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Abstract
Understanding	the	numerous	roles	that	colouration	serves	in	the	natural	world	has	
remained	a	central	 focus	 in	many	evolutionary	and	ecological	 studies.	However,	 to	
accurately	characterise	and	then	compare	colours	or	patterns	among	 individuals	or	
species	has	been	historically	challenging.	In	recent	years,	there	have	been	a	myriad	
of	new	resources	developed	that	allow	researchers	to	characterise	biological	colours	
and	patterns,	specifically	from	digital	 imagery.	However,	each	resource	has	 its	own	
strengths	and	weaknesses,	answers	a	specific	question	and	requires	a	detailed	under-
standing	of	how	it	functions	to	be	used	properly.	These	nuances	can	make	navigat-
ing	this	emerging	field	rather	difficult.	Herein,	we	evaluate	several	new	techniques	
for	analysing	biological	colouration,	with	a	specific	focus	on	digital	images.	First,	we	
introduce	fundamental	background	knowledge	about	light	and	perception	to	be	con-
sidered	when	designing	and	implementing	a	study	of	colouration.	We	then	show	how	
numerous	modifications	can	be	made	to	images	to	ensure	consistent	formatting	prior	
to	analysis.	After,	we	describe	many	of	the	new	image	analysis	approaches	and	their	
respective	 functions,	highlighting	 the	 type	of	 research	questions	 that	 they	can	ad-
dress.	We	demonstrate	 how	 these	 various	 techniques	 can	 be	 brought	 together	 to	
examine	novel	 research	questions	and	 test	 specific	hypotheses.	Finally,	we	outline	
potential	future	directions	in	colour	pattern	studies.	Our	goal	is	to	provide	a	starting	
point	and	pathway	for	researchers	wanting	to	study	biological	colour	patterns	from	
digital	imagery.
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1  |  INTRODUC TION

Understanding	 the	 role	 that	 certain	 colours	 and	patterns	 serve	 in	
biological	systems	has	remained	a	central	focus	in	evolutionary	and	
ecological	studies.	An	organism's	colouration	(the	combination	of	co-
lours	and	patterns)	often	has	an	intrinsic	link	to	its	life	history	strat-
egy;	dictating	how	it	behaves	and	interacts	with	other	organisms	as	
well	as	its	environment.	Researchers	and	naturalists	alike	have	been	
fascinated	with	the	intricacies	of	animal	colouration	since	the	times	
of	Darwin	and	Wallace	(Caro,	2017;	Darwin,	1859;	Wallace,	1877).	
However,	 the	physical	properties	 that	are	 responsible	 for	creating	
colouration	 makes	 it	 difficult	 to	 objectively	 study	 (Endler,	 1978).	
How	light	behaves	and	interacts	within	an	environment	is	extremely	
context	dependent.	Furthermore,	how	this	light	is	then	subsequently	
perceived	and	processed	by	another	organism	makes	this	seemingly	
simple	field	rather	complex	(Endler,	1990).

Darwin	and	Wallace	would	likely	be	impressed	with	the	progress	
that	 has	 been	 made	 in	 characterising	 and	 quantifying	 organismal	
colours	and	patterns	(Endler,	1978,	1990).	Historically,	descriptions	
of	colouration	were	both	context	and	viewer	dependent.	As	noted	
by	Longley,	1917:	‘The	method	is	crude;	allowance	for	the	personal	
equation	of	the	observer	must	be	large…’.	The	advent	of	spectrom-
eters,	which	operate	by	detecting	the	intensity	of	light	at	different	
wavelengths,	 allowed	 for	 more	 physical	 descriptions	 of	 light	 and	
consequently	 colour,	 to	 be	 made	 (Endler,	 1990;	 Johnsen,	 2016).	
Reflectance	spectra	can	tell	us	detailed	information	about	the	object	
being	measured,	for	example,	which	pigments	are	likely	responsible	
for	creating	a	specific	colour	(Toral	et	al.,	2008).	While	this	is	by	far	
the	most	accurate	method	for	assessing	the	colour	of	an	object,	 it	
does	 have	 its	 disadvantages.	 Reflectance	 spectra	must	 be	 remea-
sured	 for	 each	 specific	 colour	 of	 interest	 making	 data	 collection	
both	labour	and	equipment	intensive	(Marshall	et	al.,	2003).	 In	the	
life	sciences,	this	means	the	observer	must	also	decide	which	parts	
of	the	organism's	body	and	pattern	to	measure,	imposing	a	bias	as	to	
which	aspects	of	colouration	are	thought	to	be	meaningful	(Badiane	
et	al.,	2017;	Dalrymple	et	al.,	2015).	Importantly,	they	fail	to	provide	
any	description	of	patterns,	leaving	this	completely	up	to	the	inter-
pretation	of	the	viewer.

However,	 digital	 images	 provide	 an	 ideal	 medium	 in	 which	 to	
study	biological	colour	patterns	(Stevens	et	al.,	2007).	Since	images	
inherently	record	spatial	information	of	colour	(i.e.	its	pattern),	they	
are	well	suited	for	characterising	the	colour	pattern	data.	Digital	im-
ages	remove	the	subjectivity	of	classifying	patterns	based	on	human	
constructs	(e.g.	categorising	a	pattern	as	‘stripes’	or	‘spots’)	and	do	
not	 require	 the	 user	 to	 specify	 locations	 on	 an	 organism	 that	 has	
been	 deemed	 important	 for	measurement.	 Furthermore,	 the	 rela-
tively	cheaper	cost	of	many	digital	cameras	compared	to	a	complete	
spectrometer	setup	and	their	ease	of	use	in	the	field	make	them	a	
valuable	resource	for	colour	pattern	studies.

In	 recent	years,	 there	has	been	a	 surge	of	new	methodologies	
that	 aim	 to	 describe	 and	 characterise	 biological	 colour	 patterns,	
specifically	 from	 digital	 imagery	 (Mason	 &	 Bowie,	 2020).	 These	
methods	have	benefitted	 from	 the	combination	of	more	 informed	

research	designs	and	affordable	computing.	Through	the	advent	of	
open	 source	 programming	 languages,	 like	 R	 (R	Core	 Team,	2023),	
many	new	and	free	computational	resources	are	now	available	for	
use.	These	new	resources	allow	researchers	to	ask	and	answer	ques-
tions	that	were	previously	not	possible.	However,	each	technique	or	
application	possesses	 its	own	 strengths	 and	weaknesses,	 answers	
specific	questions	and	requires	time	to	learn	and	implement.

