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Abstract
Understanding the numerous roles that colouration serves in the natural world has 
remained a central focus in many evolutionary and ecological studies. However, to 
accurately characterise and then compare colours or patterns among individuals or 
species has been historically challenging. In recent years, there have been a myriad 
of new resources developed that allow researchers to characterise biological colours 
and patterns, specifically from digital imagery. However, each resource has its own 
strengths and weaknesses, answers a specific question and requires a detailed under-
standing of how it functions to be used properly. These nuances can make navigat-
ing this emerging field rather difficult. Herein, we evaluate several new techniques 
for analysing biological colouration, with a specific focus on digital images. First, we 
introduce fundamental background knowledge about light and perception to be con-
sidered when designing and implementing a study of colouration. We then show how 
numerous modifications can be made to images to ensure consistent formatting prior 
to analysis. After, we describe many of the new image analysis approaches and their 
respective functions, highlighting the type of research questions that they can ad-
dress. We demonstrate how these various techniques can be brought together to 
examine novel research questions and test specific hypotheses. Finally, we outline 
potential future directions in colour pattern studies. Our goal is to provide a starting 
point and pathway for researchers wanting to study biological colour patterns from 
digital imagery.
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1  |  INTRODUC TION

Understanding the role that certain colours and patterns serve in 
biological systems has remained a central focus in evolutionary and 
ecological studies. An organism's colouration (the combination of co-
lours and patterns) often has an intrinsic link to its life history strat-
egy; dictating how it behaves and interacts with other organisms as 
well as its environment. Researchers and naturalists alike have been 
fascinated with the intricacies of animal colouration since the times 
of Darwin and Wallace (Caro, 2017; Darwin, 1859; Wallace, 1877). 
However, the physical properties that are responsible for creating 
colouration makes it difficult to objectively study (Endler,  1978). 
How light behaves and interacts within an environment is extremely 
context dependent. Furthermore, how this light is then subsequently 
perceived and processed by another organism makes this seemingly 
simple field rather complex (Endler, 1990).

Darwin and Wallace would likely be impressed with the progress 
that has been made in characterising and quantifying organismal 
colours and patterns (Endler, 1978, 1990). Historically, descriptions 
of colouration were both context and viewer dependent. As noted 
by Longley, 1917: ‘The method is crude; allowance for the personal 
equation of the observer must be large…’. The advent of spectrom-
eters, which operate by detecting the intensity of light at different 
wavelengths, allowed for more physical descriptions of light and 
consequently colour, to be made (Endler,  1990; Johnsen,  2016). 
Reflectance spectra can tell us detailed information about the object 
being measured, for example, which pigments are likely responsible 
for creating a specific colour (Toral et al., 2008). While this is by far 
the most accurate method for assessing the colour of an object, it 
does have its disadvantages. Reflectance spectra must be remea-
sured for each specific colour of interest making data collection 
both labour and equipment intensive (Marshall et al., 2003). In the 
life sciences, this means the observer must also decide which parts 
of the organism's body and pattern to measure, imposing a bias as to 
which aspects of colouration are thought to be meaningful (Badiane 
et al., 2017; Dalrymple et al., 2015). Importantly, they fail to provide 
any description of patterns, leaving this completely up to the inter-
pretation of the viewer.

However, digital images provide an ideal medium in which to 
study biological colour patterns (Stevens et al., 2007). Since images 
inherently record spatial information of colour (i.e. its pattern), they 
are well suited for characterising the colour pattern data. Digital im-
ages remove the subjectivity of classifying patterns based on human 
constructs (e.g. categorising a pattern as ‘stripes’ or ‘spots’) and do 
not require the user to specify locations on an organism that has 
been deemed important for measurement. Furthermore, the rela-
tively cheaper cost of many digital cameras compared to a complete 
spectrometer setup and their ease of use in the field make them a 
valuable resource for colour pattern studies.

In recent years, there has been a surge of new methodologies 
that aim to describe and characterise biological colour patterns, 
specifically from digital imagery (Mason  & Bowie,  2020). These 
methods have benefitted from the combination of more informed 

research designs and affordable computing. Through the advent of 
open source programming languages, like R (R Core Team,  2023), 
many new and free computational resources are now available for 
use. These new resources allow researchers to ask and answer ques-
tions that were previously not possible. However, each technique or 
application possesses its own strengths and weaknesses, answers 
specific questions and requires time to learn and implement.

