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Abstract
We propose improvements to the artificial neural network (ANN) method of determining electron
scattering cross-sections from swarm data proposed by coauthors. A limitation inherent to this
problem, known as the inverse swarm problem, is the non-unique nature of its solutions,
particularly when there exists multiple cross-sections that each describe similar scattering
processes. Considering this, prior methods leveraged existing knowledge of a particular
cross-section set to reduce the solution space of the problem. To reduce the need for prior
knowledge, we propose the following modifications to the ANN method. First, we propose a
multi-branch ANN (MBANN) that assigns an independent branch of hidden layers to each
cross-section output. We show that in comparison with an equivalent conventional ANN, the
MBANN architecture enables an efficient and physics informed feature map of each cross-section.
Additionally, we show that the MBANN solution can be improved upon by successive networks
that are each trained using perturbations of the previous regression. Crucially, the method requires
much less input data and fewer restrictive assumptions, and only assumes knowledge of energy loss
thresholds and the number of cross-sections present.

1. Introduction

Electron transport models are crucial to enable the predictive control of low-temperature plasma
systems [1]. Underpinning these techniques are the use of accurate and complete electron scattering
cross-section sets. The derivation of scattering cross-sections is typically conducted through experimental
and theoretical techniques, coupled with verification through swarm scattering experiments to ensure their
validity [2]. In regions where these techniques are limited, ‘educated guesses’ and numerical techniques are
often used to bridge the gap. This knowledge gap motivates the need for reliable and benchmarked numerical
techniques to aid in the development of accurate and complete cross-section sets.

Here, we focus on the determination of cross-section sets from swarm data, otherwise known as the
inverse swarm problem [3]. Presently, two primary numerical techniques exist that aim to solve the inverse
swarm problem: the iterative swarm technique and, more recently, the application of artificial neural
networks (ANNs). The iterative swarm technique first used approximate distributions, such as a Maxwellian
or Druyvesteyn distribution, of the electron energy distribution function to calculate transport coefficients
that are compared to experimental transport coefficients and improved iteratively [4–6]. The accuracy of the
iterative swarm technique was then improved with the inclusion of an accurate electron energy distribution
functions derived from the solution of the Boltzmann equation [7–10].

A substantial limitation to solutions of the inverse swarm problem lies in its ill-posed nature. In
particular, the existence of multiple cross-sections that describe similar scattering processes, such as similar
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threshold vibrational modes, results in substantial degeneracy of transport data for a given species [3, 11]. In
this limit, the iterative swarm technique relies on the intuition and experience of an expert, which, along with
the trial and error nature of the approach, results in an inefficient procedure that is difficult to reproduce.
Several methods that attempt to automate this methodology have been proposed [12–17] to address this
issue. Of interest to this study, is use of ANNs trained on existing cross-section data to determine scattering
cross-sections for electron transport in gases.

In the early 1990s, Morgan [18] first demonstrated a solution to the inverse swarm problem through an
ANN trained on example cross-sections and their associated transport coefficients. Recently, Stokes et al [3]
revisited this problem utilising advances in network architecture, model size and available cross-section data
to improve the network’s predictive power. Since then, the method has been successfully applied to the
improvement of tetrahydrofuran, α-tetrahydrofurfuryl and nitric oxide electron scattering
cross-sections [19–21]. Jetly and Chaudhury [22] evaluated the performance of three network architectures
for the regression of single electron-scattering cross-section and found that a DenseNet architecture resulted
in the highest regression accuracy.

While the application of ANNs to the inverse swarm problem shows great promise, the method is
constrained due to a number of key limitations. This study aims to address the following two limitations.
First, we demonstrate that a conventional ANN limits the ability of the network to reliably and
self-consistently model multiple independent cross-section regressions when compared to an equivalent
network that is designed in a physics-informed manner to contain multiple parallel branches of densely
connected layers. In this design, each possible scattering process that may occur for a given target is provided
a separate branch, which assures the user that the total of all parallel branches reproduces the required total
scattering cross-section. Additionally, as the prediction of multiple cross-sections is limited due to the
degenerate nature of the inverse swarm problem, we propose an iterative procedure to enable the network to
incrementally explore the solution space of the problem.