Herein,	we	present	an	introduction	to	many	of	the	recent	tools	
available	for	analysing	biological	colour	patterns	and	their	applica-
tion.	The	 resources	 covered	will	 primarily	 focus	on	 image	analysis	
techniques	that	are	available	in	open-	source,	user-	friendly	software,	
as	 these	are	 the	methods	that	have	seen	the	most	 recent	growth.	
First,	we	detail	the	basic	knowledge	around	colouration	and	vision	
and	highlight	some	key	considerations	to	be	made	when	construct-
ing	 a	 study.	We	 then	 provide	 an	 overview	 of	what	 resources	 are	
available	 to	 measure	 and	 characterise	 colours	 and	 patterns	 from	
digital	 images.	Finally,	we	demonstrate	how	some	of	these	various	
techniques	 can	 be	 brought	 together	 and	 describe	 their	 potential	
applicability	by	outlining	future	directions	for	colour	research.	Our	
overall	 aim	 is	 to	 provide	 a	 resource	 for	 researchers	 entering	 the	
field	of	colour	pattern	science	to	help	design,	develop	and	conduct	
studies	on	biological	colouration	using	new	techniques	in	a	rapidly	
growing	field.

2  |  METHODOLOGIC AL APPROACHES

2.1  |  Vision and perception: a necessary primer

Colours	and	patterns	are	a	product	of	light	and	its	ability	to	be	de-
tected,	 processed	 and	 interpreted	 by	 a	 viewer.	 Therefore,	 a	 fun-
damental	 understanding	 of	 both	 the	 physical	 properties	 of	 light	
and	how	it	 is	viewed	and	processed	is	essential	to	study	biological	
colourations.	 Light	 is	 electromagnetic	 radiation	 (small	 quantities	
of	energy	 that	 lack	mass	or	 charge)	 that	behaves	 in	 some	manner	
as	both	a	particle	and	wave.	Visible	light	refers	to	the	spectrum	of	
electromagnetic	radiation	visible	to	most	humans	which	spans	from	
approximately	 380	 to	 750 nm	 in	 wavelength	 (wavelength	 is	 fre-
quently	 denoted	 by	 the	 symbol	 λ).	However,	many	 organisms	 can	
detect	light	in	the	ultraviolet	range	(300–400 nm;	Siebeck,	2004)	or	
shortwave	infrared	(750 nm–1000 nm;	Gracheva	et	al.,	2010),	which	
is	 important	 to	 consider	 if	 your	 study	explicitly	 involves	 a	 known,	
non-	human	viewer	(Caves	et	al.,	2019).	Light	is	detected	in	the	retina	
of	 the	eye	by	 two	main	photoreceptor	cell	 types:	 rods	and	cones.	
Rods	are	primarily	 involved	 in	detecting	changes	 in	 luminance,	 i.e.	
light	 intensity.	Thus,	 rods	are	generally	used	 for	 low	 light	or	night	
vision	 and	 do	 not	 often	 decipher	 chromatic	 (colour)	 differences.	
Conversely,	 cone	 cells	 are	 involved	 in	 the	 detection	 of	 light	 with	
difference	wavelengths	 (i.e.	 colours)	 and	have	a	greater	variety	of	
cell	 types	which	are	often	tuned	to	different	spectral	sensitivities.	
These	 different	 spectral	 sensitivities	 are	 determined	 by	 the	 type	
of	opsin	protein	expressed	by	the	photoreceptor;	opsins	being	the	
light	sensitive	protein	that	react	to	light	stimulus	ultimately	starting	
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the	 colour	 detection	 and	 processing	 pathway	 for	many	 organisms	
(Shichida	&	Matsuyama,	2009).	Light	of	different	wavelengths	ap-
pear	different	in	colour	depending	on	the	filtering	media	within	the	
lens	 (e.g.	 oil	 droplets;	 Vorobyev,	2003),	 the	 type,	 density	 and	 the	
orientation	of	photoreceptors	in	the	retina	of	the	viewer	(Carleton	
et	al.,	2020),	as	well	as	how	an	organism	neurally	processes	the	light	
signal	 (Endler,	 1990).	 For	 comprehensive	 reviews	 on	 the	 acquisi-
tion	and	neural	processing	of	light,	see	(Endler,	1978,	1990; Kelber 
et	al.,	2003;	Kemp	et	al.,	2015;	Osorio	&	Vorobyev,	2008).

How	 do	 we	 make	 accurate	 assumptions	 about	 what	 colours	
other	organisms	can	perceive?	These	conclusions	are	made	through	
either:	 (1)	 behavioural	 experiments,	 (2)	 measurements	 of	 certain	
cellular	properties	within	 their	 retina	 (microspectrophotmetry	and	
electroretinography)	 or,	 (3)	 more	 recently,	 by	 identifying	 genetic	
sequences	that	are	commonly	known	to	code	for	visual	opsin	pro-
teins	–	the	light	sensitive	proteins	that	are	universal	in	animal	vision	
(Kelber	et	al.,	2003;	Kemp	et	al.,	2015;	Shichida	&	Matsuyama,	2009).	
Behavioural	experiments	typically	present	a	study	organism	with	dif-
ferent	stimuli	to	observe	perceptive	abilities	and	test	their	responses	
(Newport	et	al.,	2017;	Siebeck	et	al.,	2008).	Microspectrophotmetry	
and	 electroretinography	work	 by	 either	measuring	 the	 amount	 of	
light	 absorbed	 by	 photoreceptor	 cells	 or	 by	 measuring	 the	 elec-
trical	 activity	within	 the	 retina.	Both	 techniques	provide	evidence	
as	 to	 what	 wavelengths	 of	 light	 the	 organisms	 likely	 can	 or	 can-
not	see,	however	exceptions	do	occur	 (Losey	et	al.,	2003; Tosetto 
et	al.,	2021).	Last,	dedicated	genetic	research	has	linked	certain	gene	
encoding	regions	to	the	expression	of	specific	visual	opsin	proteins.	
Opsins	are	a	class	of	light	sensitive	proteins	which	give	certain	pho-
toreceptor	 cells	 their	 ability	 to	 detect	 light.	Different	 opsins	 have	
different	 spectral	 sensitivities	 they	 react	 to.	 Therefore,	 by	 identi-
fying	which	opsins	are	being	coded	for,	we	can	infer	what	possible	
spectral	 sensitivities	an	organism	may	have	 (Carleton	et	al.,	2020; 
Musilova	et	al.,	2019).	 It	 is	 important	to	note	that	the	presence	of	
specific	opsin	encoding	genes	does	not	directly	equate	to	an	individ-
ual	possessing	photoreceptors	with	that	protein	as	organism's	may	
‘tune’	their	visual	capabilities	to	best	fit	the	corresponding	light	envi-
ronment	the	organism	resides	within	(Kranz	et	al.,	2018;	Nandamuri	
et	al.,	2017).	Ultimately,	each	of	these	approaches	provides	evidence	
as	to	what	an	organism	likely	can	or	cannot	perceive.	The	latter	of	
these	 two	techniques	must	be	validated	using	behavioural	 studies	
and	trials,	as	solely	relying	on	these	correlative	approaches	can	lead	
to	unexpected	conclusions	(e.g.	Tosetto	et	al.,	2021).