Herein, we present an introduction to many of the recent tools 
available for analysing biological colour patterns and their applica-
tion. The resources covered will primarily focus on image analysis 
techniques that are available in open-source, user-friendly software, 
as these are the methods that have seen the most recent growth. 
First, we detail the basic knowledge around colouration and vision 
and highlight some key considerations to be made when construct-
ing a study. We then provide an overview of what resources are 
available to measure and characterise colours and patterns from 
digital images. Finally, we demonstrate how some of these various 
techniques can be brought together and describe their potential 
applicability by outlining future directions for colour research. Our 
overall aim is to provide a resource for researchers entering the 
field of colour pattern science to help design, develop and conduct 
studies on biological colouration using new techniques in a rapidly 
growing field.

2  |  METHODOLOGIC AL APPROACHES

2.1  |  Vision and perception: a necessary primer

Colours and patterns are a product of light and its ability to be de-
tected, processed and interpreted by a viewer. Therefore, a fun-
damental understanding of both the physical properties of light 
and how it is viewed and processed is essential to study biological 
colourations. Light is electromagnetic radiation (small quantities 
of energy that lack mass or charge) that behaves in some manner 
as both a particle and wave. Visible light refers to the spectrum of 
electromagnetic radiation visible to most humans which spans from 
approximately 380 to 750 nm in wavelength (wavelength is fre-
quently denoted by the symbol λ). However, many organisms can 
detect light in the ultraviolet range (300–400 nm; Siebeck, 2004) or 
shortwave infrared (750 nm–1000 nm; Gracheva et al., 2010), which 
is important to consider if your study explicitly involves a known, 
non-human viewer (Caves et al., 2019). Light is detected in the retina 
of the eye by two main photoreceptor cell types: rods and cones. 
Rods are primarily involved in detecting changes in luminance, i.e. 
light intensity. Thus, rods are generally used for low light or night 
vision and do not often decipher chromatic (colour) differences. 
Conversely, cone cells are involved in the detection of light with 
difference wavelengths (i.e. colours) and have a greater variety of 
cell types which are often tuned to different spectral sensitivities. 
These different spectral sensitivities are determined by the type 
of opsin protein expressed by the photoreceptor; opsins being the 
light sensitive protein that react to light stimulus ultimately starting 
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the colour detection and processing pathway for many organisms 
(Shichida & Matsuyama, 2009). Light of different wavelengths ap-
pear different in colour depending on the filtering media within the 
lens (e.g. oil droplets; Vorobyev,  2003), the type, density and the 
orientation of photoreceptors in the retina of the viewer (Carleton 
et al., 2020), as well as how an organism neurally processes the light 
signal (Endler,  1990). For comprehensive reviews on the acquisi-
tion and neural processing of light, see (Endler, 1978, 1990; Kelber 
et al., 2003; Kemp et al., 2015; Osorio & Vorobyev, 2008).

How do we make accurate assumptions about what colours 
other organisms can perceive? These conclusions are made through 
either: (1) behavioural experiments, (2) measurements of certain 
cellular properties within their retina (microspectrophotmetry and 
electroretinography) or, (3) more recently, by identifying genetic 
sequences that are commonly known to code for visual opsin pro-
teins – the light sensitive proteins that are universal in animal vision 
(Kelber et al., 2003; Kemp et al., 2015; Shichida & Matsuyama, 2009). 
Behavioural experiments typically present a study organism with dif-
ferent stimuli to observe perceptive abilities and test their responses 
(Newport et al., 2017; Siebeck et al., 2008). Microspectrophotmetry 
and electroretinography work by either measuring the amount of 
light absorbed by photoreceptor cells or by measuring the elec-
trical activity within the retina. Both techniques provide evidence 
as to what wavelengths of light the organisms likely can or can-
not see, however exceptions do occur (Losey et al., 2003; Tosetto 
et al., 2021). Last, dedicated genetic research has linked certain gene 
encoding regions to the expression of specific visual opsin proteins. 
Opsins are a class of light sensitive proteins which give certain pho-
toreceptor cells their ability to detect light. Different opsins have 
different spectral sensitivities they react to. Therefore, by identi-
fying which opsins are being coded for, we can infer what possible 
spectral sensitivities an organism may have (Carleton et al., 2020; 
Musilova et al., 2019). It is important to note that the presence of 
specific opsin encoding genes does not directly equate to an individ-
ual possessing photoreceptors with that protein as organism's may 
‘tune’ their visual capabilities to best fit the corresponding light envi-
ronment the organism resides within (Kranz et al., 2018; Nandamuri 
et al., 2017). Ultimately, each of these approaches provides evidence 
as to what an organism likely can or cannot perceive. The latter of 
these two techniques must be validated using behavioural studies 
and trials, as solely relying on these correlative approaches can lead 
to unexpected conclusions (e.g. Tosetto et al., 2021).

