
Vol.:(0123456789)

Journal of Membrane Computing (2024) 6:29–41 
https://doi.org/10.1007/s41965-024-00136-1

RESEARCH PAPER

Implementing perceptrons by means of water‑based computing

Nicoló Civiero1 · Alec Henderson2 · Thomas Hinze3 · Radu Nicolescu4 · Claudio Zandron1

Received: 12 December 2023 / Accepted: 2 February 2024 / Published online: 27 February 2024 
© The Author(s) 2024

Abstract
Water-based computing emerged as a branch of membrane computing in which water tanks act as permeable membranes 
connected via pipes. Valves residing at the pipes control the flow of water in terms of processing rules. Resulting water tank 
systems provide a promising platform for exploration and for case studies of information processing by flow of liquid media 
like water. We first discuss the possibility of realizing a single layer neural network using tanks and pipes systems. Moreo-
ver, we discuss the possibility to create a multi-layer neural network, which could be used to solve more complex problems. 
Two different implementations are considered: in a first solution, the weight values of the connections between the network 
nodes are represented by tanks. This means that the network diagram includes multiplication structures between the weight 
tanks and the input tanks. The second solution aims at simplifying the network proposed in the previous implementation, 
by considering the possibility to modify the weight values associated to neuron by varying the diameter of the connecting 
pipes between the tanks. The multiplication structures are replaced with a timer that regulates the opening of the outlet valves 
of all the tanks. These two implementations can be compared to evaluate their efficiency, and considerations will be made 
regarding the simplicity of implementation.

Keywords  Membrane systems · Water-based computing · Neural networks

1  Introduction

P systems, initially introduced by Gh. Păun in [27], are a 
computational model inspired by biological membranes that 
operate in a parallel and distributed manner. These systems 

are characterized by their decentralized nature and their evo-
lution is based on the content of interconnected membranes. 
A strong investigation effort has been done on the model, 
and it is still in progress, considering different aspects. 
Recent works appeared considering questions related to 
computing properties [22, 25], computing efficiency [1, 16, 
17], relations with other formal models like, e.g., Petri nets 
[4], Morphogenetic systems [34], or Markov chains [32], and 
application to real problems [3, 7, 30, 35, 38].

Numerous variants of P systems have also been proposed 
and extensively studied, including P systems with active 
membranes [26, 28, 33], spiking neural P systems [6, 9, 13, 
19, 31, 37, 40], tissue P systems [15, 23, 38], and P colonies 
[5, 14].

Recent research efforts have focused on simulating P sys-
tems on mainstream hardware [2, 36], formal verification 
techniques [20, 21], or employing more visual approaches 
like [8].

Another recently introduced idea concerns membrane 
water computing, introduced in [10] and driven by the goal 
of obtaining a parallel computing system without any cen-
tral control. In such a system, the flow of water is solely 
regulated by local measurements of tank filling levels in a 

 *	 Claudio Zandron 
	 claudio.zandron@unimib.it

	 Alec Henderson 
	 alec.henderson@jcu.edu.au

	 Thomas Hinze 
	 thomas.hinze@uni-jena.de

	 Radu Nicolescu 
	 r.nicolescu@auckland.ac.nz

1	 Dipartimento di Informatica, Sistemistica e Comunicazione 
(DISCo), Università degli Studi di Milano-Bicocca, Viale 
Sarca 336, 20126 Milan, Italy

2	 Australian Institute of Tropical Health and Medicine, James 
Cook University, Townsville, Australia

3	 Department of Bioinformatics, Friedrich Schiller University 
Jena, Ernst‑Abbe‑Platz 2, 07743 Jena, Germany

4	 University of Auckland, School of Computer Science, 
Auckland, New Zealand

http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-024-00136-1&domain=pdf


30	 N. Civiero et al.

finite number of water tanks, each capable of holding an 
initial volume of water and storing or collecting water up to 
a maximum capacity. The water tank system can be viewed 
as a membrane system: the water tanks can be seen as mem-
branes permeable to inflow and/or outflow of water mol-
ecules, whose presence is dynamically regulated by local 
measurements (interaction rules).

The volume of water contained in a tank serves as both 
data carrier and a medium for data processing, achieved by 
manipulating the volume over time. Tanks are intercon-
nected using pipes, which allow the directed transfer of 
water from one tank to another when opened. The pipes can 
be equipped with one or more valves, which can be config-
ured in different ways. A valve has two states: "fully open" 
or "fully closed", and it is determined by monitoring the fill-
ing level in a specific tank. When the level of water exceeds 
a predetermined threshold or indicates a nearly empty tank, 
the valve fully opens or remains closed at the hosting pipe 
during the ongoing time step, respectively. A pipe will trans-
port water only if all its valves are fully opened and the sup-
plying tank has water available. The entrance of a pipe can 
be positioned at any desired filling level in its supply tank, 
requiring a minimum amount of water in the tank before the 
pipe can be filled.

Water tank systems provide a promising platform for 
exploration and for case studies of information processing 
based on the controlled flow of liquid media like water. This 
concept gives a strong motivation and substantiates the sig-
nificance of further work in detail for application scenarios.

A water tank system can operate in either analog or 
binary mode. In analog mode, the volume of water within 
a tank represents a non-zero natural number. To facilitate 
this, we introduce water tank systems for arithmetic opera-
tions such as addition, non-negative subtraction, division, 
and multiplication. These systems can be assembled to per-
form sequenced or nested computations. Furthermore, a ring 
oscillator, consisting of a cyclic structure with at least three 
water tanks, emulates a clock signal. In binary mode, an 
empty or nearly empty water tank corresponds to the logical 
value “0,” while a full or nearly full tank corresponds to “1,” 
with latencies during the filling or emptying process.

The obtained systems operate autonomously in a decen-
tralized manner, simply relying on local measurements of 
filling levels. We stress the fact that, since a water tank can 
be viewed as a membrane that allows the inflow and/or out-
flow of water molecules, dynamically regulated by local 
measurements, such an approach is closely related to tissue 
membrane systems.

In the original paper [10], authors define basic logic gates 
such as OR, AND, and a bit duplicator for water-based logic 
operations. These logic gates can be connected to form 
Boolean circuits with the ability of inherent self-synchroni-
zation, eliminating the need for external control.

In this paper, we first discuss the possibility of realizing 
a single layer neural network using tanks and pipes systems, 
through which water flows. Moreover, we discuss the pos-
sibility to create a multi-layer neural network, which could 
be used to solve more complex problems. We stress the fact 
that one advantage of such an implementation lies in the pos-
sibility to adopt it for explaining the functioning of Neural 
Network at different levels, to students or even more general 
audience, clearly illustrating the basic principles behind a 
Neural Network. In fact, the flow and the containment of 
water are easily visible by human senses, and the process of 
learning can be directly observed in details.