Beyond	the	chromatic	component	of	perception,	organisms	also	
vary	widely	in	their	ability	to	visually	resolve	details	from	an	object	
or	scene;	termed	‘visual	acuity’	(Caves	et	al.,	2018).	Lower	levels	of	
visual	 acuity	 mean	 an	 organism	 resolves	 less	 details	 of	 an	 object	
or	scene	being	viewed.	Acuity	therefore	has	a	clear	 impact	on	the	
interpretation	of	 results	 in	studies	 that	are	 testing	behavioural	 re-
sponses	to	certain	stimuli,	or	the	functional	implications	of	certain	
colour	patterns	or	signals	(Caves	et	al.,	2016).	Many	organisms	have	
acuity	much	worse	than	our	own,	so	it	is	important	to	consider	when	
assessing	how	colours	and	patterns	are	perceive	by	other	organismal	
viewers	(Caves	et	al.,	2019).

Rather	quickly	it	becomes	quite	apparent	that	vision	and	percep-
tion	vary	widely	within	the	natural	world.	Thus,	it	is	critically	import-
ant	to	know:	(1)	if	your	research	question	involves	an	explicit	viewer	
and	(2)	if	so,	what	are	their	visual	capabilities	(chromatic,	achromatic	
and	acuity)	and	how	do	they	need	to	be	considered.	Previous	synthe-
ses	in	colour	research	show	that	most	studies	come	from	one	of	two	
schools	of	inquiry:	 ‘bottom-	up’	and	‘top-	down’	(Kemp	et	al.,	2015).	
‘Bottom	up’	research	questions	 ‘seek	to	understand	the	proximate	
basis	of	colour	propagation,	reception	and	perception’.	These	disci-
plines	aim	to	form	a	physical	and	neural	understanding	of	how	co-
lour	is	viewed	and	processed.	Thus	they	often	involve	a	model	study	
taxon	 whose	 vision	 and	 perceptive	 abilities	 are	 studied	 in	 great	
detail	 (Tosetto	 et	 al.,	 2021).	 ‘Top-	down’	 approaches	 ‘seek	 to	 use	
colour	as	a	trait	in	tests	of	ecological	and/or	evolutionary	hypothe-
ses’.	These	studies	often	take	a	broader	approach	and	look	at	entire	
groups	of	organisms	simultaneously	 to	understand	broad	patterns	
shaping	phenotypes	through	space	and	time	(Cooney	et	al.,	2022).	
Frequently,	 ‘top-	down’	 questions	 do	 not	 approach	 their	 research	
from	the	perspective	of	a	specific	viewer	and	therefore	stick	to	more	
descriptive	methods	for	characterising	colours.	Thus,	 it	 is	critically	
important	to	identify	if	your	research	is	a	discriminatory/perceptual	
question	(involving	a	specified	viewer)	or	a	spectral/physical	ques-
tion	(describing	broader	patterns	pertaining	to	light	and	colour).	We	
use	this	dichotomy	in	the	main	methods	figure	to	help	identify	what	
type	of	question	certain	techniques	can	be	used	to	answer	 (Kemp	
et	al.,	2015).	A	large	resource	table	(Table 1,	described	in	more	de-
tail	below)	also	lists	whether	applications	are	spectral/physical,	dis-
criminatory,	or	perceptual	in	nature.	Sometimes	simple	approaches	
and	metrics	of	colouration	work	fine	for	the	question	being	asked.	
It	ultimately	always	hinges	on	the	specific	research	question	being	
addressed.

A	 strong	 understanding	 of	 the	 concepts	 summarised	 above	
will	 better	 inform	 the	 experimental	 design,	 how	 data	 is	 collected	
and	 analysed,	 and	 most	 importantly,	 its	 interpretation	 (Endler	 &	
Mappes,	2017).	Herein,	most	of	the	material	presented	and	its	pro-
posed	 uses	 will	 be	 from	 a	 ‘top-	down’	 perspective	 as	 these	 ques-
tions	are	more	likely	in	broader	ecological	and	evolutionary	studies.	
However,	 it	 is	up	 to	 the	 researcher	 to	perform	their	own	due	dili-
gence	and	ensure	that	they	have	a	firm	grasp	of	the	relevant	theory	
behind	their	research	question	before	implementing,	analysing	and	
interpreting	their	findings.

2.2  |  An overview of the resources available

Following	is	an	overview	of	the	current	resources	available	for	image	
processing	 and	 analysis	 in	 colour	 pattern	 studies	with	 a	 focus	 on	
those	available	in	R	and	ImageJ.	The	resources	have	been	organised	
in	 a	manner	 that	would	mirror	 a	 typical	workflow	when	analysing	
colours	and	patterns	from	digital	imagery	(Figure 1).	A	current	sub-
set	of	some	available	methods,	including	their	function	description,	
name,	reference	for	further	reading	and	platforms	on	which	they	are	
available	is	listed	in	Table 1	as	well	as	a	visual	overview	in	Figure 4. 
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The	presentation	of	resources	in	the	table	has	also	been	organised	
to	mirror	a	typical	workflow	in	image	analysis.	Last,	throughout	the	
text,	 the	 specific	 functions,	 feature,	or	 tool	used	 to	perform	each	
technique	is	denoted	with	italic text.

2.3  |  Image processing prior to analysis

Images	form	the	foundations	upon	which	most	of	the	analyses	and	
techniques	covered	herein	are	based.	Therefore,	it	is	crucial	that	im-
ages	have	been	taken	in	a	standardised	and	representative	manner.	
Ideally,	images	are	captured	in	a	raw	format;	an	image	format	where	
the	camera	makes	minimal	changes	to	the	image	preserving	as	much	
of	the	original	scene's	 light	 information	as	possible.	These	formats	
offer	the	greatest	flexibility	and	most	accurately	represent	the	true	
appearance	of	an	object	or	scene.	More	common	file	types,	like	.jpeg 
are	compressed	meaning	file	information	is	deliberately	discarded	to	
reduce	file	size.	Additionally,	irreversible	changes	are	often	made	to	
these	images	by	the	camera's	processor	which	alter	the	photograph	
in	ways	that	are	thought	to	make	it	look	more	pleasing	to	the	viewer.	
This	typically	includes	boosting	the	saturation	and	vibrancy	or	alter-
ing	the	contrast	of	the	colours	within	an	image.	Clearly,	this	poses	a	

problem	if	the	object	of	a	study	is	to	compare	images	objectively.	For	
comprehensive	guides	to	digital	imaging	for	the	study	of	biological	
colouration	and	their	limitations,	please	see	Stevens	et	al.	(2007)	and	
White	et	al.	(2015).