Beyond the chromatic component of perception, organisms also 
vary widely in their ability to visually resolve details from an object 
or scene; termed ‘visual acuity’ (Caves et al., 2018). Lower levels of 
visual acuity mean an organism resolves less details of an object 
or scene being viewed. Acuity therefore has a clear impact on the 
interpretation of results in studies that are testing behavioural re-
sponses to certain stimuli, or the functional implications of certain 
colour patterns or signals (Caves et al., 2016). Many organisms have 
acuity much worse than our own, so it is important to consider when 
assessing how colours and patterns are perceive by other organismal 
viewers (Caves et al., 2019).

Rather quickly it becomes quite apparent that vision and percep-
tion vary widely within the natural world. Thus, it is critically import-
ant to know: (1) if your research question involves an explicit viewer 
and (2) if so, what are their visual capabilities (chromatic, achromatic 
and acuity) and how do they need to be considered. Previous synthe-
ses in colour research show that most studies come from one of two 
schools of inquiry: ‘bottom-up’ and ‘top-down’ (Kemp et al., 2015). 
‘Bottom up’ research questions ‘seek to understand the proximate 
basis of colour propagation, reception and perception’. These disci-
plines aim to form a physical and neural understanding of how co-
lour is viewed and processed. Thus they often involve a model study 
taxon whose vision and perceptive abilities are studied in great 
detail (Tosetto et  al.,  2021). ‘Top-down’ approaches ‘seek to use 
colour as a trait in tests of ecological and/or evolutionary hypothe-
ses’. These studies often take a broader approach and look at entire 
groups of organisms simultaneously to understand broad patterns 
shaping phenotypes through space and time (Cooney et al., 2022). 
Frequently, ‘top-down’ questions do not approach their research 
from the perspective of a specific viewer and therefore stick to more 
descriptive methods for characterising colours. Thus, it is critically 
important to identify if your research is a discriminatory/perceptual 
question (involving a specified viewer) or a spectral/physical ques-
tion (describing broader patterns pertaining to light and colour). We 
use this dichotomy in the main methods figure to help identify what 
type of question certain techniques can be used to answer (Kemp 
et al., 2015). A large resource table (Table 1, described in more de-
tail below) also lists whether applications are spectral/physical, dis-
criminatory, or perceptual in nature. Sometimes simple approaches 
and metrics of colouration work fine for the question being asked. 
It ultimately always hinges on the specific research question being 
addressed.

A strong understanding of the concepts summarised above 
will better inform the experimental design, how data is collected 
and analysed, and most importantly, its interpretation (Endler  & 
Mappes, 2017). Herein, most of the material presented and its pro-
posed uses will be from a ‘top-down’ perspective as these ques-
tions are more likely in broader ecological and evolutionary studies. 
However, it is up to the researcher to perform their own due dili-
gence and ensure that they have a firm grasp of the relevant theory 
behind their research question before implementing, analysing and 
interpreting their findings.

2.2  |  An overview of the resources available

Following is an overview of the current resources available for image 
processing and analysis in colour pattern studies with a focus on 
those available in R and ImageJ. The resources have been organised 
in a manner that would mirror a typical workflow when analysing 
colours and patterns from digital imagery (Figure 1). A current sub-
set of some available methods, including their function description, 
name, reference for further reading and platforms on which they are 
available is listed in Table 1 as well as a visual overview in Figure 4. 
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The presentation of resources in the table has also been organised 
to mirror a typical workflow in image analysis. Last, throughout the 
text, the specific functions, feature, or tool used to perform each 
technique is denoted with italic text.

2.3  |  Image processing prior to analysis

Images form the foundations upon which most of the analyses and 
techniques covered herein are based. Therefore, it is crucial that im-
ages have been taken in a standardised and representative manner. 
Ideally, images are captured in a raw format; an image format where 
the camera makes minimal changes to the image preserving as much 
of the original scene's light information as possible. These formats 
offer the greatest flexibility and most accurately represent the true 
appearance of an object or scene. More common file types, like .jpeg 
are compressed meaning file information is deliberately discarded to 
reduce file size. Additionally, irreversible changes are often made to 
these images by the camera's processor which alter the photograph 
in ways that are thought to make it look more pleasing to the viewer. 
This typically includes boosting the saturation and vibrancy or alter-
ing the contrast of the colours within an image. Clearly, this poses a 

problem if the object of a study is to compare images objectively. For 
comprehensive guides to digital imaging for the study of biological 
colouration and their limitations, please see Stevens et al. (2007) and 
White et al. (2015).