Two different implementations are considered: in a first 
solution, the weight values of the connections between the 
network nodes are obtained by using specific tanks. The sec-
ond solution aims at simplifying the network proposed in 
the previous one, by considering the possibility to modify 
the weight values associated to each neuron by varying the 
diameter of the connecting pipes between the tanks.

The paper is organized as follows. In Sect. 2, we recall 
some definitions related to water based computing, and we 
recall some basic multiplication schemes realized by means 
of water tanks, which will be used in the rest of the paper. 
In Sect. 3, two different implementations of the basic per-
ceptron are presented. In Sect. 4, an implementation of 
the multilayer-perceptron and the description of three dif-
ferent activation functions are discussed. In Sect. 5, we 
draw some conclusions and give some directions for future 
investigations.

2 � Basic definitions

In this section, we shortly recall some definitions that will 
be useful while reading the rest of the paper. For a complete 
introduction to P systems, we refer the reader to The Oxford 
Handbook of Membrane Computing [29].

A water tank system represents a special type of mem-
brane systems in which a single membrane is described 
by a water tank able to store an amount of water up to its 
predefined finite capacity. The communication between 
membranes has been managed by pipes that enable a 
controllable flow of water from one tank to another one. 
Communication rules appear by definition of valves. Here, 
each pipe can be equipped with an arbitrary number of 
valves. By default, a valve fully closes its hosting pipe. A 
valve either fully opens or remains closed its hosting pipe 
based on measurements iterated in discrete time steps. For 
instance, a valve opens if and only if the filling level in a 
specific water tank exceeds a certain threshold, otherwise 
it closes. If the condition for an open valve is not fulfilled 
any more, it closes at the end of the ongoing time step. 



31Implementing perceptrons by means of water‑based computing﻿	

Water gets transported via a pipe if and only if all resid-
ing valves are opened and the supply tank contains water.

The first formal definition of a water tank system was 
given in [10]. Later, a more simplified version was pub-
lished in [11, 12]. In order to cope with the needs for emu-
lation of perceptrons, the modelling framework for water 
tank systems undergoes a further stage of extension by 
additional types of valves and by additional parameters 
for specification of pipes.

Formally, a water tank system is a construct

with its components:

•	 W is a finite and non-empty set of tank identifiers 
(water tanks).

•	 A is a finite and non-empty set of valve identifiers 
(actuators).

•	 � ∶ W ⟶ ℝ+ ∪ {∞} is a function assigning a capac-
ity to each tank (tank capacity). ℝ+ stands for the set 
of positive rational numbers. The capacity defines the 
maximum volume of water a tank can store. Excessive 
water is removed from a tank by overflow drain. Please 
note that tanks with an infinite capacity are allowed to 
act as a reservoir.

•	 E ⊂ W × {<,=,≤,>,≥,≠} ×ℝ specifies a finite set of 
decision rules resulting from measurements (evalua-
tion). A measurement reveals the current volume of 
water in a tank from W. We assume that each meas-
urement returns a non-negative rational number in ℝ 
including zero. An element e ∈ E stands for a compari-
son by means of a relational operator. This comparison 
is carried out what finally implies an underlying deci-
sion by answering “true” or “false”, respectively.

•	 r ∶ A ⟶ E defines a mapping that assigns a decision 
rule to each valve. Hence, each valve comes with a 
dedicated behaviour (reaction).

•	 P ⊂ W ×W × P(A) symbolises a finite set of pipes in 
which each pipe starts at a tank from W, ends at a tank 
from W and hosts none, one, or several valves. These 
valves have been given by an element from the power 
set P(A).

•	 v0 ∶ W ⟶ ℝ ∪ {∞} specifies the initial volume of 
water for each water tank in W. For all water tanks 
w ∈ W  , it holds v0(w) ≤ �(w).

•	 s0 ∶ P ⟶ ℝ+ . This function assigns an initial diameter 
(size) to each pipe. Diameters are expressed by rational 
numbers greater than zero.

•	 �t ∈ ℝ+ defines the duration of a discrete time step 
given by a constant non-negative rational number.

(1)� = (W,A, �,E, r,P, v0, s0,�t)

A water tank system evolves in discrete constant time 
steps beginning with its initial configuration. The exe-
cution of a time step consists of a sequence of actions. 
Valves are closed by default. First, all measurements 
are done simultaneously in all involved tanks. Then, 
all decisions based on these measurements have been 
made. Next, the valves update their state according to 
the corresponding decision rules. In case, a decision 
ends up with “true”, the valve fully opens. Otherwise, 
the valve remains closed. Now, water can flow or not 
through the pipes. Each pipe whose valves are all fully 
opened transports a portion of water during the ongoing 
time step when supplied. In addition, the portion of water 
depends on the size of the pipe. As a consequence, the 
water volume of either related tanks needs to be updated 
(increased or decreased). Finally, the size of each pipe can 
be adapted (made smaller or larger). After all the afore-
mentioned actions have been carried out, the processing 
within the current time step is finalised, all valves become 
closed again, and the subsequent time step might begin. 
The water tank system stops if the water volumes in all 
water tanks keep constant over two successive time steps 
indicating a final system’s configuration.

We recall now the integer multiplication scheme, a copy 
of the one presented in [10]. In this scheme, the operation 
works as follows: a unit is subtracted from tank x at each 
iteration of the loop until the tank x becomes empty, while at 
each iteration, the value of y is added to the result tank. For 
implementation details and a detailed description of how it 
works, we refer the reader to [10] (Fig. 1).

For the sake of completeness, the schemes related to mul-
tiplication with rational values are also provided. However, 
it is important to keep in mind that multiplication involv-
ing rational numbers introduces approximations and lacks 
precision. For optimal outcomes, we have categorized the 
multiplication process into three cases, taking into account 
the input values (x, y). 

1.	 x, y < 0.81
2.	 x, y < 1 and x or y > 0.8
3.	 x or y > 1

We depict below the schemes for case 1 (see Fig. 2) and case 
2 (see Fig. 3); the subtraction schema can be found in [10].

The subtraction works as follows: the valves placed on the 
pipes connecting the tanks (x and y) to the sink are opened 
simultaneously. The contents of both tanks are drained at 
the same time until one of the tanks becomes empty. The 
result is then taken from tank x. From this description, it is 
evident that if x is less than y, then the result of the opera-
tion will be zero.