Often	the	first	step	after	imaging	for	most	colour-	based	research	
questions	will	involve	processing	and	manipulating	images	in	various	
ways	to	prepare	them	for	analyses	(Figure 2).	Colour	and	grey	stan-
dards	are	small	items	included	in	images	that	contain	specific	colours	
of	known	reflectance	and	hue.	 If	 standards	have	been	 included	 in	
the	images,	then	the	image's	colours	can	be	adjusted	to	ensure	the	
lighting	has	been	standardised/normalised	between	all	photos.	This	
is	 particularly	 important	 when	 photographs	 were	 taken	 outdoors	
where	cloud	cover	and	time	of	day	can	greatly	impact	the	available	
light	 spectrum	 (Bergman	 &	 Beehner,	 2008;	 Stevens	 et	 al.,	 2007).	
Images	 containing	 the	 Calibrite	 (formerly	 X-	Rite)	 ColorChecker	
Passport	 or	 the	 Image	 Science	Associates	ColorGauge	 can	 be	 ad-
justed	 using	 the	 function	 (‘colorChecker’)	 within	 the	 patternize	 R	
package	 (Van	 Belleghem	 et	 al.,	 2018).	 Generally,	 .jpeg	 and	 other	
non-	raw	 file	types	are	nonlinear	 in	nature,	meaning	the	brightness	
of	some	pixels	are	 increased	or	decreased	more	relative	to	others.	
To	linearise	these	images	(that	is,	to	make	the	brightness	more	accu-
rately	reflect	the	number	of	photons	hitting	the	cameras	sensor)	the	
images	must	include	a	grey	standard.	The	linearisation	can	be	done	
using	the	Multispectral	Image	Calibration	and	Analysis	(MICA)	tool-
box	(Troscianko	&	Stevens,	2015)	using	‘Model Linearisation Function’.	
Calibrating	images	in	the	ultraviolet	or	infrared	regions	of	the	spec-
trum	will	require	special	standards	that	have	UV/IR	reflective	prop-
erties	as	most	commercial	options	only	reflect	visible	light.

Once	 images	 are	 colour-	accurate	 and	 representative,	 further	
changes	 can	 be	 made	 to	 mimic	 how	 certain	 organisms	 may	 per-
ceive	 the	 scene	 photographed	 within	 each	 image	 (Troscianko	 &	
Stevens,	2015).	 Every	 organism	 possesses	 its	 own	 unique	 assem-
blage	 of	 photoreceptor	 cells	 giving	 it	 the	 ability	 to	 perceive	 light	
and	certain	colours	(Kelber	et	al.,	2003;	Osorio	&	Vorobyev,	2008).	
The	 MICA	 toolbox	 and	 the	 Quantitative	 Colour	 Pattern	 Analysis	
framework	(QCPA)	provide	a	suite	of	resources	that	analyse	colours	
and	 patterns	 from	 an	 explicitly	 visual	 perspective	 (Troscianko	 &	
Stevens,	 2015;	 van	 den	 Berg	 et	 al.,	 2019).	 To	 use	 this	 approach,	
knowledge	of	the	spectral	sensitivities	of	the	taxon	of	 interest	are	
required	 (discussed	 in	 more	 detail	 below).	 The	 ‘False-	Colour’	 im-
ages	 (Figure 2a)	 which	 can	 be	made	 in	 the	MICA	 Toolbox	 (‘Make 
Presentation Image’)	attempt	to	give	an	impression	of	the	relative	dis-
criminability	of	a	scene	to	a	specific	viewer,	but	not	imitate	what	an	
organisms	would	actually	see	(van	den	Berg	et	al.,	2019;	Verhoeven	
et	al.,	2018).	Although	these	images	are	generally	for	demonstration	
purposes	only,	they	can	identify	some	unique	aspects	to	colouration	
that	humans	would	not	natively	perceive.	For	example,	showcasing	
a	range	of	unique	patterns	found	on	flowers	that	possibly	act	as	sig-
nals	to	attract	pollinators	(Lunau	et	al.,	2021).

If	 your	 research	 question	 is	 discriminatory	 in	 nature	 (for	 ex-
ample,	 how	well	 can	 a	 predator	 detect	 a	 prey	 item	 from	 a	 cer-
tain	 distance),	 then	 visual	 acuity	 may	 need	 to	 be	 incorporated	
into	the	analysis	(Figure 2b).	Caves	and	Johnsen	(2018)	were	first	

F I G U R E  1 The	typical	workflow	in	the	study	of	biological	
colourations	from	digital	images.	The	steps	in	red	represent	those	
prior	to	analyses.	Blue	are	data	exploration	and	interpretation	
techniques.	Yellow	are	the	final	steps	of	analysing	the	data	and	
formulating	conclusions.
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    |  7 of 14HEMINGSON et al.

to	 develop	 an	 algorithm	 and	 associated	 R	 package	 (AcuityView)	
dedicated	 to	 simulating	 acuity.	 The	 user	 specifies:	 (1)	 the	 visual	
acuity	of	the	viewer	(in	cycles	per	degree	or	minimum	resolvable	
angle)	and,	 (2)	 the	distance	between	the	subject	and	the	viewer.	
A	fast	Fourier	transformation	is	then	performed	to	remove	static	
spatial	details	that	a	viewer	would	not	likely	resolve	from	a	scene.	
The	original	AcuityView	algorithm	has	been	updated	and	can	now	
be	implemented	in	both	the	QCPA	framework	(‘Acuity View’)	and	
PAVO	 (‘procimg’)	 (Maia	 et	 al.,	 2019;	 van	 den	 Berg	 et	 al.,	 2019).	
Furthermore,	the	QCPA	framework	can	also	simulate	acuity	using	
a	 different	 approach	 (‘Gaussian Acuity Control’)	 that	 works	 on	
non-	rectangular	 regions	 of	 interest	 (unlike	 AcuityView)	 offering	
greater	flexibility.

Images	may	need	to	have	the	subject	cropped	from	the	back-
ground	or	a	 region	of	 interest	denoted	to	 facilitate	 further	anal-
yses	 (Figure 2c,d).	 Cropping	 the	 subject	 is	 most	 easily	 done	 in	
Adobe	Photoshop	using	the	‘Quick Selection’	tool.	For	those	with	
more	programming	experience,	various	machine	learning	pipelines	
can	be	used	(typically	in	Python)	to	automatically	detect	and	seg-
ment	the	subject	from	the	background	(Schwartz	&	Alfaro,	2021).	
Alternatively,	your	research	question	may	only	be	concerned	with	
a	specific	region	within	an	image.	Depending	on	the	downstream	
analyses	being	performed,	you	may	either	need	to	manually	draw	
the	outline	 for	 the	 region	of	 interest	 (ROI)	or	 supply	a	 file	 (typi-
cally	a	 text	 file)	containing	 the	coordinates	 that	denote	 the	ROI.	
(Figure 2d).	In	these	instances,	downstream	analyses	are	only	per-
formed	on	the	area	within	the	ROI.	Lastly,	your	research	question	
may	require	the	placement	of	landmarks	to	align	multiple	images	
(Van	Belleghem	et	 al.,	 2018).	 Landmarks	 can	 easily	 be	 placed	 in	
ImageJ	 using	 the	 ‘point’	 or	 ‘Multi- point’	 tool	 (Figure 2d).	 After	

placing	landmarks	points,	the	x	and	y	coordinates	of	all	points	can	
be	exported	and	saved	as	a	text	file	or	spreadsheet.

