemC Models”. In: IEEE Embedded Systems Letters 3.1 (2011), pp. 46–49.

issn: 19430663. doi: 10.1109/LES.2011.2112634.

[114] LLVM Project. Download LLVM releases. 2018. url: http://releases.llvm.org/

(visited on 14/08/2018).

[115] Daniel Lohmann et al. “The Aspect-Aware Design and Implementation of the

CiAO Operating-System Family”. In: Transactions on Aspect-Oriented Software De-

velopment IX. Ed. by Gary T Leavens et al. Berlin, Heidelberg: Springer, 2012,

pp. 168–215. isbn: 978-3-642-35551-6. doi: 10.1007/978-3-642-35551-6_5.

[116] Magnus Madsen, Ondřej Lhoták and Frank Tip. “A model for reasoning about

JavaScript promises”. In: Proceedings of the ACM on Programming Languages 1.OOP-

SLA, Article 86 (2017), p. 24. issn: 24751421. doi: 10.1145/3133910.

[117] James Manyika et al. The Internet of Things: Mapping the value beyond the hype.

Tech. rep. June. 2015, pp. 1–24.

Chapter 6 171

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[118] Petra Maresova et al. “Consequences of industry 4.0 in business and economics”.

In: Economies 6.3 Article 46 (2018), pp. 1–14. issn: 22277099. doi: 10 . 3390 /

economies6030046.

[119] Christopher D Marlin. “Coroutines: A Programming Methodology, a Language

Design and an Implementation”. PhD thesis. University of Adelaide, 1979.

[120] Nicholas D. Matsakis and Felix S. Klock. “The Rust language”. In: ACM SIGAda

Ada Letters 34.3 (2014), pp. 103–104. issn: 1094-3641. doi: 10.1145/2692956.

2663188.

[121] Erik Meijer. “Reactive extensions (Rx): Curing Your Asynchronous Programming

Blues”. In: ACM SIGPLAN Commercial Users of Functional Programming (CUFP

’10). New York, New York, USA: ACM Press, 2010, p. 1. isbn: 9781450305167.

doi: 10.1145/1900160.1900173.

[122] Rob van der Meulen. Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in

2017, Up 31 Percent From 2016. 2017. url: http://www.gartner.com/newsroom/

id/3598917 (visited on 15/08/2017).

[123] Microsoft Corporation. The latest supported Visual C++ downloads. 2018. url: https:

//support.microsoft.com/en-au/help/2977003/the-latest-supported-

visual-c-downloads (visited on 14/08/2018).

[124] Eric Mittelette. Coroutines in Visual Studio 2015 – Update 1 - Visual C++ Team

Blog. 2015. url: https://blogs.msdn.microsoft.com/vcblog/2015/11/30/

coroutines-in-visual-studio-2015-update-1/ (visited on 04/02/2018).

[125] Aaron Moss, Robert Schluntz and Peter A. Buhr. “C∀: Adding modern program-

ming language features to C”. In: Software - Practice and Experience 48.12 (Decem-

ber 2018), pp. 2111–2146. doi: 10.1002/spe.2624.

[126] Christian Motika and Reinhard von Hanxleden. “Light-weight Synchronous Java

(SJL): An approach for programming deterministic reactive systems with Java”.

In: Computing 97.3 (2015), pp. 281–307. doi: 10.1007/s00607-014-0416-7.

[127] Todd Mowry and Anoop Gupta. “Tolerating latency through software-controlled

prefetching in shared-memory multiprocessors”. In: J. Parallel Distrib. Comput.

12.2 (1991), pp. 87–106.

172 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[128] M G Sarwar Murshed et al. “Machine Learning at the Network Edge: A Survey”.

In: ACM Comput. Surv. 54.8 (October 2022), 170:1–170:37. issn: 0360-0300. doi:

10.1145/3469029.