Reducing the impact of these limitations will extend the applications for the ANN method to complex
bio-molecules critical for applications in fields such as plasma medicine [23] and dielectric insulators [24].
In previous work, Stokes et al [3], used ANNs to approximate argon and helium’s cross-sections. However,
argon and helium do not exhibit vibration and attachment collisions that are generally important in
bio-molecules. Here, we use methane as a case study for the influence of vibration and attachment processes,
as has been widely studied in the literature [25–29]. For example, the strong excitation processes
demonstrated by methane lead to a breakdown of the two-term approximation that is often employed in the
solution of Boltzmann’s equations [29–31].

In section 2, we outline each modification to the network architecture and methodology before
evaluating their performance using methane as a case study. We then summarise the results in section 3.

2. ANN regression of cross-section sets

The application of ANNs towards determining complete cross-section sets through the inversion of
macroscopic experimental data has been the focus of a recent project at James Cook University
[3, 19–21, 32]. While the technique has predominately been used to improve existing cross-section
sets [19–21], the determination of complete cross-section sets for complex targets remains elusive due to the
ill-posed nature of the problem. In this section, we present two modifications to the methodology that aim to
improve the ability of the network to determine complete cross-sections from transport data.

First, to aid the network in representing the independent nature of each cross-section, we propose a
multi-branch ANN (MBANN) and compare its performance through a regression of the cross-section set for
methane recommended by Song and Bouwman [29, 33]. To reduce the impact of the non-unique nature of
determining cross-section sets with multiple similar scattering processes, we then propose an iterative
procedure that incrementally explores the solution space by using perturbations of the previous regression.
To demonstrate the iterative procedure, we compare the initial regression and the best regression found for
methane’s cross-section set.

2.1. Multi-branch neural network regression
Stokes et al [3] proposed an ANN where each element of the output corresponds to a single cross-section.
The simultaneous prediction of each cross-section ensures that the full set of cross-sections are
self-consistent, which ensures an accurate replication of the target swarm transport data. In their
investigation of various ANN architectures, Jetly and Chaudhury used separately trained networks to enforce
independent feature maps for each cross-section. The authors state that the simultaneous prediction of
multiple cross-sections would force the network to share feature maps across different types of cross-sections
and thus severely inhibit its predictive capability.
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Figure 1. Diagram of the multi-branch artificial neural network used for the regression of cross-sections (green) as a function of
energy (orange), given an associated set of transport coefficients (blue). The first two hidden layers contain 128 neurons while
each hidden layer within each parallel branch contains 32 (shown not to scale). While each transport coefficient forms an array of
arbitrary length, ε is a single energy value that is varied to scan the energy space. Each output layer then contains 1 neuron and are
concatenated to form an array of N elements to match the number of output cross-sections.

Here, we propose a MBANN to bridge the gap between the requirement for self-consistency and the
desire for independent feature maps for each cross-section. That is, for each cross-section, there exists an
independent block of dense layers that each extend from a single block of dense layers. Each parallel branch is
then allowed to develop a feature set specific to a single cross-section while still ensuring each regression is
conducted in context of the full cross-section set.

We utilise a MBANN of the form,

σ(x) =
[
A[n]
5 ◦mish ◦A[n]

4 ◦mish ◦A[n]
3 ◦mish ◦A2 ◦mish ◦A1

]
(x) , (1)

where Ai (x)≡Wix+ bi are affine mappings defined by dense weight matricesWi and bias vectors bi, and
mish(x) = x tanh(ln(1+ ex)) is a nonlinear activation function [34] that is applied element-wise. The final

output, σ[n], then represents the nth cross-section of interest within a set of N cross-sections. A[n]
3 , A[n]

4 and

A[n]
5 form an array of N parallel branches that each utilise the output of A2 to independently represent the

nth cross-section. b[n]3 and b[n]4 contain 32 elements each, b[n]5 contains 1 for each output n, while those in the
initial two layers contain 128. The weight matrices are sized accordingly.