2.4  |  Representing colours graphically

Representing	colours	graphically	allows	for	additional	unique	inter-
pretations	and	analyses	to	be	made	with	colour	data.	Which	plot-
ting	 technique	 is	 most	 appropriate	 depends	 entirely	 on	 the	 data	
and	approaches	used.	The	most	 fundamental	method	for	plotting	
the	 physical	 properties	 of	 a	 colour	 is	 by	 displaying	 it	 as	 a	 reflec-
tance	spectrum	 (Figure 3a).	This	 is	 the	 relative	amount	of	 light	at	
specific	wavelengths	 that	have	been	 reflected	off	of	a	 surface	or	
object;	typically	measured	using	a	spectrometer	(Endler,	1990).	This	
method	is	particularly	useful	for	initially	comparing	specific	colours	
to	known	spectral	sensitivities	of	certain	photoreceptors	within	a	
viewer	(Johnsen,	2016;	Kelber	et	al.,	2003).	Although	this	is	not	a	
method	in	which	patterns	are	assessed	nor	is	it	collected	using	digi-
tal	imagery	(although	new	techniques	are	emerging	that	can	recon-
struct	 reflectance	 spectra	 from	digital	 images;	Deng	et	 al.,	2021; 
Zhao	 &	 Berns,	 2007),	 it	 is	 worth	 mentioning	 due	 to	 its	 specific	
applicability	 and	 longstanding	 use	 in	 the	 field	 (Endler,	 1990)	 The	
PAVO	(Perceptual	Analysis,	Visualisation	and	Organisation	of	spec-
tral	colour	data)	R	package	provides	easy-	to-	use	resources	for	plot-
ting	and	visualising	spectral	data	(‘explorespcec’)	(Maia	et	al.,	2013,	
2019).	Visualising	colours	using	this	approach	can	also	identify	pos-
sible	latent	properties	about	the	object/organism	being	studied.	For	
example,	how	two	seemingly	identical	colours	can	be	created	from	
fundamentally	different	spectral	distributions	(called	‘metamerism’;	
Endler,	1990).

F I G U R E  2 Some	of	the	alterations	that	can	be	made	to	images	prior	to	analysis.	(a)	changing	the	colours	within	an	image	to	create	a	false-	
colour	photograph	to	highlight	discriminability,	(b)	adjusting	an	image	to	reflect	a	given	viewers	visual	acuity,	(c)	cropping	a	subject	to	remove	
its	background	and	(d)	defining	a	region	of	interest	(ROI)	for	the	analysis	or	placing	landmarks.	These	techniques	are	not	mutually	exclusive	
and	often	multiple	will	be	combined	depending	on	the	research	question.

 20457758, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.11045 by Jam

es C
ook U

niversity, W
iley O

nline L
ibrary on [07/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 14  |     HEMINGSON et al.

An	 extension	 beyond	 plotting	 spectral	 distributions	 are	 co-
lour	 spaces.	 Colour	 spaces	 are	 graphical	 techniques	 used	 to	
arrange	 colours	 spatially	 based	 on	 a	 set	 of	 criteria	 within	 a	 n- 
dimensional	 coordinate	 system	 (Renoult	 et	 al.,	 2017).	 The	 axes	
of	the	coordinate	systems	differ	depending	on	the	rules	used	to	

construct	 the	 space;	 whether	 it	 be	 based	 on	 how	 humans	 per-
ceive	 or	 categorise	 colours	 (RGB	 and	 CIELAB	 colour	 spaces)	
(Weller	&	Westneat,	2019)	to	how	light	stimulates	certain	photo-
receptors	within	the	eye	(Chittka,	1992;	Endler	&	Mielke,	2005).	
From	a	spectral/physical	perspective,	 the	RGB	 (red,	green,	blue,	
Figure 3b)	 colour	 space	 is	 common	 in	 computer	 graphics	which	
contains	 three,	 perpendicular	 axes	 (x,	 y,	 z)	 that	 loosely	 imitate	
the	three	peak	spectral	sensitivities	of	photoreceptors	in	humans	
(blue	–	short	wavelengths,	green	–	medium	wavelengths	and	red	
–	long	wavelengths).	While	convenient	to	work	with	in	digital	set-
tings,	distances	within	this	colour	space	are	not	representative	of	
perceptual	distances,	that	is,	how	different	we	as	humans	would	
perceive	 two	 or	 more	 colours.	 To	 overcome	 this	 limitation,	 the	
CIELab	colour	space	was	intentionally	designed	so	that	Euclidean	
distances	between	colours	 closely	 approximate	 their	 perceptual	
difference	in	life	to	humans.	The	CIELab	colour	space	uses	a	light-
ness	axis	(L),	differences	along	a	red–green	axis	(a)	and	differences	
along	a	blue	–	yellow	axis	(b).	The	R	packages	colordistance	(‘plot-
Pixels’)	and	PAVO	(‘colspace’)	can	plot	colours	within	an	image	or	
ROI	within	these	colour	spaces.

An	 alternative	 graphing	 technique	 is	 using	 n-	dimensional	
spaces	whose	axes	correspond	to	how	certain	photoreceptors	are	
stimulated	 given	 the	 capabilities	 of	 a	 specified	 viewer	 (Renoult	
et	al.,	2017).	These	receptor-	based	colour	spaces	have	the	advan-
tage	of	displaying	colours	 in	space	by	how	they	are	theoretically	
perceived	 by	 a	 viewer	 within	 a	 psychophysical	 framework	 thus	
adding	an	additional	layer	of	ecological	or	behavioural	understand-
ing	(Troscianko	et	al.,	2016).	These	spaces	are	flexible	in	that	the	
number	of	axes	can	be	increased	or	decreased	depending	on	the	
number	of	photoreceptor	types	present	in	the	viewer.	One	of	the	
most	notable	and	well	established	visual	models	 is	 the	Receptor	
Noise	 Limited	 model	 (RNL)	 (Vorobyev	 et	 al.,	 2001;	 Vorobyev	 &	
Osorio,	1998).	This	model	estimates	receptor	spectral	sensitivity	
while	 simultaneously	 accounting	 for	 inherent	 noise	 (caused	 by	
molecular	‘misfires’,	Barlow	et	al.,	1993)	within	the	receptors.	Like	
any	model,	it	has	a	series	of	assumptions	that	need	to	be	made	and	
met	which	can	be	found	in	detail	in	the	original	description	(for	ex-
ample,	that	colour	is	neurally	coded	using	opponent	mechanisms).	
Results	 from	 this	model	 can	 then	 be	 plotted	 in	 a	 n-	dimensional	
colour	space	which	can	accommodate	varying	numbers	of	recep-
tor	 sensitivities	 (to	date,	modelling	up	 to	 four)	making	 it	 flexible	
for	many	study	taxa	(Hempel	De	Ibarra	et	al.,	2001).	Importantly,	
distances	 between	 specific	 stimuli	 within	 these	 colour	 spaces	

F I G U R E  3 Three	alternative	methods	to	graphically	represent	
colours.	The	top	is	an	image	of	the	European	Goldfinch	(Carduelis 
carduelis).	Five	colours	have	been	sampled	across	its	body.	
(a)	Colours	represented	as	a	distribution	of	the	relative	amount	
of	reflected	light	at	each	wavelength.	Spectral	reflectance	data	
are	reproduced	from	Stavenga	and	Wilts	(2014).	(b)	Colours	
represented	in	the	RGB	colour	space.	(c)	Colours	represented	in	
hypothetical	receptor	space	by	how	strongly	they	stimulate	three	
photoreceptor	types	that	are	sensitive	to	short	(S),	medium	(M)	and	
long	(L)	wavelengths.	Photo:	Francis	C.	Franklin.	CC	BY-	SA	3.0.