For the third case, the schema is the same as the mul-
tiplication with integers presented earlier. However, it is 



32	 N. Civiero et al.

important to note that, for this operation, it is advisable 
to position the larger number in the tank labeled as x, to 
ensure a more accurate result. Conversely, if the numbers are 

swapped, the outcome may not be as precise; as an example, 
the operation 0.3 * 5.5 would give a result of 5.5.

3 � Implementing perceptrons 
through water‑based computing

Artificial Neural Networks (or simply Neural Networks) 
are mathematical models composed of nodes (neurons) that 
are inspired by the functioning of the human brain, where 
interconnected neurons exchange information. A neural 
network is an "adaptive" system capable of modifying its 
structure (nodes, interconnections, and weights) based on 
both external data and internal information that connect and 
pass through the neural network during the learning phase.

The perceptron, introduced by McCulloch-Pitts in [24], 
is a machine learning algorithm used for supervised learn-
ing of binary classifiers. These classifiers are functions that 
determine whether an input, represented by a numerical 
vector, belongs to a particular class or not. More formally, 
given an input with n variables (x1, x2, ..., xk), the algorithm 
define a boundary as a linear combination of these variables: 
w1x1 + w2x2 +⋯ + wnxn + b = 0, where wi, 1 ≤ i ≤ n, are 
the weights and b is a constant called bias. The perceptron 
algorithm determines values for wi, 1 ≤ i ≤ n, and b in such 
a way that the data points on one side of the line belong to 
one class, while the data points on the other side belong 
to the other class. If w1x1 + w2x2 +⋯ + wnxn + b > 0 , then 
the classifier outputs 1; otherwise, it outputs 0. A learning 
algorithm to determine the weights consists in randomly 
assign a value to each of them, initially, and then iteratively 
updating the values according to some training dataset, until 
a convergence criterion has been reached.

In this section, we propose an implementation of a per-
ceptron and a simple multilayer perceptron by means of 

Fig. 1   Integer multiplication

Fig. 2   Rational values multiplication case 1

Fig. 3   Rational values multiplication case 2



33Implementing perceptrons by means of water‑based computing﻿	

Water-Based Computing. In particular, we will consider 
water-based systems operating in analog mode: in this mode, 
the volume of water within a tank corresponds to a non-zero 
natural number. A XOR gate is used to track negative or 
positive results: we assume that positive values encode to 
logical value ‘0’ and negative value to ‘1’. The XOR gate can 
be obtained as a modified version of the OR gate presented 
in [10], with an added valve in the result tank.

The water volume from the two input tanks is combined 
in a result tank. The input tanks have a maximum capacity 
corresponding to the logic level 1, while the result tank has 
two times this capacity. When both inputs tanks are 1, the 
result of the XOR gate must be 0. This issue can be resolved 
by using a simple valve added to the original OR gate, that 
opens when the content of the result tank reaches its full 
level. All the water is then drained, resulting in an empty 
result tank, corresponding to a 0. This logic gate will be used 
to control the sign of the operations of multiplication used 
to design perceptrons.

As a starting point, a simple version of a network with a 
single node of binary activation (0,1) was considered. This 
node is called a "simple perceptron", because it uses a sim-
ple step function as its activation function. The activation 
function of a node is a mathematical function that defines 
the output of the node after receiving the sum of weighted 
inputs.

We discuss two possible implementations of the network, 
referred to as implementation 1 and implementation 2. We 
stress the fact that the subtractions used in the schemes of 
the two presented solutions allow for negative results. The 
operation is similar to the non-negative subtraction schema 
presented in [10]. Water is simultaneously discharged from 
both tanks until one becomes empty. At this point, the 
remaining water in the other tank flows towards the result 
tank. Additionally, on the right side of the diagrams in fig-
ures 2 and 3, there is a control tank which indicates if the 
subtraction result is negative.

3.1 � Implementation 1

In the first proposed implementation, the chosen approach 
is to multiply the input by the corresponding weight value. 
Formally, the system to implement the perceptron is defined 
as follows:

r=

W = {(w1), (x1), (w2), (x2), (b), (S+),

(S−), (Res), (Sw1), (Sx1), (Sw2),

(Sx2), (Sb), (Smultiplication1),

(Smultiplication2), ([(S+) − (S−)]),

(w1old), (t), (y), (X1), (n),

(Subtraction1), (Ssub1), (SX1), (xor),

(SMult3), (sw1new), (sw1old),

(Subtraction2), (w1new), (s�), (g�),

(h�), (f �), (e�), (reservoir)}

A = {(w1newne), (w2newne), (bnewne),

(sw1newne), (sw2newne), (sbnewne),

(e�ne), (Start), (SMult1e),

(SMult1ne), (SMult2e), (SMult2ne),

(Sbe), (Sbne), (be), (w1ne), (Resne),

(x1ne), (sw1olde), (s�ne),

(f �ne), (g�ne), (h�ne), (sw1oldne),

(Smult3e), (Smult3ne), (te), (yne),

(sw1ne), (ye), (X1e), (Sub1e), (ne), (Mult3e),

(w1olde), (Mult4e), (SSubtraction2ne)}

𝜏 = {(w1, 2), (x1, 2), (w2, 2), (x2, 2),

(b, 2), (S+, 10), (S−, 10), (Res, 2),

(Sw1, 1), (Sx1, 1), (Sw2, 1), (Sx2, 1),

(Sb, 1), (Smultiplication1, 1),

(Smultiplication2, 1), (xor, 1),

([(S+) − (S−)], 10), (reservoir,∞)