Often the first step after imaging for most colour-based research 
questions will involve processing and manipulating images in various 
ways to prepare them for analyses (Figure 2). Colour and grey stan-
dards are small items included in images that contain specific colours 
of known reflectance and hue. If standards have been included in 
the images, then the image's colours can be adjusted to ensure the 
lighting has been standardised/normalised between all photos. This 
is particularly important when photographs were taken outdoors 
where cloud cover and time of day can greatly impact the available 
light spectrum (Bergman  & Beehner,  2008; Stevens et  al.,  2007). 
Images containing the Calibrite (formerly X-Rite) ColorChecker 
Passport or the Image Science Associates ColorGauge can be ad-
justed using the function (‘colorChecker’) within the patternize R 
package (Van Belleghem et  al.,  2018). Generally, .jpeg and other 
non-raw file types are nonlinear in nature, meaning the brightness 
of some pixels are increased or decreased more relative to others. 
To linearise these images (that is, to make the brightness more accu-
rately reflect the number of photons hitting the cameras sensor) the 
images must include a grey standard. The linearisation can be done 
using the Multispectral Image Calibration and Analysis (MICA) tool-
box (Troscianko & Stevens, 2015) using ‘Model Linearisation Function’. 
Calibrating images in the ultraviolet or infrared regions of the spec-
trum will require special standards that have UV/IR reflective prop-
erties as most commercial options only reflect visible light.

Once images are colour-accurate and representative, further 
changes can be made to mimic how certain organisms may per-
ceive the scene photographed within each image (Troscianko  & 
Stevens,  2015). Every organism possesses its own unique assem-
blage of photoreceptor cells giving it the ability to perceive light 
and certain colours (Kelber et al., 2003; Osorio & Vorobyev, 2008). 
The MICA toolbox and the Quantitative Colour Pattern Analysis 
framework (QCPA) provide a suite of resources that analyse colours 
and patterns from an explicitly visual perspective (Troscianko  & 
Stevens,  2015; van den Berg et  al.,  2019). To use this approach, 
knowledge of the spectral sensitivities of the taxon of interest are 
required (discussed in more detail below). The ‘False-Colour’ im-
ages (Figure  2a) which can be made in the MICA Toolbox (‘Make 
Presentation Image’) attempt to give an impression of the relative dis-
criminability of a scene to a specific viewer, but not imitate what an 
organisms would actually see (van den Berg et al., 2019; Verhoeven 
et al., 2018). Although these images are generally for demonstration 
purposes only, they can identify some unique aspects to colouration 
that humans would not natively perceive. For example, showcasing 
a range of unique patterns found on flowers that possibly act as sig-
nals to attract pollinators (Lunau et al., 2021).

If your research question is discriminatory in nature (for ex-
ample, how well can a predator detect a prey item from a cer-
tain distance), then visual acuity may need to be incorporated 
into the analysis (Figure 2b). Caves and Johnsen (2018) were first 

F I G U R E  1 The typical workflow in the study of biological 
colourations from digital images. The steps in red represent those 
prior to analyses. Blue are data exploration and interpretation 
techniques. Yellow are the final steps of analysing the data and 
formulating conclusions.
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to develop an algorithm and associated R package (AcuityView) 
dedicated to simulating acuity. The user specifies: (1) the visual 
acuity of the viewer (in cycles per degree or minimum resolvable 
angle) and, (2) the distance between the subject and the viewer. 
A fast Fourier transformation is then performed to remove static 
spatial details that a viewer would not likely resolve from a scene. 
The original AcuityView algorithm has been updated and can now 
be implemented in both the QCPA framework (‘Acuity View’) and 
PAVO (‘procimg’) (Maia et  al.,  2019; van den Berg et  al.,  2019). 
Furthermore, the QCPA framework can also simulate acuity using 
a different approach (‘Gaussian Acuity Control’) that works on 
non-rectangular regions of interest (unlike AcuityView) offering 
greater flexibility.

Images may need to have the subject cropped from the back-
ground or a region of interest denoted to facilitate further anal-
yses (Figure  2c,d). Cropping the subject is most easily done in 
Adobe Photoshop using the ‘Quick Selection’ tool. For those with 
more programming experience, various machine learning pipelines 
can be used (typically in Python) to automatically detect and seg-
ment the subject from the background (Schwartz & Alfaro, 2021). 
Alternatively, your research question may only be concerned with 
a specific region within an image. Depending on the downstream 
analyses being performed, you may either need to manually draw 
the outline for the region of interest (ROI) or supply a file (typi-
cally a text file) containing the coordinates that denote the ROI. 
(Figure 2d). In these instances, downstream analyses are only per-
formed on the area within the ROI. Lastly, your research question 
may require the placement of landmarks to align multiple images 
(Van Belleghem et  al.,  2018). Landmarks can easily be placed in 
ImageJ using the ‘point’ or ‘Multi-point’ tool (Figure  2d). After 

placing landmarks points, the x and y coordinates of all points can 
be exported and saved as a text file or spreadsheet.