(a)

(b)

(c)
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    |  9 of 14HEMINGSON et al.

(i.e.	 their	 Euclidean	distance	 termed	ΔS)	 aim	 to	more	 accurately	
reflect	 perceptual	 distances	 inherent	 to	 the	 viewers.	 However,	
whether	these	colours	are	actually	perceived	differently	requires	
experimental	 validation.	 Additional	 receptor	 colour	 spaces	 that	
are	more	generalised	or	specialised	 in	nature	have	been	created,	

such	as	the	Tetrahedral	Colour	Space	(Endler	&	Mielke,	2005)	and	
the	Colour	Hexagon	(Chittka,	1992).	These	spaces	can	be	 imple-
mented	in	numerous	platforms,	including	the	colourvision	R	pack-
age	(‘colspace’)	and	the	PAVO	R	package	(‘CTTKmodel’,	 ‘EMmodel’,	
‘RNLmodel’,	‘GENmodel’).

F I G U R E  4 What	technique	should	you	use?	A	sample	of	analyses	are	shown	which	are	arranged	along	the	two	axes	depending	on:	y 
axis	–	how	one	approaches	analysing	colouration,	i.e.	spectral/physical	or	perceptive/discriminatory	and	the	x	axis	–whether	one	focuses	
on	colours	or	patterns.	Photos	credits:	H.	Krisp,	U.	Schmidt,	F.	Franklin,	V.	Huertas	and	K.	Schulz;	CC	BY-	SA	2.0.	The	figures	for	Local	Edge	
Intensity	Analysis,	Boundary	Strength	Analysis	and	Colour	Maps	have	been	adapted	from	the	original	publications.
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10 of 14  |     HEMINGSON et al.

2.5  |  Comparing the colours and patterns within  
and between images

Some	research	questions	may	aim	to	analyse	many	or	all	colours	and	
patterns	within	an	image	or	between	multiple	images	(examples	listed	
in	Figure 4).	 Importantly,	 these	 techniques	move	beyond	 the	 tradi-
tional	approaches	of	‘patch-	measuring’	and	seek	to	analyse	the	com-
plete	appearance	of	an	organism	or	scene	in	its	entirety.	The	MICA	
toolbox	provides	an	extension	of	the	Receptor	Noise	Limited	model,	
called	 ‘Colour	Maps’,	which	can	plot	millions	of	pixel's	colours	 from	
an	image	into	a	single	psychophysically	calibrated	colour	space	(‘RNL 
Colour Maps’).	The	boundaries	around	colour	points	(in	a	similar	fash-
ion	to	error	bars)	can	be	adjusted	to	represent	different	amounts	of	
discriminatory	 distance	 (Just	 Noticeable	 Difference).	 For	 example,	
this	 space	could	be	used	 to	 initially	 explore	how	a	Honeybee	 (Apis 
mellifera)	might	distinguish	the	colours	of	a	flower	as	compared	to	the	
background	vegetation.	This	information	may	then	be	used	to	formu-
late	hypotheses	that	can	be	experimentally	tested	and	ground-	truthed	
using	behavioural	trials.	In	the	case	of	the	honeybee,	these	methods	
have	shown	the	visual	salience	of	a	flower	from	its	background	is	in-
deed	indicative	of	its	detection	success	(Spaethe	et	al.,	2001).

Alternatively,	you	may	want	to	measure	and	compare	the	distri-
bution	and	amount	of	all	colours	found	within	one	image	to	another	
(or	many).	The	R	package	colordistance	can	quantitatively	evaluate	
the	similarity	between	the	distribution	of	colours	among	n	 images	
(Weller	&	Westneat,	2019).	Colordistance	characterises	colouration	
by	plotting	a	sample	of	pixels	from	an	image	within	a	predetermined	
colour	space	(e.g.	RGB,	CIElab;	non-	human	perceptual	spaces	are	not	
supported).	The	axes	within	this	space	are	then	divided	 into	equal	
area	subsections	as	specified	by	the	user.	The	number	of	pixels	that	
occur	within	each	subsection	is	then	counted	and	used	to	create	a	
distribution	 that	 can	 be	 compared	 to	 every	 other	 image	 analysed	
using	multivariate	approaches.	The	intuitive	nature	of	this	approach	
allows	for	the	full	colouration	of	any	number	of	organisms	to	be	com-
pared	regardless	of	morphological	or	size	differences.	Furthermore,	
the	user	can	specify:	(1)	colour	space	to	be	used,	(2)	how	fine	the	res-
olution	of	colours	are	(i.e.	the	number	of	‘subsections’	to	divide	the	
colour	space	into)	and	(3)	the	method	to	compare	the	distribution	of	
colours	(e.g.	earth	movers	distance,	χ2	distance,	etc.).	However,	the	
use	of	strictly	human-	related	colour	spaces	limits	its	applicability	to	
more	human-	centric	questions.

If	 the	exact	 location	of	where	each	colour	occurs	 is	 important	
(i.e.	pattern),	colormesh	offers	utilities	to	efficiently	measure	colours	
across	the	body	of	the	study	subject	(Valvo	et	al.,	2021).	First,	images	
are	unwarped	using	landmarks	to	match	a	consensus	shape	which	al-
lows	colours	to	be	compared	at	the	same	location	across	individuals	
whose	morphology	and	shape	may	vary,	or	between	images	in	which	
the	 subject's	 orientation	 differs.	 Delaunay	 triangulation	 creates	 a	
mesh	across	the	body	which	(which	can	be	changed	depending	on	
how	fine	or	coarse	the	user	would	like	to	sample)	is	then	used	to	se-
lect	relatively	even	and	representative	sampling	locations	across	the	
organisms	being	assessed.	The	RGB	values	of	the	pixel	at	the	centre	
point	of	each	triangle	are	then	recorded	(‘rgb.measure’)	and	can	be	

converted	 into	 a	 data	matrix	 (‘make.colormesh.dataset’)	 for	 further	
exploration	and	analyses.	Colormesh	does	offer	functions	to	imple-
ment	image	linearisation	as	well	as	calibration	to	known	colour	stan-
dards	(‘rgb.calibrate’).	However,	this	is	the	only	colour	space	currently	
supported	so	thoughtful	consideration	is	needed	when	deciding	to	
use	this	approach.