[129] Robert H.B. Netzer and Barton P. Miller. “What Are Race Conditions?: Some Is-

sues and Formalizations”. In: ACM Letters on Programming Languages and Systems

(LOPLAS) 1.1 (1992), pp. 74–88. issn: 15577384. doi: 10.1145/130616.130623.

[130] Peter Niebert and Mathieu Caralp. “Cellular Programming”. In: Theory and Prac-

tice of Natural Computing, TPNC 2014. Lecture Notes in Computer Science, vol 8890.

Ed. by Adrian-Horia Dediu, Manuel Lozano and Carlos Martı́n-Vide. Cham:

Springer, 2014, pp. 11–22. isbn: 978-3-319-13749-0. doi: 10.1007/978-3-319-

13749-0_2.

[131] Gor Nishanov. “Incremental Approach: Coroutine TS + Core Coroutines. ISO/IEC

JTC1/SC22/WG21 P1362 R0”. 2018. url: http://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2018/p1362r0.pdf.

[132] Gor Nishanov. “Merge Coroutines TS into C++20 working draft. ISO/IEC JTC1/SC22/WG21

P0912 R5”. 2019. url: http://www.open- std.org/jtc1/sc22/wg21/docs/

papers/2019/p0912r5.html.

[133] Gor Nishanov. “Using Coroutine TS with zero dynamic allocations. ISO/IEC

JTC1/SC22/WG21 P1365 R0”. 2018. url: https://www.open-std.org/jtc1/

sc22/wg21/docs/papers/2018/p1365r0.pdf.

[134] Uzair A. Noman et al. “From threads to events: Adapting a lightweight mid-

dleware for Contiki OS”. In: 2017 14th IEEE Annual Consumer Communications

and Networking Conference (CCNC). 2017, pp. 486–491. isbn: 9781509061969. doi:

10.1109/CCNC.2017.7983156.

[135] NXP Semiconductors. MQX Lite Real-Time Operating System (RTOS). 2018. url:

https://www.nxp.com/products/no-longer-manufactured/nxp-mqx-lite-

real-time-operating-system-rtos:MQXLITE (visited on 22/04/2019).

[136] Semih Okur et al. “A study and toolkit for asynchronous programming in C#”.

In: Proceedings of the 36th International Conference on Software Engineering - ICSE

2014. 1. New York, May 2014, pp. 1117–1127. isbn: 9781450327565. doi: 10.1145/

2568225.2568309.

Chapter 6 173

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[137] Frank Oldewurtel et al. “The RUNES Architecture for Reconfigurable Embed-

ded and Sensor Networks”. In: 2009 Third International Conference on Sensor Tech-

nologies and Applications. 2009, pp. 109–116. isbn: 9780769536699. doi: 10.1109/

SENSORCOMM.2009.26.

[138] Jonathan Paisley and Joseph Sventek. “Real-time Detection of Grid Bulk Transfer

Traffic”. In: 2006 IEEE/IFIP Network Operations and Management Symposium NOMS

2006. 2006, pp. 66–72. doi: 10.1109/NOMS.2006.1687539.

[139] Jianli Pan and James McElhannon. “Future Edge Cloud and Edge Computing for

Internet of Things Applications”. In: IEEE Internet Things J. 5.1 (2018), pp. 439–

449. issn: 23274662. doi: 10.1109/JIOT.2017.2767608.

[140] Sihyeong Park et al. “Lua-Based Virtual Machine Platform for Spacecraft On-

Board Control Software”. In: 2015 IEEE 13th International Conference on Embedded

and Ubiquitous Computing. 2015, pp. 44–51. isbn: 9781467382991. doi: 10.1109/

EUC.2015.21.

[141] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems. Ed. by H

Wallach et al. Vol. 32. NeurIPS. Curran Associates, Inc., 2019. arXiv: 1912.01703.