2.4  |  Representing colours graphically

Representing colours graphically allows for additional unique inter-
pretations and analyses to be made with colour data. Which plot-
ting technique is most appropriate depends entirely on the data 
and approaches used. The most fundamental method for plotting 
the physical properties of a colour is by displaying it as a reflec-
tance spectrum (Figure 3a). This is the relative amount of light at 
specific wavelengths that have been reflected off of a surface or 
object; typically measured using a spectrometer (Endler, 1990). This 
method is particularly useful for initially comparing specific colours 
to known spectral sensitivities of certain photoreceptors within a 
viewer (Johnsen, 2016; Kelber et al., 2003). Although this is not a 
method in which patterns are assessed nor is it collected using digi-
tal imagery (although new techniques are emerging that can recon-
struct reflectance spectra from digital images; Deng et  al.,  2021; 
Zhao  & Berns,  2007), it is worth mentioning due to its specific 
applicability and longstanding use in the field (Endler,  1990) The 
PAVO (Perceptual Analysis, Visualisation and Organisation of spec-
tral colour data) R package provides easy-to-use resources for plot-
ting and visualising spectral data (‘explorespcec’) (Maia et al., 2013, 
2019). Visualising colours using this approach can also identify pos-
sible latent properties about the object/organism being studied. For 
example, how two seemingly identical colours can be created from 
fundamentally different spectral distributions (called ‘metamerism’; 
Endler, 1990).

F I G U R E  2 Some of the alterations that can be made to images prior to analysis. (a) changing the colours within an image to create a false-
colour photograph to highlight discriminability, (b) adjusting an image to reflect a given viewers visual acuity, (c) cropping a subject to remove 
its background and (d) defining a region of interest (ROI) for the analysis or placing landmarks. These techniques are not mutually exclusive 
and often multiple will be combined depending on the research question.
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An extension beyond plotting spectral distributions are co-
lour spaces. Colour spaces are graphical techniques used to 
arrange colours spatially based on a set of criteria within a n-
dimensional coordinate system (Renoult et  al.,  2017). The axes 
of the coordinate systems differ depending on the rules used to 

construct the space; whether it be based on how humans per-
ceive or categorise colours (RGB and CIELAB colour spaces) 
(Weller & Westneat, 2019) to how light stimulates certain photo-
receptors within the eye (Chittka, 1992; Endler & Mielke, 2005). 
From a spectral/physical perspective, the RGB (red, green, blue, 
Figure  3b) colour space is common in computer graphics which 
contains three, perpendicular axes (x, y, z) that loosely imitate 
the three peak spectral sensitivities of photoreceptors in humans 
(blue – short wavelengths, green – medium wavelengths and red 
– long wavelengths). While convenient to work with in digital set-
tings, distances within this colour space are not representative of 
perceptual distances, that is, how different we as humans would 
perceive two or more colours. To overcome this limitation, the 
CIELab colour space was intentionally designed so that Euclidean 
distances between colours closely approximate their perceptual 
difference in life to humans. The CIELab colour space uses a light-
ness axis (L), differences along a red–green axis (a) and differences 
along a blue – yellow axis (b). The R packages colordistance (‘plot-
Pixels’) and PAVO (‘colspace’) can plot colours within an image or 
ROI within these colour spaces.

An alternative graphing technique is using n-dimensional 
spaces whose axes correspond to how certain photoreceptors are 
stimulated given the capabilities of a specified viewer (Renoult 
et al., 2017). These receptor-based colour spaces have the advan-
tage of displaying colours in space by how they are theoretically 
perceived by a viewer within a psychophysical framework thus 
adding an additional layer of ecological or behavioural understand-
ing (Troscianko et al., 2016). These spaces are flexible in that the 
number of axes can be increased or decreased depending on the 
number of photoreceptor types present in the viewer. One of the 
most notable and well established visual models is the Receptor 
Noise Limited model (RNL) (Vorobyev et  al.,  2001; Vorobyev  & 
Osorio, 1998). This model estimates receptor spectral sensitivity 
while simultaneously accounting for inherent noise (caused by 
molecular ‘misfires’, Barlow et al., 1993) within the receptors. Like 
any model, it has a series of assumptions that need to be made and 
met which can be found in detail in the original description (for ex-
ample, that colour is neurally coded using opponent mechanisms). 
Results from this model can then be plotted in a n-dimensional 
colour space which can accommodate varying numbers of recep-
tor sensitivities (to date, modelling up to four) making it flexible 
for many study taxa (Hempel De Ibarra et al., 2001). Importantly, 
distances between specific stimuli within these colour spaces 

F I G U R E  3 Three alternative methods to graphically represent 
colours. The top is an image of the European Goldfinch (Carduelis 
carduelis). Five colours have been sampled across its body. 
(a) Colours represented as a distribution of the relative amount 
of reflected light at each wavelength. Spectral reflectance data 
are reproduced from Stavenga and Wilts (2014). (b) Colours 
represented in the RGB colour space. (c) Colours represented in 
hypothetical receptor space by how strongly they stimulate three 
photoreceptor types that are sensitive to short (S), medium (M) and 
long (L) wavelengths. Photo: Francis C. Franklin. CC BY-SA 3.0.