The	R	package	patternize	also	offers	utilities	 to	analyse	colour	
patterns	 with	 respect	 to	 morphological	 location	 (Van	 Belleghem	
et	 al.,	 2018).	 patternize	 can	 use	 landmarks,	 in	 a	 similar	 fashion	 to	
colormesh,	to	align	images	but	can	also	perform	image	registration	
where	images	are	automatically	aligned.	The	RGB	triplet	(this	is	the	
only	colour	space	supported)	value	of	the	colour	of	 interest,	along	
with	a	 tolerance	parameter	 (that	allows	for	a	 range	of	RGB	values	
above	and	below	the	target	value)	are	specified	and	detected	in	each	
image.	While	patternize	was	developed	to	work	with	only	one	co-
lour,	the	source	code	can	be	modified	to	permit	its	use	with	multi-
ple	colours	(e.g.	Hemingson	et	al.,	2019).	The	output	of	this	analysis	
can	be	visualised	and	compared	using	multiple	different	techniques.	
These	range	from	plotting	the	heat	maps	of	specific	colours	across	
the	bodies	of	multiple	organisms	(‘plotHeat’)	to	comparing	the	colour	
matrices	using	multivariate	approaches	(‘patLanRGB’)	and	visualising	
them	using	ordination	techniques	(‘patPCA’).

The	plotting	of	both	individual	colours	(techniques	described	in	
the	previous	 section)	 as	well	 as	 entire	 colours	 and	patterns	 in	 re-
duced	dimensional	spaces	allows	for	further	metrics	to	be	measured	
that	summarise	and	describe	and	organism's	colouration.	One	of	the	
most	notable	 is	 their	n-	dimensional	volume.	This	 is	 frequently	 the	
convex	or	concave	hull	volume	(among	others,	Mouillot	et	al.,	2013),	
which	are	alternate	methods	for	measuring	the	volume	occupied	by	
a	 set	of	 points.	 These	 techniques	have	 a	 long	 standing	use	 in	 the	
literature	 and	 can	 function	 as	 simple	 indices	 of	 colour	 diversity	
(Gruson,	2020).	A	myriad	of	other	metrics	exists	 that	aim	 to	sum-
marise	 and	 characterise	 multivariate	 data;	 mostly	 developed	 by	
community	 ecologists	 aiming	 to	 describe	 community	 composition	
(Legendre	et	al.,	2005;	Mouillot	et	al.,	2013).	These	metrics	can	easily	
be	adapted	to	work	for	multivariate	colour	data	and	offer	an	exciting	
new	field	of	inquiry	for	this	research.	Recently,	these	metrics	have	
been	used	to	measure	the	diversity	of	colours	found	on	individuals	
to	 analyse	 global	 trends	 in	 colourfulness	 (Cooney	 et	 al.,	2022),	 as	
well	as	comparing	the	collective	colourations	of	all	individuals	found	
in	different	habitats	(Hemingson	et	al.,	2022).

2.6  |  Measuring the visual and geometric aspects  
of pattern

There	are	many	applications	that	analyse	various	geometric	or	spatial	
aspects	of	colouration	within	an	image.	These	techniques	explicitly	
incorporate	the	location	of	colours	into	the	analyses	and,	depending	
on	 the	 technique,	can	 include	 the	visual	capabilities	of	a	specified	
viewer.	These	approaches	are	not	restricted	to	only	analysing	colour	
patterns	at	the	scale	of	the	individual	(i.e.	the	colouration	on	a	frog),	
but	can	also	assess	how	colours	change	between	elements	within	
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an	image	(e.g.	the	foreground	vs	background).	For	example,	some	of	
these	techniques	could	be	used	to	assess	the	theoretical	perceptual	
contrast	between	a	subject	when	compared	to	its	environment	e.g.	
a	 red	 flower	 to	a	green,	 foliage	dominated	background.	 In	 this	ex-
ample,	 the	techniques	are	not	assessing	pattern	per	se,	but	 rather	
assessing	the	difference	between	colours	with	respect	to	their	loca-
tion	within	an	image.

Boundary	 Strength	 Analysis	 (Endler	 et	 al.,	 2018),	 Local	 Edge	
Intensity	Analysis	(‘Run QCPA Framework’)	(van	den	Berg	et	al.,	2019)	
and	Gabor	Ratios	(‘Gabrat Disruption’)	are	all	useful	techniques	to	iden-
tify	the	intensity	of	colour	changes	between	elements	within	an	image.	
These	 approaches	work	 by	modelling	 both	 the	 chromatic	 and	 lumi-
nance	differences	(ΔS	and	L)	between	different	colours	and	elements.	
Each	technique	will	have	output	tables	that	summarise	the	differences	
calculated	within	the	image.	The	original	images	can	also	be	visualised	
using	plots	 that	overlay	 the	visual	 intensity	of	changes	between	co-
lours/elements.	The	strength	of	these	changes	will	be	entirely	context	
dependent	on	the	visual	capabilities	of	the	viewer	being	modelled.

If	 the	 research	question	 is	more	 focused	on	characterising	 the	
complexity	of	a	colour	pattern	at	the	scale	of	the	individual	(i.e.	the	
colour	pattern	of	an	orchid	flower	–	see	van	den	Berg	et	al.,	2019),	
Colour	Adjacency	Analysis	 (‘Run QCPA Framework’	 in	QCPA,	 ‘adja-
cent’	in	PAVO)	offers	simplified	summary	metrics.	This	analysis	runs	
multiple	transects	across	the	region	of	interest	in	both	the	x	and	y 
dimensions.	The	colour	is	recorded	at	set	intervals	along	each	tran-
sect.	 These	 transects	 are	 then	 summarised	 and	 used	 to	 create	 a	
transition	matrix	 that	contains	how	often	colour	changes	along	all	
transects	(Endler,	2012).	This	is	a	useful	technique	to	simply	charac-
terise	the	complexity	of	a	colour	pattern.	The	output	is	a	single	value	
than	can	then	be	used	in	further	downstream	analyses.	However,	if	
the	colours	between	two	images	are	different	but	the	pattern	is	the	
exactly	the	same,	the	Colour	Adjacency	metric	for	both	images	will	
be	identical	(see	van	den	Berg	et	al.	(2019)	for	details).	Thus,	consid-
eration	is	needed	when	using	and	interpreting	this	metric.