From previous investigations and a simple hyper-parameter optimization procedure outlined in
appendix B, we found that approximately 32 neurons in each parallel layer is required for a suitable
regression of each cross-section with more neurons resulting in modest improvements. Here, we choose this
minimum to isolate and demonstrate the differences between a MBANN and an equivalent ANN
architecture. Each other parameter, such as the activation function and number of hidden layers, was chosen
from a set of reasonable values using a comparison of validation accuracy and prior experience. A schematic
representation of the MBANN architecture is shown in figure 1.

For comparison, we use an ANN of the form,

σ (x) = [A5 ◦mish ◦A4 ◦mish ◦A3 ◦mish ◦A2 ◦mish ◦A1] (x) , (2)

where b3 and b4 now contain 32×N elements while b5 contains N elements to match the number of
outputs. The ANN thus contains the same number of neurons per layer as the MBANN network outlined
above. We note however that the number of trainable parameters is larger than that of the MBANN.

Each cross-section is a function of the incoming projectile electron kinetic energy, ε, which, alongside the
available swarm data, forms the input to the neural network,

x=


ε

W(E/n0)
n0DL (E/n0)
keff (E/n0)

 , (3)

where n0,W, n0DL and keff are the neutral density, bulk drift velocity, reduced bulk longitudinal diffusion
and effective ionisation rate of the electron swarm evaluated at a number of reduced electric fields E/n0.
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Figure 2. Comparison of a conventional (a) and an equivalent multi-branch artificial neural network (c) applied to the regression
of Song and Bouwman’s methane cross-section set [29, 33]. While only the total excitation cross-section is shown here for
simplicity, each of the six excitation processes present in the original set are included in the regression. The bulk drift velocityW,
bulk reduced longitudinal diffusion (n0DL) and the effective ionisation rate (keff) for each network is shown in (b) and (d). For
simplicity, the legends in (b) and (d) are shared by (a) and (c) respectively. All transport coefficients displayed here are calculated
with a multi-term Boltzmann equation solver. Shown as shaded regions, are the extent of the best 100 regressions for the initial
regression. Below each figure, is the absolute relative percentage difference (ARPD) across the energy domain between each
regression and the original set.

To train each neural network, we generate an appropriate set of physically plausible example swarm
transport data using augmentations of cross-sections from the LXCat project [35–37]. The data generation
process and subsequent training procedure follows the method outlined by Stokes et al [3] with some
modifications that are described in detail in appendix A.

A total of 105 training iterations are performed, each consisting of a mini-batch of 32 cross-section
sampled at 128 energies from a total of 2× 104 training examples for each cross-section. For each training
set, a multi-term Boltzmann equation solver was used to calculateW, n0DL and keff at 80 log-spaced reduced
electric fields between 10−3 and 104Td (1Td= 1Townsend= 10−21Vm2) while the cross-section regression
was conducted between 0.01 and 200eV. A detailed outline of the training procedure can be found in
appendix B.

To demonstrate the improvements offered by the proposed architecture, we present a regression of
methane’s cross-section set for both the MBANN and an equivalent ANN network. The cross-section set was
retrieved from the LXCat database [35–37] and originates from the work of Song and Bouwman [29, 33]. In
this work, we perform a regression of the elastic momentum transfer cross-section, total ionisation, total
attachment, and each of the 6 excitation cross-sections. In addition, while it has been shown that an ANN
can determine some energy loss thresholds [3], any target cross-section set that exhibits multiple similar
threshold processes introduces a high degree of degeneracy. In this work, we assume knowledge of each
energy loss threshold and leave their determination for future investigations.

A comparison between the resulting regression for both the ANN and MBANN architectures is shown in
figure 2. In each, the extent of the 100 best fits sampled during the training process is shown as a shaded
region to provide an indication of the network’s variability. The ANN regression resulted in a mean absolute
relative percentage difference (MARPD, see equation (B.2)) of 2.2, 6.3 and 21% forW, n0DL and keff,
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Figure 3. Illustrative diagram of iterative neural network procedure (top) along with a flow chart outlining each step (bottom).
The procedure consists of 3 phases: initialise, explore and refine. The initialise step follows a similar methodology outlined by
Stokes et al [3]. First, training data is generated through augmentations of existing LXCat cross-sections [35–37]. During training,
the network’s output is periodically sampled and their associated transport coefficients are verified against the target transport
coefficients to determine the best 100 fits. In the explore and refine steps, augmented LXCat data are used to generate major and
minor perturbations, respectively, of the previous best 100 fits before utilising the same training and verification procedure as the
initialisation step.

respectively. The MBANN regression resulted in a comparable MARPD of 2.7, 5.2 and 21% forW, n0DL and
keff, respectively.