(a)

(b)

(c)
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(i.e. their Euclidean distance termed ΔS) aim to more accurately 
reflect perceptual distances inherent to the viewers. However, 
whether these colours are actually perceived differently requires 
experimental validation. Additional receptor colour spaces that 
are more generalised or specialised in nature have been created, 

such as the Tetrahedral Colour Space (Endler & Mielke, 2005) and 
the Colour Hexagon (Chittka, 1992). These spaces can be imple-
mented in numerous platforms, including the colourvision R pack-
age (‘colspace’) and the PAVO R package (‘CTTKmodel’, ‘EMmodel’, 
‘RNLmodel’, ‘GENmodel’).

F I G U R E  4 What technique should you use? A sample of analyses are shown which are arranged along the two axes depending on: y 
axis – how one approaches analysing colouration, i.e. spectral/physical or perceptive/discriminatory and the x axis –whether one focuses 
on colours or patterns. Photos credits: H. Krisp, U. Schmidt, F. Franklin, V. Huertas and K. Schulz; CC BY-SA 2.0. The figures for Local Edge 
Intensity Analysis, Boundary Strength Analysis and Colour Maps have been adapted from the original publications.
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2.5  |  Comparing the colours and patterns within  
and between images

Some research questions may aim to analyse many or all colours and 
patterns within an image or between multiple images (examples listed 
in Figure  4). Importantly, these techniques move beyond the tradi-
tional approaches of ‘patch-measuring’ and seek to analyse the com-
plete appearance of an organism or scene in its entirety. The MICA 
toolbox provides an extension of the Receptor Noise Limited model, 
called ‘Colour Maps’, which can plot millions of pixel's colours from 
an image into a single psychophysically calibrated colour space (‘RNL 
Colour Maps’). The boundaries around colour points (in a similar fash-
ion to error bars) can be adjusted to represent different amounts of 
discriminatory distance (Just Noticeable Difference). For example, 
this space could be used to initially explore how a Honeybee (Apis 
mellifera) might distinguish the colours of a flower as compared to the 
background vegetation. This information may then be used to formu-
late hypotheses that can be experimentally tested and ground-truthed 
using behavioural trials. In the case of the honeybee, these methods 
have shown the visual salience of a flower from its background is in-
deed indicative of its detection success (Spaethe et al., 2001).

Alternatively, you may want to measure and compare the distri-
bution and amount of all colours found within one image to another 
(or many). The R package colordistance can quantitatively evaluate 
the similarity between the distribution of colours among n images 
(Weller & Westneat, 2019). Colordistance characterises colouration 
by plotting a sample of pixels from an image within a predetermined 
colour space (e.g. RGB, CIElab; non-human perceptual spaces are not 
supported). The axes within this space are then divided into equal 
area subsections as specified by the user. The number of pixels that 
occur within each subsection is then counted and used to create a 
distribution that can be compared to every other image analysed 
using multivariate approaches. The intuitive nature of this approach 
allows for the full colouration of any number of organisms to be com-
pared regardless of morphological or size differences. Furthermore, 
the user can specify: (1) colour space to be used, (2) how fine the res-
olution of colours are (i.e. the number of ‘subsections’ to divide the 
colour space into) and (3) the method to compare the distribution of 
colours (e.g. earth movers distance, χ2 distance, etc.). However, the 
use of strictly human-related colour spaces limits its applicability to 
more human-centric questions.

If the exact location of where each colour occurs is important 
(i.e. pattern), colormesh offers utilities to efficiently measure colours 
across the body of the study subject (Valvo et al., 2021). First, images 
are unwarped using landmarks to match a consensus shape which al-
lows colours to be compared at the same location across individuals 
whose morphology and shape may vary, or between images in which 
the subject's orientation differs. Delaunay triangulation creates a 
mesh across the body which (which can be changed depending on 
how fine or coarse the user would like to sample) is then used to se-
lect relatively even and representative sampling locations across the 
organisms being assessed. The RGB values of the pixel at the centre 
point of each triangle are then recorded (‘rgb.measure’) and can be 

converted into a data matrix (‘make.colormesh.dataset’) for further 
exploration and analyses. Colormesh does offer functions to imple-
ment image linearisation as well as calibration to known colour stan-
dards (‘rgb.calibrate’). However, this is the only colour space currently 
supported so thoughtful consideration is needed when deciding to 
use this approach.