PAT-	GEOM	 is	 an	 ImageJ	 plugin	 that	 provides	multiple	 tools	 to	
measure	 aspects	 of	 pattern	 geometry	 (Chan	 et	 al.,	 2019).	 These	
range	 from	 assessing	 the	 shape	 complexity	 of	 individual	 markings	
(‘Elliptical Shape Fourier Analysis’),	marking	 size,	 patch	 directionality	
(‘Directionality of Distribution’),	randomness	and	distribution	(‘Marking 
Matrix’).	 These	 techniques	 seek	 to	 measure	 aspects	 at	 the	 mark-
ing	or	 individual	 level.	These	 tools	have	been	used	 to	demonstrate	
that	marking	size	on	 three	different	populations	of	 furrowed	crabs	
(Xantho hydrophilus)	closely	resembled	the	background	of	their	local	
environment	(Chan	et	al.,	2019).	The	QCPA	framework	also	offers	re-
sources	for	measuring	patch	aspects,	like	the	size,	shape,	distribution	
and	angle	of	particles	within	a	patch	(‘Cluster Particle Analysis’).

3  |  CONCLUSIONS AND FUTURE 
PERSPEC TIVES

The	 strength	 of	 these	 various	 approaches	 arises	 at	 the	 intersec-
tion	of	their	use	–	combining	aspects	to	ask	higher-	order	questions	
that	begin	 to	bridge	 the	 gap	between	 ‘bottom-	up’	 and	 ‘top-	down’	

approaches.	These	questions	would	allow	for	 the	consideration	of	
the	 perceptive	 and	 resolving	 capabilities	 of	 individual	 organisms	
(‘bottom-	up’)	 while	 also	 comparing	multiple	 individuals	 or	 species	
within	 an	 evolutionary	 or	 ecological	 context	 (‘top-	down’).	 Fruitful	
lines	of	future	research	range	from	simulating	what	entire	communi-
ties	of	organisms	appear	like	to	specific	taxa	(like	a	predator)	to	iden-
tifying	macroecological	patterns	of	colouration	and	how	it	relates	to	
certain	behaviours,	like	courtship	and	sexual	selection	whilst	accom-
modating	visual	properties	of	the	viewer	(Endler	&	Mappes,	2017).

Many	of	the	applications	discussed	herein	also	have	use	outside	
of	their	conventional	design.	For	example,	recent	research	used	pat-
ternize	to	construct	‘damage	heatmaps’	that	display	where	different	
predatory	reef	fish	injure	their	prey	(Muruga	et	al.,	2022).	Damaged	
prey	fishes	were	dissected	out	of	the	predators	shortly	after	inges-
tion	and	were	photographed.	The	injuries	on	every	individual	were	
manually	painted	onto	the	images	in	Photoshop	with	solid	colours.	
These	colours	were	then	detected	for	and	mapped	using	patternize	
to	show	where	damage	most	likely	occurred	for	each	different	pred-
ator	type	showing	that	predators	with	different	tooth	morphologies	
generally	capture	and	process	prey	differently.

New	 hardware	 is	 revolutionising	 the	 field.	 Digital	 cameras	 of	
increasingly	higher	quality	are	becoming	cheaper	and	open-	source	
designs	for	spectrometers	and	other	equipment	are	now	available,	
drastically	reducing	the	initial	startup	costs	of	working	in	this	field	
(Caves	et	al.,	2020;	Troscianko,	2022).	Hyperspectral	cameras	cap-
ture	 the	 entire	 spectral	 distribution	 inherent	 to	 each	 pixel	 within	
an	image,	as	opposed	to	the	relative	amount	of	light	within	specific	
wavelength	 bands	 (e.g.	 RGB).	 Hyperspectral	 images	 contain	 im-
mense	amounts	of	raw	data	compared	to	those	taken	by	traditional	
cameras	and	can	be	used	to	further	ask	interesting	questions	about	
colouration	 in	the	natural	world	 (Garcia	et	al.,	2015).	For	example,	
tuning	 a	 hyper	 spectral	 camera	 to	 mimic	 the	 spectral	 sensitivity	
of	a	specific	 taxon	to	take	 images	that	closely	resemble	what	that	
taxon	would	 likely	 see.	While	 the	 use	 of	 these	 cameras	 is	 still	 in	
their	infancy	in	the	life	sciences	due	to	their	high	cost	(Zimmermann	
et	al.,	2018),	 there	will	 likely	be	a	 transition	 to	 these	devices	over	
traditional	cameras	as	they	become	more	affordable.

Machine	learning	approaches	are	also	rapidly	changing	the	field	
(Fennell	et	al.,	2021).	Mentioned	previously,	various	pipelines	offer	
the	 ability	 to	 accurately	 detect	 and	 segment	 focal	 taxa	 form	 their	
backgrounds	 using	 convolutional	 neural	 networks	 (Schwartz	 &	
Alfaro,	2021).	Different	datasets	can	be	used	to	train	the	model	al-
lowing	for	widespread	use	on	many	study	groups.	Machine	learning	
approaches	can	also	be	used	 to	help	 inform	 future	 research	ques-
tions.	The	CamoEvo	toolbox	is	an	open	access	resource	that	is	used	
to	study	the	evolution	of	camouflage	(Hancock	&	Troscianko,	2022).	
Users	 play	 an	 interactive	 game	 in	 which	 the	 subject	 (a	 simulated	
sphere)	should	be	selected	as	fast	as	possible	from	a	suite	of	back-
ground	images.	This	data	is	then	fed	into	an	algorithm	that	alters	the	
colouration	to	maximise	the	time	taken	to	be	selected	–	mimicking	
natural	selection.	Resources	like	this	can	be	used	to	hone	in	on	the	
selective	pressure	shaping	camouflage	patterns	and	then	be	ground-	
truthed	using	 field	experiments	 (e.g.	Kjernsmo	et	al.,	2020).	These	
approaches	show	much	promise	for	the	field	of	colour	science.
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The	 multitude	 of	 recent	 advances	 has	 made	 the	 field	 of	 or-
ganismal	colouration	exciting	to	study.	By	combining	old	and	new	
techniques	 from	 different	 backgrounds,	 we	 are	 now	 capable	 of	
asking	detailed	questions	about	the	appearance	of	organisms	and	
how	 they	 are	 perceived.	 The	 goal	 of	 this	 review	 is	 to	 provide	 a	
starting	point	 to	help	 researchers	navigate	 the	methodologically	
dense	field	of	biological	colouration.	We	must	be	explicit,	however,	
and	reiterate	that	it	is	imperative	to	have	a	knowledge	background	
relevant	to	one's	research	focus.	Without	a	solid	foundation,	it	is	
easy	to	make	conclusions	that	are	misleading	and	are	not	grounded	
in	theory.	Research	in	this	field	can	be	a	unique	blend	of	physics,	
biology,	psychology,	behaviour	and	ecology.	Thus,	 the	necessary	
background	knowledge	needed	will	 be	 specific	 to	 your	 research	
question.

Future	 research	 is	 likely	 to	 yield	 new	 ways	 of	 thinking	 about	
colouration	(Garcia	et	al.,	2020).	In	just	the	last	5 years,	there	have	
been	numerous	developments	and	modifications	made	 to	existing	
techniques	to	answer	interesting	new	questions.	By	combining	new	
ways	to	assess	colouration	and	further	refining	visual	modelling,	we	
are	gaining	an	increasingly	comprehensive	understanding	of	how	co-
louration	functions	in	the	natural	world.
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