While each network exhibited a similar global accuracy in the replication of transport coefficients,
non-physical fluctuations are present in the ANN regression of the elastic and excitation cross-sections
between 0.1–0.4 eV and 7–20 eV. It is clear that the large gradients present in these regions, due to the energy
loss thresholds of 0.162, 0.363, 7.5, 9.1, 12.36, 15.5 and 15.5eV, resulted in the ANN being unable to
independently represent each cross-section’s feature map when compared to the MBANN fit, despite the
same number of neurons available to each architecture. Similar fluctuations were also observed in the best
100 regressions represented by the shaded regions in figure 2. While a larger ANN would mitigate this effect,
the MBANN is able to leverage its independent branches to ensure each cross-section’s feature map is
physics-informed and intuitive. The branching architecture also offers a simple linear scaling for variations
in the number of target cross-sections through the addition, or removal of, individual branches.

As demonstrated by both networks presented here, there remains much room for improvement in the
regression of methane’s electron-scattering cross-section set. While additional improvements of the network
architecture may be available, such as those seen in the work of Jetly and Chaudhury [22], the ill-posed nature
of the inverse swarm problem places an inherent limit on the accuracy of methods that seek to learn the
feature map between transport data and cross-section sets. In what follows, we aim to mitigate this restriction
through a new procedure that uses a sequence of MBANNs to incrementally explore the solution space.

2.2. An iterative approach to neural network regression
The regression of numerous similar cross-sections poses a substantial challenge for solutions to the inverse
swarm problem. As shown previously by Stokes et al [3, 20, 21], the predictive power of the neural network
can be improved by restricting the training data to perturbations around a reference cross-section set. We
extend this work and propose an iterative procedure in which a sequence of networks are trained using a

5
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weighted mixing of the previous solution with example cross-section data. As illustrated in figure 3, the
procedure consists of three phases; initialise, explore and refine.

In the intialise phase we follow the procedure outlined in appendix B. In this phase, no prior information
of the target cross-section set is given to the network other than energy loss thresholds and the number of
processes present. Each energy loss cross-section in the training set is thus energy shifted to their respective
target threshold energy. The resulting best 100 regressions then form an array of current fits σc. During the
following two phases, we seek to improve the regression by generating stochastic perturbations around each
current fit through a weighted mixing with example cross-section data.

To train each subsequent network, we use augmented LXCat cross-sections to generate perturbations
around each current fit. First, σs, is generated with the same method used in the initialisation phase. We then
use σs to generate a perturbation around the ith current fit σc,i using a weighted sum in log space,

σs (ε) = σ1−r
s (ε− εs + εt)σ

r
c,i (ε− εc,i + εt) , (4)

where i is a uniformly distributed random number and r is a pseudo-random number sampled from a scaled
Laplace distribution. εs and εc,i represent the respective threshold energies for each cross-section while εt is
the target threshold energy. The parameter r then defines how similar each training sample σs is to σc,i, where
values close to 1 results in minor perturbation around σc,i while values close to 0 results in major
perturbations. Values of r greater than 1 can be used to produce accentuated perturbations around σc,i to
extend the solution space beyond the available data. The extent of these perturbations then define the
network’s ability to either explore the solution space or refine the existing solution. If the training data is
restricted to minor perturbations, the solution may become trapped in a local minimum. Conversely, major
perturbations may result in the network being unable to determine a sufficiently accurate cross-section set.
The explore and refine phases of the procedure aim to strike a balance between these two regimes. In the
explore phase, major perturbations of σc are made to assist the network in traversing the solution space
beyond the current fits while in the refine phase, minor perturbations are used to further refine σc.