The R package patternize also offers utilities to analyse colour 
patterns with respect to morphological location (Van Belleghem 
et  al.,  2018). patternize can use landmarks, in a similar fashion to 
colormesh, to align images but can also perform image registration 
where images are automatically aligned. The RGB triplet (this is the 
only colour space supported) value of the colour of interest, along 
with a tolerance parameter (that allows for a range of RGB values 
above and below the target value) are specified and detected in each 
image. While patternize was developed to work with only one co-
lour, the source code can be modified to permit its use with multi-
ple colours (e.g. Hemingson et al., 2019). The output of this analysis 
can be visualised and compared using multiple different techniques. 
These range from plotting the heat maps of specific colours across 
the bodies of multiple organisms (‘plotHeat’) to comparing the colour 
matrices using multivariate approaches (‘patLanRGB’) and visualising 
them using ordination techniques (‘patPCA’).

The plotting of both individual colours (techniques described in 
the previous section) as well as entire colours and patterns in re-
duced dimensional spaces allows for further metrics to be measured 
that summarise and describe and organism's colouration. One of the 
most notable is their n-dimensional volume. This is frequently the 
convex or concave hull volume (among others, Mouillot et al., 2013), 
which are alternate methods for measuring the volume occupied by 
a set of points. These techniques have a long standing use in the 
literature and can function as simple indices of colour diversity 
(Gruson, 2020). A myriad of other metrics exists that aim to sum-
marise and characterise multivariate data; mostly developed by 
community ecologists aiming to describe community composition 
(Legendre et al., 2005; Mouillot et al., 2013). These metrics can easily 
be adapted to work for multivariate colour data and offer an exciting 
new field of inquiry for this research. Recently, these metrics have 
been used to measure the diversity of colours found on individuals 
to analyse global trends in colourfulness (Cooney et  al.,  2022), as 
well as comparing the collective colourations of all individuals found 
in different habitats (Hemingson et al., 2022).

2.6  |  Measuring the visual and geometric aspects  
of pattern

There are many applications that analyse various geometric or spatial 
aspects of colouration within an image. These techniques explicitly 
incorporate the location of colours into the analyses and, depending 
on the technique, can include the visual capabilities of a specified 
viewer. These approaches are not restricted to only analysing colour 
patterns at the scale of the individual (i.e. the colouration on a frog), 
but can also assess how colours change between elements within 
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an image (e.g. the foreground vs background). For example, some of 
these techniques could be used to assess the theoretical perceptual 
contrast between a subject when compared to its environment e.g. 
a red flower to a green, foliage dominated background. In this ex-
ample, the techniques are not assessing pattern per se, but rather 
assessing the difference between colours with respect to their loca-
tion within an image.

Boundary Strength Analysis (Endler et  al.,  2018), Local Edge 
Intensity Analysis (‘Run QCPA Framework’) (van den Berg et al., 2019) 
and Gabor Ratios (‘Gabrat Disruption’) are all useful techniques to iden-
tify the intensity of colour changes between elements within an image. 
These approaches work by modelling both the chromatic and lumi-
nance differences (ΔS and L) between different colours and elements. 
Each technique will have output tables that summarise the differences 
calculated within the image. The original images can also be visualised 
using plots that overlay the visual intensity of changes between co-
lours/elements. The strength of these changes will be entirely context 
dependent on the visual capabilities of the viewer being modelled.

If the research question is more focused on characterising the 
complexity of a colour pattern at the scale of the individual (i.e. the 
colour pattern of an orchid flower – see van den Berg et al., 2019), 
Colour Adjacency Analysis (‘Run QCPA Framework’ in QCPA, ‘adja-
cent’ in PAVO) offers simplified summary metrics. This analysis runs 
multiple transects across the region of interest in both the x and y 
dimensions. The colour is recorded at set intervals along each tran-
sect. These transects are then summarised and used to create a 
transition matrix that contains how often colour changes along all 
transects (Endler, 2012). This is a useful technique to simply charac-
terise the complexity of a colour pattern. The output is a single value 
than can then be used in further downstream analyses. However, if 
the colours between two images are different but the pattern is the 
exactly the same, the Colour Adjacency metric for both images will 
be identical (see van den Berg et al. (2019) for details). Thus, consid-
eration is needed when using and interpreting this metric.