[142] Kai Petersen, Sairam Vakkalanka and Ludwik Kuzniarz. “Guidelines for con-

ducting systematic mapping studies in software engineering: An update”. In:

Information and Software Technology 64 (2015), pp. 1–18. issn: 09505849. doi: 10.

1016/j.infsof.2015.03.007.

[143] Kai Petersen et al. “Systematic Mapping Studies in Software Engineering”. In:

Proceedings of the 12th International Conference on Evaluation and Assessment in Soft-

ware Engineering. June. BCS Learning & Development Ltd., 2008, pp. 1–10. doi:

10.14236/ewic/EASE2008.8.

[144] Aleksandar Prokopec and Fengyun Liu. “Theory and practice of coroutines with

snapshots”. In: Leibniz International Proceedings in Informatics, LIPIcs. Vol. 109. 3.

2018, 3:1–3:32. doi: 10.4230/LIPIcs.ECOOP.2018.3.

[145] Georgios Psaropoulos et al. “Interleaving with coroutines: a practical approach

for robust index joins”. In: Proc. VLDB Endow. 11.2 (October 2017), pp. 230–242.

issn: 2150-8097. doi: 10.14778/3149193.3149202.

174 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[146] Georgios Psaropoulos et al. “Interleaving with coroutines: a systematic and prac-

tical approach to hide memory latency in index joins”. In: VLDB J. 28.4 (2019),

pp. 451–471. issn: 0949877X. doi: 10.1007/s00778-018-0533-6.

[147] Al Rainnie and Mark Dean. “Industry 4.0 and the future of quality work in

the global digital economy”. In: Labour & Industry 30.1 (2020), pp. 16–33. issn:

23255676. doi: 10.1080/10301763.2019.1697598.

[148] Srivaths Ravi et al. “Security in Embedded Systems: Design Challenges”. In:

ACM Transactions on Embedded Computing Systems 3.3 (2004), pp. 461–491. issn:

15583465. doi: 10.1145/1015047.1015049.

[149] Marcel Rebouças et al. “An Empirical Study on the Usage of the Swift Program-

ming Language”. In: 2016 IEEE 23rd International Conference on Software Analysis,

Evolution, and Reengineering, SANER 2016 1 (2016), pp. 634–638. doi: 10.1109/

SANER.2016.66.

[150] Jinke Ren et al. “Collaborative Cloud and Edge Computing for Latency Mini-

mization”. In: IEEE Trans. Veh. Technol. 68.5 (2019), pp. 5031–5044. issn: 19399359.

doi: 10.1109/TVT.2019.2904244.

[151] Till Riedel et al. “Using web service gateways and code generation for sustainable

IoT system development”. In: 2010 Internet of Things (IOT). November 2010, pp. 1–

8. doi: 10.1109/IOT.2010.5678449.

[152] Torvald Riegel. “On unifying the coroutines and resumable functions proposals.

ISO/IEC JTC1/SC22/WG21: C++ Standards Committee paper P0073R0”. 2015.

url: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0073r0.

pdf.

[153] Dennis M. Ritchie. “The development of the C language”. In: ACM SIGPLAN

Notices 28.3 (1993), pp. 201–208. issn: 15581160. doi: 10.1145/155360.155580.

[154] Geoff Romer, James Dennett and Chandler Carruth. “Core Coroutines: Making

coroutines simpler, faster, and more general. ISO/IEC JTC1/SC22/WG21: C++

Standards Committee paper P1063R0.” 2018. url: http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2018/p1063r0.pdf.

Chapter 6 175

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[155] Geoffrey Romer et al. “Coroutines: Use-cases and Trade-offs. ISO/IEC JTC1/SC22/WG21:

C++ Standards Committee paper P1493R0.” 2019. url: https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2019/p1493r0.pdf.

[156] Silvana Rossetto and Noemi Rodriguez. “A cooperative multitasking model for

networked sensors”. In: Proc. 26th Int. Int. Conf. Distrib. Comput. Syst. Workshops

(ICDCSW’06) (July 2006), p. 91. issn: 15450678. doi: 10.1109/ICDCSW.2006.5.