Through a trial and error process, we found the following parameters to be suitable for each training
phase. In the explore phase, we conduct two iterations while in the refine phase we conduct five to help
ensure sufficient refinement of a particular solution is conducted after each exploratory phase. For high
energy (>10eV) processes, such as electronic excitation and ionisation, we sample r from the domain
[0.5,0.8] for each iteration in the explore phase while during the refine phase we set r= 0.8. For low energy
processes, such as vibration and elastic, r is sampled from [0.5,1.5] in the explore phase and [0.8,1.2] in the
refine phase. In the case of low energy processes, r values greater than 1 are used to generate training
examples that accentuate low energy cross-section features that are present in the sample data.

Direct parallels can be drawn between the iterative MBANN technique and the well known iterative
swarm technique. In each, an informed supervisor guides the procedure towards both a physical and accurate
solution to the inverse problem. In the iterative swarm technique, this is generally the role of an expert in the
field who may make adjustments to the solution or procedure where necessary. In the iterative MBANN
technique this role is, in the ideal case, automated by the neural network. Depending on the application, the
guidance of an expert may still be required to choose suitable parameters and monitor its performance.

We demonstrate the proposed iterative procedure through a regression of methane’s cross-section set
presented in section 2.1. While 32 neurons was chosen for the hidden layers in each parallel branch as the
limiting case in the previous section, we increase this to 64 in what follows due to modest improvements in
the validation accuracy. In figure 4, we compare both the initial and the best regression found of methane’s
cross-section set during the procedure, along with their associated transport coefficients.

The associated transport coefficients of the initial fit of methane’s cross-section set results in substantial
discrepancies to the original set. The initial MBANN regression resulted in a MARPD of 1.8, 5.1 and 27% for
W, n0DL and keff, respectively. After 40 iterations, the procedure was then able to substantially improve upon
the initial regression with the best iteration resulting in a MARPD of 0.48, 1.69, and 5.84% forW, n0DL and
keff, respectively.

Crucially, we also find substantial improvements in the agreement between the total cross-sections for
each collision type in the set and the target cross-section set. Provided as shaded regions in figure 4, is the
extent of the best 100 regressions found in the initial fit. Both the total excitation and the attachment
cross-section of the best regression exist, in part, outside of the initial extent of σc. The network was therefore
able to effectively explore where necessary to improve the resulting fit of the target transport coefficients.

In its current form, the procedure assumes the prior knowledge of threshold energies. This assumption is
particularly important when groupings of similar thresholds are present. If instead, effective excitation
cross-sections are utilised in the network to represent groupings of similar threshold energies, this
assumption could be avoided at the expense of physical threshold energies in the resulting cross-section set.
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Figure 4.MBANN regression of Song and Bouwman’s methane cross-section set [29, 33] using an iterative procedure. (a)
compares the initial regression and the best regression found to the original cross-section set. While only the total excitation
cross-section is shown here for simplicity, each of the six excitation processes present in the original set are included in the
regression. The bulk drift velocityW, bulk reduced longitudinal diffusion (n0DL) and the effective ionisation rate (keff) for each
regression is shown in (b). All transport coefficients displayed here are calculated with a multi-term Boltzmann equation solver.
Shown as shaded regions, are the extent of the best 100 regressions for the initial regression. For simplicity, the legends in (b) is
also shared by (a). Below each figure, is the absolute relative percentage difference across the energy domain between each
regression and the original set.

In this investigation, we utilise only calculated transport coefficients over a large range of reduced electric
fields. In reality, such a range is not often available. While tailoring the energy domain of the cross-section
regression to the transport data available will alleviate the limitation in part, this has limited returns. We thus
encourage the measurement of swarm coefficients over a broad range of electric field domains where
possible. Finally, while we have made a concerted effort to develop a robust iterative procedure, depending
on the particular problem and the extent of available transport data, the network may still produce
non-physical cross-sections or become trapped in a local minimum. The parameters utilised here should
thus only serve as a guide for future applications to be modified as needed.