(w1old, 2), (t, 2), (y, 2), (X1, 2),

(n, 1), (Subtraction1, 2), (Ssub1, 1),

(SX1, 1), (SMult3, 1), (sw1new, 1),

(sw1old, 1), (Subtraction2, 2),

(w1new, 2), (s�, 1), (g�, 1), (h�, 1), (f �, 1), (e�, 1)}

E = {(w1new > 0), (w2new > 0), (bnew > 0),

(sw1new > 0), (sw2new > 0),

(sbnew > 0), (Smultiplication1 > 0),

(Smultiplication2 > 0), (Sb > 0),

(b > 0), (w1 > 0), (Res > 0), (x1 > 0),

(s� > 0), (Sw1old > 0), (f � > 0),

(g� > 0), (h� > 0), (e� > 0), (t > 0),

(y > 0), (Sw1 > 0), (X1 > 0),

(Sub1 > 0), (n > 0), (Multiplication3 > 0), (w1old > 0),

(Multiplication4 > 0), (Ssubtraction2 > 0), (SMult3 > 0)}



34	 N. Civiero et al.

w1newne =
{

1 if Volume of w1new > 0
0 if otherwise

w2newne =
{

1 if Volume of w2new > 0
0 if otherwise

bnewne =
{

1 if Volume of bnew > 0
0 if otherwise

sw1newne =
{

1 if Volume of sw1new > 0
0 if otherwise

sw2newne =
{

1 if Volume of sw2new > 0
0 if otherwise

sbnewne =
{

1 if Volume of sbnew > 0
0 if otherwise

e′ne =
{

1 if Volume of e′ > 0
0 if otherwise

start =
{

1 if time > 0
0 if otherwise

SMult1e =
{

1 if Volume of Smultiplication1 = 0
0 if otherwise

SMult1ne =
{

1 if Volume of Smultiplication1 > 0
0 if otherwise

Smult2e =
{

1 if Volume of Smultiplication2 = 0
0 if otherwise

Smult2ne =
{

1 if Volume of Smultiplication2 > 0
0 if otherwise

Sbe =
{

1 if Volume of Sb = 0
0 if otherwise

Sbne =
{

1 if Volume of Sb > 0
0 if otherwise

be =
{

1 if Volume of b = 0
0 if otherwise

w1ne =
{

1 if Volume of w1 > 0
0 if otherwise

Resne =
{

1 if Volume of Res > 0
0 if otherwise

x1ne =
{

1 if Volume of x1 > 0
0 if otherwise

sw1olde =
{

1 if Volume of sw1old = 0
0 if otherwise

sw1oldne =
{

1 if Volume of sw1old > 0
0 if otherwise

s′ne =
{

1 if Volume of s′ > 0
0 if otherwise

g′ne =
{

1 if Volume of g′ > 0
0 if otherwise

Meaning that 1 marks the valve to be open and 0 closed, 
respectively.

h′ne =
{

1 if Volume of h′ > 0
0 if otherwise

e′ne =
{

1 if Volume of e′ > 0
0 if otherwise

f ′ne =
{

1 if Volume of f ′ > 0
0 if otherwise

SMult3e =
{

1 if Volume of SMult3 = 0
0 if otherwise

SMult3ne =
{

1 if Volume of SMult3 > 0
0 if otherwise

SSubtraction2ne =
{

1 if Volume of SSubtraction2 > 0
0 if otherwise

te =
{

1 if Volume of t = 0
0 if otherwise

yne =
{

1 if Volume of y > 0
0 if otherwise

ye =
{

1 if Volume of y = 0
0 if otherwise

sw1ne =
{

1 if Volume of sw1 > 0
0 if otherwise

X1e =
{

1 if Volume of X1 = 0
0 if otherwise

Sub1e =
{

1 if Volume of Subtraction1 = 0
0 if otherwise

ne =
{

1 if n = 0
0 if otherwise

Mult3e =
{

1 if Volume of Multiplication3 = 0
0 if otherwise

w1olde =
{

1 if Volume of w1old = 0
0 if otherwise

Mult4e =
{

1 if Volume of Multiplication4 = 0
0 if otherwise



35Implementing perceptrons by means of water‑based computing﻿	

P = {(reservoir,w1, {w1newne}), (w1,Multiplication1, {start}),

(x1,Multiplication1, {start}),

(reservoir,w2, {w2newne}), (w2,Multiplication2,

{start}), (x2,Multiplication2, {start}),

(reservoir, b, {bnewne}), (Multiplication1, S+,

{SMult1e}), (Multiplication1, S−,

{SMult1ne}), (Multiplication2, S+, {SMult2e}),

(Multiplication2, S−, {SMult2ne}),

(b, S+, {Sbe}), (b, S−, {Sbne}),

(S+, [(S+) − (S−)], {}), (S−, [(S+) − (S−)], {}),

([(S+) − (S−)],Res, {}), (Res, sink, {}),

(reservoir, Sw1, {sw1newne, e�ne}),

(reservoir, Sw2, {sw2newne, e�ne}),

(reservoir, Sb, {sbnewne, e�ne}), (Sw1, xor, {start}),

(Sx1, xor, {start}), (Sw2, xor, {start}),

(Sx2, xor, {start}), Sb, sink, {start, be}),

(xor, Smultiplication1, {}), (xor, Smultiplication2, {}),

(reservoir,w1old, {w1ne}),

(reservoir, y, {Resne}), (reservoir,X1, {x1ne}),

(reservoir, Ssub1, {start, te, yne}),

(reservoir, sw1old, {Sw1ne}), (reservoir, s�, {start}),

(reservoir, sw1new, {SSubtraction2ne}),

(w1old, S+, {sw1olde, f �ne}),

(w1old, S−, {sw1oldne, f �ne}), (t, Subtraction1, {s�ne}),

(y, Subtraction1, {s�ne}), (Subtraction1,Multiplication3, {g�ne}),

(X1,Multiplication3, {g�ne}),

(Multiplication3,Multiplication4, {h�ne}),

(n,Multiplication4, {h�ne}), (Multiplication4, S+, {Smult3e}),

(Multiplication4, S−, {Smult3ne}), (S+, Subtraction2, {e�ne}),

(S−, Subtraction2, {e�ne}), (Subtraction2,w1new, {}),

(w1new, Sink, {e�ne}), (Ssub1, xor, {g�ne}), (SX1, xor, {g�ne}),

(xor, Smult3, {}), (sw1new, Sink, {e�ne}),

(sw1old, Sink, {e�ne}), (s�, g�, {te, ye}),

(g�, h�, {X1e, Sub1e}), (h�, f �, {ne,Mult3e}),

(f �, e�, {w1olde,Mult4e}), (e�Sink, {Start})}

v0 = {(w1;0), (x1;0), (w2;0), (x2;0),

(b;0), (S + ;0), (S − ;0), (Res;0), (Sw1;0),

(Sx1;0), (Sw2;0), (Sx2;0), (Sb;0),

(Smultiplication1;0), (Smultiplication2;0),

(xor;0), ([(S+) − (S−)];0), (w1old;0),

(t;0), (y;0), (X1;0),

(n;0), (Subtraction1;0), (Ssub1;0), (SX1;0),

(SMult3;0), (sw1old;0), (sw1new;0),

(Subtraction2;0), (w1new;0), (s�;0),

(g�;0), (h�;0), (f �;0), (e�;0)}

We have decided to set a maximum size of 2 for the input 
and weight tanks to keep the network dimensions limited. 
For the control tanks, the maximum value is set to one 
because the possible values of a control tank are either 1 
or 0.