[157] Guido van Rossum and Phillip J. Eby. “PEP 342 – Coroutines via Enhanced Gen-

erators”. 2005. url: https://www.python.org/dev/peps/pep-0342/.

[158] Peter J. Rousseeuw and Christophe Croux. “Alternatives to the Median Absolute

Deviation”. In: J. Am. Stat. Assoc. 88.424 (1993), pp. 1273–1283. issn: 1537274X.

doi: 10.1080/01621459.1993.10476408.

[159] Miguel A Rubio, Carolina Mañoso Hierro and Ángel Pérez de Madrid y Pablo.

“Using Arduino To Enhance Computer Programming Courses in Science and

Engineering”. In: Proceedings of the EDULEARN13 72.July (2013), pp. 5127–5133.

issn: 2340-1117.

[160] Farzad Samie, Lars Bauer and Jörg Henkel. “From Cloud Down to Things: An

Overview of Machine Learning in Internet of Things”. In: IEEE Internet Things

J. 6.3 (June 2019), pp. 4921–4934. issn: 2327-4662. doi: 10.1109/JIOT.2019.

2893866.

[161] Mahadev Satyanarayanan et al. “The Case for VM-Based Cloudlets in Mobile

Computing”. In: IEEE Pervasive Comput. 8.4 (2009), pp. 14–23. doi: 10.1109/

MPRV.2009.82.

[162] Paul H Schimpf. “Modified protothreads for embedded systems”. In: J. Comput.

Sci. Coll. 28.1 (October 2012), pp. 177–184. issn: 1937-4771.

[163] Nikolaos Schizas et al. “TinyML for Ultra-Low Power AI and Large Scale IoT

Deployments: A Systematic Review”. In: Future Internet 14.12 Article 363 (2022).

issn: 19995903. doi: 10.3390/fi14120363.

[164] Temitayo Shenkoya. “Social change: A comparative analysis of the impact of

the IoT in Japan, Germany and Australia”. In: Internet of Things 11 (2020). issn:

25426605. doi: 10.1016/j.iot.2020.100250.

176 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[165] Weisong Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Inter-

net Things J. 3.5 (2016), pp. 637–646. issn: 23274662. doi: 10.1109/JIOT.2016.

2579198.

[166] Sabrina Sicari et al. “Security, privacy and trust in Internet of Things: The road

ahead”. In: Computer Networks 76 (January 2015), pp. 146–164. issn: 13891286.

doi: 10.1016/j.comnet.2014.11.008.

[167] Stelios Sidiroglou, Giannis Giovanidis and Angelos D Keromytis. “A dynamic

mechanism for recovering from buffer overflow attacks”. In: Information Security:

8th International Conference, ISC 2005, Singapore, September 20-23, 2005. Proceedings

8. Springer. 2005, pp. 1–15.

[168] Ian Skerrett. IoT Developer Trends 2017 Edition. 2017. url: https://ianskerrett.

wordpress.com/2017/04/19/iot-developer-trends-2017-edition/ (visited

on 12/05/2017).

[169] Steven S. Skiena. “Numerical Problems”. In: The Algorithm Design Manual. Lon-

don: Springer London, 2008, pp. 393–433. isbn: 9781848000698. doi: 10.1007/

978-1-84800-070-4_13.

[170] Alan Jay Smith. “Cache Memories”. In: ACM Comput. Surv. 14.3 (1982), pp. 473–

530. issn: 15577341. doi: 10.1145/356887.356892.

[171] Richard Smith and Gor Nishanov. “Halo: coroutine Heap Allocation eLision Op-

timization: the joint response (P0981R0)”. 2018. url: https://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html.

[172] Richard Smith et al. “Coroutines: Language and Implementation Impact. ISO/IEC

JTC1/SC22/WG21: C++ Standards Committee paper P1492R0.” 2019. url: http:

//www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1492r0.pdf.