3. Conclusion

In this work, we demonstrate a new iterative procedure that uses a MBANN to solve the inverse swarm
problem. Building upon the foundations outlined by Stokes et al [3, 19–21] and Jetly and Chaudhury [22],
we address two key limitations of an ANN solution to the inverse swarm problem.

We first evaluate the use of a MBANN that includes an independent branch of dense layers for each
output that each stem from common feature map of the input. We then compare the MBANN to an
equivalent conventional ANN using Song and Bouwman’s methane cross-section set [29, 33] and
demonstrate that the use of parallel layers can improve the resulting regression as the network is able to
efficiently and independently represent multiple distinct cross-sections.

In addition, taking inspiration from the iterative swarm technique, we propose an iterative MBANN
procedure to that incrementally explores the solution space to reduce the ill-posed nature of the problem.
After an initial regression is found, we use a sequence of MBANNs that are each trained using perturbations
around the previous regression. The iterative MBANN procedure then converges towards a particular
solution of the inverse swarm problem.

To demonstrate the iterative MBANN procedure, we evaluate its performance using Song and
Bouwman’s methane cross-section set [29, 33]. In the 40 iterations that were conducted, the MARPD of the
initial regression’s resulting transport coefficients was substantially decreased from 1.8, 5.1 and 27%, to 0.48,
1.69, and 5.84% forW, n0DL and keff, respectively. Additionally, the total cross-section for each collision type
within the best set found exhibited good agreement with the original set, in contrast to the initial regression.

Overall, we have demonstrated an improved artificial neural network solution to the inverse swarm
problem that utilises both an iterative procedure and parallel branches of densely connected layers that
represent each cross-section. In conjunction, these additions improve the ability of the network to generate
both self-consistent and physical cross-sections, particularly when large degeneracies may exist for a
particular species.

In future work, we aim to apply this procedure to derive complete cross-section sets for complex targets
while also investigating the use of convolutional architectures.
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Appendix A. LXCat data augmentation

To provide the network with sufficient training samples, we implement the data augmentation method first
presented by Stokes et al [3]. First, we collate an appropriate set of physically plausible example swarm
transport data using cross-sections from the LXCat project [35–37]. Following the method outlined in the
work of Jetly and Chaudhury [22], from a total of 397 elastic and effective cross-sections available, 3 groups
of similar features were created by visual inspection. The total number of cross-sections contained in each
group were 60, 130, and 197. In addition, 6763, 451 and 332 cross-sections in total were present for
excitation, ionisation and attachment processes respectively.

In each iteration, we then generate a database of example cross-sections through a randomised mixing of
cross-section pairs using a weighted sum in log space, [3]:

σs (ε) = σ1−r ′

1

(
ε− ε1 + ε1−r ′

1 εr
′

2

)
σr ′

2

(
ε− ε2 + ε1−r ′

1 εr
′

2

)
, (A.1)

where σ1 and σ2 are a random pair of LXCat electron scattering cross-sections, sampled from the available
targets, for a given process type (e.g. excitation, ionisation, etc), while ε1 and ε2 are their respective threshold
energies. The parameter r′ is a pseudo-random mixing ratio. To help ensure a physical representation of
cross-sections within the training set, a scaled Laplace distribution truncated to the domain r ∈ [0,1.5] was
chosen to bias r′ towards small perturbations around each example cross-section. Any decaying distribution
may be sufficient for this purpose however. Ratios greater than 1 are used here to accentuate cross-section
features found within the sample set to reduce the extend of outliers within the set. Note that for the elastic
cross-section, we sample two cross-sections from the three groups so that each group is equally represented
in the training set.

In addition, due to the limited nature of the available data, the solution may exist at the extremes of the
available training data which can introduce unwanted bias in the data augmentation process. To alleviate
this, equation (A.1) is modified such that the energy domain and magnitude of each cross-section are
multiplied by the scaling factors 10a and 10b respectively. Each factor is a pseudo-random number uniformly
distributed within a defined range. Here, we set a ∈ [−0.5,0.5] ,b ∈ [−0.5,0.5] for elastic cross-sections,
a= 0,b ∈ [0,2] for excitation cross-sections, a= 0,b ∈ [0,1] for ionisation cross-sections and
a ∈ [−1,1] ,b ∈ [−1,1] for attachment cross-sections. Each was chosen to reasonably extend the extent of the
available training data. Finally, we log transform then scale each cross-section between−1 and 1. If a
cross-section magnitude is below δ = 10−6, it is replaced by 10−7 before applying the transform.