To represent the weight of the connection between the 
input and the node, a tank is used, and the content of the tank 
corresponds to the weight value (see Fig. 4).

On the left side of the schema, the actual network is 
depicted, with tanks for the input (x) and tanks for the 
weights (W). In this hypothesis, these values are multiplied 
together (multiplication1, multiplication2) using the multi-
plication schema mentioned earlier. The result of the multi-
plication then flows into the tanks S (sum), while observing 
the value contained in the tanks Smultiplication1 and Smul-
tiplication2 (multiplication sign). The tank (S+) contains 
positive values, while the tank (S-) contains negative values. 
The Bias value is added to one of these two tanks, depend-
ing on the value of the tank Sb (bias sign). The subtraction 
is then performed between the values contained in the tank 
(S+) and (S-) to obtain the result of the network, which is 
then passed through the activation function to obtain the 
network’s output.

On the right side, there are control tanks used to calcu-
late the signs of multiplication and bias. In particular, the 
XOR operation is used for the multiplication sign, and the 
values contained in the tanks Smultiplication (SMult3) will 
be 0 for a positive sign and 1 for a negative sign. The Feed-
Forward phase is then followed by the weight update phase 
(see Fig. 5).

On the left side of the schema, the subtraction between 
the desired value (t) and the value obtained from the network 
(y) is performed first. Then, the multiplications between the 
result of the subtraction, the input, and the learning rate are 
carried out. On the right side of the schema, control tanks 
are present for the sign value of the multiplication (SMult3), 
sign value of old weight(Sw1old), and sign value of new 
weight(Sw1new). Finally, there is a column of control tanks 
used to adjust the valves of the input tanks to carry out the 
operations in the correct order.

3.2 � Implementation 2

In the second proposed implementation, it has been chosen 
not to use tanks for the weights but instead variable-sized 
pipes that connect the tanks. Formally, the system to imple-
ment the perceptron is defined as follows:



36	 N. Civiero et al.

r=

W = {(x1), (x2), (b), (S+), (S−), [(S+) − (S−)], (Res),

(Sw1), (Sx1), (Sw2), (Sx2),

(Sb), (Smultiplication1), (Smultiplication2),

(xor), (reservoir)}

A = {(bnewne), (sw1newne), (sw2newne),

(sbnewne), (e�ne), (Start), (Smult1e),

(Smult1ne), (Smult2e), (Smult2ne),

(Sbe), (Sbne), (be), (v)}

𝜏 = {(x1, 2), (x2, 2), (b, 2), (S+, 10),

(S−, 10), ([(S+) − (S−)], 10)(Res, 2), (Sw1, 1),

(Sx1, 1), (Sw2, 1), (Sx2, 1), (Sb, 1),

(Smultiplication1, 1), (Smultiplication2, 1),

(xor, 1), (reservoir,∞)}

E = {(bnew > 0), (sw1new > 0), (sw2new > 0),

(sbnew > 0), (e� > 0),

(Smultiplication1 > 0), (Smultiplication2 > 0),

(Sb > 0), (b > 0), (v < n)}

Meaning that 1 marks the valve to be open and 0 closed, 
respectively.

bnewne =

{

1 if Volume of bnew > 0

0 if otherwise

sw1newne =

{

1 if Volume of sw1new > 0

0 if otherwise

sw2newne =

{

1 if Volume of sw2new > 0

0 if otherwise

sbnewne =

{

1 if Volume of sbnew > 0

0 if otherwise

e�ne =

{

1 if Volume of e� > 0

0 if otherwise

start =

{

1 if time > 0

0 if otherwise

Smult1e =

{

1 if Volume of Smultiplication1 = 0

0 if otherwise

Smult1ne =

{

1 if Volume of Smultiplication1 > 0

0 if otherwise

Smult2e =

{

1 if Volume of Smultiplication2 = 0

0 if otherwise

Smult2ne =

{

1 if Volume of Smultiplication2 > 0

0 if otherwise

Sbe =

{

1 if Volume of Sb = 0

0 if otherwise

Sbne =

{

1 if Volume of Sb > 0

0 if otherwise

be =

{

1 if Volume of b = 0

0 if otherwise

v =

{

1 if Volume of timer tank v < n

0 if otherwise

Fig. 4   Implementation 1: feed 
forward phase



37Implementing perceptrons by means of water‑based computing﻿	

In the previous hypothesis, the connecting pipes between the 
tanks had the same diameter and did not affect the amount of 
water flowing through the network. To allow the passage of 
a "weighted" amount of water, a timer is used to regulate the 
opening of valves present in each connecting pipe between 
the nodes. Assuming that each second, an amount of water 
equal to the diameter of the pipe passes through each pipe, 
the water flow between the tanks can be controlled. The idea 
is to simplify the network by reducing the number of tanks 

P = {(reservoir, b, {bnewne}), (x1, S+, {Smult1e, v}),

(x1, S−, {Smult1ne, v}),

(x2, S+, {Smult2e, v}), (x2, S−, {Smult2ne, v}),

(b, S+, {Sbe, v}),

(b, S−, {Sbne, v}), (S+, [(S+) − (S−)], {}),

(S−, [(S+) − (S−)], {}),

([(S+) − (S−)],Res, {}), (Res, sink, {}),

(reservoir, Sw1, {sw1newne, e�ne}),

(reservoir, Sw2, {sw2newne, e�ne}),

(reservoir, Sb, {sbnewne, e �ne}),

(Sw1, xor, {start}), (Sx1, xor, {start}),

(Sw2, xor, {start}), (Sx2, xor, {start}),

(Sb, sink, {start, be}), (xor, Smultiplication1, {}),

(xor, Smultiplication2, {})}

v0 = {(x1;0), (x2;0), (b;0),

(S + ;0), (S − ;0), (Res;0), (Sw1;0),

(Sx1;0), (Sw2;0), (Sx2;0), (Sb;0),

(Smultiplication1;0), (Smultiplication2;0),

(xor;0), ([(S+) − (S−)];0)}

s0 = {(reservoir, b, {bnewne}, 0.1),

(x1, S+, {Smult1e, v}, 0.1),

(x1, S−, {Smult1ne, v}, 0.1),

(x2, S+, {Smult2e, v}, 0.1), (x2, S−, {Smult2ne, v}, 0.1),

(b, S+, {Sbe, v}, 0.1),

(b, S−, {Sbne, v}, 0.1), (S+, [(S+) − (S−)], {}, 0.1),

(S−, [(S+) − (S−)], {}, 0.1),

([(S+) − (S−)],Res, {}, 0.1), (Res, sink, {}, 0.1),

(reservoir, Sw1, {sw1newne, e�ne}, 0.1),

(reservoir, Sw2, {sw2newne, e�ne}, 0.1),

(reservoir, Sb, {sbnewne, e �ne}, 0.1),

(Sw1, xor, {start}, 0.1), (Sx1, xor, {start}, 0.1),

(Sw2, xor, {start}, 0.1), (Sx2, xor, {start}, 0.1),

(Sb, sink, {start, be}, 0.1), (xor, Smultiplication1, {}, 0.1),

(xor, Smultiplication2, {}, 0.1)}

�t = 1second

and eliminating the multiplications involving the inputs and 
weights. (see Fig. 6)

To update the weights, we proceed as for the previous 
solution. In this case, however, the timer cannot be utilized 
to calculate the new weight, because we need the weight 
value in a tank in order to add it to the updated value.