PAT-GEOM is an ImageJ plugin that provides multiple tools to 
measure aspects of pattern geometry (Chan et  al.,  2019). These 
range from assessing the shape complexity of individual markings 
(‘Elliptical Shape Fourier Analysis’), marking size, patch directionality 
(‘Directionality of Distribution’), randomness and distribution (‘Marking 
Matrix’). These techniques seek to measure aspects at the mark-
ing or individual level. These tools have been used to demonstrate 
that marking size on three different populations of furrowed crabs 
(Xantho hydrophilus) closely resembled the background of their local 
environment (Chan et al., 2019). The QCPA framework also offers re-
sources for measuring patch aspects, like the size, shape, distribution 
and angle of particles within a patch (‘Cluster Particle Analysis’).

3  |  CONCLUSIONS AND FUTURE 
PERSPEC TIVES

The strength of these various approaches arises at the intersec-
tion of their use – combining aspects to ask higher-order questions 
that begin to bridge the gap between ‘bottom-up’ and ‘top-down’ 

approaches. These questions would allow for the consideration of 
the perceptive and resolving capabilities of individual organisms 
(‘bottom-up’) while also comparing multiple individuals or species 
within an evolutionary or ecological context (‘top-down’). Fruitful 
lines of future research range from simulating what entire communi-
ties of organisms appear like to specific taxa (like a predator) to iden-
tifying macroecological patterns of colouration and how it relates to 
certain behaviours, like courtship and sexual selection whilst accom-
modating visual properties of the viewer (Endler & Mappes, 2017).

Many of the applications discussed herein also have use outside 
of their conventional design. For example, recent research used pat-
ternize to construct ‘damage heatmaps’ that display where different 
predatory reef fish injure their prey (Muruga et al., 2022). Damaged 
prey fishes were dissected out of the predators shortly after inges-
tion and were photographed. The injuries on every individual were 
manually painted onto the images in Photoshop with solid colours. 
These colours were then detected for and mapped using patternize 
to show where damage most likely occurred for each different pred-
ator type showing that predators with different tooth morphologies 
generally capture and process prey differently.

New hardware is revolutionising the field. Digital cameras of 
increasingly higher quality are becoming cheaper and open-source 
designs for spectrometers and other equipment are now available, 
drastically reducing the initial startup costs of working in this field 
(Caves et al., 2020; Troscianko, 2022). Hyperspectral cameras cap-
ture the entire spectral distribution inherent to each pixel within 
an image, as opposed to the relative amount of light within specific 
wavelength bands (e.g. RGB). Hyperspectral images contain im-
mense amounts of raw data compared to those taken by traditional 
cameras and can be used to further ask interesting questions about 
colouration in the natural world (Garcia et al., 2015). For example, 
tuning a hyper spectral camera to mimic the spectral sensitivity 
of a specific taxon to take images that closely resemble what that 
taxon would likely see. While the use of these cameras is still in 
their infancy in the life sciences due to their high cost (Zimmermann 
et al., 2018), there will likely be a transition to these devices over 
traditional cameras as they become more affordable.

Machine learning approaches are also rapidly changing the field 
(Fennell et al., 2021). Mentioned previously, various pipelines offer 
the ability to accurately detect and segment focal taxa form their 
backgrounds using convolutional neural networks (Schwartz  & 
Alfaro, 2021). Different datasets can be used to train the model al-
lowing for widespread use on many study groups. Machine learning 
approaches can also be used to help inform future research ques-
tions. The CamoEvo toolbox is an open access resource that is used 
to study the evolution of camouflage (Hancock & Troscianko, 2022). 
Users play an interactive game in which the subject (a simulated 
sphere) should be selected as fast as possible from a suite of back-
ground images. This data is then fed into an algorithm that alters the 
colouration to maximise the time taken to be selected – mimicking 
natural selection. Resources like this can be used to hone in on the 
selective pressure shaping camouflage patterns and then be ground-
truthed using field experiments (e.g. Kjernsmo et al., 2020). These 
approaches show much promise for the field of colour science.
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The multitude of recent advances has made the field of or-
ganismal colouration exciting to study. By combining old and new 
techniques from different backgrounds, we are now capable of 
asking detailed questions about the appearance of organisms and 
how they are perceived. The goal of this review is to provide a 
starting point to help researchers navigate the methodologically 
dense field of biological colouration. We must be explicit, however, 
and reiterate that it is imperative to have a knowledge background 
relevant to one's research focus. Without a solid foundation, it is 
easy to make conclusions that are misleading and are not grounded 
in theory. Research in this field can be a unique blend of physics, 
biology, psychology, behaviour and ecology. Thus, the necessary 
background knowledge needed will be specific to your research 
question.

Future research is likely to yield new ways of thinking about 
colouration (Garcia et al., 2020). In just the last 5 years, there have 
been numerous developments and modifications made to existing 
techniques to answer interesting new questions. By combining new 
ways to assess colouration and further refining visual modelling, we 
are gaining an increasingly comprehensive understanding of how co-
louration functions in the natural world.
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