[173] Vincent St-Amour and Marc Feeley. “PICOBIT: A Compact Scheme System for

Microcontrollers”. In: Implementation and Application of Functional Languages. IFL

2009. Lecture Notes in Computer Science, vol 6041. Ed. by Marco T Morazán and

Sven-Bodo Scholz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–

17. isbn: 978-3-642-16478-1. doi: 10.1007/978-3-642-16478-1_1.

Chapter 6 177

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[174] Darko Stefanović et al. “Static code analysis tools: A systematic literature re-

view”. In: Ann. DAAAM Proc. Int. DAAAM Symp 31.1 (2020), pp. 565–573. issn:

17269679. doi: 10.2507/31st.daaam.proceedings.078.

[175] Bjarne Stroustrup. “A Set of C++ Classes for Co-routine Style Programming”.

MAuuray Hill, New Jersey, 1985. url: http://www.softwarepreservation.org/

projects/c_plus_plus/cfront/release_e/doc/ClassesForCoroutines.pdf.

[176] Bjarne Stroustrup. “An Overview of C++”. In: SIGPLAN Not. OOPWORK ’86

October. New York, NY, USA: ACM, 1986, pp. 7–18. isbn: 0-89791-205-5. doi:

10.1145/323779.323736.

[177] Bjarne Stroustrup. “An overview of the C++ programming language”. In: Hand-

book of Object Technology. Ed. by Saba Zamir. CRC Press Boca Raton, FL, 1999.

isbn: 0-8493-3135-8.

[178] Bjarne Stroustrup. “Thriving in a crowded and changing world: C++ 2006–2020”.

In: Proceedings of the ACM on Programming Languages 4.HOPL Article 70 (2020),

pp. 1–168. doi: 10.1145/3386320.

[179] Moritz Strube et al. “Dynamic operator replacement in sensor networks”. In: The

7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS

2010). November 2010, pp. 748–750. doi: 10.1109/MASS.2010.5663821.

[180] Ekawahyu Susilo et al. “A miniaturized wireless control platform for robotic

capsular endoscopy using advanced pseudokernel approach”. In: Sensors and Ac-

tuators, A: Physical 156.1 (2009), pp. 49–58. issn: 09244247. doi: 10.1016/j.sna.

2009.03.036.

[181] Ahmet Ali Süzen, Burhan Duman and Betul Şen. “Benchmark analysis of jetson

tx2, jetson nano and raspberry pi using deep-cnn”. In: Proc. Int. Congr. Hum.-

Comput. Interact., Optim. Robot. Appl. IEEE. 2020, pp. 1–5. isbn: 9781728193526.

doi: 10.1109/HORA49412.2020.9152915.

[182] Don Syme, Tomas Petricek and Dmitry Lomov. “The F# Asynchronous Program-

ming Model”. In: Practical Aspects of Declarative Languages. PADL 2011. Lecture

Notes in Computer Science 6539 LNCS (2011), pp. 175–189. doi: 10.1007/978-3-

642-18378-2_15.

178 Chapter 6

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[183] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial

and Survey”. In: Proc. IEEE 105.12 (2017), pp. 2295–2329. issn: 15582256. doi:

10.1109/JPROC.2017.2761740. arXiv: 1703.09039.

[184] Simon Tatham. Coroutines in C. 2000. url: https://www.chiark.greenend.org.

uk/~sgtatham/coroutines.html (visited on 19/06/2017).

[185] The Python Software Foundation. 9.10 Generator Expressions — Python 3.6.15 doc-

umentation. 2019. url: https://docs.python.org/3.6/tutorial/classes.

html#generators (visited on 24/07/2024).

[186] Christian Tismer. About Stackless. 2018. url: https://github.com/stackless-

dev/stackless/wiki (visited on 04/09/2018).