To create a specific timer, the schema of Ring Oscillator 
presented in [10] is modified, by adding a valve between 
tank T1 and T2 (we have changed the name of the tanks to 
avoid confusion with the tanks representing the weights). 
The condition applied to the valve is v ≠ n , which means that 
the valve remains open until the value n is reached in tank 
v (we also changed the name of tank y in v, to avoid confu-
sion with tank y in the update weight phase). Additionally, 
in tank v, the tube and valve that allow water drainage are 
removed. This way, in each iteration, it is ensured that tank v 
will receive a quantity of water equal to 1, ideally assuming 
each iteration is 1 s (see Fig. 7).

4 � Multilayer perceptron

In multilayer Perceptron, nodes have the same internal 
structure as for perceptron unit, but it is necessary to create 
new structure/schema for activation functions and backward 
propagation, and to modify the schema for updating weights.

Concerning activation functions, we have considered and 
implemented ReLu, Tanh, and Sigmoid.

4.1 � ReLu

ReLu activation function is the simplest, for positive value 
the result is the input, for negative value the result is zero. 
The implementation consists of a tank, and a control valve 
so if the input is negative this valve is open and the volume 
of water in the tank is zero. (For keeping the amount of 
water small, it is possible to set a max limit, to do that we 
use a pipe set to a height value, if volume of water is over 
the value the water goes into the sink).

4.1.1 � Tanh

Tanh activation function is more complex. We consider vol-
ume of water between 0 and 2. If the level of water is over 2, 
then we consider the corresponding value as 2. We separate 
the input volume of water into 3 tanks: in the first and sec-
ond tank, the maximum value of water is 0.5, while in the 
third tank, it is 1. To separate the input water, we consider a 
water cascade like the one presented in [10], Fig. 1, and we 
operate on the volume of water of each tank in a different 
way. For the first tank, we take all the volume of water, (for 
example if it is 0.4 the result of tanh is 0.4). For second and 
third tank, we set an outflow pipe with a different diameter 



38	 N. Civiero et al.

which results are obtained. In general, the more complex a 
system is, the more time it takes to complete operations and 
achieve a result. Nonetheless, by exploiting parallelism of 
this model, this can be partially avoided.

In fact, te computation time can be calculated on the 
basis of the number of levels of the various tanks. Tanks at 
level i communicate with tanks at level i + 1 , in parallel. For 
example, considering Fig. 6, tanks (x1, x2, Sx1, Sx2, and 
reservoir) are at level zero, while tanks ([(S+)-(S-)], xor) 
are at level two.

The total time required to move from one level to the 
level below can be calculated by considering the maximum 
time required to let the flow of water from tanks at level i 
to tanks at level i + 1 . This can be calculated by considering 
the maximum among all tanks, that is the maximum among 
the values

Regarding accuracy, ReLu stands out as the most accurate 
activation function, providing precise results without any 
significant approximation errors. Tanh, as defined, has a 
slight approximation error, while sigmoid suffers from sig-
nificant errors due to the multiplication by the value 0.5. In 
conclusion, it becomes evident that ReLU outperforms both 
tanh and sigmoid functions in these three aspects.

4.2 � Forward propagation

Forward propagation phase is the same as for perceptron 
forward propagation, but in a feedforward neural network 
structure, a unit will receive information of several units 

volume of water in tank(i)

diameter of pipe that exits from tank(i)

than 0.1 (default value), so for every second we have set a 
different outflow than 0.1, equal to the diameter of the pipe. 
This volume of water is drained into another tank that has 
two outflow pipes: one leads the water into the sink and 
the other into result tank, and these pipes have a different 
diameter than 0.1.

4.1.2 � Sigmoid

For sigmoid function, we use the formula (tanh(x∕2) + 1)∕2.
We simply operate/compute the product (x*0.5) on the 

input of tanh, add 1 and perform another product on the 
result.

The activation functions just described can be compared 
with respect to three difference aspects:

•	 Accuracy with respect to the mathematical function they 
implement

•	 The time needed to provide a result
•	 Ease of implementation, i.e. the number of tanks and 

pipes required to implement them

Regarding ease of implementation, it appears that ReLU is 
the simplest, requiring only one tank and a valve. To imple-
ment the tanh, we need a total of 6 tanks and no valves, as 
the water cascade is exploited. While, for the sigmoid, we 
need to calculate the tanh value and, as before, we need 6 
tanks initially, then 10 tanks for each multiplication, result-
ing in a total of 26 tanks plus 4 valves, 2 for each mul-
tiplication. The hyperbolic tangent (tanh) and sigmoid are 
therefore more complex to implement compared to ReLU. 
This complexity affects, of course, not only the number of 
tanks and valves but also, as a consequence, the speed at 

Fig. 5   Weight update phase



39Implementing perceptrons by means of water‑based computing﻿	

belonging to the previous layer. We suppose to add all this 
information in one input tank for each node.

4.3 � Backward propagation

In order to implement this phase, we first need to get the 
error value of the net. We use the formula

where f �(y) is the first derivative, y is the output of the net, 
t is the label value. The idea for backward propagation is to 
rotate the net by 180 degrees, so that the output tank become 
the input of the net. In this tank, we put the error value, and 
then we propagate that value in the net like we did in forward 
propagation. In each node we get a delta value (that is, the 
error for each node); the delta values are used for updating 
the value of weights.

4.4 � Update Weights

In this phase, we use the formula

where wjk is the weight between the node k and node j, n 
is the learning rate, �k is the error calculated in the current 
node, and yj is the output of upper layer node. The resulting 
schema is almost the same as perceptron updating weights 
schema.

5 � Discussion and conclusions

In Implementation 1, the size of the network will be larger 
compared to that of Implementation 2, mainly due to the 
higher number of multiplications and tangent operations 
required.