For each generated cross-section set, the resulting transport coefficients are calculated through a
multi-term Boltzmann equation solver according to the target experimental transport coefficients. If a
particular set results in non-physical transport coefficients, the set is removed from the training set and a
new set is found until the condition is satisfied. For this investigation, physical transport coefficients are
defined asW> 0 and n0DL > 0, where the electric field is directed along the negative z-axis. In addition, we
apply a logarithmic transformation to ensure that all inputs and outputs of the network are dimensionless
and lie within [−1,1], with special consideration given to keff due to the presence of negative values. The
vectors k+eff and k

−
eff are created to represent the positive and negative portions of the original input

respectively. For k+eff, each negative value is set to a sufficiently small positive value while for k−eff, each positive
value is set to a sufficiently small negative value before taking the absolute value of each.

Appendix B. Training procedure

Training of the network is conducted using a mini-batch of 32 cross-section sets evaluated at 128 energies for
a particular iteration. Each weight and bias is then updated using the ‘NAdam’ optimiser [38] with a learning
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rate of 0.001 and 0.9 and 0.999 as the exponential decay for the first and the second momentum estimate
respectively. For each batch, random noise is applied to each transport coefficient. Noise is sampled from a
lognormal distribution with a standard deviation chosen to replicate experimental uncertainties typically
observed for each transport coefficient.

The prediction of multiple cross-sections of the same collision type has previously been shown to be a
highly degenerate problem, particularly in the case of excitation collisions [3]. To emphasise the importance
of the total cross-section, we use a loss function that includes a penalty for the total cross-section for each
process type, in addition to each individual cross-section. The loss function is defined as follows,

L=
1

I

I∑
i

1

Mi + 1

[∑
σ∈σi

|σ− σ̂|+

∣∣∣∣∣∑
σ∈σi

σ−
∑
σ∈σi

σ̂

∣∣∣∣∣
]
, (B.1)

where σi is the set ofMi cross-sections for the collision type i, I is the number of collision types present and
σ̂ is the predicted cross-section. Note that the calculation of the total cross-sections is conducted in linear
space before scaling is re-applied.

To validate the network, we set aside 5% of the available cross-sections for each collision type to form the
basis of our validation set. In the case of the elastic cross-sections, 5% of each of the feature groups is
selected. The chosen validation cross-sections then undergo the same data augmentation as the training data
to produce 100 samples. Every 100 iterations we test the network on the validation set and calculate the
MARPD over the energy domain,

MARPD=
1

I

I∑
i

∣∣∣∣100× σt,i − σ̂t,i

|σt,i|+ |σ̂t,i|

∣∣∣∣ , (B.2)

where σt,i is the total cross-section for the collision type i. During training, the validation loss is used to both
compare network parameters and aid in preventing overfitting.

In addition, every 10 training iterations we store the neural network’s prediction of the target transport
data and compare the resulting transport coefficients. Due to the presence of multiple distinct fit parameters,
we repeatedly select one random parameter and then remove the worst predicted cross-section set until only
one remains. This process is then replicated 1000 times before the cross-section set which appears most
frequently is chosen as the best overall fit. As desired, the best overall fit can be removed, and the processes
repeated to find the next best fit.

To select each hyperparameter, a simple tuning process was conducted that compared the validation loss
between reasonable values for batch size (32, 64, 128), number of hidden layers (2, 3, 4, 5), hidden layer size
(32, 64, 128, 256) and the optimiser used (NAdam, Adam). For simplicity, this processes was conduced with
a conventional ANN in which each layer contained an equal number of neurons and the output consisted of
an elastic and ionisation cross-section along with three electronic excitation cross-sections. The tuning
processes indicated that 4–5 hidden layers with 128–256 neurons resulted in the smallest validation error.
Due to computational limitations, a more extensive tuning that includes branching hidden layers and a
greater variation of parameters was not conducted.
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