[187] Christian Tismer. “Continuations and stackless Python”. In: Proceedings of the 8th

International Python Conference. Vol. 1. 2000.

[188] John Tse and Alan Jay Smith. “CPU cache prefetching: Timing evaluation of hard-

ware implementations”. In: IEEE Trans. Comput. 47.5 (1998), pp. 509–526. issn:

00189340. doi: 10.1109/12.677225.

[189] UBM Electronics Group. 2015 Embedded Markets Study. Tech. rep. April. 2015.

[190] UBM TechInsights. 2009 Embedded Market Study. 2010. url: https://www.embedded.

com/wp-content/uploads/2019/12/2009_embeddedmarketstudy_ubm.pdf (vis-

ited on 24/07/2024).

[191] Gaurav Verma et al. “Performance Evaluation of Deep Learning Compilers for

Edge Inference”. In: Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW).

IEEE, 2021, pp. 858–865. isbn: 9781665435772. doi: 10.1109/IPDPSW52791.2021.

00128.

[192] Melvin M Vopson. “The information catastrophe”. In: AIP Advances 10.8 (2020).

doi: 10.1063/5.0019941.

[193] Rolf H Weber. “Internet of things: Privacy issues revisited”. In: Computer Law &

Security Review 31.5 (2015), pp. 618–627. doi: 10.1016/j.clsr.2015.07.002.

[194] Elecia White. Making embedded systems, 2nd Ed. O’Reilly Media, Inc., 2024. isbn:

9781098151546.

Chapter 6 179

Asynchronous Programming Using C++ Coroutines in Embedded & Edge Computing

[195] Geoffrey X. Yu et al. “Habitat: A Runtime-Based computational performance pre-

dictor for deep neural network training”. In: 2021 USENIX Annual Technical Con-

ference (USENIX ATC 21). 2021, pp. 503–521. arXiv: 2102.00527.

[196] Min Yu, SiJi Xiahou and XinYu Li. “A Survey of Studying on Task Scheduling

Mechanism for TinyOS”. In: 2008 4th International Conference on Wireless Commu-

nications, Networking and Mobile Computing (2008), pp. 1–4. doi: 10.1109/WiCom.

2008.960.

[197] Zeming Yu, Linhai Song and Yiying Zhang. “Fearless Concurrency? Understand-

ing Concurrent Programming Safety in Real-World Rust Software”. In: arXiv

preprint arXiv:1902.01906 (2019). arXiv: 1902.01906.

[198] Jiale Zhang et al. “Data Security and Privacy-Preserving in Edge Computing

Paradigm: Survey and Open Issues”. In: IEEE Access 6 (2018), pp. 18209–18237.

issn: 21693536. doi: 10.1109/ACCESS.2018.2820162.

[199] Hongbin Zheng et al. “Optimizing Memory-Access Patterns for Deep Learning

Accelerators”. In: arXiv preprint arXiv:2002.12798 (2020). arXiv: 2002.12798.

[200] Ian Zhou et al. “Internet of Things 2.0: Concepts, Applications, and Future Direc-

tions”. In: IEEE Access 9 (2021), pp. 70961–71012. issn: 2169-3536. doi: 10.1109/

ACCESS.2021.3078549.

180 Chapter 6

	Front pages
	Title page
	Acknowledgements
	Statement of the Contribution of Others
	Statement of Access
	Abstract
	List of Publications
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	Chapter 1 Introduction
	Chapter 2 A Survey of Asynchronous Programming Using Coroutines in the Internet of Things and Embedded Systems
	Chapter 3 C++20 Coroutines on Microcontrollers
	Chapter 4 Speeding up Machine Learning Inference on Edge Devices by Improving Memory Access Patterns using Coroutines
	Chapter 5 Reducing Energy Consumption for Machine Learning Inference on Edge Devices using C++20 Coroutines
	Chapter 6 Conclusion
	References