� = (t − y) ∗ f �(y)

wnew
jk

= wold
jk

+ n ∗ �k ∗ yj

To implement the timer that regulates the valves in 
Implementation 2, a pump will be needed to allow water to 
cycle through the three tanks. In a future implementation, 
the effects of the pump on the network will also need to be 
taken into account.

Regarding training, the network in Implementation 2 
requires that the connecting tubes between the various nodes 
be changed with every weight update. This will surely make 
the training process of the network much harder with respect 
to Implementation 1.

Summarizing, the network in Implementation 2 requires 
a smaller number of tanks, tubes, and multiplication struc-
tures: as a consequence, it is the simplest to implement in 
terms of size. On the contrary, the network in Implementa-
tion 1 is the simplest to train, as it does not require modify-
ing the dimension of the tubes every time the weight values 
change.

Future investigations concern the tests that could be con-
ducted: for example, using more precise learning rates (e.g. 
vary in hundredths rather than just decimal places), to check 
whether or not better results can be obtained.

Fig. 6   Implementation 2: Feed 
Forward phase

Fig. 7   Timer



40	 N. Civiero et al.

Studies on more complex networks such as RNN (Recur-
rent Neural Network) or LSTM (Long Short-Term Memory) 
are another important research direction.

Acknowledgements  The work of Claudio Zandron was partially sup-
ported by Università degli Studi di Milano-Bicocca, Fondo Ateneo per 
la Ricerca 2023, project 2023-ATE-0333.

Author Contributions  N.C. proposed main idea behind this work. N.C. 
prepared all figures. All authors contributed to the research, and to 
write and review the manuscript.

Funding  Open access funding provided by Università degli Studi di 
Milano - Bicocca within the CRUI-CARE Agreement.

Data availability  No datasets were generated or analysed during the 
current study.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Alhazov, A., Leporati, A., Manzoni, L., Mauri, G., & Zandron, 
C. (2021). Alternative space definitions for P systems with active 
membranes. Journal of Membrane Computing, 3, 87–96. https://​
doi.​org/​10.​1007/​s41965-​021-​00074-2

	 2.	 Ballesteros, K. J., Cailipan, D. P. P., de la Cruz, R. T. A., Cabarle, 
F. G. C., & Adorna, H. N. (2022). Matrix representation and simu-
lation algorithm of numerical spiking neural p systems. Journal 
of Membrane Computing, 4(1), 41–55.

	 3.	 Baquero, F., Campos, M., Llorens, C., & Sempere, J. (2021). P 
systems in the time of COVID-19. Journal of Membrane Comput-
ing, 3, 246–257. https://​doi.​org/​10.​1007/​s41965-​021-​00083-1

	 4.	 Battyányi, P., & Vaszil, G. (2020). Description of membrane 
systems with time Petri nets: Promoters/inhibitors, membrane 
dissolution, and priorities. Journal of Membrane Computing, 2, 
341–354. https://​doi.​org/​10.​1007/​s41965-​020-​00062-y

	 5.	 Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., et al. (2019). P 
colonies. Journal of Membrane Computing, 1, 178–197. https://​
doi.​org/​10.​1007/​s41965-​019-​00019-w

	 6.	 de la Cruz, R. T. A., Cabarle, F. G. C., Macababayao, I. C. H., 
et al. (2021). Homogeneous spiking neural P systems with struc-
tural plasticity. Journal of Membrane Computing, 3, 10–21. 
https://​doi.​org/​10.​1007/​s41965-​020-​00067-7

	 7.	 Díaz-Pernil, D., Gutierrez-Naranjo, M. A., & Peng, H. (2019). 
Membrane computing and image processing: A short survey. 

Journal of Membrane Computing, 1, 58–73. https://​doi.​org/​10.​
1007/​s41965-​018-​00002-x

	 8.	 Dupaya, A. G. S., Galano, A. C. A. P., Cabarle, F. G. C., De La 
Cruz, R. T., Ballesteros, K. J., & Lazo, P. P. L. (2022). A web-
based visual simulator for spiking neural p systems. Journal of 
Membrane Computing, 4(1), 21–40.

	 9.	 Gheorghe, M., Lefticaru, R., Konur, S., Nicolescu, I., & Adorna, 
H. N. (2021). Spiking neural P systems: Matrix representation 
and formal verification. Journal of Membrane Computing, 3, 
133–148. https://​doi.​org/​10.​1007/​s41965-​021-​00075-1

	10.	 Hinze, T., Happe, H., Henderson, A., & Nicolescu, R. (2020). 
Membrane Computing with Water. Journal of Membrane Com-
puting, Springer, 2, 121–136.

	11.	 Henderson, A., Nicolescu, R., Dinneen, M. J., Chan, T., Happe, 
H., & Hinze, T. (2021). Turing Completeness of Water Comput-
ing. Journal of Membrane Computing, Springer, 3(3), 182–193.

	12.	 Henderson, A., Nicolescu, R., Dinneen, M. J., Chan, T., Happe, 
H., & Hinze, T. (2023). Programmable and Parallel Water Com-
puting. Journal of Membrane Computing, Springer, 5(1), 25–54.

	13.	 Ionescu, M., Păun, Gh., & Yokomori, T. (2006). Spiking neural 
P systems. Fundamenta Informaticae, 71(2,3), 279–308.

	14.	 Langer, M., & Valenta, D. (2023). On evolving environ-
ment of 2D P colonies: Ant colony simulation. Journal of 
Membrane Computing, 5, 117–128. https://​doi.​org/​10.​1007/​
s41965-​023-​00123-y

	15.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, 
C. (2017). Characterising the complexity of tissue P systems 
with fission rules. Journal of Computer and System Sciences, 90, 
115–128.

	16.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, 
C. (2019). Characterizing PSPACE with shallow non-confluent P 
systems. Journal of Membrane Computing, 1, 75–84. https://​doi.​
org/​10.​1007/​s41965-​019-​00011-4

	17.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2020). Shallow laconic P systems can count. Journal 
of Membrane Computing, 2, 49–58. https://​doi.​org/​10.​1007/​
s41965-​020-​00032-4

	18.	 Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron, 
C. (2020). A Turing machine simulation by P systems without 
charges. Journal of Membrane Computing, 2, 71–79. https://​doi.​
org/​10.​1007/​s41965-​020-​00031-5

	19.	 Leporati, A., Mauri, G., & Zandron, C. (2022). Spiking neural 
P systems: Main ideas and results. Natural Computing, 21(4), 
629–649.

	20.	 Liu, Y., Nicolescu, R., & Sun, J. (2020). Formal verification of cP 
systems using PAT3 and ProB. Journal of Membrane Computing, 
2(2), 80–94.

	21.	 Liu, Y., Nicolescu, R., & Sun, J. (2021). Formal verification of 
cP systems using Coq. Journal of Membrane Computing, 3(3), 
205–220.

	22.	 Lv, Z., Yang, Q., Peng, H., et al. (2021). Computational power 
of sequential spiking neural P systems with multiple channels. 
Journal of Membrane Computing, 3, 270–283. https://​doi.​org/​10.​
1007/​s41965-​021-​00089-9

	23.	 Martín-Vide, C., Păun, Gh., Pazos, J., & Rodriguez-Paton, A. 
(2003). Tissue P systems. Theoretical Computer Science, 296(2), 
295–326.

	24.	 McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas 
immanent in nervous activity. Bulletin of Mathematical Biophys-
ics, 5(4), 115–133. https://​doi.​org/​10.​1007/​BF024​78259

	25.	 Nadizar, G., & Pietropolli, G. (2023). A grammatical evolution 
approach to the automatic inference of P systems. Journal of 
Membrane Computing, 5, 129–143.

	26.	 Orellana-Martín, D., Valencia-Cabrera, L., Riscos-Núñez, 
A., & Perez-Jimenez, M. J. (2019). P systems with proteins: 
A new frontier when membrane division disappears. Journal 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41965-021-00074-2
https://doi.org/10.1007/s41965-021-00074-2
https://doi.org/10.1007/s41965-021-00083-1
https://doi.org/10.1007/s41965-020-00062-y
https://doi.org/10.1007/s41965-019-00019-w
https://doi.org/10.1007/s41965-019-00019-w
https://doi.org/10.1007/s41965-020-00067-7
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1007/s41965-021-00075-1
https://doi.org/10.1007/s41965-023-00123-y
https://doi.org/10.1007/s41965-023-00123-y
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-019-00011-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00032-4
https://doi.org/10.1007/s41965-020-00031-5
https://doi.org/10.1007/s41965-020-00031-5
https://doi.org/10.1007/s41965-021-00089-9
https://doi.org/10.1007/s41965-021-00089-9
https://doi.org/10.1007/BF02478259


41Implementing perceptrons by means of water‑based computing﻿	

of Membrane Computing, 1, 29–39. https://​doi.​org/​10.​1007/​
s41965-​018-​00003-w

	27.	 Păun, Gh. (2000). Computing with membranes. Journal of Com-
puter and System Sciences, 61(1), 108–143.

	28.	 Păun, Gh. (2001). P systems with active membranes: Attacking 
NP-Complete problems. Journal of Automata, Languages and 
Combinatorics, 6(1), 75–90.

	29.	 Păun, Gh., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The 
Oxford Handbook of Membrane Computing. New York: Oxford 
University Press.

	30.	 Pérez-Hurtado, I., Orellana-Martín, D., Zhang, G., et al. (2019). 
P-Lingua in two steps: Flexibility and efficiency. Journal of 
Membrane Computing, 1, 93–102. https://​doi.​org/​10.​1007/​
s41965-​019-​00014-1

	31.	 Qiu, C., Xue, J., Liu, X., et al. (2022). Deep dynamic spiking 
neural P systems with applications in organ segmentation. Journal 
of Membrane Computing, 4, 329–340.

	32.	 Sempere, J. M. (2023). Modeling Markov sources and hidden 
Markov models by P systems. Journal of Membrane Computing, 
5, 161–169. https://​doi.​org/​10.​1007/​s41965-​023-​00129-6

	33.	 Sosik, P. (2019). P systems attacking hard problems beyond NP: 
A survey. Journal of Membrane Computing, 1, 198–208.

	34.	 Sosík, P., Drastík, J., Smolka, V., et al. (2020). From P systems to 
morphogenetic systems: An overview and open problems. Jour-
nal of Membrane Computing, 2, 380–391. https://​doi.​org/​10.​1007/​
s41965-​020-​00057-9

	35.	 Turlea, A., Gheorghe, M., Ipate, F., & Konur, S. (2019). 
Search-based testing in membrane computing. Journal of 

Membrane Computing, 1, 241–250. https://​doi.​org/​10.​1007/​
s41965-​019-​00027-w

	36.	 Valencia-Cabrera, L., Perez-Hurtado, I., & Martinez-del Amor, 
M. A. (2020). Simulation challenges in membrane computing. 
Journal of Membrane Computing, 2, 1–11.

	37.	 Verlan, S., Freund, R., Alhazov, A., et al. (2020). A formal frame-
work for spiking neural P systems. Journal of Membrane Comput-
ing, 2, 355–368. https://​doi.​org/​10.​1007/​s41965-​020-​00050-2

	38.	 Yu, W., Wu, J., Chen, Y., et al. (2023). Fuzzy tissue-like P systems 
with promoters and their application in power coordinated control 
of microgrid. Journal of Membrane Computing, 5, 1–11. https://​
doi.​org/​10.​1007/​s41965-​022-​00109-2

	39.	 Yu, W., Xiao, X., Wu, J., et al. (2023). Application of fuzzy spik-
ing neural dP systems in energy coordinated control of multi-
microgrid. Journal of Membrane Computing, 5, 69–80. https://​
doi.​org/​10.​1007/​s41965-​023-​00118-9

	40.	 Zhao, S., Zhang, L., Liu, Z., et al. (2022). ConvSNP: a deep learn-
ing model embedded with SNP-like neurons. Journal of Mem-
brane Computing, 4, 87–95.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s41965-018-00003-w
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-023-00129-6
https://doi.org/10.1007/s41965-020-00057-9
https://doi.org/10.1007/s41965-020-00057-9
https://doi.org/10.1007/s41965-019-00027-w
https://doi.org/10.1007/s41965-019-00027-w
https://doi.org/10.1007/s41965-020-00050-2
https://doi.org/10.1007/s41965-022-00109-2
https://doi.org/10.1007/s41965-022-00109-2
https://doi.org/10.1007/s41965-023-00118-9
https://doi.org/10.1007/s41965-023-00118-9

	Implementing perceptrons by means of water-based computing
	Abstract
	1 Introduction
	2 Basic definitions
	3 Implementing perceptrons through water-based computing
	3.1 Implementation 1
	3.2 Implementation 2

	4 Multilayer perceptron
	4.1 ReLu
	4.1.1 Tanh
	4.1.2 Sigmoid

	4.2 Forward propagation
	4.3 Backward propagation
	4.4 Update Weights

	5 Discussion and conclusions
	Acknowledgements 
	References




